Merge tag 'm68knommu-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / rockchip-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Rockchip NAND Flash controller driver.
4  * Copyright (C) 2020 Rockchip Inc.
5  * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21
22 /*
23  * NFC Page Data Layout:
24  *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25  *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
26  *      ......
27  * NAND Page Data Layout:
28  *      1024 * n data + m Bytes oob
29  * Original Bad Block Mask Location:
30  *      First byte of oob(spare).
31  * nand_chip->oob_poi data layout:
32  *      4Bytes sys data + .... + 4Bytes sys data + ECC data.
33  */
34
35 /* NAND controller register definition */
36 #define NFC_READ                        (0)
37 #define NFC_WRITE                       (1)
38
39 #define NFC_FMCTL                       (0x00)
40 #define   FMCTL_CE_SEL_M                0xFF
41 #define   FMCTL_CE_SEL(x)               (1 << (x))
42 #define   FMCTL_WP                      BIT(8)
43 #define   FMCTL_RDY                     BIT(9)
44
45 #define NFC_FMWAIT                      (0x04)
46 #define   FLCTL_RST                     BIT(0)
47 #define   FLCTL_WR                      (1)     /* 0: read, 1: write */
48 #define   FLCTL_XFER_ST                 BIT(2)
49 #define   FLCTL_XFER_EN                 BIT(3)
50 #define   FLCTL_ACORRECT                BIT(10) /* Auto correct error bits. */
51 #define   FLCTL_XFER_READY              BIT(20)
52 #define   FLCTL_XFER_SECTOR             (22)
53 #define   FLCTL_TOG_FIX                 BIT(29)
54
55 #define   BCHCTL_BANK_M                 (7 << 5)
56 #define   BCHCTL_BANK                   (5)
57
58 #define   DMA_ST                        BIT(0)
59 #define   DMA_WR                        (1)     /* 0: write, 1: read */
60 #define   DMA_EN                        BIT(2)
61 #define   DMA_AHB_SIZE                  (3)     /* 0: 1, 1: 2, 2: 4 */
62 #define   DMA_BURST_SIZE                (6)     /* 0: 1, 3: 4, 5: 8, 7: 16 */
63 #define   DMA_INC_NUM                   (9)     /* 1 - 16 */
64
65 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
66           (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
67 #define   INT_DMA                       BIT(0)
68 #define NFC_BANK                        (0x800)
69 #define NFC_BANK_STEP                   (0x100)
70 #define   BANK_DATA                     (0x00)
71 #define   BANK_ADDR                     (0x04)
72 #define   BANK_CMD                      (0x08)
73 #define NFC_SRAM0                       (0x1000)
74 #define NFC_SRAM1                       (0x1400)
75 #define NFC_SRAM_SIZE                   (0x400)
76 #define NFC_TIMEOUT                     (500000)
77 #define NFC_MAX_OOB_PER_STEP            128
78 #define NFC_MIN_OOB_PER_STEP            64
79 #define MAX_DATA_SIZE                   0xFFFC
80 #define MAX_ADDRESS_CYC                 6
81 #define NFC_ECC_MAX_MODES               4
82 #define NFC_MAX_NSELS                   (8) /* Some Socs only have 1 or 2 CSs. */
83 #define NFC_SYS_DATA_SIZE               (4) /* 4 bytes sys data in oob pre 1024 data.*/
84 #define RK_DEFAULT_CLOCK_RATE           (150 * 1000 * 1000) /* 150 Mhz */
85 #define ACCTIMING(csrw, rwpw, rwcs)     ((csrw) << 12 | (rwpw) << 5 | (rwcs))
86
87 enum nfc_type {
88         NFC_V6,
89         NFC_V8,
90         NFC_V9,
91 };
92
93 /**
94  * struct rk_ecc_cnt_status: represent a ecc status data.
95  * @err_flag_bit: error flag bit index at register.
96  * @low: ECC count low bit index at register.
97  * @low_mask: mask bit.
98  * @low_bn: ECC count low bit number.
99  * @high: ECC count high bit index at register.
100  * @high_mask: mask bit
101  */
102 struct ecc_cnt_status {
103         u8 err_flag_bit;
104         u8 low;
105         u8 low_mask;
106         u8 low_bn;
107         u8 high;
108         u8 high_mask;
109 };
110
111 /**
112  * @type: NFC version
113  * @ecc_strengths: ECC strengths
114  * @ecc_cfgs: ECC config values
115  * @flctl_off: FLCTL register offset
116  * @bchctl_off: BCHCTL register offset
117  * @dma_data_buf_off: DMA_DATA_BUF register offset
118  * @dma_oob_buf_off: DMA_OOB_BUF register offset
119  * @dma_cfg_off: DMA_CFG register offset
120  * @dma_st_off: DMA_ST register offset
121  * @bch_st_off: BCG_ST register offset
122  * @randmz_off: RANDMZ register offset
123  * @int_en_off: interrupt enable register offset
124  * @int_clr_off: interrupt clean register offset
125  * @int_st_off: interrupt status register offset
126  * @oob0_off: oob0 register offset
127  * @oob1_off: oob1 register offset
128  * @ecc0: represent ECC0 status data
129  * @ecc1: represent ECC1 status data
130  */
131 struct nfc_cfg {
132         enum nfc_type type;
133         u8 ecc_strengths[NFC_ECC_MAX_MODES];
134         u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135         u32 flctl_off;
136         u32 bchctl_off;
137         u32 dma_cfg_off;
138         u32 dma_data_buf_off;
139         u32 dma_oob_buf_off;
140         u32 dma_st_off;
141         u32 bch_st_off;
142         u32 randmz_off;
143         u32 int_en_off;
144         u32 int_clr_off;
145         u32 int_st_off;
146         u32 oob0_off;
147         u32 oob1_off;
148         struct ecc_cnt_status ecc0;
149         struct ecc_cnt_status ecc1;
150 };
151
152 struct rk_nfc_nand_chip {
153         struct list_head node;
154         struct nand_chip chip;
155
156         u16 boot_blks;
157         u16 metadata_size;
158         u32 boot_ecc;
159         u32 timing;
160
161         u8 nsels;
162         u8 sels[0];
163         /* Nothing after this field. */
164 };
165
166 struct rk_nfc {
167         struct nand_controller controller;
168         const struct nfc_cfg *cfg;
169         struct device *dev;
170
171         struct clk *nfc_clk;
172         struct clk *ahb_clk;
173         void __iomem *regs;
174
175         u32 selected_bank;
176         u32 band_offset;
177         u32 cur_ecc;
178         u32 cur_timing;
179
180         struct completion done;
181         struct list_head chips;
182
183         u8 *page_buf;
184         u32 *oob_buf;
185         u32 page_buf_size;
186         u32 oob_buf_size;
187
188         unsigned long assigned_cs;
189 };
190
191 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
192 {
193         return container_of(chip, struct rk_nfc_nand_chip, chip);
194 }
195
196 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
197 {
198         return (u8 *)p + i * chip->ecc.size;
199 }
200
201 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
202 {
203         u8 *poi;
204
205         poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
206
207         return poi;
208 }
