Merge branch 'mhi-net-immutable' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30
31 #define MXS_SET_ADDR            0x4
32 #define MXS_CLR_ADDR            0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40         int timeout = 0x400;
41
42         /* clear the bit */
43         writel(mask, addr + MXS_CLR_ADDR);
44
45         /*
46          * SFTRST needs 3 GPMI clocks to settle, the reference manual
47          * recommends to wait 1us.
48          */
49         udelay(1);
50
51         /* poll the bit becoming clear */
52         while ((readl(addr) & mask) && --timeout)
53                 /* nothing */;
54
55         return !timeout;
56 }
57
58 #define MODULE_CLKGATE          (1 << 30)
59 #define MODULE_SFTRST           (1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79         int ret;
80         int timeout = 0x400;
81
82         /* clear and poll SFTRST */
83         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84         if (unlikely(ret))
85                 goto error;
86
87         /* clear CLKGATE */
88         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89
90         if (!just_enable) {
91                 /* set SFTRST to reset the block */
92                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93                 udelay(1);
94
95                 /* poll CLKGATE becoming set */
96                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97                         /* nothing */;
98                 if (unlikely(!timeout))
99                         goto error;
100         }
101
102         /* clear and poll SFTRST */
103         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104         if (unlikely(ret))
105                 goto error;
106
107         /* clear and poll CLKGATE */
108         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109         if (unlikely(ret))
110                 goto error;
111
112         return 0;
113
114 error:
115         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116         return -ETIMEDOUT;
117 }
118
119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121         struct clk *clk;
122         int ret;
123         int i;
124
125         for (i = 0; i < GPMI_CLK_MAX; i++) {
126                 clk = this->resources.clock[i];
127                 if (!clk)
128                         break;
129
130                 if (v) {
131                         ret = clk_prepare_enable(clk);
132                         if (ret)
133                                 goto err_clk;
134                 } else {
135                         clk_disable_unprepare(clk);
136                 }
137         }
138         return 0;
139
140 err_clk:
141         for (; i > 0; i--)
142                 clk_disable_unprepare(this->resources.clock[i - 1]);
143         return ret;
144 }
145
146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148         struct resources *r = &this->resources;
149         int ret;
150
151         ret = pm_runtime_get_sync(this->dev);
152         if (ret < 0) {
153                 pm_runtime_put_noidle(this->dev);
154                 return ret;
155         }
156
157         ret = gpmi_reset_block(r->gpmi_regs, false);
158         if (ret)
159                 goto err_out;
160
161         /*
162          * Reset BCH here, too. We got failures otherwise :(
163          * See later BCH reset for explanation of MX23 and MX28 handling
164          */
165         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166         if (ret)
167                 goto err_out;
168
169         /* Choose NAND mode. */
170         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171
172         /* Set the IRQ polarity. */
173         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
175
176         /* Disable Write-Protection. */
177         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178
179         /* Select BCH ECC. */
180         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181
182         /*
183          * Decouple the chip select from dma channel. We use dma0 for all
184          * the chips, force all NAND RDY_BUSY inputs to be sourced from
185          * RDY_BUSY0.
186          */
187         writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
188                r->gpmi_regs + HW_GPMI_CTRL1_SET);
189
190 err_out:
191         pm_runtime_mark_last_busy(this->dev);
192         pm_runtime_put_autosuspend(this->dev);
193         return ret;
194 }
195
196 /* This function is very useful. It is called only when the bug occur. */
197 static void gpmi_dump_info(struct gpmi_nand_data *this)
198 {
199         struct resources *r = &this->resources;
200         struct bch_geometry *geo = &this->bch_geometry;
201         u32 reg;
202         int i;
203
204         dev_err(this->dev, "Show GPMI registers :\n");
205         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
206                 reg = readl(r->gpmi_regs + i * 0x10);
207                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
208         }
209
210         /* start to print out the BCH info */
211         dev_err(this->dev, "Show BCH registers :\n");
212         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
213                 reg = readl(r->bch_regs + i * 0x10);
214                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
215         }
216         dev_err(this->dev, "BCH Geometry :\n"
217                 "GF length              : %u\n"
218                 "ECC Strength           : %u\n"
219                 "Page Size in Bytes     : %u\n"
220                 "Metadata Size in Bytes : %u\n"
221                 "ECC Chunk Size in Bytes: %u\n"
222                 "ECC Chunk Count        : %u\n"
223                 "Payload Size in Bytes  : %u\n"
224                 "Auxiliary Size in Bytes: %u\n"
225                 "Auxiliary Status Offset: %u\n"
226                 "Block Mark Byte Offset : %u\n"
227                 "Block Mark Bit Offset  : %u\n",
228                 geo->gf_len,
229                 geo->ecc_strength,
230                 geo->page_size,
231                 geo->metadata_size,
232                 geo->ecc_chunk_size,
233                 geo->ecc_chunk_count,
234                 geo->payload_size,
235                 geo->auxiliary_size,
236                 geo->auxiliary_status_offset,
237                 geo->block_mark_byte_offset,
238                 geo->block_mark_bit_offset);
239 }
240
241 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
242 {
243         struct bch_geometry *geo = &this->bch_geometry;
244
245         /* Do the sanity check. */
246         if (GPMI_IS_MXS(this)) {
247                 /* The mx23/mx28 only support the GF13. */
248                 if (geo->gf_len == 14)
249                         return false;
250         }
251         return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
252 }
253
254 /*
255  * If we can get the ECC information from the nand chip, we do not
256  * need to calculate them ourselves.
257  *
258  * We may have available oob space in this case.
259  */
260 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
261                                     unsigned int ecc_strength,
262                                     unsigned int ecc_step)
263 {
264         struct bch_geometry *geo = &this->bch_geometry;
265         struct nand_chip *chip = &this->nand;
266         struct mtd_info *mtd = nand_to_mtd(chip);
267         unsigned int block_mark_bit_offset;
268
269         switch (ecc_step) {
270         case SZ_512:
271                 geo->gf_len = 13;
272                 break;
273         case SZ_1K:
274                 geo->gf_len = 14;
275                 break;
276         default:
277                 dev_err(this->dev,
278                         "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
279                         nanddev_get_ecc_requirements(&chip->base)->strength,
280                         nanddev_get_ecc_requirements(&chip->base)->step_size);
281                 return -EINVAL;
282         }
283         geo->ecc_chunk_size = ecc_step;
284         geo->ecc_strength = round_up(ecc_strength, 2);
285         if (!gpmi_check_ecc(this))
286                 return -EINVAL;
287
288         /* Keep the C >= O */
289         if (geo->ecc_chunk_size < mtd->oobsize) {
290                 dev_err(this->dev,
291                         "unsupported nand chip. ecc size: %d, oob size : %d\n",
292                         ecc_step, mtd->oobsize);
293                 return -EINVAL;
294         }
295
296         /* The default value, see comment in the legacy_set_geometry(). */
297         geo->metadata_size = 10;
298
299         geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
300
301         /*
302          * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
303          *
304          *    |                          P                            |
305          *    |<----------------------------------------------------->|
306          *    |                                                       |
307          *    |                                        (Block Mark)   |
308          *    |                      P'                      |      | |     |
309          *    |<-------------------------------------------->|  D   | |  O' |
310          *    |                                              |<---->| |<--->|
311          *    V                                              V      V V     V
312          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
313          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
314          *    +---+----------+-+----------+-+----------+-+----------+-+-----+
315          *                                                   ^              ^
316          *                                                   |      O       |
317          *                                                   |<------------>|
318          *                                                   |              |
319          *
320          *      P : the page size for BCH module.
321          *      E : The ECC strength.
322          *      G : the length of Galois Field.
323          *      N : The chunk count of per page.
324          *      M : the metasize of per page.
325          *      C : the ecc chunk size, aka the "data" above.
326          *      P': the nand chip's page size.
327          *      O : the nand chip's oob size.
328          *      O': the free oob.
329          *
330          *      The formula for P is :
331          *
332          *                  E * G * N
333          *             P = ------------ + P' + M
334          *                      8
335          *
336          * The position of block mark moves forward in the ECC-based view
337          * of page, and the delta is:
338          *
339          *                   E * G * (N - 1)
340          *             D = (---------------- + M)
341          *                          8
342          *
343          * Please see the comment in legacy_set_geometry().
344          * With the condition C >= O , we still can get same result.
345          * So the bit position of the physical block mark within the ECC-based
346          * view of the page is :
347          *             (P' - D) * 8
348          */
349         geo->page_size = mtd->writesize + geo->metadata_size +
350                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
351
352         geo->payload_size = mtd->writesize;
353
354         geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
355         geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
356                                 + ALIGN(geo->ecc_chunk_count, 4);
357
358         if (!this->swap_block_mark)
359                 return 0;
360
361         /* For bit swap. */
362         block_mark_bit_offset = mtd->writesize * 8 -
363                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
364                                 + geo->metadata_size * 8);
365
366         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
367         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
368         return 0;
369 }
370
371 /*
372  *  Calculate the ECC strength by hand:
373  *      E : The ECC strength.
374  *      G : the length of Galois Field.
375  *      N : The chunk count of per page.
376  *      O : the oobsize of the NAND chip.
377  *      M : the metasize of per page.
378  *
379  *      The formula is :
380  *              E * G * N
381  *            ------------ <= (O - M)
382  *                  8
383  *
384  *      So, we get E by:
385  *                    (O - M) * 8
386  *              E <= -------------
387  *                       G * N
388  */
389 static inline int get_ecc_strength(struct gpmi_nand_data *this)
390 {
391         struct bch_geometry *geo = &this->bch_geometry;
392         struct mtd_info *mtd = nand_to_mtd(&this->nand);
393         int ecc_strength;
394
395         ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
396                         / (geo->gf_len * geo->ecc_chunk_count);
397
398         /* We need the minor even number. */
399         return round_down(ecc_strength, 2);
400 }
401
402 static int legacy_set_geometry(struct gpmi_nand_data *this)
403 {
404         struct bch_geometry *geo = &this->bch_geometry;
405         struct mtd_info *mtd = nand_to_mtd(&this->nand);
406         unsigned int metadata_size;
407         unsigned int status_size;
408         unsigned int block_mark_bit_offset;
409
410         /*
411          * The size of the metadata can be changed, though we set it to 10
412          * bytes now. But it can't be too large, because we have to save
413          * enough space for BCH.
