Merge remote-tracking branch 'spi/for-5.14' into spi-next
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / lpc32xx_slc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NXP LPC32XX NAND SLC driver
4  *
5  * Authors:
6  *    Kevin Wells <kevin.wells@nxp.com>
7  *    Roland Stigge <stigge@antcom.de>
8  *
9  * Copyright © 2011 NXP Semiconductors
10  * Copyright © 2012 Roland Stigge
11  */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/delay.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29 #include <linux/mtd/lpc32xx_slc.h>
30 #include <linux/mtd/nand-ecc-sw-hamming.h>
31
32 #define LPC32XX_MODNAME         "lpc32xx-nand"
33
34 /**********************************************************************
35 * SLC NAND controller register offsets
36 **********************************************************************/
37
38 #define SLC_DATA(x)             (x + 0x000)
39 #define SLC_ADDR(x)             (x + 0x004)
40 #define SLC_CMD(x)              (x + 0x008)
41 #define SLC_STOP(x)             (x + 0x00C)
42 #define SLC_CTRL(x)             (x + 0x010)
43 #define SLC_CFG(x)              (x + 0x014)
44 #define SLC_STAT(x)             (x + 0x018)
45 #define SLC_INT_STAT(x)         (x + 0x01C)
46 #define SLC_IEN(x)              (x + 0x020)
47 #define SLC_ISR(x)              (x + 0x024)
48 #define SLC_ICR(x)              (x + 0x028)
49 #define SLC_TAC(x)              (x + 0x02C)
50 #define SLC_TC(x)               (x + 0x030)
51 #define SLC_ECC(x)              (x + 0x034)
52 #define SLC_DMA_DATA(x)         (x + 0x038)
53
54 /**********************************************************************
55 * slc_ctrl register definitions
56 **********************************************************************/
57 #define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
58 #define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
59 #define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
60
61 /**********************************************************************
62 * slc_cfg register definitions
63 **********************************************************************/
64 #define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
65 #define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
66 #define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
67 #define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
68 #define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
69 #define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
70
71 /**********************************************************************
72 * slc_stat register definitions
73 **********************************************************************/
74 #define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
75 #define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
76 #define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
77
78 /**********************************************************************
79 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
80 **********************************************************************/
81 #define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
82 #define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
83
84 /**********************************************************************
85 * slc_tac register definitions
86 **********************************************************************/
87 /* Computation of clock cycles on basis of controller and device clock rates */
88 #define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
89
90 /* Clock setting for RDY write sample wait time in 2*n clocks */
91 #define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
92 /* Write pulse width in clock cycles, 1 to 16 clocks */
93 #define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
94 /* Write hold time of control and data signals, 1 to 16 clocks */
95 #define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
96 /* Write setup time of control and data signals, 1 to 16 clocks */
97 #define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
98 /* Clock setting for RDY read sample wait time in 2*n clocks */
99 #define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
100 /* Read pulse width in clock cycles, 1 to 16 clocks */
101 #define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
102 /* Read hold time of control and data signals, 1 to 16 clocks */
103 #define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
104 /* Read setup time of control and data signals, 1 to 16 clocks */
105 #define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
106
107 /**********************************************************************
108 * slc_ecc register definitions
109 **********************************************************************/
110 /* ECC line party fetch macro */
111 #define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
112 #define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
113
114 /*
115  * DMA requires storage space for the DMA local buffer and the hardware ECC
116  * storage area. The DMA local buffer is only used if DMA mapping fails
117  * during runtime.
118  */
119 #define LPC32XX_DMA_DATA_SIZE           4096
120 #define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
121
122 /* Number of bytes used for ECC stored in NAND per 256 bytes */
123 #define LPC32XX_SLC_DEV_ECC_BYTES       3
124
125 /*
126  * If the NAND base clock frequency can't be fetched, this frequency will be
127  * used instead as the base. This rate is used to setup the timing registers
128  * used for NAND accesses.