209
210 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
211 {
212         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
213         u8 *poi;
214
215         poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
216
217         return poi;
218 }
219
220 static inline int rk_nfc_data_len(struct nand_chip *chip)
221 {
222         return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
223 }
224
225 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
226 {
227         struct rk_nfc *nfc = nand_get_controller_data(chip);
228
229         return nfc->page_buf + i * rk_nfc_data_len(chip);
230 }
231
232 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
233 {
234         struct rk_nfc *nfc = nand_get_controller_data(chip);
235
236         return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
237 }
238
239 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
240 {
241         struct rk_nfc *nfc = nand_get_controller_data(chip);
242         u32 reg, i;
243
244         for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
245                 if (strength == nfc->cfg->ecc_strengths[i]) {
246                         reg = nfc->cfg->ecc_cfgs[i];
247                         break;
248                 }
249         }
250
251         if (i >= NFC_ECC_MAX_MODES)
252                 return -EINVAL;
253
254         writel(reg, nfc->regs + nfc->cfg->bchctl_off);
255
256         /* Save chip ECC setting */
257         nfc->cur_ecc = strength;
258
259         return 0;
260 }
261
262 static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
263 {
264         struct rk_nfc *nfc = nand_get_controller_data(chip);
265         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
266         struct nand_ecc_ctrl *ecc = &chip->ecc;
267         u32 val;
268
269         if (cs < 0) {
270                 nfc->selected_bank = -1;
271                 /* Deselect the currently selected target. */
272                 val = readl_relaxed(nfc->regs + NFC_FMCTL);
273                 val &= ~FMCTL_CE_SEL_M;
274                 writel(val, nfc->regs + NFC_FMCTL);
275                 return;
276         }
277
278         nfc->selected_bank = rknand->sels[cs];
279         nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
280
281         val = readl_relaxed(nfc->regs + NFC_FMCTL);
282         val &= ~FMCTL_CE_SEL_M;
283         val |= FMCTL_CE_SEL(nfc->selected_bank);
284
285         writel(val, nfc->regs + NFC_FMCTL);
286
287         /*
288          * Compare current chip timing with selected chip timing and
289          * change if needed.
290          */
291         if (nfc->cur_timing != rknand->timing) {
292                 writel(rknand->timing, nfc->regs + NFC_FMWAIT);
293                 nfc->cur_timing = rknand->timing;
294         }
295
296         /*
297          * Compare current chip ECC setting with selected chip ECC setting and
298          * change if needed.
299          */
300         if (nfc->cur_ecc != ecc->strength)
301                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
302 }
303
304 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
305 {
306         int rc;
307         u32 val;
308
309         rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
310                                         val & FMCTL_RDY, 10, NFC_TIMEOUT);
311
312         return rc;
313 }
314
315 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
316 {
317         int i;
318
319         for (i = 0; i < len; i++)
320                 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
321                                        BANK_DATA);
322 }
323
324 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
325 {
326         int i;
327
328         for (i = 0; i < len; i++)
329                 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
330 }
331
332 static int rk_nfc_cmd(struct nand_chip *chip,
333                       const struct nand_subop *subop)
334 {
335         struct rk_nfc *nfc = nand_get_controller_data(chip);
336         unsigned int i, j, remaining, start;
337         int reg_offset = nfc->band_offset;
338         u8 *inbuf = NULL;
339         const u8 *outbuf;
340         u32 cnt = 0;
341         int ret = 0;
342
343         for (i = 0; i < subop->ninstrs; i++) {
344                 const struct nand_op_instr *instr = &subop->instrs[i];
345
346                 switch (instr->type) {
347                 case NAND_OP_CMD_INSTR:
348                         writeb(instr->ctx.cmd.opcode,
349                                nfc->regs + reg_offset + BANK_CMD);
350                         break;
351
352                 case NAND_OP_ADDR_INSTR:
353                         remaining = nand_subop_get_num_addr_cyc(subop, i);
354                         start = nand_subop_get_addr_start_off(subop, i);
355
356                         for (j = 0; j < 8 && j + start < remaining; j++)
357                                 writeb(instr->ctx.addr.addrs[j + start],
358                                        nfc->regs + reg_offset + BANK_ADDR);
359                         break;
360
361                 case NAND_OP_DATA_IN_INSTR:
362                 case NAND_OP_DATA_OUT_INSTR:
363                         start = nand_subop_get_data_start_off(subop, i);
364                         cnt = nand_subop_get_data_len(subop, i);
365
366                         if (instr->type == NAND_OP_DATA_OUT_INSTR) {
367                                 outbuf = instr->ctx.data.buf.out + start;
368                                 rk_nfc_write_buf(nfc, outbuf, cnt);
369                         } else {
370                                 inbuf = instr->ctx.data.buf.in + start;
371                                 rk_nfc_read_buf(nfc, inbuf, cnt);
372                         }
373                         break;
374
375                 case NAND_OP_WAITRDY_INSTR:
376                         if (rk_nfc_wait_ioready(nfc) < 0) {
377                                 ret = -ETIMEDOUT;
378                                 dev_err(nfc->dev, "IO not ready\n");
379                         }
380                         break;
381                 }
382         }
383
384         return ret;
385 }
386
387 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
388         NAND_OP_PARSER_PATTERN(
389                 rk_nfc_cmd,
390                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
391                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
392                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
393                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
394                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
395         NAND_OP_PARSER_PATTERN(