414          */
415         geo->metadata_size = 10;
416
417         /* The default for the length of Galois Field. */
418         geo->gf_len = 13;
419
420         /* The default for chunk size. */
421         geo->ecc_chunk_size = 512;
422         while (geo->ecc_chunk_size < mtd->oobsize) {
423                 geo->ecc_chunk_size *= 2; /* keep C >= O */
424                 geo->gf_len = 14;
425         }
426
427         geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
428
429         /* We use the same ECC strength for all chunks. */
430         geo->ecc_strength = get_ecc_strength(this);
431         if (!gpmi_check_ecc(this)) {
432                 dev_err(this->dev,
433                         "ecc strength: %d cannot be supported by the controller (%d)\n"
434                         "try to use minimum ecc strength that NAND chip required\n",
435                         geo->ecc_strength,
436                         this->devdata->bch_max_ecc_strength);
437                 return -EINVAL;
438         }
439
440         geo->page_size = mtd->writesize + geo->metadata_size +
441                 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
442         geo->payload_size = mtd->writesize;
443
444         /*
445          * The auxiliary buffer contains the metadata and the ECC status. The
446          * metadata is padded to the nearest 32-bit boundary. The ECC status
447          * contains one byte for every ECC chunk, and is also padded to the
448          * nearest 32-bit boundary.
449          */
450         metadata_size = ALIGN(geo->metadata_size, 4);
451         status_size   = ALIGN(geo->ecc_chunk_count, 4);
452
453         geo->auxiliary_size = metadata_size + status_size;
454         geo->auxiliary_status_offset = metadata_size;
455
456         if (!this->swap_block_mark)
457                 return 0;
458
459         /*
460          * We need to compute the byte and bit offsets of
461          * the physical block mark within the ECC-based view of the page.
462          *
463          * NAND chip with 2K page shows below:
464          *                                             (Block Mark)
465          *                                                   |      |
466          *                                                   |  D   |
467          *                                                   |<---->|
468          *                                                   V      V
469          *    +---+----------+-+----------+-+----------+-+----------+-+
470          *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
471          *    +---+----------+-+----------+-+----------+-+----------+-+
472          *
473          * The position of block mark moves forward in the ECC-based view
474          * of page, and the delta is:
475          *
476          *                   E * G * (N - 1)
477          *             D = (---------------- + M)
478          *                          8
479          *
480          * With the formula to compute the ECC strength, and the condition
481          *       : C >= O         (C is the ecc chunk size)
482          *
483          * It's easy to deduce to the following result:
484          *
485          *         E * G       (O - M)      C - M         C - M
486          *      ----------- <= ------- <=  --------  <  ---------
487          *           8            N           N          (N - 1)
488          *
489          *  So, we get:
490          *
491          *                   E * G * (N - 1)
492          *             D = (---------------- + M) < C
493          *                          8
494          *
495          *  The above inequality means the position of block mark
496          *  within the ECC-based view of the page is still in the data chunk,
497          *  and it's NOT in the ECC bits of the chunk.
498          *
499          *  Use the following to compute the bit position of the
500          *  physical block mark within the ECC-based view of the page:
501          *          (page_size - D) * 8
502          *
503          *  --Huang Shijie
504          */
505         block_mark_bit_offset = mtd->writesize * 8 -
506                 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
507                                 + geo->metadata_size * 8);
508
509         geo->block_mark_byte_offset = block_mark_bit_offset / 8;
510         geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
511         return 0;
512 }
513
514 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
515 {
516         struct nand_chip *chip = &this->nand;
517         const struct nand_ecc_props *requirements =
518                 nanddev_get_ecc_requirements(&chip->base);
519
520         if (chip->ecc.strength > 0 && chip->ecc.size > 0)
521                 return set_geometry_by_ecc_info(this, chip->ecc.strength,
522                                                 chip->ecc.size);
523
524         if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
525                                 || legacy_set_geometry(this)) {
526                 if (!(requirements->strength > 0 && requirements->step_size > 0))
527                         return -EINVAL;
528
529                 return set_geometry_by_ecc_info(this,
530                                                 requirements->strength,
531                                                 requirements->step_size);
532         }
533
534         return 0;
535 }
536
537 /* Configures the geometry for BCH.  */
538 static int bch_set_geometry(struct gpmi_nand_data *this)
539 {
540         struct resources *r = &this->resources;
541         int ret;
542
543         ret = common_nfc_set_geometry(this);
544         if (ret)
545                 return ret;
546
547         ret = pm_runtime_get_sync(this->dev);
548         if (ret < 0) {
549                 pm_runtime_put_autosuspend(this->dev);
550                 return ret;
551         }
552
553         /*
554         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
555         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
556         * and MX28.
557         */
558         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
559         if (ret)
560                 goto err_out;
561
562         /* Set *all* chip selects to use layout 0. */
563         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
564
565         ret = 0;
566 err_out:
567         pm_runtime_mark_last_busy(this->dev);
568         pm_runtime_put_autosuspend(this->dev);
569
570         return ret;
571 }
572
573 /*
574  * <1> Firstly, we should know what's the GPMI-clock means.
575  *     The GPMI-clock is the internal clock in the gpmi nand controller.
576  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
577  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
578  *
579  * <2> Secondly, we should know what's the frequency on the nand chip pins.
580  *     The frequency on the nand chip pins is derived from the GPMI-clock.
581  *     We can get it from the following equation:
582  *
583  *         F = G / (DS + DH)
584  *
585  *         F  : the frequency on the nand chip pins.
586  *         G  : the GPMI clock, such as 100MHz.
587  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
588  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
589  *
590  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
591  *     the nand EDO(extended Data Out) timing could be applied.
592  *     The GPMI implements a feedback read strobe to sample the read data.
593  *     The feedback read strobe can be delayed to support the nand EDO timing
594  *     where the read strobe may deasserts before the read data is valid, and
595  *     read data is valid for some time after read strobe.
596  *
597  *     The following figure illustrates some aspects of a NAND Flash read:
598  *
599  *                   |<---tREA---->|
600  *                   |             |
601  *                   |         |   |
602  *                   |<--tRP-->|   |
603  *                   |         |   |
604  *                  __          ___|__________________________________
605  *     RDN            \________/   |
606  *                                 |
607  *                                 /---------\
608  *     Read Data    --------------<           >---------
609  *                                 \---------/
610  *                                |     |
611  *                                |<-D->|
612  *     FeedbackRDN  ________             ____________
613  *                          \___________/
614  *
615  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
616  *
617  *
618  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
619  *
620  *  4.1) From the aspect of the nand chip pins:
621  *        Delay = (tREA + C - tRP)               {1}
622  *
623  *        tREA : the maximum read access time.
624  *        C    : a constant to adjust the delay. default is 4000ps.
625  *        tRP  : the read pulse width, which is exactly:
626  *                   tRP = (GPMI-clock-period) * DATA_SETUP
627  *
628  *  4.2) From the aspect of the GPMI nand controller:
629  *         Delay = RDN_DELAY * 0.125 * RP        {2}
630  *
631  *         RP   : the DLL reference period.
632  *            if (GPMI-clock-period > DLL_THRETHOLD)
633  *                   RP = GPMI-clock-period / 2;
634  *            else
635  *                   RP = GPMI-clock-period;
636  *
637  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
638  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
639  *            is 16000ps, but in mx6q, we use 12000ps.
640  *
641  *  4.3) since {1} equals {2}, we get:
642  *
643  *                     (tREA + 4000 - tRP) * 8
644  *         RDN_DELAY = -----------------------     {3}
645  *                           RP
646  */
647 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
648                                      const struct nand_sdr_timings *sdr)
649 {
650         struct gpmi_nfc_hardware_timing *hw = &this->hw;
651         unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
652         unsigned int period_ps, reference_period_ps;
653         unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
654         unsigned int tRP_ps;
655         bool use_half_period;
656         int sample_delay_ps, sample_delay_factor;
657         u16 busy_timeout_cycles;
658         u8 wrn_dly_sel;
659
660         if (sdr->tRC_min >= 30000) {
661                 /* ONFI non-EDO modes [0-3] */
662                 hw->clk_rate = 22000000;
663                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
664         } else if (sdr->tRC_min >= 25000) {
665                 /* ONFI EDO mode 4 */
666                 hw->clk_rate = 80000000;
667                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
668         } else {
669                 /* ONFI EDO mode 5 */
670                 hw->clk_rate = 100000000;
671                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
672         }
673
674         /* SDR core timings are given in picoseconds */
675         period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
676
677         addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
678         data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
679         data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
680         busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
681
682         hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
683                       BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
684                       BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
685         hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
686
687         /*
688          * Derive NFC ideal delay from {3}:
689          *
690          *                     (tREA + 4000 - tRP) * 8
691          *         RDN_DELAY = -----------------------
692          *                                RP
693          */
694         if (period_ps > dll_threshold_ps) {
695                 use_half_period = true;
696                 reference_period_ps = period_ps / 2;
697         } else {
698                 use_half_period = false;
699                 reference_period_ps = period_ps;
700         }
701
702         tRP_ps = data_setup_cycles * period_ps;
703         sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
704         if (sample_delay_ps > 0)
705                 sample_delay_factor = sample_delay_ps / reference_period_ps;
706         else
707                 sample_delay_factor = 0;
708
709         hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
710         if (sample_delay_factor)
711                 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
712                               BM_GPMI_CTRL1_DLL_ENABLE |
713                               (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
714 }
715
716 static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
717 {
718         struct gpmi_nfc_hardware_timing *hw = &this->hw;
719         struct resources *r = &this->resources;
720         void __iomem *gpmi_regs = r->gpmi_regs;
721         unsigned int dll_wait_time_us;
722
723         clk_set_rate(r->clock[0], hw->clk_rate);
724
725         writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
726         writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
727
728         /*
729          * Clear several CTRL1 fields, DLL must be disabled when setting
730          * RDN_DELAY or HALF_PERIOD.