129  */
130 #define LPC32XX_DEF_BUS_RATE            133250000
131
132 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
133 #define LPC32XX_DMA_TIMEOUT             100
134
135 /*
136  * NAND ECC Layout for small page NAND devices
137  * Note: For large and huge page devices, the default layouts are used
138  */
139 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
140                                  struct mtd_oob_region *oobregion)
141 {
142         if (section)
143                 return -ERANGE;
144
145         oobregion->length = 6;
146         oobregion->offset = 10;
147
148         return 0;
149 }
150
151 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
152                                   struct mtd_oob_region *oobregion)
153 {
154         if (section > 1)
155                 return -ERANGE;
156
157         if (!section) {
158                 oobregion->offset = 0;
159                 oobregion->length = 4;
160         } else {
161                 oobregion->offset = 6;
162                 oobregion->length = 4;
163         }
164
165         return 0;
166 }
167
168 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
169         .ecc = lpc32xx_ooblayout_ecc,
170         .free = lpc32xx_ooblayout_free,
171 };
172
173 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
174 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
175
176 /*
177  * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
178  * Note: Large page devices used the default layout
179  */
180 static struct nand_bbt_descr bbt_smallpage_main_descr = {
181         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
182                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
183         .offs = 0,
184         .len = 4,
185         .veroffs = 6,
186         .maxblocks = 4,
187         .pattern = bbt_pattern
188 };
189
190 static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
191         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
192                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
193         .offs = 0,
194         .len = 4,
195         .veroffs = 6,
196         .maxblocks = 4,
197         .pattern = mirror_pattern
198 };
199
200 /*
201  * NAND platform configuration structure
202  */
203 struct lpc32xx_nand_cfg_slc {
204         uint32_t wdr_clks;
205         uint32_t wwidth;
206         uint32_t whold;
207         uint32_t wsetup;
208         uint32_t rdr_clks;
209         uint32_t rwidth;
210         uint32_t rhold;
211         uint32_t rsetup;
212         int wp_gpio;
213         struct mtd_partition *parts;
214         unsigned num_parts;
215 };
216
217 struct lpc32xx_nand_host {
218         struct nand_chip        nand_chip;
219         struct lpc32xx_slc_platform_data *pdata;
220         struct clk              *clk;
221         void __iomem            *io_base;
222         struct lpc32xx_nand_cfg_slc *ncfg;
223
224         struct completion       comp;
225         struct dma_chan         *dma_chan;
226         uint32_t                dma_buf_len;
227         struct dma_slave_config dma_slave_config;
228         struct scatterlist      sgl;
229
230         /*
231          * DMA and CPU addresses of ECC work area and data buffer
232          */
233         uint32_t                *ecc_buf;
234         uint8_t                 *data_buf;
235         dma_addr_t              io_base_dma;
236 };
237
238 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
239 {
240         uint32_t clkrate, tmp;
241
242         /* Reset SLC controller */
243         writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
244         udelay(1000);
245
246         /* Basic setup */
247         writel(0, SLC_CFG(host->io_base));
248         writel(0, SLC_IEN(host->io_base));
249         writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
250                 SLC_ICR(host->io_base));
251
252         /* Get base clock for SLC block */
253         clkrate = clk_get_rate(host->clk);
254         if (clkrate == 0)
255                 clkrate = LPC32XX_DEF_BUS_RATE;
256
257         /* Compute clock setup values */
258         tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
259                 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
260                 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
261                 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
262                 SLCTAC_RDR(host->ncfg->rdr_clks) |
263                 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
264                 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
265                 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
266         writel(tmp, SLC_TAC(host->io_base));
267 }
268
269 /*
270  * Hardware specific access to control lines
271  */
272 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
273                                   unsigned int ctrl)
274 {
275         uint32_t tmp;
276         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
277
278         /* Does CE state need to be changed? */
279         tmp = readl(SLC_CFG(host->io_base));
280         if (ctrl & NAND_NCE)
281                 tmp |= SLCCFG_CE_LOW;
282         else
283                 tmp &= ~SLCCFG_CE_LOW;
284         writel(tmp, SLC_CFG(host->io_base));
285
286         if (cmd != NAND_CMD_NONE) {
287                 if (ctrl & NAND_CLE)
288                         writel(cmd, SLC_CMD(host->io_base));
289                 else
290                         writel(cmd, SLC_ADDR(host->io_base));
291         }
292 }
293
294 /*
295  * Read the Device Ready pin
296  */
297 static int lpc32xx_nand_device_ready(struct nand_chip *chip)
298 {
299         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
300         int rdy = 0;
301
302         if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
303                 rdy = 1;
304
305         return rdy;
306 }
307
308 /*
309  * Enable NAND write protect
310  */
311 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
312 {
313         if (gpio_is_valid(host->ncfg->wp_gpio))