396                 rk_nfc_cmd,
397                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
398                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
399                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
400                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
401                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
402 );
403
404 static int rk_nfc_exec_op(struct nand_chip *chip,
405                           const struct nand_operation *op,
406                           bool check_only)
407 {
408         if (!check_only)
409                 rk_nfc_select_chip(chip, op->cs);
410
411         return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
412                                       check_only);
413 }
414
415 static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
416                                   const struct nand_interface_config *conf)
417 {
418         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
419         struct rk_nfc *nfc = nand_get_controller_data(chip);
420         const struct nand_sdr_timings *timings;
421         u32 rate, tc2rw, trwpw, trw2c;
422         u32 temp;
423
424         if (target < 0)
425                 return 0;
426
427         timings = nand_get_sdr_timings(conf);
428         if (IS_ERR(timings))
429                 return -EOPNOTSUPP;
430
431         if (IS_ERR(nfc->nfc_clk))
432                 rate = clk_get_rate(nfc->ahb_clk);
433         else
434                 rate = clk_get_rate(nfc->nfc_clk);
435
436         /* Turn clock rate into kHz. */
437         rate /= 1000;
438
439         tc2rw = 1;
440         trw2c = 1;
441
442         trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
443         trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
444
445         temp = timings->tREA_max / 1000;
446         temp = DIV_ROUND_UP(temp * rate, 1000000);
447
448         if (trwpw < temp)
449                 trwpw = temp;
450
451         /*
452          * ACCON: access timing control register
453          * -------------------------------------
454          * 31:18: reserved
455          * 17:12: csrw, clock cycles from the falling edge of CSn to the
456          *   falling edge of RDn or WRn
457          * 11:11: reserved
458          * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
459          * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
460          *   rising edge of CSn
461          */
462
463         /* Save chip timing */
464         rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
465
466         return 0;
467 }
468
469 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
470                               dma_addr_t dma_data, dma_addr_t dma_oob)
471 {
472         u32 dma_reg, fl_reg, bch_reg;
473
474         dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
475               (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
476
477         fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
478                  (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
479
480         if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
481                 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
482                 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
483                           (nfc->selected_bank << BCHCTL_BANK);
484                 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
485         }
486
487         writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
488         writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
489         writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
490         writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
491         fl_reg |= FLCTL_XFER_ST;
492         writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
493 }
494
495 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
496 {
497         void __iomem *ptr;
498         u32 reg;
499
500         ptr = nfc->regs + nfc->cfg->flctl_off;
501
502         return readl_relaxed_poll_timeout(ptr, reg,
503                                          reg & FLCTL_XFER_READY,
504                                          10, NFC_TIMEOUT);
505 }
506
507 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
508                                  int oob_on, int page)
509 {
510         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
511         struct rk_nfc *nfc = nand_get_controller_data(chip);
512         struct mtd_info *mtd = nand_to_mtd(chip);
513         struct nand_ecc_ctrl *ecc = &chip->ecc;
514         int i, pages_per_blk;
515
516         pages_per_blk = mtd->erasesize / mtd->writesize;
517         if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
518             (page < (pages_per_blk * rknand->boot_blks)) &&
519             rknand->boot_ecc != ecc->strength) {
520                 /*
521                  * There's currently no method to notify the MTD framework that
522                  * a different ECC strength is in use for the boot blocks.
523                  */
524                 return -EIO;
525         }
526
527         if (!buf)
528                 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
529
530         for (i = 0; i < ecc->steps; i++) {
531                 /* Copy data to the NFC buffer. */
532                 if (buf)
533                         memcpy(rk_nfc_data_ptr(chip, i),
534                                rk_nfc_buf_to_data_ptr(chip, buf, i),
535                                ecc->size);
536                 /*
537                  * The first four bytes of OOB are reserved for the
538                  * boot ROM. In some debugging cases, such as with a
539                  * read, erase and write back test these 4 bytes stored
540                  * in OOB also need to be written back.
541                  *
542                  * The function nand_block_bad detects bad blocks like:
543                  *
544                  * bad = chip->oob_poi[chip->badblockpos];
545                  *
546                  * chip->badblockpos == 0 for a large page NAND Flash,
547                  * so chip->oob_poi[0] is the bad block mask (BBM).
548                  *
549                  * The OOB data layout on the NFC is:
550                  *
551                  *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
552                  *
553                  * or
554                  *
555                  *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
556                  *
557                  * The code here just swaps the first 4 bytes with the last
558                  * 4 bytes without losing any data.
