Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / lpc32xx_mlc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for NAND MLC Controller in LPC32xx
4  *
5  * Author: Roland Stigge <stigge@antcom.de>
6  *
7  * Copyright © 2011 WORK Microwave GmbH
8  * Copyright © 2011, 2012 Roland Stigge
9  *
10  * NAND Flash Controller Operation:
11  * - Read: Auto Decode
12  * - Write: Auto Encode
13  * - Tested Page Sizes: 2048, 4096
14  */
15
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/clk.h>
23 #include <linux/err.h>
24 #include <linux/delay.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29 #include <linux/mtd/lpc32xx_mlc.h>
30 #include <linux/io.h>
31 #include <linux/mm.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34
35 #define DRV_NAME "lpc32xx_mlc"
36
37 /**********************************************************************
38 * MLC NAND controller register offsets
39 **********************************************************************/
40
41 #define MLC_BUFF(x)                     (x + 0x00000)
42 #define MLC_DATA(x)                     (x + 0x08000)
43 #define MLC_CMD(x)                      (x + 0x10000)
44 #define MLC_ADDR(x)                     (x + 0x10004)
45 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
46 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
47 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
48 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
49 #define MLC_RPR(x)                      (x + 0x10018)
50 #define MLC_WPR(x)                      (x + 0x1001C)
51 #define MLC_RUBP(x)                     (x + 0x10020)
52 #define MLC_ROBP(x)                     (x + 0x10024)
53 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
54 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
55 #define MLC_ICR(x)                      (x + 0x10030)
56 #define MLC_TIME_REG(x)                 (x + 0x10034)
57 #define MLC_IRQ_MR(x)                   (x + 0x10038)
58 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
59 #define MLC_LOCK_PR(x)                  (x + 0x10044)
60 #define MLC_ISR(x)                      (x + 0x10048)
61 #define MLC_CEH(x)                      (x + 0x1004C)
62
63 /**********************************************************************
64 * MLC_CMD bit definitions
65 **********************************************************************/
66 #define MLCCMD_RESET                    0xFF
67
68 /**********************************************************************
69 * MLC_ICR bit definitions
70 **********************************************************************/
71 #define MLCICR_WPROT                    (1 << 3)
72 #define MLCICR_LARGEBLOCK               (1 << 2)
73 #define MLCICR_LONGADDR                 (1 << 1)
74 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
75
76 /**********************************************************************
77 * MLC_TIME_REG bit definitions
78 **********************************************************************/
79 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
80 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
81 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
82 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
83 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
84 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
85 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
86
87 /**********************************************************************
88 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
89 **********************************************************************/
90 #define MLCIRQ_NAND_READY               (1 << 5)
91 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
92 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
93 #define MLCIRQ_DECODE_ERROR             (1 << 2)
94 #define MLCIRQ_ECC_READY                (1 << 1)
95 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
96
97 /**********************************************************************
98 * MLC_LOCK_PR bit definitions
99 **********************************************************************/
100 #define MLCLOCKPR_MAGIC                 0xA25E
101
102 /**********************************************************************
103 * MLC_ISR bit definitions
104 **********************************************************************/
105 #define MLCISR_DECODER_FAILURE          (1 << 6)
106 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
107 #define MLCISR_ERRORS_DETECTED          (1 << 3)
108 #define MLCISR_ECC_READY                (1 << 2)
109 #define MLCISR_CONTROLLER_READY         (1 << 1)
110 #define MLCISR_NAND_READY               (1 << 0)
111
112 /**********************************************************************
113 * MLC_CEH bit definitions
114 **********************************************************************/
115 #define MLCCEH_NORMAL                   (1 << 0)
116
117 struct lpc32xx_nand_cfg_mlc {
118         uint32_t tcea_delay;
119         uint32_t busy_delay;
120         uint32_t nand_ta;
121         uint32_t rd_high;
122         uint32_t rd_low;
123         uint32_t wr_high;
124         uint32_t wr_low;
125         int wp_gpio;
126         struct mtd_partition *parts;
127         unsigned num_parts;
128 };
129
130 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
131                                  struct mtd_oob_region *oobregion)
132 {
133         struct nand_chip *nand_chip = mtd_to_nand(mtd);
134
135         if (section >= nand_chip->ecc.steps)
136                 return -ERANGE;
137