314                 gpio_set_value(host->ncfg->wp_gpio, 0);
315 }
316
317 /*
318  * Disable NAND write protect
319  */
320 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
321 {
322         if (gpio_is_valid(host->ncfg->wp_gpio))
323                 gpio_set_value(host->ncfg->wp_gpio, 1);
324 }
325
326 /*
327  * Prepares SLC for transfers with H/W ECC enabled
328  */
329 static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
330 {
331         /* Hardware ECC is enabled automatically in hardware as needed */
332 }
333
334 /*
335  * Calculates the ECC for the data
336  */
337 static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
338                                       const unsigned char *buf,
339                                       unsigned char *code)
340 {
341         /*
342          * ECC is calculated automatically in hardware during syndrome read
343          * and write operations, so it doesn't need to be calculated here.
344          */
345         return 0;
346 }
347
348 /*
349  * Corrects the data
350  */
351 static int lpc32xx_nand_ecc_correct(struct nand_chip *chip,
352                                     unsigned char *buf,
353                                     unsigned char *read_ecc,
354                                     unsigned char *calc_ecc)
355 {
356         return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc,
357                                       chip->ecc.size, false);
358 }
359
360 /*
361  * Read a single byte from NAND device
362  */
363 static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
364 {
365         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
366
367         return (uint8_t)readl(SLC_DATA(host->io_base));
368 }
369
370 /*
371  * Simple device read without ECC
372  */
373 static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
374 {
375         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
376
377         /* Direct device read with no ECC */
378         while (len-- > 0)
379                 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
380 }
381
382 /*
383  * Simple device write without ECC
384  */
385 static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
386                                    int len)
387 {
388         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
389
390         /* Direct device write with no ECC */
391         while (len-- > 0)
392                 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
393 }
394
395 /*
396  * Read the OOB data from the device without ECC using FIFO method
397  */
398 static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
399 {
400         struct mtd_info *mtd = nand_to_mtd(chip);
401
402         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
403 }
404
405 /*
406  * Write the OOB data to the device without ECC using FIFO method
407  */
408 static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
409 {
410         struct mtd_info *mtd = nand_to_mtd(chip);
411
412         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
413                                  mtd->oobsize);
414 }
415
416 /*
417  * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
418  */
419 static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
420 {
421         int i;
422
423         for (i = 0; i < (count * 3); i += 3) {
424                 uint32_t ce = ecc[i / 3];
425                 ce = ~(ce << 2) & 0xFFFFFF;
426                 spare[i + 2] = (uint8_t)(ce & 0xFF);
427                 ce >>= 8;
428                 spare[i + 1] = (uint8_t)(ce & 0xFF);
429                 ce >>= 8;
430                 spare[i] = (uint8_t)(ce & 0xFF);
431         }
432 }
433
434 static void lpc32xx_dma_complete_func(void *completion)
435 {
436         complete(completion);
437 }
438
439 static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
440                             void *mem, int len, enum dma_transfer_direction dir)
441 {
442         struct nand_chip *chip = mtd_to_nand(mtd);
443         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
444         struct dma_async_tx_descriptor *desc;
445         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
446         int res;
447
448         host->dma_slave_config.direction = dir;
449         host->dma_slave_config.src_addr = dma;
450         host->dma_slave_config.dst_addr = dma;
451         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
452         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
453         host->dma_slave_config.src_maxburst = 4;
454         host->dma_slave_config.dst_maxburst = 4;
455         /* DMA controller does flow control: */
456         host->dma_slave_config.device_fc = false;
457         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
458                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
459                 return -ENXIO;
460         }
461
462         sg_init_one(&host->sgl, mem, len);
463
464         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
465                          DMA_BIDIRECTIONAL);
466         if (res != 1) {
467                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
468                 return -ENXIO;
469         }
470         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
471                                        flags);
472         if (!desc) {
473                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
474                 goto out1;
475         }
476
477         init_completion(&host->comp);
478         desc->callback = lpc32xx_dma_complete_func;
479         desc->callback_param = &host->comp;
480
481         dmaengine_submit(desc);
482         dma_async_issue_pending(host->dma_chan);
483
484         wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
485
486         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
487                      DMA_BIDIRECTIONAL);
488
489         return 0;
490 out1:
491         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
492                      DMA_BIDIRECTIONAL);
493         return -ENXIO;