559                  *
560                  * The chip->oob_poi data layout:
561                  *
562                  *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
563                  *
564                  * The rk_nfc_ooblayout_free() function already has reserved
565                  * these 4 bytes with:
566                  *
567                  * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
568                  */
569                 if (!i)
570                         memcpy(rk_nfc_oob_ptr(chip, i),
571                                rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
572                                NFC_SYS_DATA_SIZE);
573                 else
574                         memcpy(rk_nfc_oob_ptr(chip, i),
575                                rk_nfc_buf_to_oob_ptr(chip, i - 1),
576                                NFC_SYS_DATA_SIZE);
577                 /* Copy ECC data to the NFC buffer. */
578                 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579                        rk_nfc_buf_to_oob_ecc_ptr(chip, i),
580                        ecc->bytes);
581         }
582
583         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
584         rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
585         return nand_prog_page_end_op(chip);
586 }
587
588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589                                    int oob_on, int page)
590 {
591         struct mtd_info *mtd = nand_to_mtd(chip);
592         struct rk_nfc *nfc = nand_get_controller_data(chip);
593         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594         struct nand_ecc_ctrl *ecc = &chip->ecc;
595         int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596                         NFC_MIN_OOB_PER_STEP;
597         int pages_per_blk = mtd->erasesize / mtd->writesize;
598         int ret = 0, i, boot_rom_mode = 0;
599         dma_addr_t dma_data, dma_oob;
600         u32 reg;
601         u8 *oob;
602
603         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
604
605         if (buf)
606                 memcpy(nfc->page_buf, buf, mtd->writesize);
607         else
608                 memset(nfc->page_buf, 0xFF, mtd->writesize);
609
610         /*
611          * The first blocks (4, 8 or 16 depending on the device) are used
612          * by the boot ROM and the first 32 bits of OOB need to link to
613          * the next page address in the same block. We can't directly copy
614          * OOB data from the MTD framework, because this page address
615          * conflicts for example with the bad block marker (BBM),
616          * so we shift all OOB data including the BBM with 4 byte positions.
617          * As a consequence the OOB size available to the MTD framework is
618          * also reduced with 4 bytes.
619          *
620          *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
621          *
622          * If a NAND is not a boot medium or the page is not a boot block,
623          * the first 4 bytes are left untouched by writing 0xFF to them.
624          *
625          *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
626          *
627          * Configure the ECC algorithm supported by the boot ROM.
628          */
629         if ((page < (pages_per_blk * rknand->boot_blks)) &&
630             (chip->options & NAND_IS_BOOT_MEDIUM)) {
631                 boot_rom_mode = 1;
632                 if (rknand->boot_ecc != ecc->strength)
633                         rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
634         }
635
636         for (i = 0; i < ecc->steps; i++) {
637                 if (!i) {
638                         reg = 0xFFFFFFFF;
639                 } else {
640                         oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
641                         reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
642                               oob[3] << 24;
643                 }
644
645                 if (!i && boot_rom_mode)
646                         reg = (page & (pages_per_blk - 1)) * 4;
647
648                 if (nfc->cfg->type == NFC_V9)
649                         nfc->oob_buf[i] = reg;
650                 else
651                         nfc->oob_buf[i * (oob_step / 4)] = reg;
652         }
653
654         dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
655                                   mtd->writesize, DMA_TO_DEVICE);
656         dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
657                                  ecc->steps * oob_step,
658                                  DMA_TO_DEVICE);
659
660         reinit_completion(&nfc->done);
661         writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
662
663         rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
664                           dma_oob);
665         ret = wait_for_completion_timeout(&nfc->done,
666                                           msecs_to_jiffies(100));
667         if (!ret)
668                 dev_warn(nfc->dev, "write: wait dma done timeout.\n");
669         /*
670          * Whether the DMA transfer is completed or not. The driver
671          * needs to check the NFC`s status register to see if the data
672          * transfer was completed.
673          */
674         ret = rk_nfc_wait_for_xfer_done(nfc);
675
676         dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
677                          DMA_TO_DEVICE);
678         dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
679                          DMA_TO_DEVICE);
680
681         if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
682                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
683
684         if (ret) {
685                 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
686                 return -ETIMEDOUT;
687         }
688
689         return nand_prog_page_end_op(chip);
690 }
691
692 static int rk_nfc_write_oob(struct nand_chip *chip, int page)
693 {
694         return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
695 }
696
697 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
698                                 int page)
699 {
700         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
701         struct rk_nfc *nfc = nand_get_controller_data(chip);
702         struct mtd_info *mtd = nand_to_mtd(chip);
703         struct nand_ecc_ctrl *ecc = &chip->ecc;
704         int i, pages_per_blk;
705
706         pages_per_blk = mtd->erasesize / mtd->writesize;
707         if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
708             (page < (pages_per_blk * rknand->boot_blks)) &&
709             rknand->boot_ecc != ecc->strength) {
710                 /*
711                  * There's currently no method to notify the MTD framework that
712                  * a different ECC strength is in use for the boot blocks.
713                  */
714                 return -EIO;
715         }
716
717         nand_read_page_op(chip, page, 0, NULL, 0);
718         rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
719         for (i = 0; i < ecc->steps; i++) {
720                 /*
721                  * The first four bytes of OOB are reserved for the
722                  * boot ROM. In some debugging cases, such as with a read,
723                  * erase and write back test, these 4 bytes also must be
724                  * saved somewhere, otherwise this information will be
725                  * lost during a write back.
726                  */
727                 if (!i)
728                         memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
729                                rk_nfc_oob_ptr(chip, i),
730                                NFC_SYS_DATA_SIZE);
731                 else
732                         memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
733                                rk_nfc_oob_ptr(chip, i),
734                                NFC_SYS_DATA_SIZE);
735
736                 /* Copy ECC data from the NFC buffer. */
737                 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
738                        rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
739                        ecc->bytes);
740
741                 /* Copy data from the NFC buffer. */
742                 if (buf)
743                         memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
744                                rk_nfc_data_ptr(chip, i),
745                                ecc->size);
746         }
747
748         return 0;
749 }
750
751 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
752                                   int page)
753 {
754         struct mtd_info *mtd = nand_to_mtd(chip);
755         struct rk_nfc *nfc = nand_get_controller_data(chip);
756         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
757         struct nand_ecc_ctrl *ecc = &chip->ecc;
758         int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
759                         NFC_MIN_OOB_PER_STEP;
760         int pages_per_blk = mtd->erasesize / mtd->writesize;
761         dma_addr_t dma_data, dma_oob;
762         int ret = 0, i, cnt, boot_rom_mode = 0;
763         int max_bitflips = 0, bch_st, ecc_fail = 0;
764         u8 *oob;
765         u32 tmp;
766
767         nand_read_page_op(chip, page, 0, NULL, 0);
768
769         dma_data = dma_map_single(nfc->dev, nfc->page_buf,
770                                   mtd->writesize,
771                                   DMA_FROM_DEVICE);
772         dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
773                                  ecc->steps * oob_step,
774                                  DMA_FROM_DEVICE);
775
776         /*
777          * The first blocks (4, 8 or 16 depending on the device)
778          * are used by the boot ROM.