731          */
732         writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
733         writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
734
735         /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
736         dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
737         if (!dll_wait_time_us)
738                 dll_wait_time_us = 1;
739
740         /* Wait for the DLL to settle. */
741         udelay(dll_wait_time_us);
742 }
743
744 static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
745                                 const struct nand_interface_config *conf)
746 {
747         struct gpmi_nand_data *this = nand_get_controller_data(chip);
748         const struct nand_sdr_timings *sdr;
749
750         /* Retrieve required NAND timings */
751         sdr = nand_get_sdr_timings(conf);
752         if (IS_ERR(sdr))
753                 return PTR_ERR(sdr);
754
755         /* Only MX6 GPMI controller can reach EDO timings */
756         if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
757                 return -ENOTSUPP;
758
759         /* Stop here if this call was just a check */
760         if (chipnr < 0)
761                 return 0;
762
763         /* Do the actual derivation of the controller timings */
764         gpmi_nfc_compute_timings(this, sdr);
765
766         this->hw.must_apply_timings = true;
767
768         return 0;
769 }
770
771 /* Clears a BCH interrupt. */
772 static void gpmi_clear_bch(struct gpmi_nand_data *this)
773 {
774         struct resources *r = &this->resources;
775         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
776 }
777
778 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
779 {
780         /* We use the DMA channel 0 to access all the nand chips. */
781         return this->dma_chans[0];
782 }
783
784 /* This will be called after the DMA operation is finished. */
785 static void dma_irq_callback(void *param)
786 {
787         struct gpmi_nand_data *this = param;
788         struct completion *dma_c = &this->dma_done;
789
790         complete(dma_c);
791 }
792
793 static irqreturn_t bch_irq(int irq, void *cookie)
794 {
795         struct gpmi_nand_data *this = cookie;
796
797         gpmi_clear_bch(this);
798         complete(&this->bch_done);
799         return IRQ_HANDLED;
800 }
801
802 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
803 {
804         /*
805          * raw_len is the length to read/write including bch data which
806          * we are passed in exec_op. Calculate the data length from it.
807          */
808         if (this->bch)
809                 return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
810         else
811                 return raw_len;
812 }
813
814 /* Can we use the upper's buffer directly for DMA? */
815 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
816                              int raw_len, struct scatterlist *sgl,
817                              enum dma_data_direction dr)
818 {
819         int ret;
820         int len = gpmi_raw_len_to_len(this, raw_len);
821
822         /* first try to map the upper buffer directly */
823         if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
824                 sg_init_one(sgl, buf, len);
825                 ret = dma_map_sg(this->dev, sgl, 1, dr);
826                 if (ret == 0)
827                         goto map_fail;
828
829                 return true;
830         }
831
832 map_fail:
833         /* We have to use our own DMA buffer. */
834         sg_init_one(sgl, this->data_buffer_dma, len);
835
836         if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
837                 memcpy(this->data_buffer_dma, buf, len);
838
839         dma_map_sg(this->dev, sgl, 1, dr);
840
841         return false;
842 }
843
844 /* add our owner bbt descriptor */
845 static uint8_t scan_ff_pattern[] = { 0xff };
846 static struct nand_bbt_descr gpmi_bbt_descr = {
847         .options        = 0,
848         .offs           = 0,
849         .len            = 1,
850         .pattern        = scan_ff_pattern
851 };
852
853 /*
854  * We may change the layout if we can get the ECC info from the datasheet,
855  * else we will use all the (page + OOB).
856  */
857 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
858                               struct mtd_oob_region *oobregion)
859 {
860         struct nand_chip *chip = mtd_to_nand(mtd);
861         struct gpmi_nand_data *this = nand_get_controller_data(chip);
862         struct bch_geometry *geo = &this->bch_geometry;
863
864         if (section)
865                 return -ERANGE;
866
867         oobregion->offset = 0;
868         oobregion->length = geo->page_size - mtd->writesize;
869
870         return 0;
871 }
872
873 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
874                                struct mtd_oob_region *oobregion)
875 {
876         struct nand_chip *chip = mtd_to_nand(mtd);
877         struct gpmi_nand_data *this = nand_get_controller_data(chip);
878         struct bch_geometry *geo = &this->bch_geometry;
879
880         if (section)
881                 return -ERANGE;
882
883         /* The available oob size we have. */
884         if (geo->page_size < mtd->writesize + mtd->oobsize) {
885                 oobregion->offset = geo->page_size - mtd->writesize;
886                 oobregion->length = mtd->oobsize - oobregion->offset;
887         }
888
889         return 0;
890 }
891
892 static const char * const gpmi_clks_for_mx2x[] = {
893         "gpmi_io",
894 };
895
896 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
897         .ecc = gpmi_ooblayout_ecc,
898         .free = gpmi_ooblayout_free,
899 };
900
901 static const struct gpmi_devdata gpmi_devdata_imx23 = {
902         .type = IS_MX23,
903         .bch_max_ecc_strength = 20,
904         .max_chain_delay = 16000,
905         .clks = gpmi_clks_for_mx2x,
906         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
907 };
908
909 static const struct gpmi_devdata gpmi_devdata_imx28 = {
910         .type = IS_MX28,
911         .bch_max_ecc_strength = 20,
912         .max_chain_delay = 16000,
913         .clks = gpmi_clks_for_mx2x,
914         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
915 };
916
917 static const char * const gpmi_clks_for_mx6[] = {
918         "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
919 };
920
921 static const struct gpmi_devdata gpmi_devdata_imx6q = {
922         .type = IS_MX6Q,
923         .bch_max_ecc_strength = 40,
924         .max_chain_delay = 12000,
925         .clks = gpmi_clks_for_mx6,
926         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
927 };
928
929 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
930         .type = IS_MX6SX,
931         .bch_max_ecc_strength = 62,
932         .max_chain_delay = 12000,
933         .clks = gpmi_clks_for_mx6,
934         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
935 };
936
937 static const char * const gpmi_clks_for_mx7d[] = {
938         "gpmi_io", "gpmi_bch_apb",
939 };
940
941 static const struct gpmi_devdata gpmi_devdata_imx7d = {
942         .type = IS_MX7D,
943         .bch_max_ecc_strength = 62,
944         .max_chain_delay = 12000,
945         .clks = gpmi_clks_for_mx7d,
946         .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
947 };
948
949 static int acquire_register_block(struct gpmi_nand_data *this,
950                                   const char *res_name)
951 {
952         struct platform_device *pdev = this->pdev;
953         struct resources *res = &this->resources;
954         struct resource *r;
955         void __iomem *p;
956
957         r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
958         p = devm_ioremap_resource(&pdev->dev, r);
959         if (IS_ERR(p))
960                 return PTR_ERR(p);
961
962         if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
963                 res->gpmi_regs = p;
964         else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
965                 res->bch_regs = p;
966         else
967                 dev_err(this->dev, "unknown resource name : %s\n", res_name);
968
969         return 0;
970 }
971
972 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
973 {
974         struct platform_device *pdev = this->pdev;
975         const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
976         struct resource *r;
977         int err;
978
979         r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
980         if (!r) {
981                 dev_err(this->dev, "Can't get resource for %s\n", res_name);
982                 return -ENODEV;
983         }
984
985         err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
986         if (err)
987                 dev_err(this->dev, "error requesting BCH IRQ\n");
988
989         return err;
990 }
991
992 static void release_dma_channels(struct gpmi_nand_data *this)
993 {
994         unsigned int i;
995         for (i = 0; i < DMA_CHANS; i++)
996                 if (this->dma_chans[i]) {
997                         dma_release_channel(this->dma_chans[i]);
998                         this->dma_chans[i] = NULL;
999                 }
1000 }
1001
1002 static int acquire_dma_channels(struct gpmi_nand_data *this)
1003 {
1004         struct platform_device *pdev = this->pdev;
1005         struct dma_chan *dma_chan;
1006         int ret = 0;
1007
1008         /* request dma channel */
1009         dma_chan = dma_request_chan(&pdev->dev, "rx-tx");
1010         if (IS_ERR(dma_chan)) {
1011                 ret = dev_err_probe(this->dev, PTR_ERR(dma_chan),
1012                                     "DMA channel request failed\n");
1013                 release_dma_channels(this);
1014         } else {
1015                 this->dma_chans[0] = dma_chan;
1016         }
1017
1018         return ret;
1019 }
1020
1021 static int gpmi_get_clks(struct gpmi_nand_data *this)
1022 {
1023         struct resources *r = &this->resources;
1024         struct clk *clk;
1025         int err, i;
1026
1027         for (i = 0; i < this->devdata->clks_count; i++) {
1028                 clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1029                 if (IS_ERR(clk)) {
1030                         err = PTR_ERR(clk);
1031                         goto err_clock;
1032                 }
1033
1034                 r->clock[i] = clk;
1035         }
1036
1037         if (GPMI_IS_MX6(this))
1038                 /*
1039                  * Set the default value for the gpmi clock.
1040                  *
1041                  * If you want to use the ONFI nand which is in the
1042                  * Synchronous Mode, you should change the clock as you need.