138         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
139         oobregion->length = nand_chip->ecc.bytes;
140
141         return 0;
142 }
143
144 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
145                                   struct mtd_oob_region *oobregion)
146 {
147         struct nand_chip *nand_chip = mtd_to_nand(mtd);
148
149         if (section >= nand_chip->ecc.steps)
150                 return -ERANGE;
151
152         oobregion->offset = 16 * section;
153         oobregion->length = 16 - nand_chip->ecc.bytes;
154
155         return 0;
156 }
157
158 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
159         .ecc = lpc32xx_ooblayout_ecc,
160         .free = lpc32xx_ooblayout_free,
161 };
162
163 static struct nand_bbt_descr lpc32xx_nand_bbt = {
164         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
165                    NAND_BBT_WRITE,
166         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
167 };
168
169 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
170         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
171                    NAND_BBT_WRITE,
172         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
173 };
174
175 struct lpc32xx_nand_host {
176         struct platform_device  *pdev;
177         struct nand_chip        nand_chip;
178         struct lpc32xx_mlc_platform_data *pdata;
179         struct clk              *clk;
180         void __iomem            *io_base;
181         int                     irq;
182         struct lpc32xx_nand_cfg_mlc     *ncfg;
183         struct completion       comp_nand;
184         struct completion       comp_controller;
185         uint32_t llptr;
186         /*
187          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
188          */
189         dma_addr_t              oob_buf_phy;
190         /*
191          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
192          */
193         uint8_t                 *oob_buf;
194         /* Physical address of DMA base address */
195         dma_addr_t              io_base_phy;
196
197         struct completion       comp_dma;
198         struct dma_chan         *dma_chan;
199         struct dma_slave_config dma_slave_config;
200         struct scatterlist      sgl;
201         uint8_t                 *dma_buf;
202         uint8_t                 *dummy_buf;
203         int                     mlcsubpages; /* number of 512bytes-subpages */
204 };
205
206 /*
207  * Activate/Deactivate DMA Operation:
208  *
209  * Using the PL080 DMA Controller for transferring the 512 byte subpages
210  * instead of doing readl() / writel() in a loop slows it down significantly.
211  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
212  *
213  * - readl() of 128 x 32 bits in a loop: ~20us
214  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
215  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
216  *
217  * This applies to the transfer itself. In the DMA case: only the
218  * wait_for_completion() (DMA setup _not_ included).
219  *
220  * Note that the 512 bytes subpage transfer is done directly from/to a
221  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
222  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
223  * controller transferring data between its internal buffer to/from the NAND
224  * chip.)
225  *
226  * Therefore, using the PL080 DMA is disabled by default, for now.
227  *
228  */
229 static int use_dma;
230
231 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
232 {
233         uint32_t clkrate, tmp;
234
235         /* Reset MLC controller */
236         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
237         udelay(1000);
238
239         /* Get base clock for MLC block */
240         clkrate = clk_get_rate(host->clk);
241         if (clkrate == 0)
242                 clkrate = 104000000;
243
244         /* Unlock MLC_ICR
245          * (among others, will be locked again automatically) */
246         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
247
248         /* Configure MLC Controller: Large Block, 5 Byte Address */
249         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
250         writel(tmp, MLC_ICR(host->io_base));
251
252         /* Unlock MLC_TIME_REG
253          * (among others, will be locked again automatically) */
254         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
255
256         /* Compute clock setup values, see LPC and NAND manual */
257         tmp = 0;
258         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
259         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
260         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
261         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
262         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
263         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
264         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
265         writel(tmp, MLC_TIME_REG(host->io_base));
266
267         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
268         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
269                         MLC_IRQ_MR(host->io_base));
270
271         /* Normal nCE operation: nCE controlled by controller */
272         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273 }
274
275 /*
276  * Hardware specific access to control lines
277  */
278 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
279                                   unsigned int ctrl)
280 {
281         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
