Merge tag 'csky-for-linus-5.12-rc1' of git://github.com/c-sky/csky-linux
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / davinci_nand.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4  *
5  * Copyright © 2006 Texas Instruments.
6  *
7  * Port to 2.6.23 Copyright © 2008 by:
8  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
9  *   Troy Kisky <troy.kisky@boundarydevices.com>
10  *   Dirk Behme <Dirk.Behme@gmail.com>
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/mtd/rawnand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/slab.h>
21 #include <linux/of_device.h>
22 #include <linux/of.h>
23
24 #include <linux/platform_data/mtd-davinci.h>
25 #include <linux/platform_data/mtd-davinci-aemif.h>
26
27 /*
28  * This is a device driver for the NAND flash controller found on the
29  * various DaVinci family chips.  It handles up to four SoC chipselects,
30  * and some flavors of secondary chipselect (e.g. based on A12) as used
31  * with multichip packages.
32  *
33  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
34  * available on chips like the DM355 and OMAP-L137 and needed with the
35  * more error-prone MLC NAND chips.
36  *
37  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
38  * outputs in a "wire-AND" configuration, with no per-chip signals.
39  */
40 struct davinci_nand_info {
41         struct nand_controller  controller;
42         struct nand_chip        chip;
43
44         struct platform_device  *pdev;
45
46         bool                    is_readmode;
47
48         void __iomem            *base;
49         void __iomem            *vaddr;
50
51         void __iomem            *current_cs;
52
53         uint32_t                mask_chipsel;
54         uint32_t                mask_ale;
55         uint32_t                mask_cle;
56
57         uint32_t                core_chipsel;
58
59         struct davinci_aemif_timing     *timing;
60 };
61
62 static DEFINE_SPINLOCK(davinci_nand_lock);
63 static bool ecc4_busy;
64
65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
66 {
67         return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
68 }
69
70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
71                 int offset)
72 {
73         return __raw_readl(info->base + offset);
74 }
75
76 static inline void davinci_nand_writel(struct davinci_nand_info *info,
77                 int offset, unsigned long value)
78 {
79         __raw_writel(value, info->base + offset);
80 }
81
82 /*----------------------------------------------------------------------*/
83
84 /*
85  * 1-bit hardware ECC ... context maintained for each core chipselect
86  */
87
88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
89 {
90         struct davinci_nand_info *info = to_davinci_nand(mtd);
91
92         return davinci_nand_readl(info, NANDF1ECC_OFFSET
93                         + 4 * info->core_chipsel);
94 }
95
96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
97 {
98         struct davinci_nand_info *info;
99         uint32_t nandcfr;
100         unsigned long flags;
101
102         info = to_davinci_nand(nand_to_mtd(chip));
103
104         /* Reset ECC hardware */
105         nand_davinci_readecc_1bit(nand_to_mtd(chip));
106
107         spin_lock_irqsave(&davinci_nand_lock, flags);
108
109         /* Restart ECC hardware */
110         nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
111         nandcfr |= BIT(8 + info->core_chipsel);
112         davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
113
114         spin_unlock_irqrestore(&davinci_nand_lock, flags);
115 }
116
117 /*
118  * Read hardware ECC value and pack into three bytes
119  */
120 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
121                                        const u_char *dat, u_char *ecc_code)
122 {
123         unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
124         unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
125
126         /* invert so that erased block ecc is correct */
127         ecc24 = ~ecc24;
128         ecc_code[0] = (u_char)(ecc24);
129         ecc_code[1] = (u_char)(ecc24 >> 8);
130         ecc_code[2] = (u_char)(ecc24 >> 16);
131
132         return 0;
133 }
134
135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
136                                      u_char *read_ecc, u_char *calc_ecc)
137 {
138         uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
139                                           (read_ecc[2] << 16);
140         uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
141                                           (calc_ecc[2] << 16);
142         uint32_t diff = eccCalc ^ eccNand;
143
144         if (diff) {
145                 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
146                         /* Correctable error */
147                         if ((diff >> (12 + 3)) < chip->ecc.size) {
148                                 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
149                                 return 1;
150                         } else {
151                                 return -EBADMSG;
152                         }
153                 } else if (!(diff & (diff - 1))) {
154                         /* Single bit ECC error in the ECC itself,
155                          * nothing to fix */
156                         return 1;
157                 } else {
158                         /* Uncorrectable error */
159                         return -EBADMSG;
160                 }
161
162         }
163         return 0;
164 }
165
166 /*----------------------------------------------------------------------*/
167
168 /*
169  * 4-bit hardware ECC ... context maintained over entire AEMIF
170  *
171  * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED
172  * since that forces use of a problematic "infix OOB" layout.