1043                  */
1044                 clk_set_rate(r->clock[0], 22000000);
1045
1046         return 0;
1047
1048 err_clock:
1049         dev_dbg(this->dev, "failed in finding the clocks.\n");
1050         return err;
1051 }
1052
1053 static int acquire_resources(struct gpmi_nand_data *this)
1054 {
1055         int ret;
1056
1057         ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1058         if (ret)
1059                 goto exit_regs;
1060
1061         ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1062         if (ret)
1063                 goto exit_regs;
1064
1065         ret = acquire_bch_irq(this, bch_irq);
1066         if (ret)
1067                 goto exit_regs;
1068
1069         ret = acquire_dma_channels(this);
1070         if (ret)
1071                 goto exit_regs;
1072
1073         ret = gpmi_get_clks(this);
1074         if (ret)
1075                 goto exit_clock;
1076         return 0;
1077
1078 exit_clock:
1079         release_dma_channels(this);
1080 exit_regs:
1081         return ret;
1082 }
1083
1084 static void release_resources(struct gpmi_nand_data *this)
1085 {
1086         release_dma_channels(this);
1087 }
1088
1089 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1090 {
1091         struct device *dev = this->dev;
1092         struct bch_geometry *geo = &this->bch_geometry;
1093
1094         if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1095                 dma_free_coherent(dev, geo->auxiliary_size,
1096                                         this->auxiliary_virt,
1097                                         this->auxiliary_phys);
1098         kfree(this->data_buffer_dma);
1099         kfree(this->raw_buffer);
1100
1101         this->data_buffer_dma   = NULL;
1102         this->raw_buffer        = NULL;
1103 }
1104
1105 /* Allocate the DMA buffers */
1106 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1107 {
1108         struct bch_geometry *geo = &this->bch_geometry;
1109         struct device *dev = this->dev;
1110         struct mtd_info *mtd = nand_to_mtd(&this->nand);
1111
1112         /*
1113          * [2] Allocate a read/write data buffer.
1114          *     The gpmi_alloc_dma_buffer can be called twice.
1115          *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1116          *     is called before the NAND identification; and we allocate a
1117          *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1118          *     is called after.
1119          */
1120         this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1121                                         GFP_DMA | GFP_KERNEL);
1122         if (this->data_buffer_dma == NULL)
1123                 goto error_alloc;
1124
1125         this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1126                                         &this->auxiliary_phys, GFP_DMA);
1127         if (!this->auxiliary_virt)
1128                 goto error_alloc;
1129
1130         this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1131         if (!this->raw_buffer)
1132                 goto error_alloc;
1133
1134         return 0;
1135
1136 error_alloc:
1137         gpmi_free_dma_buffer(this);
1138         return -ENOMEM;
1139 }
1140
1141 /*
1142  * Handles block mark swapping.
1143  * It can be called in swapping the block mark, or swapping it back,
1144  * because the the operations are the same.
1145  */
1146 static void block_mark_swapping(struct gpmi_nand_data *this,
1147                                 void *payload, void *auxiliary)
1148 {
1149         struct bch_geometry *nfc_geo = &this->bch_geometry;
1150         unsigned char *p;
1151         unsigned char *a;
1152         unsigned int  bit;
1153         unsigned char mask;
1154         unsigned char from_data;
1155         unsigned char from_oob;
1156
1157         if (!this->swap_block_mark)
1158                 return;
1159
1160         /*
1161          * If control arrives here, we're swapping. Make some convenience
1162          * variables.
1163          */
1164         bit = nfc_geo->block_mark_bit_offset;
1165         p   = payload + nfc_geo->block_mark_byte_offset;
1166         a   = auxiliary;
1167
1168         /*
1169          * Get the byte from the data area that overlays the block mark. Since
1170          * the ECC engine applies its own view to the bits in the page, the
1171          * physical block mark won't (in general) appear on a byte boundary in
1172          * the data.
1173          */
1174         from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1175
1176         /* Get the byte from the OOB. */
1177         from_oob = a[0];
1178
1179         /* Swap them. */
1180         a[0] = from_data;
1181
1182         mask = (0x1 << bit) - 1;
1183         p[0] = (p[0] & mask) | (from_oob << bit);
1184
1185         mask = ~0 << bit;
1186         p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1187 }
1188
1189 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1190                                int last, int meta)
1191 {
1192         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1193         struct bch_geometry *nfc_geo = &this->bch_geometry;
1194         struct mtd_info *mtd = nand_to_mtd(chip);
1195         int i;
1196         unsigned char *status;
1197         unsigned int max_bitflips = 0;
1198
1199         /* Loop over status bytes, accumulating ECC status. */
1200         status = this->auxiliary_virt + ALIGN(meta, 4);
1201
1202         for (i = first; i < last; i++, status++) {
1203                 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1204                         continue;
1205
1206                 if (*status == STATUS_UNCORRECTABLE) {
1207                         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1208                         u8 *eccbuf = this->raw_buffer;
1209                         int offset, bitoffset;
1210                         int eccbytes;
1211                         int flips;
1212
1213                         /* Read ECC bytes into our internal raw_buffer */
1214                         offset = nfc_geo->metadata_size * 8;
1215                         offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1216                         offset -= eccbits;
1217                         bitoffset = offset % 8;
1218                         eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1219                         offset /= 8;
1220                         eccbytes -= offset;
1221                         nand_change_read_column_op(chip, offset, eccbuf,
1222                                                    eccbytes, false);
1223
1224                         /*
1225                          * ECC data are not byte aligned and we may have
1226                          * in-band data in the first and last byte of
1227                          * eccbuf. Set non-eccbits to one so that
1228                          * nand_check_erased_ecc_chunk() does not count them
1229                          * as bitflips.
1230                          */
1231                         if (bitoffset)
1232                                 eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1233
1234                         bitoffset = (bitoffset + eccbits) % 8;
1235                         if (bitoffset)
1236                                 eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1237
1238                         /*
1239                          * The ECC hardware has an uncorrectable ECC status
1240                          * code in case we have bitflips in an erased page. As
1241                          * nothing was written into this subpage the ECC is
1242                          * obviously wrong and we can not trust it. We assume
1243                          * at this point that we are reading an erased page and
1244                          * try to correct the bitflips in buffer up to
1245                          * ecc_strength bitflips. If this is a page with random
1246                          * data, we exceed this number of bitflips and have a
1247                          * ECC failure. Otherwise we use the corrected buffer.
1248                          */
1249                         if (i == 0) {
1250                                 /* The first block includes metadata */
1251                                 flips = nand_check_erased_ecc_chunk(
1252                                                 buf + i * nfc_geo->ecc_chunk_size,
1253                                                 nfc_geo->ecc_chunk_size,
1254                                                 eccbuf, eccbytes,
1255                                                 this->auxiliary_virt,
1256                                                 nfc_geo->metadata_size,
1257                                                 nfc_geo->ecc_strength);
1258                         } else {
1259                                 flips = nand_check_erased_ecc_chunk(
1260                                                 buf + i * nfc_geo->ecc_chunk_size,
1261                                                 nfc_geo->ecc_chunk_size,
1262                                                 eccbuf, eccbytes,
1263                                                 NULL, 0,
1264                                                 nfc_geo->ecc_strength);
1265                         }
1266
1267                         if (flips > 0) {
1268                                 max_bitflips = max_t(unsigned int, max_bitflips,
1269                                                      flips);
1270                                 mtd->ecc_stats.corrected += flips;
1271                                 continue;
1272                         }
1273
1274                         mtd->ecc_stats.failed++;
1275                         continue;
1276                 }
1277
1278                 mtd->ecc_stats.corrected += *status;
1279                 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1280         }
1281
1282         return max_bitflips;
1283 }
1284
1285 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1286 {
1287         struct bch_geometry *geo = &this->bch_geometry;
1288         unsigned int ecc_strength = geo->ecc_strength >> 1;
1289         unsigned int gf_len = geo->gf_len;
1290         unsigned int block_size = geo->ecc_chunk_size;
1291
1292         this->bch_flashlayout0 =
1293                 BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1294                 BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1295                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1296                 BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1297                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1298
1299         this->bch_flashlayout1 =
1300                 BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1301                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1302                 BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1303                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1304 }
1305
1306 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1307                               int oob_required, int page)
1308 {
1309         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1310         struct mtd_info *mtd = nand_to_mtd(chip);
1311         struct bch_geometry *geo = &this->bch_geometry;
1312         unsigned int max_bitflips;
1313         int ret;
1314
1315         gpmi_bch_layout_std(this);
1316         this->bch = true;
1317
1318         ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1319         if (ret)
1320                 return ret;
1321
1322         max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1323                                            geo->ecc_chunk_count,
1324                                            geo->auxiliary_status_offset);
1325
1326         /* handle the block mark swapping */
1327         block_mark_swapping(this, buf, this->auxiliary_virt);
1328
1329         if (oob_required) {
1330                 /*
1331                  * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1332                  * for details about our policy for delivering the OOB.
1333                  *
1334                  * We fill the caller's buffer with set bits, and then copy the
1335                  * block mark to th caller's buffer. Note that, if block mark
1336                  * swapping was necessary, it has already been done, so we can
1337                  * rely on the first byte of the auxiliary buffer to contain
1338                  * the block mark.
1339                  */
1340                 memset(chip->oob_poi, ~0, mtd->oobsize);
1341                 chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1342         }
1343
1344         return max_bitflips;
1345 }
1346
1347 /* Fake a virtual small page for the subpage read */
1348 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1349                                  uint32_t len, uint8_t *buf, int page)
1350 {
1351         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1352         struct bch_geometry *geo = &this->bch_geometry;
1353         int size = chip->ecc.size; /* ECC chunk size */
1354         int meta, n, page_size;
1355         unsigned int max_bitflips;
1356         unsigned int ecc_strength;
1357         int first, last, marker_pos;
1358         int ecc_parity_size;
1359         int col = 0;
1360         int ret;
1361
1362         /* The size of ECC parity */
1363         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1364
1365         /* Align it with the chunk size */
1366         first = offs / size;
1367         last = (offs + len - 1) / size;
1368
1369         if (this->swap_block_mark) {
1370                 /*
1371                  * Find the chunk which contains the Block Marker.
1372                  * If this chunk is in the range of [first, last],
1373                  * we have to read out the whole page.