494 }
495
496 /*
497  * DMA read/write transfers with ECC support
498  */
499 static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
500                         int read)
501 {
502         struct nand_chip *chip = mtd_to_nand(mtd);
503         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
504         int i, status = 0;
505         unsigned long timeout;
506         int res;
507         enum dma_transfer_direction dir =
508                 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
509         uint8_t *dma_buf;
510         bool dma_mapped;
511
512         if ((void *)buf <= high_memory) {
513                 dma_buf = buf;
514                 dma_mapped = true;
515         } else {
516                 dma_buf = host->data_buf;
517                 dma_mapped = false;
518                 if (!read)
519                         memcpy(host->data_buf, buf, mtd->writesize);
520         }
521
522         if (read) {
523                 writel(readl(SLC_CFG(host->io_base)) |
524                        SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
525                        SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
526         } else {
527                 writel((readl(SLC_CFG(host->io_base)) |
528                         SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
529                        ~SLCCFG_DMA_DIR,
530                         SLC_CFG(host->io_base));
531         }
532
533         /* Clear initial ECC */
534         writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
535
536         /* Transfer size is data area only */
537         writel(mtd->writesize, SLC_TC(host->io_base));
538
539         /* Start transfer in the NAND controller */
540         writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
541                SLC_CTRL(host->io_base));
542
543         for (i = 0; i < chip->ecc.steps; i++) {
544                 /* Data */
545                 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
546                                        dma_buf + i * chip->ecc.size,
547                                        mtd->writesize / chip->ecc.steps, dir);
548                 if (res)
549                         return res;
550
551                 /* Always _read_ ECC */
552                 if (i == chip->ecc.steps - 1)
553                         break;
554                 if (!read) /* ECC availability delayed on write */
555                         udelay(10);
556                 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
557                                        &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
558                 if (res)
559                         return res;
560         }
561
562         /*
563          * According to NXP, the DMA can be finished here, but the NAND
564          * controller may still have buffered data. After porting to using the
565          * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
566          * appears to be always true, according to tests. Keeping the check for
567          * safety reasons for now.
568          */
569         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
570                 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
571                 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
572                 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
573                        time_before(jiffies, timeout))
574                         cpu_relax();
575                 if (!time_before(jiffies, timeout)) {
576                         dev_err(mtd->dev.parent, "FIFO held data too long\n");
577                         status = -EIO;
578                 }
579         }
580
581         /* Read last calculated ECC value */
582         if (!read)
583                 udelay(10);
584         host->ecc_buf[chip->ecc.steps - 1] =
585                 readl(SLC_ECC(host->io_base));
586
587         /* Flush DMA */
588         dmaengine_terminate_all(host->dma_chan);
589
590         if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
591             readl(SLC_TC(host->io_base))) {
592                 /* Something is left in the FIFO, something is wrong */
593                 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
594                 status = -EIO;
595         }
596
597         /* Stop DMA & HW ECC */
598         writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
599                SLC_CTRL(host->io_base));
600         writel(readl(SLC_CFG(host->io_base)) &
601                ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
602                  SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
603
604         if (!dma_mapped && read)
605                 memcpy(buf, host->data_buf, mtd->writesize);
606
607         return status;
608 }
609
610 /*
611  * Read the data and OOB data from the device, use ECC correction with the
612  * data, disable ECC for the OOB data
613  */
614 static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
615                                            int oob_required, int page)
616 {
617         struct mtd_info *mtd = nand_to_mtd(chip);
618         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
619         struct mtd_oob_region oobregion = { };
620         int stat, i, status, error;
621         uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
622
623         /* Issue read command */
624         nand_read_page_op(chip, page, 0, NULL, 0);
625
626         /* Read data and oob, calculate ECC */
627         status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
628
629         /* Get OOB data */
630         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
631
632         /* Convert to stored ECC format */
633         lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
634
635         /* Pointer to ECC data retrieved from NAND spare area */
636         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
637         if (error)
638                 return error;
639
640         oobecc = chip->oob_poi + oobregion.offset;