779          * Configure the ECC algorithm supported by the boot ROM.
780          */
781         if ((page < (pages_per_blk * rknand->boot_blks)) &&
782             (chip->options & NAND_IS_BOOT_MEDIUM)) {
783                 boot_rom_mode = 1;
784                 if (rknand->boot_ecc != ecc->strength)
785                         rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
786         }
787
788         reinit_completion(&nfc->done);
789         writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
790         rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
791                           dma_oob);
792         ret = wait_for_completion_timeout(&nfc->done,
793                                           msecs_to_jiffies(100));
794         if (!ret)
795                 dev_warn(nfc->dev, "read: wait dma done timeout.\n");
796         /*
797          * Whether the DMA transfer is completed or not. The driver
798          * needs to check the NFC`s status register to see if the data
799          * transfer was completed.
800          */
801         ret = rk_nfc_wait_for_xfer_done(nfc);
802
803         dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
804                          DMA_FROM_DEVICE);
805         dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
806                          DMA_FROM_DEVICE);
807
808         if (ret) {
809                 ret = -ETIMEDOUT;
810                 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
811                 goto timeout_err;
812         }
813
814         for (i = 1; i < ecc->steps; i++) {
815                 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
816                 if (nfc->cfg->type == NFC_V9)
817                         tmp = nfc->oob_buf[i];
818                 else
819                         tmp = nfc->oob_buf[i * (oob_step / 4)];
820                 *oob++ = (u8)tmp;
821                 *oob++ = (u8)(tmp >> 8);
822                 *oob++ = (u8)(tmp >> 16);
823                 *oob++ = (u8)(tmp >> 24);
824         }
825
826         for (i = 0; i < (ecc->steps / 2); i++) {
827                 bch_st = readl_relaxed(nfc->regs +
828                                        nfc->cfg->bch_st_off + i * 4);
829                 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
830                     bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
831                         mtd->ecc_stats.failed++;
832                         ecc_fail = 1;
833                 } else {
834                         cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
835                         mtd->ecc_stats.corrected += cnt;
836                         max_bitflips = max_t(u32, max_bitflips, cnt);
837
838                         cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
839                         mtd->ecc_stats.corrected += cnt;
840                         max_bitflips = max_t(u32, max_bitflips, cnt);
841                 }
842         }
843
844         if (buf)
845                 memcpy(buf, nfc->page_buf, mtd->writesize);
846
847 timeout_err:
848         if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
849                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
850
851         if (ret)
852                 return ret;
853
854         if (ecc_fail) {
855                 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
856                 return 0;
857         }
858
859         return max_bitflips;
860 }
861
862 static int rk_nfc_read_oob(struct nand_chip *chip, int page)
863 {
864         return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
865 }
866
867 static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
868 {
869         /* Disable flash wp. */
870         writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
871         /* Config default timing 40ns at 150 Mhz NFC clock. */
872         writel(0x1081, nfc->regs + NFC_FMWAIT);
873         nfc->cur_timing = 0x1081;
874         /* Disable randomizer and DMA. */
875         writel(0, nfc->regs + nfc->cfg->randmz_off);
876         writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
877         writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
878 }
879
880 static irqreturn_t rk_nfc_irq(int irq, void *id)
881 {
882         struct rk_nfc *nfc = id;
883         u32 sta, ien;
884
885         sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
886         ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
887
888         if (!(sta & ien))
889                 return IRQ_NONE;
890
891         writel(sta, nfc->regs + nfc->cfg->int_clr_off);
892         writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
893
894         complete(&nfc->done);
895
896         return IRQ_HANDLED;
897 }
898
899 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
900 {
901         int ret;
902
903         if (!IS_ERR(nfc->nfc_clk)) {
904                 ret = clk_prepare_enable(nfc->nfc_clk);
905                 if (ret) {
906                         dev_err(dev, "failed to enable NFC clk\n");
907                         return ret;
908                 }
909         }
910
911         ret = clk_prepare_enable(nfc->ahb_clk);
912         if (ret) {
913                 dev_err(dev, "failed to enable ahb clk\n");
914                 if (!IS_ERR(nfc->nfc_clk))
915                         clk_disable_unprepare(nfc->nfc_clk);
916                 return ret;
917         }
918
919         return 0;
920 }
921
922 static void rk_nfc_disable_clks(struct rk_nfc *nfc)
923 {
924         if (!IS_ERR(nfc->nfc_clk))
925                 clk_disable_unprepare(nfc->nfc_clk);
926         clk_disable_unprepare(nfc->ahb_clk);
927 }
928
929 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
930                                  struct mtd_oob_region *oob_region)
931 {
932         struct nand_chip *chip = mtd_to_nand(mtd);
933         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
934
935         if (section)
936                 return -ERANGE;
937
938         /*
939          * The beginning of the OOB area stores the reserved data for the NFC,
940          * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
941          */
942         oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
943         oob_region->offset = NFC_SYS_DATA_SIZE + 2;
944
945         return 0;
946 }
947
948 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
949                                 struct mtd_oob_region *oob_region)
950 {
951         struct nand_chip *chip = mtd_to_nand(mtd);
952         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
953
954         if (section)
955                 return -ERANGE;
956
957         oob_region->length = mtd->oobsize - rknand->metadata_size;
958         oob_region->offset = rknand->metadata_size;
959
960         return 0;
961 }
962
963 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
964         .free = rk_nfc_ooblayout_free,
965         .ecc = rk_nfc_ooblayout_ecc,
966 };
967
968 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
969 {
970         struct nand_chip *chip = mtd_to_nand(mtd);
971         struct rk_nfc *nfc = nand_get_controller_data(chip);
972         struct nand_ecc_ctrl *ecc = &chip->ecc;
973         const u8 *strengths = nfc->cfg->ecc_strengths;
974         u8 max_strength, nfc_max_strength;
975         int i;
976
977         nfc_max_strength = nfc->cfg->ecc_strengths[0];
978         /* If optional dt settings not present. */
979         if (!ecc->size || !ecc->strength ||
980             ecc->strength > nfc_max_strength) {
981                 chip->ecc.size = 1024;
982                 ecc->steps = mtd->writesize / ecc->size;
983
984                 /*
985                  * HW ECC always requests the number of ECC bytes per 1024 byte
986                  * blocks. The first 4 OOB bytes are reserved for sys data.