1374                  * Why? since we had swapped the data at the position of Block
1375                  * Marker to the metadata which is bound with the chunk 0.
1376                  */
1377                 marker_pos = geo->block_mark_byte_offset / size;
1378                 if (last >= marker_pos && first <= marker_pos) {
1379                         dev_dbg(this->dev,
1380                                 "page:%d, first:%d, last:%d, marker at:%d\n",
1381                                 page, first, last, marker_pos);
1382                         return gpmi_ecc_read_page(chip, buf, 0, page);
1383                 }
1384         }
1385
1386         meta = geo->metadata_size;
1387         if (first) {
1388                 col = meta + (size + ecc_parity_size) * first;
1389                 meta = 0;
1390                 buf = buf + first * size;
1391         }
1392
1393         ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1394
1395         n = last - first + 1;
1396         page_size = meta + (size + ecc_parity_size) * n;
1397         ecc_strength = geo->ecc_strength >> 1;
1398
1399         this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1400                 BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1401                 BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1402                 BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1403                 BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1404
1405         this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1406                 BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1407                 BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1408                 BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1409
1410         this->bch = true;
1411
1412         ret = nand_read_page_op(chip, page, col, buf, page_size);
1413         if (ret)
1414                 return ret;
1415
1416         dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1417                 page, offs, len, col, first, n, page_size);
1418
1419         max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1420
1421         return max_bitflips;
1422 }
1423
1424 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1425                                int oob_required, int page)
1426 {
1427         struct mtd_info *mtd = nand_to_mtd(chip);
1428         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1429         struct bch_geometry *nfc_geo = &this->bch_geometry;
1430         int ret;
1431
1432         dev_dbg(this->dev, "ecc write page.\n");
1433
1434         gpmi_bch_layout_std(this);
1435         this->bch = true;
1436
1437         memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1438
1439         if (this->swap_block_mark) {
1440                 /*
1441                  * When doing bad block marker swapping we must always copy the
1442                  * input buffer as we can't modify the const buffer.
1443                  */
1444                 memcpy(this->data_buffer_dma, buf, mtd->writesize);
1445                 buf = this->data_buffer_dma;
1446                 block_mark_swapping(this, this->data_buffer_dma,
1447                                     this->auxiliary_virt);
1448         }
1449
1450         ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1451
1452         return ret;
1453 }
1454
1455 /*
1456  * There are several places in this driver where we have to handle the OOB and
1457  * block marks. This is the function where things are the most complicated, so
1458  * this is where we try to explain it all. All the other places refer back to
1459  * here.
1460  *
1461  * These are the rules, in order of decreasing importance:
1462  *
1463  * 1) Nothing the caller does can be allowed to imperil the block mark.
1464  *
1465  * 2) In read operations, the first byte of the OOB we return must reflect the
1466  *    true state of the block mark, no matter where that block mark appears in
1467  *    the physical page.
1468  *
1469  * 3) ECC-based read operations return an OOB full of set bits (since we never
1470  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1471  *    return).
1472  *
1473  * 4) "Raw" read operations return a direct view of the physical bytes in the
1474  *    page, using the conventional definition of which bytes are data and which
1475  *    are OOB. This gives the caller a way to see the actual, physical bytes
1476  *    in the page, without the distortions applied by our ECC engine.
1477  *
1478  *
1479  * What we do for this specific read operation depends on two questions:
1480  *
1481  * 1) Are we doing a "raw" read, or an ECC-based read?
1482  *
1483  * 2) Are we using block mark swapping or transcription?
1484  *
1485  * There are four cases, illustrated by the following Karnaugh map:
1486  *
1487  *                    |           Raw           |         ECC-based       |
1488  *       -------------+-------------------------+-------------------------+
1489  *                    | Read the conventional   |                         |
1490  *                    | OOB at the end of the   |                         |
1491  *       Swapping     | page and return it. It  |                         |
1492  *                    | contains exactly what   |                         |
1493  *                    | we want.                | Read the block mark and |
1494  *       -------------+-------------------------+ return it in a buffer   |
1495  *                    | Read the conventional   | full of set bits.       |
1496  *                    | OOB at the end of the   |                         |
1497  *                    | page and also the block |                         |
1498  *       Transcribing | mark in the metadata.   |                         |
1499  *                    | Copy the block mark     |                         |
1500  *                    | into the first byte of  |                         |
1501  *                    | the OOB.                |                         |
1502  *       -------------+-------------------------+-------------------------+
1503  *
1504  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1505  * giving an accurate view of the actual, physical bytes in the page (we're
1506  * overwriting the block mark). That's OK because it's more important to follow
1507  * rule #2.
1508  *
1509  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1510  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1511  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1512  * ECC-based or raw view of the page is implicit in which function it calls
1513  * (there is a similar pair of ECC-based/raw functions for writing).
1514  */
1515 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1516 {
1517         struct mtd_info *mtd = nand_to_mtd(chip);
1518         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1519         int ret;
1520
1521         /* clear the OOB buffer */
1522         memset(chip->oob_poi, ~0, mtd->oobsize);
1523
1524         /* Read out the conventional OOB. */
1525         ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1526                                 mtd->oobsize);
1527         if (ret)
1528                 return ret;
1529
1530         /*
1531          * Now, we want to make sure the block mark is correct. In the
1532          * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1533          * Otherwise, we need to explicitly read it.
1534          */
1535         if (GPMI_IS_MX23(this)) {
1536                 /* Read the block mark into the first byte of the OOB buffer. */
1537                 ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1538                 if (ret)
1539                         return ret;
1540         }
1541
1542         return 0;
1543 }
1544
1545 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1546 {
1547         struct mtd_info *mtd = nand_to_mtd(chip);
1548         struct mtd_oob_region of = { };
1549
1550         /* Do we have available oob area? */
1551         mtd_ooblayout_free(mtd, 0, &of);
1552         if (!of.length)
1553                 return -EPERM;
1554
1555         if (!nand_is_slc(chip))
1556                 return -EPERM;
1557
1558         return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1559                                  chip->oob_poi + of.offset, of.length);
1560 }
1561
1562 /*
1563  * This function reads a NAND page without involving the ECC engine (no HW
1564  * ECC correction).
1565  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1566  * inline (interleaved with payload DATA), and do not align data chunk on
1567  * byte boundaries.
1568  * We thus need to take care moving the payload data and ECC bits stored in the
1569  * page into the provided buffers, which is why we're using nand_extract_bits().
1570  *
1571  * See set_geometry_by_ecc_info inline comments to have a full description
1572  * of the layout used by the GPMI controller.
1573  */
1574 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1575                                   int oob_required, int page)
1576 {
1577         struct mtd_info *mtd = nand_to_mtd(chip);
1578         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1579         struct bch_geometry *nfc_geo = &this->bch_geometry;
1580         int eccsize = nfc_geo->ecc_chunk_size;
1581         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1582         u8 *tmp_buf = this->raw_buffer;
1583         size_t src_bit_off;
1584         size_t oob_bit_off;
1585         size_t oob_byte_off;
1586         uint8_t *oob = chip->oob_poi;
1587         int step;
1588         int ret;
1589
1590         ret = nand_read_page_op(chip, page, 0, tmp_buf,
1591                                 mtd->writesize + mtd->oobsize);
1592         if (ret)
1593                 return ret;
1594
1595         /*
1596          * If required, swap the bad block marker and the data stored in the
1597          * metadata section, so that we don't wrongly consider a block as bad.
1598          *
1599          * See the layout description for a detailed explanation on why this
1600          * is needed.
1601          */
1602         if (this->swap_block_mark)
1603                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1604
1605         /*
1606          * Copy the metadata section into the oob buffer (this section is
1607          * guaranteed to be aligned on a byte boundary).
1608          */
1609         if (oob_required)
1610                 memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1611
1612         oob_bit_off = nfc_geo->metadata_size * 8;
1613         src_bit_off = oob_bit_off;
1614
1615         /* Extract interleaved payload data and ECC bits */
1616         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1617                 if (buf)
1618                         nand_extract_bits(buf, step * eccsize * 8, tmp_buf,
1619                                           src_bit_off, eccsize * 8);
1620                 src_bit_off += eccsize * 8;
1621
1622                 /* Align last ECC block to align a byte boundary */
1623                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1624                     (oob_bit_off + eccbits) % 8)
1625                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1626
1627                 if (oob_required)
1628                         nand_extract_bits(oob, oob_bit_off, tmp_buf,
1629                                           src_bit_off, eccbits);
1630
1631                 src_bit_off += eccbits;
1632                 oob_bit_off += eccbits;
1633         }
1634
1635         if (oob_required) {
1636                 oob_byte_off = oob_bit_off / 8;
1637
1638                 if (oob_byte_off < mtd->oobsize)
1639                         memcpy(oob + oob_byte_off,
1640                                tmp_buf + mtd->writesize + oob_byte_off,
1641                                mtd->oobsize - oob_byte_off);
1642         }
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * This function writes a NAND page without involving the ECC engine (no HW
1649  * ECC generation).
1650  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1651  * inline (interleaved with payload DATA), and do not align data chunk on
1652  * byte boundaries.
1653  * We thus need to take care moving the OOB area at the right place in the
1654  * final page, which is why we're using nand_extract_bits().
1655  *
1656  * See set_geometry_by_ecc_info inline comments to have a full description
1657  * of the layout used by the GPMI controller.
1658  */
1659 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1660                                    int oob_required, int page)
1661 {
1662         struct mtd_info *mtd = nand_to_mtd(chip);
1663         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1664         struct bch_geometry *nfc_geo = &this->bch_geometry;
1665         int eccsize = nfc_geo->ecc_chunk_size;
1666         int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1667         u8 *tmp_buf = this->raw_buffer;
1668         uint8_t *oob = chip->oob_poi;
1669         size_t dst_bit_off;
1670         size_t oob_bit_off;
1671         size_t oob_byte_off;
1672         int step;
1673
1674         /*
1675          * Initialize all bits to 1 in case we don't have a buffer for the
1676          * payload or oob data in order to leave unspecified bits of data
1677          * to their initial state.