173  * Among other things, it trashes manufacturer bad block markers.
174  * Also, and specific to this hardware, it ECC-protects the "prepad"
175  * in the OOB ... while having ECC protection for parts of OOB would
176  * seem useful, the current MTD stack sometimes wants to update the
177  * OOB without recomputing ECC.
178  */
179
180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
181 {
182         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
183         unsigned long flags;
184         u32 val;
185
186         /* Reset ECC hardware */
187         davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
188
189         spin_lock_irqsave(&davinci_nand_lock, flags);
190
191         /* Start 4-bit ECC calculation for read/write */
192         val = davinci_nand_readl(info, NANDFCR_OFFSET);
193         val &= ~(0x03 << 4);
194         val |= (info->core_chipsel << 4) | BIT(12);
195         davinci_nand_writel(info, NANDFCR_OFFSET, val);
196
197         info->is_readmode = (mode == NAND_ECC_READ);
198
199         spin_unlock_irqrestore(&davinci_nand_lock, flags);
200 }
201
202 /* Read raw ECC code after writing to NAND. */
203 static void
204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
205 {
206         const u32 mask = 0x03ff03ff;
207
208         code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
209         code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
210         code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
211         code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
212 }
213
214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
215 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
216                                        const u_char *dat, u_char *ecc_code)
217 {
218         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
219         u32 raw_ecc[4], *p;
220         unsigned i;
221
222         /* After a read, terminate ECC calculation by a dummy read
223          * of some 4-bit ECC register.  ECC covers everything that
224          * was read; correct() just uses the hardware state, so
225          * ecc_code is not needed.
226          */
227         if (info->is_readmode) {
228                 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
229                 return 0;
230         }
231
232         /* Pack eight raw 10-bit ecc values into ten bytes, making
233          * two passes which each convert four values (in upper and
234          * lower halves of two 32-bit words) into five bytes.  The
235          * ROM boot loader uses this same packing scheme.
236          */
237         nand_davinci_readecc_4bit(info, raw_ecc);
238         for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
239                 *ecc_code++ =   p[0]        & 0xff;
240                 *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
241                 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
242                 *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
243                 *ecc_code++ =  (p[1] >> 18) & 0xff;
244         }
245
246         return 0;
247 }
248
249 /* Correct up to 4 bits in data we just read, using state left in the
250  * hardware plus the ecc_code computed when it was first written.
251  */
252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
253                                      u_char *ecc_code, u_char *null)
254 {
255         int i;
256         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
257         unsigned short ecc10[8];
258         unsigned short *ecc16;
259         u32 syndrome[4];
260         u32 ecc_state;
261         unsigned num_errors, corrected;
262         unsigned long timeo;
263
264         /* Unpack ten bytes into eight 10 bit values.  We know we're
265          * little-endian, and use type punning for less shifting/masking.
266          */
267         if (WARN_ON(0x01 & (uintptr_t)ecc_code))
268                 return -EINVAL;
269         ecc16 = (unsigned short *)ecc_code;
270
271         ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
272         ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
273         ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
274         ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
275         ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
276         ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
277         ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
278         ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
279
280         /* Tell ECC controller about the expected ECC codes. */
281         for (i = 7; i >= 0; i--)
282                 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
283
284         /* Allow time for syndrome calculation ... then read it.