641
642         for (i = 0; i < chip->ecc.steps; i++) {
643                 stat = chip->ecc.correct(chip, buf, oobecc,
644                                          &tmpecc[i * chip->ecc.bytes]);
645                 if (stat < 0)
646                         mtd->ecc_stats.failed++;
647                 else
648                         mtd->ecc_stats.corrected += stat;
649
650                 buf += chip->ecc.size;
651                 oobecc += chip->ecc.bytes;
652         }
653
654         return status;
655 }
656
657 /*
658  * Read the data and OOB data from the device, no ECC correction with the
659  * data or OOB data
660  */
661 static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
662                                                uint8_t *buf, int oob_required,
663                                                int page)
664 {
665         struct mtd_info *mtd = nand_to_mtd(chip);
666
667         /* Issue read command */
668         nand_read_page_op(chip, page, 0, NULL, 0);
669
670         /* Raw reads can just use the FIFO interface */
671         chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
672         chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
673
674         return 0;
675 }
676
677 /*
678  * Write the data and OOB data to the device, use ECC with the data,
679  * disable ECC for the OOB data
680  */
681 static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
682                                             const uint8_t *buf,
683                                             int oob_required, int page)
684 {
685         struct mtd_info *mtd = nand_to_mtd(chip);
686         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
687         struct mtd_oob_region oobregion = { };
688         uint8_t *pb;
689         int error;
690
691         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
692
693         /* Write data, calculate ECC on outbound data */
694         error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
695         if (error)
696                 return error;
697
698         /*
699          * The calculated ECC needs some manual work done to it before
700          * committing it to NAND. Process the calculated ECC and place
701          * the resultant values directly into the OOB buffer. */
702         error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
703         if (error)
704                 return error;
705
706         pb = chip->oob_poi + oobregion.offset;
707         lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
708
709         /* Write ECC data to device */
710         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
711
712         return nand_prog_page_end_op(chip);
713 }
714
715 /*
716  * Write the data and OOB data to the device, no ECC correction with the
717  * data or OOB data
718  */
719 static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
720                                                 const uint8_t *buf,
721                                                 int oob_required, int page)
722 {
723         struct mtd_info *mtd = nand_to_mtd(chip);
724
725         /* Raw writes can just use the FIFO interface */
726         nand_prog_page_begin_op(chip, page, 0, buf,
727                                 chip->ecc.size * chip->ecc.steps);
728         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
729
730         return nand_prog_page_end_op(chip);
731 }
732
733 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
734 {
735         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
736         dma_cap_mask_t mask;
737
738         if (!host->pdata || !host->pdata->dma_filter) {
739                 dev_err(mtd->dev.parent, "no DMA platform data\n");
740                 return -ENOENT;
741         }
742
743         dma_cap_zero(mask);
744         dma_cap_set(DMA_SLAVE, mask);
745         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
746                                              "nand-slc");
747         if (!host->dma_chan) {
748                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
749                 return -EBUSY;
750         }
751
752         return 0;
753 }
754
755 static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
756 {
757         struct lpc32xx_nand_cfg_slc *ncfg;
758         struct device_node *np = dev->of_node;
759
760         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
761         if (!ncfg)
762                 return NULL;
763
764         of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
765         of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
766         of_property_read_u32(np, "nxp,whold", &ncfg->whold);
767         of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
768         of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
769         of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
770         of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
771         of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
772
773         if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
774             !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
775             !ncfg->rhold || !ncfg->rsetup) {
776                 dev_err(dev, "chip parameters not specified correctly\n");
777                 return NULL;
778         }
779
780         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
781
782         return ncfg;
783 }
784
785 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
786 {
787         struct mtd_info *mtd = nand_to_mtd(chip);
788         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
789
790         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
791                 return 0;
792
793         /* OOB and ECC CPU and DMA work areas */
794         host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
795
796         /*
797          * Small page FLASH has a unique OOB layout, but large and huge
798          * page FLASH use the standard layout. Small page FLASH uses a
799          * custom BBT marker layout.