1678          */
1679         if (!buf || !oob_required)
1680                 memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1681
1682         /*
1683          * First copy the metadata section (stored in oob buffer) at the
1684          * beginning of the page, as imposed by the GPMI layout.
1685          */
1686         memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1687         oob_bit_off = nfc_geo->metadata_size * 8;
1688         dst_bit_off = oob_bit_off;
1689
1690         /* Interleave payload data and ECC bits */
1691         for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1692                 if (buf)
1693                         nand_extract_bits(tmp_buf, dst_bit_off, buf,
1694                                           step * eccsize * 8, eccsize * 8);
1695                 dst_bit_off += eccsize * 8;
1696
1697                 /* Align last ECC block to align a byte boundary */
1698                 if (step == nfc_geo->ecc_chunk_count - 1 &&
1699                     (oob_bit_off + eccbits) % 8)
1700                         eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1701
1702                 if (oob_required)
1703                         nand_extract_bits(tmp_buf, dst_bit_off, oob,
1704                                           oob_bit_off, eccbits);
1705
1706                 dst_bit_off += eccbits;
1707                 oob_bit_off += eccbits;
1708         }
1709
1710         oob_byte_off = oob_bit_off / 8;
1711
1712         if (oob_required && oob_byte_off < mtd->oobsize)
1713                 memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1714                        oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1715
1716         /*
1717          * If required, swap the bad block marker and the first byte of the
1718          * metadata section, so that we don't modify the bad block marker.
1719          *
1720          * See the layout description for a detailed explanation on why this
1721          * is needed.
1722          */
1723         if (this->swap_block_mark)
1724                 swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1725
1726         return nand_prog_page_op(chip, page, 0, tmp_buf,
1727                                  mtd->writesize + mtd->oobsize);
1728 }
1729
1730 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1731 {
1732         return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1733 }
1734
1735 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1736 {
1737         return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1738 }
1739
1740 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1741 {
1742         struct mtd_info *mtd = nand_to_mtd(chip);
1743         struct gpmi_nand_data *this = nand_get_controller_data(chip);
1744         int ret = 0;
1745         uint8_t *block_mark;
1746         int column, page, chipnr;
1747
1748         chipnr = (int)(ofs >> chip->chip_shift);
1749         nand_select_target(chip, chipnr);
1750
1751         column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1752
1753         /* Write the block mark. */
1754         block_mark = this->data_buffer_dma;
1755         block_mark[0] = 0; /* bad block marker */
1756
1757         /* Shift to get page */
1758         page = (int)(ofs >> chip->page_shift);
1759
1760         ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1761
1762         nand_deselect_target(chip);
1763
1764         return ret;
1765 }
1766
1767 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1768 {
1769         struct boot_rom_geometry *geometry = &this->rom_geometry;
1770
1771         /*
1772          * Set the boot block stride size.
1773          *
1774          * In principle, we should be reading this from the OTP bits, since
1775          * that's where the ROM is going to get it. In fact, we don't have any
1776          * way to read the OTP bits, so we go with the default and hope for the
1777          * best.
1778          */
1779         geometry->stride_size_in_pages = 64;
1780
1781         /*
1782          * Set the search area stride exponent.
1783          *
1784          * In principle, we should be reading this from the OTP bits, since
1785          * that's where the ROM is going to get it. In fact, we don't have any
1786          * way to read the OTP bits, so we go with the default and hope for the
1787          * best.
1788          */
1789         geometry->search_area_stride_exponent = 2;
1790         return 0;
1791 }
1792
1793 static const char  *fingerprint = "STMP";
1794 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1795 {
1796         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1797         struct device *dev = this->dev;
1798         struct nand_chip *chip = &this->nand;
1799         unsigned int search_area_size_in_strides;
1800         unsigned int stride;
1801         unsigned int page;
1802         u8 *buffer = nand_get_data_buf(chip);
1803         int found_an_ncb_fingerprint = false;
1804         int ret;
1805
1806         /* Compute the number of strides in a search area. */
1807         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1808
1809         nand_select_target(chip, 0);
1810
1811         /*
1812          * Loop through the first search area, looking for the NCB fingerprint.
1813          */
1814         dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1815
1816         for (stride = 0; stride < search_area_size_in_strides; stride++) {
1817                 /* Compute the page addresses. */
1818                 page = stride * rom_geo->stride_size_in_pages;
1819
1820                 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1821
1822                 /*
1823                  * Read the NCB fingerprint. The fingerprint is four bytes long
1824                  * and starts in the 12th byte of the page.
1825                  */
1826                 ret = nand_read_page_op(chip, page, 12, buffer,
1827                                         strlen(fingerprint));
1828                 if (ret)
1829                         continue;
1830
1831                 /* Look for the fingerprint. */
1832                 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1833                         found_an_ncb_fingerprint = true;
1834                         break;
1835                 }
1836
1837         }
1838
1839         nand_deselect_target(chip);
1840
1841         if (found_an_ncb_fingerprint)
1842                 dev_dbg(dev, "\tFound a fingerprint\n");
1843         else
1844                 dev_dbg(dev, "\tNo fingerprint found\n");
1845         return found_an_ncb_fingerprint;
1846 }
1847
1848 /* Writes a transcription stamp. */
1849 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1850 {
1851         struct device *dev = this->dev;
1852         struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1853         struct nand_chip *chip = &this->nand;
1854         struct mtd_info *mtd = nand_to_mtd(chip);
1855         unsigned int block_size_in_pages;
1856         unsigned int search_area_size_in_strides;
1857         unsigned int search_area_size_in_pages;
1858         unsigned int search_area_size_in_blocks;
1859         unsigned int block;
1860         unsigned int stride;
1861         unsigned int page;
1862         u8 *buffer = nand_get_data_buf(chip);
1863         int status;
1864
1865         /* Compute the search area geometry. */
1866         block_size_in_pages = mtd->erasesize / mtd->writesize;
1867         search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1868         search_area_size_in_pages = search_area_size_in_strides *
1869                                         rom_geo->stride_size_in_pages;
1870         search_area_size_in_blocks =
1871                   (search_area_size_in_pages + (block_size_in_pages - 1)) /
1872                                     block_size_in_pages;
1873
1874         dev_dbg(dev, "Search Area Geometry :\n");
1875         dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1876         dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1877         dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
1878
1879         nand_select_target(chip, 0);
1880
1881         /* Loop over blocks in the first search area, erasing them. */
1882         dev_dbg(dev, "Erasing the search area...\n");
1883
1884         for (block = 0; block < search_area_size_in_blocks; block++) {
1885                 /* Erase this block. */
1886                 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1887                 status = nand_erase_op(chip, block);
1888                 if (status)
1889                         dev_err(dev, "[%s] Erase failed.\n", __func__);
1890         }
1891
1892         /* Write the NCB fingerprint into the page buffer. */
1893         memset(buffer, ~0, mtd->writesize);
1894         memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1895
1896         /* Loop through the first search area, writing NCB fingerprints. */
1897         dev_dbg(dev, "Writing NCB fingerprints...\n");
1898         for (stride = 0; stride < search_area_size_in_strides; stride++) {
1899                 /* Compute the page addresses. */
1900                 page = stride * rom_geo->stride_size_in_pages;
1901
1902                 /* Write the first page of the current stride. */
1903                 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1904
1905                 status = chip->ecc.write_page_raw(chip, buffer, 0, page);
1906                 if (status)
1907                         dev_err(dev, "[%s] Write failed.\n", __func__);
1908         }
1909
1910         nand_deselect_target(chip);
1911
1912         return 0;
1913 }
1914
1915 static int mx23_boot_init(struct gpmi_nand_data  *this)
1916 {
1917         struct device *dev = this->dev;
1918         struct nand_chip *chip = &this->nand;
1919         struct mtd_info *mtd = nand_to_mtd(chip);
1920         unsigned int block_count;
1921         unsigned int block;
1922         int     chipnr;
1923         int     page;
1924         loff_t  byte;
1925         uint8_t block_mark;
1926         int     ret = 0;
1927
1928         /*
1929          * If control arrives here, we can't use block mark swapping, which
1930          * means we're forced to use transcription. First, scan for the
1931          * transcription stamp. If we find it, then we don't have to do
1932          * anything -- the block marks are already transcribed.
1933          */
1934         if (mx23_check_transcription_stamp(this))
1935                 return 0;
1936
1937         /*
1938          * If control arrives here, we couldn't find a transcription stamp, so
1939          * so we presume the block marks are in the conventional location.
1940          */
1941         dev_dbg(dev, "Transcribing bad block marks...\n");
1942
1943         /* Compute the number of blocks in the entire medium. */
1944         block_count = nanddev_eraseblocks_per_target(&chip->base);
1945
1946         /*
1947          * Loop over all the blocks in the medium, transcribing block marks as
1948          * we go.
1949          */
1950         for (block = 0; block < block_count; block++) {
1951                 /*
1952                  * Compute the chip, page and byte addresses for this block's
1953                  * conventional mark.
1954                  */
1955                 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1956                 page = block << (chip->phys_erase_shift - chip->page_shift);
1957                 byte = block <<  chip->phys_erase_shift;
1958
1959                 /* Send the command to read the conventional block mark. */
1960                 nand_select_target(chip, chipnr);
1961                 ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1962                                         1);
1963                 nand_deselect_target(chip);
1964
1965                 if (ret)
1966                         continue;
1967
1968                 /*
1969                  * Check if the block is marked bad. If so, we need to mark it
1970                  * again, but this time the result will be a mark in the
1971                  * location where we transcribe block marks.