987                  */
988                 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
989                                  fls(8 * 1024);
990                 if (max_strength > nfc_max_strength)
991                         max_strength = nfc_max_strength;
992
993                 for (i = 0; i < 4; i++) {
994                         if (max_strength >= strengths[i])
995                                 break;
996                 }
997
998                 if (i >= 4) {
999                         dev_err(nfc->dev, "unsupported ECC strength\n");
1000                         return -EOPNOTSUPP;
1001                 }
1002
1003                 ecc->strength = strengths[i];
1004         }
1005         ecc->steps = mtd->writesize / ecc->size;
1006         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1007
1008         return 0;
1009 }
1010
1011 static int rk_nfc_attach_chip(struct nand_chip *chip)
1012 {
1013         struct mtd_info *mtd = nand_to_mtd(chip);
1014         struct device *dev = mtd->dev.parent;
1015         struct rk_nfc *nfc = nand_get_controller_data(chip);
1016         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1017         struct nand_ecc_ctrl *ecc = &chip->ecc;
1018         int new_page_len, new_oob_len;
1019         void *buf;
1020         int ret;
1021
1022         if (chip->options & NAND_BUSWIDTH_16) {
1023                 dev_err(dev, "16 bits bus width not supported");
1024                 return -EINVAL;
1025         }
1026
1027         if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1028                 return 0;
1029
1030         ret = rk_nfc_ecc_init(dev, mtd);
1031         if (ret)
1032                 return ret;
1033
1034         rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1035
1036         if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1037                 dev_err(dev,
1038                         "driver needs at least %d bytes of meta data\n",
1039                         NFC_SYS_DATA_SIZE + 2);
1040                 return -EIO;
1041         }
1042
1043         /* Check buffer first, avoid duplicate alloc buffer. */
1044         new_page_len = mtd->writesize + mtd->oobsize;
1045         if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1046                 buf = krealloc(nfc->page_buf, new_page_len,
1047                                GFP_KERNEL | GFP_DMA);
1048                 if (!buf)
1049                         return -ENOMEM;
1050                 nfc->page_buf = buf;
1051                 nfc->page_buf_size = new_page_len;
1052         }
1053
1054         new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1055         if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1056                 buf = krealloc(nfc->oob_buf, new_oob_len,
1057                                GFP_KERNEL | GFP_DMA);
1058                 if (!buf) {
1059                         kfree(nfc->page_buf);
1060                         nfc->page_buf = NULL;
1061                         return -ENOMEM;
1062                 }
1063                 nfc->oob_buf = buf;
1064                 nfc->oob_buf_size = new_oob_len;
1065         }
1066
1067         if (!nfc->page_buf) {
1068                 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1069                 if (!nfc->page_buf)
1070                         return -ENOMEM;
1071                 nfc->page_buf_size = new_page_len;
1072         }
1073
1074         if (!nfc->oob_buf) {
1075                 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1076                 if (!nfc->oob_buf) {
1077                         kfree(nfc->page_buf);
1078                         nfc->page_buf = NULL;
1079                         return -ENOMEM;
1080                 }
1081                 nfc->oob_buf_size = new_oob_len;
1082         }
1083
1084         chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1085         chip->ecc.write_page = rk_nfc_write_page_hwecc;
1086         chip->ecc.write_oob = rk_nfc_write_oob;
1087
1088         chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1089         chip->ecc.read_page = rk_nfc_read_page_hwecc;
1090         chip->ecc.read_oob = rk_nfc_read_oob;
1091
1092         return 0;
1093 }
1094
1095 static const struct nand_controller_ops rk_nfc_controller_ops = {
1096         .attach_chip = rk_nfc_attach_chip,
1097         .exec_op = rk_nfc_exec_op,
1098         .setup_interface = rk_nfc_setup_interface,
1099 };
1100
1101 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1102                                  struct device_node *np)
1103 {
1104         struct rk_nfc_nand_chip *rknand;
1105         struct nand_chip *chip;
1106         struct mtd_info *mtd;
1107         int nsels;
1108         u32 tmp;
1109         int ret;
1110         int i;
1111
1112         if (!of_get_property(np, "reg", &nsels))
1113                 return -ENODEV;
1114         nsels /= sizeof(u32);
1115         if (!nsels || nsels > NFC_MAX_NSELS) {
1116                 dev_err(dev, "invalid reg property size %d\n", nsels);
1117                 return -EINVAL;
1118         }
1119
1120         rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
1121                               GFP_KERNEL);
1122         if (!rknand)
1123                 return -ENOMEM;
1124
1125         rknand->nsels = nsels;
1126         for (i = 0; i < nsels; i++) {
1127                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1128                 if (ret) {
1129                         dev_err(dev, "reg property failure : %d\n", ret);
1130                         return ret;
1131                 }
1132
1133                 if (tmp >= NFC_MAX_NSELS) {
1134                         dev_err(dev, "invalid CS: %u\n", tmp);
1135                         return -EINVAL;
1136                 }
1137
1138                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1139                         dev_err(dev, "CS %u already assigned\n", tmp);
1140                         return -EINVAL;
1141                 }
1142
1143                 rknand->sels[i] = tmp;
1144         }
1145
1146         chip = &rknand->chip;
1147         chip->controller = &nfc->controller;
1148
1149         nand_set_flash_node(chip, np);
1150
1151         nand_set_controller_data(chip, nfc);
1152
1153         chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1154         chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1155