285          * A syndrome of all zeroes 0 means no detected errors.
286          */
287         davinci_nand_readl(info, NANDFSR_OFFSET);
288         nand_davinci_readecc_4bit(info, syndrome);
289         if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
290                 return 0;
291
292         /*
293          * Clear any previous address calculation by doing a dummy read of an
294          * error address register.
295          */
296         davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
297
298         /* Start address calculation, and wait for it to complete.
299          * We _could_ start reading more data while this is working,
300          * to speed up the overall page read.
301          */
302         davinci_nand_writel(info, NANDFCR_OFFSET,
303                         davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
304
305         /*
306          * ECC_STATE field reads 0x3 (Error correction complete) immediately
307          * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
308          * begin trying to poll for the state, you may fall right out of your
309          * loop without any of the correction calculations having taken place.
310          * The recommendation from the hardware team is to initially delay as
311          * long as ECC_STATE reads less than 4. After that, ECC HW has entered
312          * correction state.
313          */
314         timeo = jiffies + usecs_to_jiffies(100);
315         do {
316                 ecc_state = (davinci_nand_readl(info,
317                                 NANDFSR_OFFSET) >> 8) & 0x0f;
318                 cpu_relax();
319         } while ((ecc_state < 4) && time_before(jiffies, timeo));
320
321         for (;;) {
322                 u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
323
324                 switch ((fsr >> 8) & 0x0f) {
325                 case 0:         /* no error, should not happen */
326                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
327                         return 0;
328                 case 1:         /* five or more errors detected */
329                         davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
330                         return -EBADMSG;
331                 case 2:         /* error addresses computed */
332                 case 3:
333                         num_errors = 1 + ((fsr >> 16) & 0x03);
334                         goto correct;
335                 default:        /* still working on it */
336                         cpu_relax();
337                         continue;
338                 }
339         }
340
341 correct:
342         /* correct each error */
343         for (i = 0, corrected = 0; i < num_errors; i++) {
344                 int error_address, error_value;
345
346                 if (i > 1) {
347                         error_address = davinci_nand_readl(info,
348                                                 NAND_ERR_ADD2_OFFSET);
349                         error_value = davinci_nand_readl(info,
350                                                 NAND_ERR_ERRVAL2_OFFSET);
351                 } else {
352                         error_address = davinci_nand_readl(info,
353                                                 NAND_ERR_ADD1_OFFSET);
354                         error_value = davinci_nand_readl(info,
355                                                 NAND_ERR_ERRVAL1_OFFSET);
356                 }
357
358                 if (i & 1) {
359                         error_address >>= 16;
360                         error_value >>= 16;
361                 }
362                 error_address &= 0x3ff;
363                 error_address = (512 + 7) - error_address;
364
365                 if (error_address < 512) {
366                         data[error_address] ^= error_value;
367                         corrected++;
368                 }
369         }
370
371         return corrected;
372 }
373
374 /**
375  * nand_read_page_hwecc_oob_first - hw ecc, read oob first
376  * @chip: nand chip info structure
377  * @buf: buffer to store read data
378  * @oob_required: caller requires OOB data read to chip->oob_poi
379  * @page: page number to read
380  *
381  * Hardware ECC for large page chips, require OOB to be read first. For this
382  * ECC mode, the write_page method is re-used from ECC_HW. These methods
383  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
384  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
385  * the data area, by overwriting the NAND manufacturer bad block markings.