282
283         if (cmd != NAND_CMD_NONE) {
284                 if (ctrl & NAND_CLE)
285                         writel(cmd, MLC_CMD(host->io_base));
286                 else
287                         writel(cmd, MLC_ADDR(host->io_base));
288         }
289 }
290
291 /*
292  * Read Device Ready (NAND device _and_ controller ready)
293  */
294 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
295 {
296         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
297
298         if ((readb(MLC_ISR(host->io_base)) &
299              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
300             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
301                 return  1;
302
303         return 0;
304 }
305
306 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
307 {
308         uint8_t sr;
309
310         /* Clear interrupt flag by reading status */
311         sr = readb(MLC_IRQ_SR(host->io_base));
312         if (sr & MLCIRQ_NAND_READY)
313                 complete(&host->comp_nand);
314         if (sr & MLCIRQ_CONTROLLER_READY)
315                 complete(&host->comp_controller);
316
317         return IRQ_HANDLED;
318 }
319
320 static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
321 {
322         struct mtd_info *mtd = nand_to_mtd(chip);
323         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
324
325         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
326                 goto exit;
327
328         wait_for_completion(&host->comp_nand);
329
330         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
331                 /* Seems to be delayed sometimes by controller */
332                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
333                 cpu_relax();
334         }
335
336 exit:
337         return NAND_STATUS_READY;
338 }
339
340 static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
341 {
342         struct mtd_info *mtd = nand_to_mtd(chip);
343         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
344
345         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
346                 goto exit;
347
348         wait_for_completion(&host->comp_controller);
349
350         while (!(readb(MLC_ISR(host->io_base)) &
351                  MLCISR_CONTROLLER_READY)) {
352                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
353                 cpu_relax();
354         }
355
356 exit:
357         return NAND_STATUS_READY;
358 }
359
360 static int lpc32xx_waitfunc(struct nand_chip *chip)
361 {
362         lpc32xx_waitfunc_nand(chip);
363         lpc32xx_waitfunc_controller(chip);
364
365         return NAND_STATUS_READY;
366 }
367
368 /*
369  * Enable NAND write protect
370  */
371 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
372 {
373         if (gpio_is_valid(host->ncfg->wp_gpio))
374                 gpio_set_value(host->ncfg->wp_gpio, 0);
375 }
376
377 /*
378  * Disable NAND write protect
379  */
380 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
381 {
382         if (gpio_is_valid(host->ncfg->wp_gpio))
383                 gpio_set_value(host->ncfg->wp_gpio, 1);
384 }
385
386 static void lpc32xx_dma_complete_func(void *completion)
387 {
388         complete(completion);
389 }
390
391 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
392                             enum dma_transfer_direction dir)
393 {
394         struct nand_chip *chip = mtd_to_nand(mtd);
395         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
396         struct dma_async_tx_descriptor *desc;
397         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
398         int res;
399
400         sg_init_one(&host->sgl, mem, len);
401
402         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
403                          DMA_BIDIRECTIONAL);
404         if (res != 1) {
405                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
406                 return -ENXIO;
407         }
408         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
409                                        flags);
410         if (!desc) {
411                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
412                 goto out1;
413         }
414
415         init_completion(&host->comp_dma);
416         desc->callback = lpc32xx_dma_complete_func;
417         desc->callback_param = &host->comp_dma;
418
419         dmaengine_submit(desc);
420         dma_async_issue_pending(host->dma_chan);
421
422         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
423
424         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
425                      DMA_BIDIRECTIONAL);
426         return 0;
427 out1:
428         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
429                      DMA_BIDIRECTIONAL);
430         return -ENXIO;
431 }
432
433 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
434                              int oob_required, int page)
435 {
436         struct mtd_info *mtd = nand_to_mtd(chip);
437         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
438         int i, j;
439         uint8_t *oobbuf = chip->oob_poi;
440         uint32_t mlc_isr;
441         int res;
442         uint8_t *dma_buf;
443         bool dma_mapped;
444
445         if ((void *)buf <= high_memory) {
446                 dma_buf = buf;
447                 dma_mapped = true;
448         } else {
449                 dma_buf = host->dma_buf;
450                 dma_mapped = false;
451         }
452
453         /* Writing Command and Address */