800          */
801         if (mtd->writesize <= 512)
802                 mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
803
804         chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
805         /* These sizes remain the same regardless of page size */
806         chip->ecc.size = 256;
807         chip->ecc.strength = 1;
808         chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
809         chip->ecc.prepad = 0;
810         chip->ecc.postpad = 0;
811         chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
812         chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
813         chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
814         chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
815         chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
816         chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
817         chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
818         chip->ecc.correct = lpc32xx_nand_ecc_correct;
819         chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
820
821         /*
822          * Use a custom BBT marker setup for small page FLASH that
823          * won't interfere with the ECC layout. Large and huge page
824          * FLASH use the standard layout.
825          */
826         if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
827             mtd->writesize <= 512) {
828                 chip->bbt_td = &bbt_smallpage_main_descr;
829                 chip->bbt_md = &bbt_smallpage_mirror_descr;
830         }
831
832         return 0;
833 }
834
835 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
836         .attach_chip = lpc32xx_nand_attach_chip,
837 };
838
839 /*
840  * Probe for NAND controller
841  */
842 static int lpc32xx_nand_probe(struct platform_device *pdev)
843 {
844         struct lpc32xx_nand_host *host;
845         struct mtd_info *mtd;
846         struct nand_chip *chip;
847         struct resource *rc;
848         int res;
849
850         /* Allocate memory for the device structure (and zero it) */
851         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
852         if (!host)
853                 return -ENOMEM;
854
855         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
856         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
857         if (IS_ERR(host->io_base))
858                 return PTR_ERR(host->io_base);
859
860         host->io_base_dma = rc->start;
861         if (pdev->dev.of_node)
862                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
863         if (!host->ncfg) {
864                 dev_err(&pdev->dev,
865                         "Missing or bad NAND config from device tree\n");
866                 return -ENOENT;
867         }
868         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
869                 return -EPROBE_DEFER;
870         if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
871                         host->ncfg->wp_gpio, "NAND WP")) {
872                 dev_err(&pdev->dev, "GPIO not available\n");
873                 return -EBUSY;
874         }
875         lpc32xx_wp_disable(host);
876
877         host->pdata = dev_get_platdata(&pdev->dev);
878
879         chip = &host->nand_chip;
880         mtd = nand_to_mtd(chip);
881         nand_set_controller_data(chip, host);
882         nand_set_flash_node(chip, pdev->dev.of_node);
883         mtd->owner = THIS_MODULE;
884         mtd->dev.parent = &pdev->dev;
885
886         /* Get NAND clock */
887         host->clk = devm_clk_get(&pdev->dev, NULL);
888         if (IS_ERR(host->clk)) {
889                 dev_err(&pdev->dev, "Clock failure\n");
890                 res = -ENOENT;
891                 goto enable_wp;
892         }
893         res = clk_prepare_enable(host->clk);
894         if (res)
895                 goto enable_wp;
896
897         /* Set NAND IO addresses and command/ready functions */
898         chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
899         chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
900         chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
901         chip->legacy.dev_ready = lpc32xx_nand_device_ready;
902         chip->legacy.chip_delay = 20; /* 20us command delay time */
903
904         /* Init NAND controller */
905         lpc32xx_nand_setup(host);
906
907         platform_set_drvdata(pdev, host);
908
909         /* NAND callbacks for LPC32xx SLC hardware */