386  */
387 static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
388                                                   uint8_t *buf,
389                                                   int oob_required, int page)
390 {
391         struct mtd_info *mtd = nand_to_mtd(chip);
392         int i, eccsize = chip->ecc.size, ret;
393         int eccbytes = chip->ecc.bytes;
394         int eccsteps = chip->ecc.steps;
395         uint8_t *p = buf;
396         uint8_t *ecc_code = chip->ecc.code_buf;
397         uint8_t *ecc_calc = chip->ecc.calc_buf;
398         unsigned int max_bitflips = 0;
399
400         /* Read the OOB area first */
401         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
402         if (ret)
403                 return ret;
404
405         ret = nand_read_page_op(chip, page, 0, NULL, 0);
406         if (ret)
407                 return ret;
408
409         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
410                                          chip->ecc.total);
411         if (ret)
412                 return ret;
413
414         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
415                 int stat;
416
417                 chip->ecc.hwctl(chip, NAND_ECC_READ);
418
419                 ret = nand_read_data_op(chip, p, eccsize, false, false);
420                 if (ret)
421                         return ret;
422
423                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
424
425                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
426                 if (stat == -EBADMSG &&
427                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
428                         /* check for empty pages with bitflips */
429                         stat = nand_check_erased_ecc_chunk(p, eccsize,
430                                                            &ecc_code[i],
431                                                            eccbytes, NULL, 0,
432                                                            chip->ecc.strength);
433                 }
434
435                 if (stat < 0) {
436                         mtd->ecc_stats.failed++;
437                 } else {
438                         mtd->ecc_stats.corrected += stat;
439                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
440                 }
441         }
442         return max_bitflips;
443 }
444
445 /*----------------------------------------------------------------------*/
446
447 /* An ECC layout for using 4-bit ECC with small-page flash, storing
448  * ten ECC bytes plus the manufacturer's bad block marker byte, and
449  * and not overlapping the default BBT markers.
450  */
451 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
452                                       struct mtd_oob_region *oobregion)
453 {
454         if (section > 2)
455                 return -ERANGE;
456
457         if (!section) {
458                 oobregion->offset = 0;
459                 oobregion->length = 5;
460         } else if (section == 1) {
461                 oobregion->offset = 6;
462                 oobregion->length = 2;
463         } else {
464                 oobregion->offset = 13;
465                 oobregion->length = 3;
466         }
467
468         return 0;
469 }
470
471 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
472                                        struct mtd_oob_region *oobregion)
473 {
474         if (section > 1)
475                 return -ERANGE;
476
477         if (!section) {
478                 oobregion->offset = 8;
479                 oobregion->length = 5;
480         } else {
481                 oobregion->offset = 16;
482                 oobregion->length = mtd->oobsize - 16;
483         }
484
485         return 0;
486 }
487
488 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
489         .ecc = hwecc4_ooblayout_small_ecc,
490         .free = hwecc4_ooblayout_small_free,
491 };
492
493 #if defined(CONFIG_OF)
494 static const struct of_device_id davinci_nand_of_match[] = {
495         {.compatible = "ti,davinci-nand", },
496         {.compatible = "ti,keystone-nand", },
497         {},
498 };
499 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
500
501 static struct davinci_nand_pdata
502         *nand_davinci_get_pdata(struct platform_device *pdev)
503 {
504         if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
505                 struct davinci_nand_pdata *pdata;
506                 const char *mode;
507                 u32 prop;
508
509                 pdata =  devm_kzalloc(&pdev->dev,
510                                 sizeof(struct davinci_nand_pdata),
511                                 GFP_KERNEL);
512                 pdev->dev.platform_data = pdata;
513                 if (!pdata)
514                         return ERR_PTR(-ENOMEM);
515                 if (!of_property_read_u32(pdev->dev.of_node,
516                         "ti,davinci-chipselect", &prop))
517                         pdata->core_chipsel = prop;
518                 else
519                         return ERR_PTR(-EINVAL);
520
521                 if (!of_property_read_u32(pdev->dev.of_node,
522                         "ti,davinci-mask-ale", &prop))
523                         pdata->mask_ale = prop;
524                 if (!of_property_read_u32(pdev->dev.of_node,
525                         "ti,davinci-mask-cle", &prop))
526                         pdata->mask_cle = prop;
527                 if (!of_property_read_u32(pdev->dev.of_node,
528                         "ti,davinci-mask-chipsel", &prop))
529                         pdata->mask_chipsel = prop;
530                 if (!of_property_read_string(pdev->dev.of_node,
531                         "ti,davinci-ecc-mode", &mode)) {
532                         if (!strncmp("none", mode, 4))
533                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE;
534                         if (!strncmp("soft", mode, 4))
535                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
536                         if (!strncmp("hw", mode, 2))
537                                 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
538                 }
539                 if (!of_property_read_u32(pdev->dev.of_node,
540                         "ti,davinci-ecc-bits", &prop))
541                         pdata->ecc_bits = prop;
542
543                 if (!of_property_read_u32(pdev->dev.of_node,
544                         "ti,davinci-nand-buswidth", &prop) && prop == 16)
545                         pdata->options |= NAND_BUSWIDTH_16;
546
547                 if (of_property_read_bool(pdev->dev.of_node,
548                         "ti,davinci-nand-use-bbt"))
549                         pdata->bbt_options = NAND_BBT_USE_FLASH;
550
551                 /*
552                  * Since kernel v4.8, this driver has been fixed to enable
553                  * use of 4-bit hardware ECC with subpages and verified on
554                  * TI's keystone EVMs (K2L, K2HK and K2E).