1156         /* Set default mode in case dt entry is missing. */
1157         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1158
1159         mtd = nand_to_mtd(chip);
1160         mtd->owner = THIS_MODULE;
1161         mtd->dev.parent = dev;
1162
1163         if (!mtd->name) {
1164                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1165                 return -EINVAL;
1166         }
1167
1168         mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1169         rk_nfc_hw_init(nfc);
1170         ret = nand_scan(chip, nsels);
1171         if (ret)
1172                 return ret;
1173
1174         if (chip->options & NAND_IS_BOOT_MEDIUM) {
1175                 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1176                 rknand->boot_blks = ret ? 0 : tmp;
1177
1178                 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1179                                            &tmp);
1180                 rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1181         }
1182
1183         ret = mtd_device_register(mtd, NULL, 0);
1184         if (ret) {
1185                 dev_err(dev, "MTD parse partition error\n");
1186                 nand_cleanup(chip);
1187                 return ret;
1188         }
1189
1190         list_add_tail(&rknand->node, &nfc->chips);
1191
1192         return 0;
1193 }
1194
1195 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1196 {
1197         struct rk_nfc_nand_chip *rknand, *tmp;
1198         struct nand_chip *chip;
1199         int ret;
1200
1201         list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1202                 chip = &rknand->chip;
1203                 ret = mtd_device_unregister(nand_to_mtd(chip));
1204                 WARN_ON(ret);
1205                 nand_cleanup(chip);
1206                 list_del(&rknand->node);
1207         }
1208 }
1209
1210 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1211 {
1212         struct device_node *np = dev->of_node, *nand_np;
1213         int nchips = of_get_child_count(np);
1214         int ret;
1215
1216         if (!nchips || nchips > NFC_MAX_NSELS) {
1217                 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1218                         nchips);
1219                 return -EINVAL;
1220         }
1221
1222         for_each_child_of_node(np, nand_np) {
1223                 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1224                 if (ret) {
1225                         of_node_put(nand_np);
1226                         rk_nfc_chips_cleanup(nfc);
1227                         return ret;
1228                 }
1229         }
1230
1231         return 0;
1232 }
1233
1234 static struct nfc_cfg nfc_v6_cfg = {
1235                 .type                   = NFC_V6,
1236                 .ecc_strengths          = {60, 40, 24, 16},
1237                 .ecc_cfgs               = {
1238                         0x00040011, 0x00040001, 0x00000011, 0x00000001,
1239                 },
1240                 .flctl_off              = 0x08,
1241                 .bchctl_off             = 0x0C,
1242                 .dma_cfg_off            = 0x10,
1243                 .dma_data_buf_off       = 0x14,
1244                 .dma_oob_buf_off        = 0x18,
1245                 .dma_st_off             = 0x1C,
1246                 .bch_st_off             = 0x20,
1247                 .randmz_off             = 0x150,
1248                 .int_en_off             = 0x16C,
1249                 .int_clr_off            = 0x170,
1250                 .int_st_off             = 0x174,
1251                 .oob0_off               = 0x200,
1252                 .oob1_off               = 0x230,
1253                 .ecc0                   = {
1254                         .err_flag_bit   = 2,
1255                         .low            = 3,
1256                         .low_mask       = 0x1F,
1257                         .low_bn         = 5,
1258                         .high           = 27,
1259                         .high_mask      = 0x1,
1260                 },
1261                 .ecc1                   = {
1262                         .err_flag_bit   = 15,
1263                         .low            = 16,
1264                         .low_mask       = 0x1F,
1265                         .low_bn         = 5,
1266                         .high           = 29,
1267                         .high_mask      = 0x1,
1268                 },
1269 };
1270
1271 static struct nfc_cfg nfc_v8_cfg = {
1272                 .type                   = NFC_V8,
1273                 .ecc_strengths          = {16, 16, 16, 16},
1274                 .ecc_cfgs               = {
1275                         0x00000001, 0x00000001, 0x00000001, 0x00000001,
1276                 },
1277                 .flctl_off              = 0x08,
1278                 .bchctl_off             = 0x0C,
1279                 .dma_cfg_off            = 0x10,
1280                 .dma_data_buf_off       = 0x14,
1281                 .dma_oob_buf_off        = 0x18,
1282                 .dma_st_off             = 0x1C,
1283                 .bch_st_off             = 0x20,
1284                 .randmz_off             = 0x150,
1285                 .int_en_off             = 0x16C,
1286                 .int_clr_off            = 0x170,
1287                 .int_st_off             = 0x174,
1288                 .oob0_off               = 0x200,
1289                 .oob1_off               = 0x230,
1290                 .ecc0                   = {
1291                         .err_flag_bit   = 2,
1292                         .low            = 3,
1293                         .low_mask       = 0x1F,
1294                         .low_bn         = 5,
1295                         .high           = 27,
1296                         .high_mask      = 0x1,
1297                 },
1298                 .ecc1                   = {
1299                         .err_flag_bit   = 15,
1300                         .low            = 16,
1301                         .low_mask       = 0x1F,
1302                         .low_bn         = 5,
1303                         .high           = 29,
1304                         .high_mask      = 0x1,
1305                 },
1306 };
1307
1308 static struct nfc_cfg nfc_v9_cfg = {
1309                 .type                   = NFC_V9,
1310                 .ecc_strengths          = {70, 60, 40, 16},