1972                  */
1973                 if (block_mark != 0xff) {
1974                         dev_dbg(dev, "Transcribing mark in block %u\n", block);
1975                         ret = chip->legacy.block_markbad(chip, byte);
1976                         if (ret)
1977                                 dev_err(dev,
1978                                         "Failed to mark block bad with ret %d\n",
1979                                         ret);
1980                 }
1981         }
1982
1983         /* Write the stamp that indicates we've transcribed the block marks. */
1984         mx23_write_transcription_stamp(this);
1985         return 0;
1986 }
1987
1988 static int nand_boot_init(struct gpmi_nand_data  *this)
1989 {
1990         nand_boot_set_geometry(this);
1991
1992         /* This is ROM arch-specific initilization before the BBT scanning. */
1993         if (GPMI_IS_MX23(this))
1994                 return mx23_boot_init(this);
1995         return 0;
1996 }
1997
1998 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1999 {
2000         int ret;
2001
2002         /* Free the temporary DMA memory for reading ID. */
2003         gpmi_free_dma_buffer(this);
2004
2005         /* Set up the NFC geometry which is used by BCH. */
2006         ret = bch_set_geometry(this);
2007         if (ret) {
2008                 dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2009                 return ret;
2010         }
2011
2012         /* Alloc the new DMA buffers according to the pagesize and oobsize */
2013         return gpmi_alloc_dma_buffer(this);
2014 }
2015
2016 static int gpmi_init_last(struct gpmi_nand_data *this)
2017 {
2018         struct nand_chip *chip = &this->nand;
2019         struct mtd_info *mtd = nand_to_mtd(chip);
2020         struct nand_ecc_ctrl *ecc = &chip->ecc;
2021         struct bch_geometry *bch_geo = &this->bch_geometry;
2022         int ret;
2023
2024         /* Set up the medium geometry */
2025         ret = gpmi_set_geometry(this);
2026         if (ret)
2027                 return ret;
2028
2029         /* Init the nand_ecc_ctrl{} */
2030         ecc->read_page  = gpmi_ecc_read_page;
2031         ecc->write_page = gpmi_ecc_write_page;
2032         ecc->read_oob   = gpmi_ecc_read_oob;
2033         ecc->write_oob  = gpmi_ecc_write_oob;
2034         ecc->read_page_raw = gpmi_ecc_read_page_raw;
2035         ecc->write_page_raw = gpmi_ecc_write_page_raw;
2036         ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2037         ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2038         ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2039         ecc->size       = bch_geo->ecc_chunk_size;
2040         ecc->strength   = bch_geo->ecc_strength;
2041         mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2042
2043         /*
2044          * We only enable the subpage read when:
2045          *  (1) the chip is imx6, and
2046          *  (2) the size of the ECC parity is byte aligned.
2047          */
2048         if (GPMI_IS_MX6(this) &&
2049                 ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2050                 ecc->read_subpage = gpmi_ecc_read_subpage;
2051                 chip->options |= NAND_SUBPAGE_READ;
2052         }
2053
2054         return 0;
2055 }
2056
2057 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2058 {
2059         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2060         int ret;
2061
2062         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2063                 chip->bbt_options |= NAND_BBT_NO_OOB;
2064
2065                 if (of_property_read_bool(this->dev->of_node,
2066                                           "fsl,no-blockmark-swap"))
2067                         this->swap_block_mark = false;
2068         }
2069         dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2070                 this->swap_block_mark ? "en" : "dis");
2071
2072         ret = gpmi_init_last(this);
2073         if (ret)
2074                 return ret;
2075
2076         chip->options |= NAND_SKIP_BBTSCAN;
2077
2078         return 0;
2079 }
2080
2081 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2082 {
2083         struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2084
2085         this->ntransfers++;
2086
2087         if (this->ntransfers == GPMI_MAX_TRANSFERS)
2088                 return NULL;
2089
2090         return transfer;
2091 }
2092
2093 static struct dma_async_tx_descriptor *gpmi_chain_command(
2094         struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2095 {
2096         struct dma_chan *channel = get_dma_chan(this);
2097         struct dma_async_tx_descriptor *desc;
2098         struct gpmi_transfer *transfer;
2099         int chip = this->nand.cur_cs;
2100         u32 pio[3];
2101
2102         /* [1] send out the PIO words */
2103         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2104                 | BM_GPMI_CTRL0_WORD_LENGTH
2105                 | BF_GPMI_CTRL0_CS(chip, this)
2106                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2107                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2108                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
2109                 | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2110         pio[1] = 0;
2111         pio[2] = 0;
2112         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2113                                       DMA_TRANS_NONE, 0);
2114         if (!desc)
2115                 return NULL;
2116
2117         transfer = get_next_transfer(this);
2118         if (!transfer)
2119                 return NULL;
2120
2121         transfer->cmdbuf[0] = cmd;
2122         if (naddr)
2123                 memcpy(&transfer->cmdbuf[1], addr, naddr);
2124
2125         sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2126         dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2127
2128         transfer->direction = DMA_TO_DEVICE;
2129
2130         desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2131                                        MXS_DMA_CTRL_WAIT4END);
2132         return desc;
2133 }
2134
2135 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2136         struct gpmi_nand_data *this)
2137 {
2138         struct dma_chan *channel = get_dma_chan(this);
2139         u32 pio[2];
2140
2141         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2142                 | BM_GPMI_CTRL0_WORD_LENGTH
2143                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2144                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2145                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2146                 | BF_GPMI_CTRL0_XFER_COUNT(0);
2147         pio[1] = 0;
2148
2149         return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2150                                 MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2151 }
2152
2153 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2154         struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2155 {
2156         struct dma_async_tx_descriptor *desc;
2157         struct dma_chan *channel = get_dma_chan(this);
2158         struct gpmi_transfer *transfer;
2159         u32 pio[6] = {};
2160
2161         transfer = get_next_transfer(this);
2162         if (!transfer)
2163                 return NULL;
2164
2165         transfer->direction = DMA_FROM_DEVICE;
2166
2167         *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2168                                    DMA_FROM_DEVICE);
2169
2170         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2171                 | BM_GPMI_CTRL0_WORD_LENGTH
2172                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2173                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2174                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2175                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2176
2177         if (this->bch) {
2178                 pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2179                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2180                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2181                                 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2182                 pio[3] = raw_len;
2183                 pio[4] = transfer->sgl.dma_address;
2184                 pio[5] = this->auxiliary_phys;
2185         }
2186
2187         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2188                                       DMA_TRANS_NONE, 0);
2189         if (!desc)
2190                 return NULL;
2191
2192         if (!this->bch)
2193                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2194                                              DMA_DEV_TO_MEM,
2195                                              MXS_DMA_CTRL_WAIT4END);
2196
2197         return desc;
2198 }
2199
2200 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2201         struct gpmi_nand_data *this, const void *buf, int raw_len)
2202 {
2203         struct dma_chan *channel = get_dma_chan(this);
2204         struct dma_async_tx_descriptor *desc;
2205         struct gpmi_transfer *transfer;
2206         u32 pio[6] = {};
2207
2208         transfer = get_next_transfer(this);
2209         if (!transfer)
2210                 return NULL;
2211
2212         transfer->direction = DMA_TO_DEVICE;
2213
2214         prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2215
2216         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2217                 | BM_GPMI_CTRL0_WORD_LENGTH
2218                 | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2219                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2220                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2221                 | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2222
2223         if (this->bch) {
2224                 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2225                         | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2226                         | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2227                                         BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2228                 pio[3] = raw_len;
2229                 pio[4] = transfer->sgl.dma_address;
2230                 pio[5] = this->auxiliary_phys;
2231         }
2232
2233         desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2234                                       DMA_TRANS_NONE,
2235                                       (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2236         if (!desc)
2237                 return NULL;
2238
2239         if (!this->bch)
2240                 desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2241                                                DMA_MEM_TO_DEV,
2242                                                MXS_DMA_CTRL_WAIT4END);
2243
2244         return desc;
2245 }
2246
2247 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2248                              const struct nand_operation *op,
2249                              bool check_only)
2250 {
2251         const struct nand_op_instr *instr;
2252         struct gpmi_nand_data *this = nand_get_controller_data(chip);
2253         struct dma_async_tx_descriptor *desc = NULL;
2254         int i, ret, buf_len = 0, nbufs = 0;
2255         u8 cmd = 0;
2256         void *buf_read = NULL;
2257         const void *buf_write = NULL;
2258         bool direct = false;
2259         struct completion *dma_completion, *bch_completion;
2260         unsigned long to;
2261
2262         if (check_only)
2263                 return 0;
2264
2265         this->ntransfers = 0;
2266         for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2267                 this->transfers[i].direction = DMA_NONE;
2268
2269         ret = pm_runtime_get_sync(this->dev);
2270         if (ret < 0) {
2271                 pm_runtime_put_noidle(this->dev);
2272                 return ret;
2273         }
2274
2275         /*
2276          * This driver currently supports only one NAND chip. Plus, dies share
2277          * the same configuration. So once timings have been applied on the
2278          * controller side, they will not change anymore. When the time will
2279          * come, the check on must_apply_timings will have to be dropped.