555                  * However, in the interest of not breaking systems using
556                  * existing UBI partitions, sub-page writes are not being
557                  * (re)enabled. If you want to use subpage writes on Keystone
558                  * platforms (i.e. do not have any existing UBI partitions),
559                  * then use "ti,davinci-nand" as the compatible in your
560                  * device-tree file.
561                  */
562                 if (of_device_is_compatible(pdev->dev.of_node,
563                                             "ti,keystone-nand")) {
564                         pdata->options |= NAND_NO_SUBPAGE_WRITE;
565                 }
566         }
567
568         return dev_get_platdata(&pdev->dev);
569 }
570 #else
571 static struct davinci_nand_pdata
572         *nand_davinci_get_pdata(struct platform_device *pdev)
573 {
574         return dev_get_platdata(&pdev->dev);
575 }
576 #endif
577
578 static int davinci_nand_attach_chip(struct nand_chip *chip)
579 {
580         struct mtd_info *mtd = nand_to_mtd(chip);
581         struct davinci_nand_info *info = to_davinci_nand(mtd);
582         struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
583         int ret = 0;
584
585         if (IS_ERR(pdata))
586                 return PTR_ERR(pdata);
587
588         /* Use board-specific ECC config */
589         chip->ecc.engine_type = pdata->engine_type;
590         chip->ecc.placement = pdata->ecc_placement;
591
592         switch (chip->ecc.engine_type) {
593         case NAND_ECC_ENGINE_TYPE_NONE:
594                 pdata->ecc_bits = 0;
595                 break;
596         case NAND_ECC_ENGINE_TYPE_SOFT:
597                 pdata->ecc_bits = 0;
598                 /*
599                  * This driver expects Hamming based ECC when engine_type is set
600                  * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
601                  * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
602                  * field to davinci_nand_pdata.
603                  */
604                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
605                 break;
606         case NAND_ECC_ENGINE_TYPE_ON_HOST:
607                 if (pdata->ecc_bits == 4) {
608                         int chunks = mtd->writesize / 512;
609
610                         if (!chunks || mtd->oobsize < 16) {
611                                 dev_dbg(&info->pdev->dev, "too small\n");
612                                 return -EINVAL;
613                         }
614
615                         /*
616                          * No sanity checks:  CPUs must support this,
617                          * and the chips may not use NAND_BUSWIDTH_16.