910         chip->legacy.read_byte = lpc32xx_nand_read_byte;
911         chip->legacy.read_buf = lpc32xx_nand_read_buf;
912         chip->legacy.write_buf = lpc32xx_nand_write_buf;
913
914         /*
915          * Allocate a large enough buffer for a single huge page plus
916          * extra space for the spare area and ECC storage area
917          */
918         host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
919         host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
920                                       GFP_KERNEL);
921         if (host->data_buf == NULL) {
922                 res = -ENOMEM;
923                 goto unprepare_clk;
924         }
925
926         res = lpc32xx_nand_dma_setup(host);
927         if (res) {
928                 res = -EIO;
929                 goto unprepare_clk;
930         }
931
932         /* Find NAND device */
933         chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
934         res = nand_scan(chip, 1);
935         if (res)
936                 goto release_dma;
937
938         mtd->name = "nxp_lpc3220_slc";
939         res = mtd_device_register(mtd, host->ncfg->parts,
940                                   host->ncfg->num_parts);
941         if (res)
942                 goto cleanup_nand;
943
944         return 0;
945
946 cleanup_nand:
947         nand_cleanup(chip);
948 release_dma:
949         dma_release_channel(host->dma_chan);
950 unprepare_clk:
951         clk_disable_unprepare(host->clk);
952 enable_wp:
953         lpc32xx_wp_enable(host);
954
955         return res;
956 }
957
958 /*
959  * Remove NAND device.
960  */
961 static int lpc32xx_nand_remove(struct platform_device *pdev)
962 {
963         uint32_t tmp;
964         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
965         struct nand_chip *chip = &host->nand_chip;
966         int ret;
967
968         ret = mtd_device_unregister(nand_to_mtd(chip));
969         WARN_ON(ret);
970         nand_cleanup(chip);
971         dma_release_channel(host->dma_chan);
972
973         /* Force CE high */
974         tmp = readl(SLC_CTRL(host->io_base));
975         tmp &= ~SLCCFG_CE_LOW;
976         writel(tmp, SLC_CTRL(host->io_base));
977
978         clk_disable_unprepare(host->clk);
979         lpc32xx_wp_enable(host);
980
981         return 0;
982 }
983
984 #ifdef CONFIG_PM
985 static int lpc32xx_nand_resume(struct platform_device *pdev)
986 {
987         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
988         int ret;
989
990         /* Re-enable NAND clock */
991         ret = clk_prepare_enable(host->clk);
992         if (ret)
993                 return ret;
994
995         /* Fresh init of NAND controller */
996         lpc32xx_nand_setup(host);
997
998         /* Disable write protect */
999         lpc32xx_wp_disable(host);
1000
1001         return 0;
1002 }
1003
1004 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
1005 {
1006         uint32_t tmp;
1007         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
1008
1009         /* Force CE high */
1010         tmp = readl(SLC_CTRL(host->io_base));
1011         tmp &= ~SLCCFG_CE_LOW;
1012         writel(tmp, SLC_CTRL(host->io_base));
1013
1014         /* Enable write protect for safety */
1015         lpc32xx_wp_enable(host);
1016
1017         /* Disable clock */
1018         clk_disable_unprepare(host->clk);
1019
1020         return 0;
1021 }
1022
1023 #else
1024 #define lpc32xx_nand_resume NULL
1025 #define lpc32xx_nand_suspend NULL
1026 #endif
1027
1028 static const struct of_device_id lpc32xx_nand_match[] = {
1029         { .compatible = "nxp,lpc3220-slc" },
1030         { /* sentinel */ },
1031 };
1032 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1033
1034 static struct platform_driver lpc32xx_nand_driver = {
1035         .probe          = lpc32xx_nand_probe,
1036         .remove         = lpc32xx_nand_remove,
1037         .resume         = lpc32xx_nand_resume,
1038         .suspend        = lpc32xx_nand_suspend,
1039         .driver         = {
1040                 .name   = LPC32XX_MODNAME,
1041                 .of_match_table = lpc32xx_nand_match,
1042         },
1043 };
1044
1045 module_platform_driver(lpc32xx_nand_driver);
1046
1047 MODULE_LICENSE("GPL");
1048 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1049 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1050 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");