454         nand_read_page_op(chip, page, 0, NULL, 0);
455
456         /* For all sub-pages */
457         for (i = 0; i < host->mlcsubpages; i++) {
458                 /* Start Auto Decode Command */
459                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
460
461                 /* Wait for Controller Ready */
462                 lpc32xx_waitfunc_controller(chip);
463
464                 /* Check ECC Error status */
465                 mlc_isr = readl(MLC_ISR(host->io_base));
466                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
467                         mtd->ecc_stats.failed++;
468                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
469                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
470                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
471                 }
472
473                 /* Read 512 + 16 Bytes */
474                 if (use_dma) {
475                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
476                                                DMA_DEV_TO_MEM);
477                         if (res)
478                                 return res;
479                 } else {
480                         for (j = 0; j < (512 >> 2); j++) {
481                                 *((uint32_t *)(buf)) =
482                                         readl(MLC_BUFF(host->io_base));
483                                 buf += 4;
484                         }
485                 }
486                 for (j = 0; j < (16 >> 2); j++) {
487                         *((uint32_t *)(oobbuf)) =
488                                 readl(MLC_BUFF(host->io_base));
489                         oobbuf += 4;
490                 }
491         }
492
493         if (use_dma && !dma_mapped)
494                 memcpy(buf, dma_buf, mtd->writesize);
495
496         return 0;
497 }
498
499 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
500                                        const uint8_t *buf, int oob_required,
501                                        int page)
502 {
503         struct mtd_info *mtd = nand_to_mtd(chip);
504         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
505         const uint8_t *oobbuf = chip->oob_poi;
506         uint8_t *dma_buf = (uint8_t *)buf;
507         int res;
508         int i, j;
509
510         if (use_dma && (void *)buf >= high_memory) {
511                 dma_buf = host->dma_buf;
512                 memcpy(dma_buf, buf, mtd->writesize);
513         }
514
515         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
516
517         for (i = 0; i < host->mlcsubpages; i++) {
518                 /* Start Encode */
519                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
520
521                 /* Write 512 + 6 Bytes to Buffer */
522                 if (use_dma) {
523                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
524                                                DMA_MEM_TO_DEV);
525                         if (res)
526                                 return res;
527                 } else {
528                         for (j = 0; j < (512 >> 2); j++) {
529                                 writel(*((uint32_t *)(buf)),
530                                        MLC_BUFF(host->io_base));
531                                 buf += 4;
532                         }
533                 }
534                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
535                 oobbuf += 4;
536                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
537                 oobbuf += 12;
538
539                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
540                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
541
542                 /* Wait for Controller Ready */
543                 lpc32xx_waitfunc_controller(chip);
544         }
545
546         return nand_prog_page_end_op(chip);
547 }
548
549 static int lpc32xx_read_oob(struct nand_chip *chip, int page)
550 {
551         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
552
553         /* Read whole page - necessary with MLC controller! */
554         lpc32xx_read_page(chip, host->dummy_buf, 1, page);
555
556         return 0;
557 }
558
559 static int lpc32xx_write_oob(struct nand_chip *chip, int page)
560 {
561         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
562         return 0;
563 }
564
565 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
566 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
567 {
568         /* Always enabled! */
569 }
570
571 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
572 {
573         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
574         dma_cap_mask_t mask;
575
576         if (!host->pdata || !host->pdata->dma_filter) {
577                 dev_err(mtd->dev.parent, "no DMA platform data\n");
578                 return -ENOENT;
579         }
580
581         dma_cap_zero(mask);
582         dma_cap_set(DMA_SLAVE, mask);
583         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
584                                              "nand-mlc");
585         if (!host->dma_chan) {
586                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
587                 return -EBUSY;
588         }
589
590         /*
591          * Set direction to a sensible value even if the dmaengine driver
592          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
593          * driver criticizes it as "alien transfer direction".