618                          */
619
620                         /* No sharing 4-bit hardware between chipselects yet */
621                         spin_lock_irq(&davinci_nand_lock);
622                         if (ecc4_busy)
623                                 ret = -EBUSY;
624                         else
625                                 ecc4_busy = true;
626                         spin_unlock_irq(&davinci_nand_lock);
627
628                         if (ret == -EBUSY)
629                                 return ret;
630
631                         chip->ecc.calculate = nand_davinci_calculate_4bit;
632                         chip->ecc.correct = nand_davinci_correct_4bit;
633                         chip->ecc.hwctl = nand_davinci_hwctl_4bit;
634                         chip->ecc.bytes = 10;
635                         chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
636                         chip->ecc.algo = NAND_ECC_ALGO_BCH;
637
638                         /*
639                          * Update ECC layout if needed ... for 1-bit HW ECC, the
640                          * default is OK, but it allocates 6 bytes when only 3
641                          * are needed (for each 512 bytes). For 4-bit HW ECC,
642                          * the default is not usable: 10 bytes needed, not 6.
643                          *
644                          * For small page chips, preserve the manufacturer's
645                          * badblock marking data ... and make sure a flash BBT
646                          * table marker fits in the free bytes.
647                          */
648                         if (chunks == 1) {
649                                 mtd_set_ooblayout(mtd,
650                                                   &hwecc4_small_ooblayout_ops);
651                         } else if (chunks == 4 || chunks == 8) {
652                                 mtd_set_ooblayout(mtd,
653                                                   nand_get_large_page_ooblayout());
654                                 chip->ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
655                         } else {
656                                 return -EIO;
657                         }
658                 } else {
659                         /* 1bit ecc hamming */
660                         chip->ecc.calculate = nand_davinci_calculate_1bit;
661                         chip->ecc.correct = nand_davinci_correct_1bit;
662                         chip->ecc.hwctl = nand_davinci_hwctl_1bit;
663                         chip->ecc.bytes = 3;
664                         chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
665                 }
666                 chip->ecc.size = 512;
667                 chip->ecc.strength = pdata->ecc_bits;
668                 break;
669         default:
670                 return -EINVAL;
671         }
672
673         return ret;
674 }
675
676 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf,
677                                  unsigned int len, bool force_8bit)
678 {
679         u32 alignment = ((uintptr_t)buf | len) & 3;
680
681         if (force_8bit || (alignment & 1))
682                 ioread8_rep(info->current_cs, buf, len);
683         else if (alignment & 3)
684                 ioread16_rep(info->current_cs, buf, len >> 1);
685         else
686                 ioread32_rep(info->current_cs, buf, len >> 2);
687 }
688
689 static void nand_davinci_data_out(struct davinci_nand_info *info,
690                                   const void *buf, unsigned int len,
691                                   bool force_8bit)
692 {
693         u32 alignment = ((uintptr_t)buf | len) & 3;
694
695         if (force_8bit || (alignment & 1))
696                 iowrite8_rep(info->current_cs, buf, len);
697         else if (alignment & 3)
698                 iowrite16_rep(info->current_cs, buf, len >> 1);
699         else
700                 iowrite32_rep(info->current_cs, buf, len >> 2);
701 }
702
703 static int davinci_nand_exec_instr(struct davinci_nand_info *info,
704                                    const struct nand_op_instr *instr)
705 {
706         unsigned int i, timeout_us;
707         u32 status;
708         int ret;
709
710         switch (instr->type) {
711         case NAND_OP_CMD_INSTR:
712                 iowrite8(instr->ctx.cmd.opcode,
713                          info->current_cs + info->mask_cle);
714                 break;
715
716         case NAND_OP_ADDR_INSTR:
717                 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
718                         iowrite8(instr->ctx.addr.addrs[i],
719                                  info->current_cs + info->mask_ale);
720                 }
721                 break;
722
723         case NAND_OP_DATA_IN_INSTR:
724                 nand_davinci_data_in(info, instr->ctx.data.buf.in,
725                                      instr->ctx.data.len,
726                                      instr->ctx.data.force_8bit);
727                 break;
728
729         case NAND_OP_DATA_OUT_INSTR:
730                 nand_davinci_data_out(info, instr->ctx.data.buf.out,