1311                 .ecc_cfgs               = {
1312                         0x00000001, 0x06000001, 0x04000001, 0x02000001,
1313                 },
1314                 .flctl_off              = 0x10,
1315                 .bchctl_off             = 0x20,
1316                 .dma_cfg_off            = 0x30,
1317                 .dma_data_buf_off       = 0x34,
1318                 .dma_oob_buf_off        = 0x38,
1319                 .dma_st_off             = 0x3C,
1320                 .bch_st_off             = 0x150,
1321                 .randmz_off             = 0x208,
1322                 .int_en_off             = 0x120,
1323                 .int_clr_off            = 0x124,
1324                 .int_st_off             = 0x128,
1325                 .oob0_off               = 0x200,
1326                 .oob1_off               = 0x204,
1327                 .ecc0                   = {
1328                         .err_flag_bit   = 2,
1329                         .low            = 3,
1330                         .low_mask       = 0x7F,
1331                         .low_bn         = 7,
1332                         .high           = 0,
1333                         .high_mask      = 0x0,
1334                 },
1335                 .ecc1                   = {
1336                         .err_flag_bit   = 18,
1337                         .low            = 19,
1338                         .low_mask       = 0x7F,
1339                         .low_bn         = 7,
1340                         .high           = 0,
1341                         .high_mask      = 0x0,
1342                 },
1343 };
1344
1345 static const struct of_device_id rk_nfc_id_table[] = {
1346         {
1347                 .compatible = "rockchip,px30-nfc",
1348                 .data = &nfc_v9_cfg
1349         },
1350         {
1351                 .compatible = "rockchip,rk2928-nfc",
1352                 .data = &nfc_v6_cfg
1353         },
1354         {
1355                 .compatible = "rockchip,rv1108-nfc",
1356                 .data = &nfc_v8_cfg
1357         },
1358         { /* sentinel */ }
1359 };
1360 MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1361
1362 static int rk_nfc_probe(struct platform_device *pdev)
1363 {
1364         struct device *dev = &pdev->dev;
1365         struct rk_nfc *nfc;
1366         int ret, irq;
1367
1368         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1369         if (!nfc)
1370                 return -ENOMEM;
1371
1372         nand_controller_init(&nfc->controller);
1373         INIT_LIST_HEAD(&nfc->chips);
1374         nfc->controller.ops = &rk_nfc_controller_ops;
1375
1376         nfc->cfg = of_device_get_match_data(dev);
1377         nfc->dev = dev;
1378
1379         init_completion(&nfc->done);
1380
1381         nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1382         if (IS_ERR(nfc->regs)) {
1383                 ret = PTR_ERR(nfc->regs);
1384                 goto release_nfc;
1385         }
1386
1387         nfc->nfc_clk = devm_clk_get(dev, "nfc");
1388         if (IS_ERR(nfc->nfc_clk)) {
1389                 dev_dbg(dev, "no NFC clk\n");
1390                 /* Some earlier models, such as rk3066, have no NFC clk. */
1391         }
1392
1393         nfc->ahb_clk = devm_clk_get(dev, "ahb");
1394         if (IS_ERR(nfc->ahb_clk)) {
1395                 dev_err(dev, "no ahb clk\n");
1396                 ret = PTR_ERR(nfc->ahb_clk);
1397                 goto release_nfc;
1398         }
1399
1400         ret = rk_nfc_enable_clks(dev, nfc);
1401         if (ret)
1402                 goto release_nfc;
1403
1404         irq = platform_get_irq(pdev, 0);
1405         if (irq < 0) {
1406                 dev_err(dev, "no NFC irq resource\n");
1407                 ret = -EINVAL;
1408                 goto clk_disable;
1409         }
1410
1411         writel(0, nfc->regs + nfc->cfg->int_en_off);
1412         ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1413         if (ret) {
1414                 dev_err(dev, "failed to request NFC irq\n");
1415                 goto clk_disable;
1416         }
1417
1418         platform_set_drvdata(pdev, nfc);
1419
1420         ret = rk_nfc_nand_chips_init(dev, nfc);
1421         if (ret) {
1422                 dev_err(dev, "failed to init NAND chips\n");
1423                 goto clk_disable;
1424         }
1425         return 0;
1426
1427 clk_disable:
1428         rk_nfc_disable_clks(nfc);
1429 release_nfc:
1430         return ret;
1431 }
1432
1433 static int rk_nfc_remove(struct platform_device *pdev)
1434 {
1435         struct rk_nfc *nfc = platform_get_drvdata(pdev);
1436
1437         kfree(nfc->page_buf);
1438         kfree(nfc->oob_buf);
1439         rk_nfc_chips_cleanup(nfc);
1440         rk_nfc_disable_clks(nfc);
1441
1442         return 0;
1443 }
1444
1445 static int __maybe_unused rk_nfc_suspend(struct device *dev)
1446 {
1447         struct rk_nfc *nfc = dev_get_drvdata(dev);
1448
1449         rk_nfc_disable_clks(nfc);
1450
1451         return 0;
1452 }
1453
1454 static int __maybe_unused rk_nfc_resume(struct device *dev)
1455 {
1456         struct rk_nfc *nfc = dev_get_drvdata(dev);
1457         struct rk_nfc_nand_chip *rknand;
1458         struct nand_chip *chip;
1459         int ret;
1460         u32 i;
1461
1462         ret = rk_nfc_enable_clks(dev, nfc);
1463         if (ret)
1464                 return ret;
1465
1466         /* Reset NAND chip if VCC was powered off. */
1467         list_for_each_entry(rknand, &nfc->chips, node) {
1468                 chip = &rknand->chip;
1469                 for (i = 0; i < rknand->nsels; i++)
1470                         nand_reset(chip, i);
1471         }
1472
1473         return 0;
1474 }
1475
1476 static const struct dev_pm_ops rk_nfc_pm_ops = {
1477         SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1478 };
1479
1480 static struct platform_driver rk_nfc_driver = {
1481         .probe = rk_nfc_probe,
1482         .remove = rk_nfc_remove,
1483         .driver = {
1484                 .name = "rockchip-nfc",
1485                 .of_match_table = rk_nfc_id_table,
1486                 .pm = &rk_nfc_pm_ops,
1487         },
1488 };
1489
1490 module_platform_driver(rk_nfc_driver);
1491
1492 MODULE_LICENSE("Dual MIT/GPL");
1493 MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
1494 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1495 MODULE_ALIAS("platform:rockchip-nand-controller");