594          */
595         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
596         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
597         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598         host->dma_slave_config.src_maxburst = 128;
599         host->dma_slave_config.dst_maxburst = 128;
600         /* DMA controller does flow control: */
601         host->dma_slave_config.device_fc = false;
602         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
603         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
604         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
605                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
606                 goto out1;
607         }
608
609         return 0;
610 out1:
611         dma_release_channel(host->dma_chan);
612         return -ENXIO;
613 }
614
615 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
616 {
617         struct lpc32xx_nand_cfg_mlc *ncfg;
618         struct device_node *np = dev->of_node;
619
620         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
621         if (!ncfg)
622                 return NULL;
623
624         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
625         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
626         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
627         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
628         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
629         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
630         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
631
632         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
633             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
634             !ncfg->wr_low) {
635                 dev_err(dev, "chip parameters not specified correctly\n");
636                 return NULL;
637         }
638
639         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
640
641         return ncfg;
642 }
643
644 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
645 {
646         struct mtd_info *mtd = nand_to_mtd(chip);
647         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
648         struct device *dev = &host->pdev->dev;
649
650         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
651                 return 0;
652
653         host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
654         if (!host->dma_buf)
655                 return -ENOMEM;
656
657         host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
658         if (!host->dummy_buf)
659                 return -ENOMEM;
660
661         chip->ecc.size = 512;
662         chip->ecc.hwctl = lpc32xx_ecc_enable;
663         chip->ecc.read_page_raw = lpc32xx_read_page;
664         chip->ecc.read_page = lpc32xx_read_page;
665         chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
666         chip->ecc.write_page = lpc32xx_write_page_lowlevel;
667         chip->ecc.write_oob = lpc32xx_write_oob;
668         chip->ecc.read_oob = lpc32xx_read_oob;
669         chip->ecc.strength = 4;
670         chip->ecc.bytes = 10;
671
672         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
673         host->mlcsubpages = mtd->writesize / 512;
674
675         return 0;
676 }
677
678 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
679         .attach_chip = lpc32xx_nand_attach_chip,
680 };
681
682 /*
683  * Probe for NAND controller
684  */
685 static int lpc32xx_nand_probe(struct platform_device *pdev)
686 {
687         struct lpc32xx_nand_host *host;
688         struct mtd_info *mtd;
689         struct nand_chip *nand_chip;
690         struct resource *rc;
691         int res;
692
693         /* Allocate memory for the device structure (and zero it) */
694         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
695         if (!host)
696                 return -ENOMEM;
697
698         host->pdev = pdev;
699
700         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
701         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
702         if (IS_ERR(host->io_base))
703                 return PTR_ERR(host->io_base);
704
705         host->io_base_phy = rc->start;
706
707         nand_chip = &host->nand_chip;
708         mtd = nand_to_mtd(nand_chip);
709         if (pdev->dev.of_node)
710                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
711         if (!host->ncfg) {
712                 dev_err(&pdev->dev,
713                         "Missing or bad NAND config from device tree\n");
714                 return -ENOENT;
715         }
716         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
717                 return -EPROBE_DEFER;
718         if (gpio_is_valid(host->ncfg->wp_gpio) &&
719                         gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
720                 dev_err(&pdev->dev, "GPIO not available\n");
721                 return -EBUSY;
722         }
723         lpc32xx_wp_disable(host);
724
725         host->pdata = dev_get_platdata(&pdev->dev);
726
727         /* link the private data structures */
728         nand_set_controller_data(nand_chip, host);
729         nand_set_flash_node(nand_chip, pdev->dev.of_node);
730         mtd->dev.parent = &pdev->dev;
731
732         /* Get NAND clock */
733         host->clk = clk_get(&pdev->dev, NULL);
734         if (IS_ERR(host->clk)) {
735                 dev_err(&pdev->dev, "Clock initialization failure\n");
736                 res = -ENOENT;
737                 goto free_gpio;
738         }
739         res = clk_prepare_enable(host->clk);
740         if (res)
741                 goto put_clk;
742
743         nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
744         nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
745         nand_chip->legacy.chip_delay = 25; /* us */
746         nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
747         nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
748
749         /* Init NAND controller */
750         lpc32xx_nand_setup(host);
751
752         platform_set_drvdata(pdev, host);
753
754         /* Initialize function pointers */
755         nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
756
757         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
758         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
759         nand_chip->bbt_td = &lpc32xx_nand_bbt;
760         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
761
762         if (use_dma) {
763                 res = lpc32xx_dma_setup(host);
764                 if (res) {
765                         res = -EIO;
766                         goto unprepare_clk;
767                 }
768         }
769
770         /* initially clear interrupt status */
771         readb(MLC_IRQ_SR(host->io_base));
772
773         init_completion(&host->comp_nand);
774         init_completion(&host->comp_controller);
775
776         host->irq = platform_get_irq(pdev, 0);
777         if (host->irq < 0) {
778                 res = -EINVAL;
779                 goto release_dma_chan;
780         }
781
782         if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
783                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
784                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
785                 res = -ENXIO;
786                 goto release_dma_chan;
787         }
788
789         /*
790          * Scan to find existence of the device and get the type of NAND device:
791          * SMALL block or LARGE block.