2280          */
2281         if (this->hw.must_apply_timings) {
2282                 this->hw.must_apply_timings = false;
2283                 gpmi_nfc_apply_timings(this);
2284         }
2285
2286         dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2287
2288         for (i = 0; i < op->ninstrs; i++) {
2289                 instr = &op->instrs[i];
2290
2291                 nand_op_trace("  ", instr);
2292
2293                 switch (instr->type) {
2294                 case NAND_OP_WAITRDY_INSTR:
2295                         desc = gpmi_chain_wait_ready(this);
2296                         break;
2297                 case NAND_OP_CMD_INSTR:
2298                         cmd = instr->ctx.cmd.opcode;
2299
2300                         /*
2301                          * When this command has an address cycle chain it
2302                          * together with the address cycle
2303                          */
2304                         if (i + 1 != op->ninstrs &&
2305                             op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2306                                 continue;
2307
2308                         desc = gpmi_chain_command(this, cmd, NULL, 0);
2309
2310                         break;
2311                 case NAND_OP_ADDR_INSTR:
2312                         desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2313                                                   instr->ctx.addr.naddrs);
2314                         break;
2315                 case NAND_OP_DATA_OUT_INSTR:
2316                         buf_write = instr->ctx.data.buf.out;
2317                         buf_len = instr->ctx.data.len;
2318                         nbufs++;
2319
2320                         desc = gpmi_chain_data_write(this, buf_write, buf_len);
2321
2322                         break;
2323                 case NAND_OP_DATA_IN_INSTR:
2324                         if (!instr->ctx.data.len)
2325                                 break;
2326                         buf_read = instr->ctx.data.buf.in;
2327                         buf_len = instr->ctx.data.len;
2328                         nbufs++;
2329
2330                         desc = gpmi_chain_data_read(this, buf_read, buf_len,
2331                                                    &direct);
2332                         break;
2333                 }
2334
2335                 if (!desc) {
2336                         ret = -ENXIO;
2337                         goto unmap;
2338                 }
2339         }
2340
2341         dev_dbg(this->dev, "%s setup done\n", __func__);
2342
2343         if (nbufs > 1) {
2344                 dev_err(this->dev, "Multiple data instructions not supported\n");
2345                 ret = -EINVAL;
2346                 goto unmap;
2347         }
2348
2349         if (this->bch) {
2350                 writel(this->bch_flashlayout0,
2351                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2352                 writel(this->bch_flashlayout1,
2353                        this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2354         }
2355
2356         desc->callback = dma_irq_callback;
2357         desc->callback_param = this;
2358         dma_completion = &this->dma_done;
2359         bch_completion = NULL;
2360
2361         init_completion(dma_completion);
2362
2363         if (this->bch && buf_read) {
2364                 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2365                        this->resources.bch_regs + HW_BCH_CTRL_SET);
2366                 bch_completion = &this->bch_done;
2367                 init_completion(bch_completion);
2368         }
2369
2370         dmaengine_submit(desc);
2371         dma_async_issue_pending(get_dma_chan(this));
2372
2373         to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2374         if (!to) {
2375                 dev_err(this->dev, "DMA timeout, last DMA\n");
2376                 gpmi_dump_info(this);
2377                 ret = -ETIMEDOUT;
2378                 goto unmap;
2379         }
2380
2381         if (this->bch && buf_read) {
2382                 to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2383                 if (!to) {
2384                         dev_err(this->dev, "BCH timeout, last DMA\n");
2385                         gpmi_dump_info(this);
2386                         ret = -ETIMEDOUT;
2387                         goto unmap;
2388                 }
2389         }
2390
2391         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2392                this->resources.bch_regs + HW_BCH_CTRL_CLR);
2393         gpmi_clear_bch(this);
2394
2395         ret = 0;
2396
2397 unmap:
2398         for (i = 0; i < this->ntransfers; i++) {
2399                 struct gpmi_transfer *transfer = &this->transfers[i];
2400
2401                 if (transfer->direction != DMA_NONE)
2402                         dma_unmap_sg(this->dev, &transfer->sgl, 1,
2403                                      transfer->direction);
2404         }
2405
2406         if (!ret && buf_read && !direct)
2407                 memcpy(buf_read, this->data_buffer_dma,
2408                        gpmi_raw_len_to_len(this, buf_len));
2409
2410         this->bch = false;
2411
2412         pm_runtime_mark_last_busy(this->dev);
2413         pm_runtime_put_autosuspend(this->dev);
2414
2415         return ret;
2416 }
2417
2418 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2419         .attach_chip = gpmi_nand_attach_chip,
2420         .setup_interface = gpmi_setup_interface,
2421         .exec_op = gpmi_nfc_exec_op,
2422 };
2423
2424 static int gpmi_nand_init(struct gpmi_nand_data *this)
2425 {
2426         struct nand_chip *chip = &this->nand;
2427         struct mtd_info  *mtd = nand_to_mtd(chip);
2428         int ret;
2429
2430         /* init the MTD data structures */
2431         mtd->name               = "gpmi-nand";
2432         mtd->dev.parent         = this->dev;
2433
2434         /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2435         nand_set_controller_data(chip, this);
2436         nand_set_flash_node(chip, this->pdev->dev.of_node);
2437         chip->legacy.block_markbad = gpmi_block_markbad;
2438         chip->badblock_pattern  = &gpmi_bbt_descr;
2439         chip->options           |= NAND_NO_SUBPAGE_WRITE;
2440
2441         /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2442         this->swap_block_mark = !GPMI_IS_MX23(this);
2443
2444         /*
2445          * Allocate a temporary DMA buffer for reading ID in the
2446          * nand_scan_ident().
2447          */
2448         this->bch_geometry.payload_size = 1024;
2449         this->bch_geometry.auxiliary_size = 128;
2450         ret = gpmi_alloc_dma_buffer(this);
2451         if (ret)
2452                 goto err_out;
2453
2454         nand_controller_init(&this->base);
2455         this->base.ops = &gpmi_nand_controller_ops;
2456         chip->controller = &this->base;
2457
2458         ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2459         if (ret)
2460                 goto err_out;
2461
2462         ret = nand_boot_init(this);
2463         if (ret)
2464                 goto err_nand_cleanup;
2465         ret = nand_create_bbt(chip);
2466         if (ret)
2467                 goto err_nand_cleanup;
2468
2469         ret = mtd_device_register(mtd, NULL, 0);
2470         if (ret)
2471                 goto err_nand_cleanup;
2472         return 0;
2473
2474 err_nand_cleanup:
2475         nand_cleanup(chip);
2476 err_out:
2477         gpmi_free_dma_buffer(this);
2478         return ret;
2479 }
2480
2481 static const struct of_device_id gpmi_nand_id_table[] = {
2482         { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
2483         { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
2484         { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
2485         { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
2486         { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
2487         {}
2488 };
2489 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2490
2491 static int gpmi_nand_probe(struct platform_device *pdev)
2492 {
2493         struct gpmi_nand_data *this;
2494         int ret;
2495
2496         this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2497         if (!this)
2498                 return -ENOMEM;
2499
2500         this->devdata = of_device_get_match_data(&pdev->dev);
2501         platform_set_drvdata(pdev, this);
2502         this->pdev  = pdev;
2503         this->dev   = &pdev->dev;
2504
2505         ret = acquire_resources(this);
2506         if (ret)
2507                 goto exit_acquire_resources;
2508
2509         ret = __gpmi_enable_clk(this, true);
2510         if (ret)
2511                 goto exit_acquire_resources;
2512
2513         pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2514         pm_runtime_use_autosuspend(&pdev->dev);
2515         pm_runtime_set_active(&pdev->dev);
2516         pm_runtime_enable(&pdev->dev);
2517         pm_runtime_get_sync(&pdev->dev);
2518
2519         ret = gpmi_init(this);
2520         if (ret)
2521                 goto exit_nfc_init;
2522
2523         ret = gpmi_nand_init(this);
2524         if (ret)
2525                 goto exit_nfc_init;
2526
2527         pm_runtime_mark_last_busy(&pdev->dev);
2528         pm_runtime_put_autosuspend(&pdev->dev);
2529
2530         dev_info(this->dev, "driver registered.\n");
2531
2532         return 0;
2533
2534 exit_nfc_init:
2535         pm_runtime_put(&pdev->dev);
2536         pm_runtime_disable(&pdev->dev);
2537         release_resources(this);
2538 exit_acquire_resources:
2539
2540         return ret;
2541 }
2542
2543 static int gpmi_nand_remove(struct platform_device *pdev)
2544 {
2545         struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2546         struct nand_chip *chip = &this->nand;
2547         int ret;
2548
2549         pm_runtime_put_sync(&pdev->dev);
2550         pm_runtime_disable(&pdev->dev);
2551
2552         ret = mtd_device_unregister(nand_to_mtd(chip));
2553         WARN_ON(ret);
2554         nand_cleanup(chip);
2555         gpmi_free_dma_buffer(this);
2556         release_resources(this);
2557         return 0;
2558 }
2559
2560 #ifdef CONFIG_PM_SLEEP
2561 static int gpmi_pm_suspend(struct device *dev)
2562 {
2563         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2564
2565         release_dma_channels(this);
2566         return 0;
2567 }
2568
2569 static int gpmi_pm_resume(struct device *dev)
2570 {
2571         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2572         int ret;
2573
2574         ret = acquire_dma_channels(this);
2575         if (ret < 0)
2576                 return ret;
2577
2578         /* re-init the GPMI registers */
2579         ret = gpmi_init(this);
2580         if (ret) {
2581                 dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2582                 return ret;
2583         }
2584
2585         /* Set flag to get timing setup restored for next exec_op */
2586         if (this->hw.clk_rate)
2587                 this->hw.must_apply_timings = true;
2588
2589         /* re-init the BCH registers */
2590         ret = bch_set_geometry(this);
2591         if (ret) {
2592                 dev_err(this->dev, "Error setting BCH : %d\n", ret);
2593                 return ret;
2594         }
2595
2596         return 0;
2597 }
2598 #endif /* CONFIG_PM_SLEEP */
2599
2600 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2601 {
2602         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2603
2604         return __gpmi_enable_clk(this, false);
2605 }
2606
2607 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2608 {
2609         struct gpmi_nand_data *this = dev_get_drvdata(dev);
2610
2611         return __gpmi_enable_clk(this, true);
2612 }
2613
2614 static const struct dev_pm_ops gpmi_pm_ops = {
2615         SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2616         SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2617 };
2618
2619 static struct platform_driver gpmi_nand_driver = {
2620         .driver = {
2621                 .name = "gpmi-nand",
2622                 .pm = &gpmi_pm_ops,
2623                 .of_match_table = gpmi_nand_id_table,
2624         },
2625         .probe   = gpmi_nand_probe,
2626         .remove  = gpmi_nand_remove,
2627 };
2628 module_platform_driver(gpmi_nand_driver);
2629
2630 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2631 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2632 MODULE_LICENSE("GPL");