792          */
793         nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
794         res = nand_scan(nand_chip, 1);
795         if (res)
796                 goto free_irq;
797
798         mtd->name = DRV_NAME;
799
800         res = mtd_device_register(mtd, host->ncfg->parts,
801                                   host->ncfg->num_parts);
802         if (res)
803                 goto cleanup_nand;
804
805         return 0;
806
807 cleanup_nand:
808         nand_cleanup(nand_chip);
809 free_irq:
810         free_irq(host->irq, host);
811 release_dma_chan:
812         if (use_dma)
813                 dma_release_channel(host->dma_chan);
814 unprepare_clk:
815         clk_disable_unprepare(host->clk);
816 put_clk:
817         clk_put(host->clk);
818 free_gpio:
819         lpc32xx_wp_enable(host);
820         gpio_free(host->ncfg->wp_gpio);
821
822         return res;
823 }
824
825 /*
826  * Remove NAND device
827  */
828 static int lpc32xx_nand_remove(struct platform_device *pdev)
829 {
830         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
831         struct nand_chip *chip = &host->nand_chip;
832         int ret;
833
834         ret = mtd_device_unregister(nand_to_mtd(chip));
835         WARN_ON(ret);
836         nand_cleanup(chip);
837
838         free_irq(host->irq, host);
839         if (use_dma)
840                 dma_release_channel(host->dma_chan);
841
842         clk_disable_unprepare(host->clk);
843         clk_put(host->clk);
844
845         lpc32xx_wp_enable(host);
846         gpio_free(host->ncfg->wp_gpio);
847
848         return 0;
849 }
850
851 #ifdef CONFIG_PM
852 static int lpc32xx_nand_resume(struct platform_device *pdev)
853 {
854         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
855         int ret;
856
857         /* Re-enable NAND clock */
858         ret = clk_prepare_enable(host->clk);
859         if (ret)
860                 return ret;
861
862         /* Fresh init of NAND controller */
863         lpc32xx_nand_setup(host);
864
865         /* Disable write protect */
866         lpc32xx_wp_disable(host);
867
868         return 0;
869 }
870
871 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
872 {
873         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
874
875         /* Enable write protect for safety */
876         lpc32xx_wp_enable(host);
877
878         /* Disable clock */
879         clk_disable_unprepare(host->clk);
880         return 0;
881 }
882
883 #else
884 #define lpc32xx_nand_resume NULL
885 #define lpc32xx_nand_suspend NULL
886 #endif
887
888 static const struct of_device_id lpc32xx_nand_match[] = {
889         { .compatible = "nxp,lpc3220-mlc" },
890         { /* sentinel */ },
891 };
892 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
893
894 static struct platform_driver lpc32xx_nand_driver = {
895         .probe          = lpc32xx_nand_probe,
896         .remove         = lpc32xx_nand_remove,
897         .resume         = lpc32xx_nand_resume,
898         .suspend        = lpc32xx_nand_suspend,
899         .driver         = {
900                 .name   = DRV_NAME,
901                 .of_match_table = lpc32xx_nand_match,
902         },
903 };
904
905 module_platform_driver(lpc32xx_nand_driver);
906
907 MODULE_LICENSE("GPL");
908 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
909 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");