731                                       instr->ctx.data.len,
732                                       instr->ctx.data.force_8bit);
733                 break;
734
735         case NAND_OP_WAITRDY_INSTR:
736                 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
737                 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET,
738                                                  status, status & BIT(0), 100,
739                                                  timeout_us);
740                 if (ret)
741                         return ret;
742
743                 break;
744         }
745
746         if (instr->delay_ns)
747                 ndelay(instr->delay_ns);
748
749         return 0;
750 }
751
752 static int davinci_nand_exec_op(struct nand_chip *chip,
753                                 const struct nand_operation *op,
754                                 bool check_only)
755 {
756         struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
757         unsigned int i;
758
759         if (check_only)
760                 return 0;
761
762         info->current_cs = info->vaddr + (op->cs * info->mask_chipsel);
763
764         for (i = 0; i < op->ninstrs; i++) {
765                 int ret;
766
767                 ret = davinci_nand_exec_instr(info, &op->instrs[i]);
768                 if (ret)
769                         return ret;
770         }
771
772         return 0;
773 }
774
775 static const struct nand_controller_ops davinci_nand_controller_ops = {
776         .attach_chip = davinci_nand_attach_chip,
777         .exec_op = davinci_nand_exec_op,
778 };
779
780 static int nand_davinci_probe(struct platform_device *pdev)
781 {
782         struct davinci_nand_pdata       *pdata;
783         struct davinci_nand_info        *info;
784         struct resource                 *res1;
785         struct resource                 *res2;
786         void __iomem                    *vaddr;
787         void __iomem                    *base;
788         int                             ret;
789         uint32_t                        val;
790         struct mtd_info                 *mtd;
791
792         pdata = nand_davinci_get_pdata(pdev);
793         if (IS_ERR(pdata))
794                 return PTR_ERR(pdata);
795
796         /* insist on board-specific configuration */
797         if (!pdata)
798                 return -ENODEV;
799
800         /* which external chipselect will we be managing? */
801         if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
802                 return -ENODEV;
803
804         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
805         if (!info)
806                 return -ENOMEM;
807
808         platform_set_drvdata(pdev, info);
809
810         res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
811         res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
812         if (!res1 || !res2) {
813                 dev_err(&pdev->dev, "resource missing\n");
814                 return -EINVAL;
815         }
816
817         vaddr = devm_ioremap_resource(&pdev->dev, res1);
818         if (IS_ERR(vaddr))
819                 return PTR_ERR(vaddr);
820
821         /*
822          * This registers range is used to setup NAND settings. In case with
823          * TI AEMIF driver, the same memory address range is requested already
824          * by AEMIF, so we cannot request it twice, just ioremap.
825          * The AEMIF and NAND drivers not use the same registers in this range.
826          */
827         base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
828         if (!base) {
829                 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
830                 return -EADDRNOTAVAIL;
831         }
832
833         info->pdev              = pdev;
834         info->base              = base;
835         info->vaddr             = vaddr;
836
837         mtd                     = nand_to_mtd(&info->chip);
838         mtd->dev.parent         = &pdev->dev;
839         nand_set_flash_node(&info->chip, pdev->dev.of_node);
840
841         /* options such as NAND_BBT_USE_FLASH */
842         info->chip.bbt_options  = pdata->bbt_options;
843         /* options such as 16-bit widths */
844         info->chip.options      = pdata->options;
845         info->chip.bbt_td       = pdata->bbt_td;
846         info->chip.bbt_md       = pdata->bbt_md;
847         info->timing            = pdata->timing;
848
849         info->current_cs        = info->vaddr;
850         info->core_chipsel      = pdata->core_chipsel;
851         info->mask_chipsel      = pdata->mask_chipsel;
852
853         /* use nandboot-capable ALE/CLE masks by default */
854         info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
855         info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
856
857         spin_lock_irq(&davinci_nand_lock);
858
859         /* put CSxNAND into NAND mode */
860         val = davinci_nand_readl(info, NANDFCR_OFFSET);
861         val |= BIT(info->core_chipsel);
862         davinci_nand_writel(info, NANDFCR_OFFSET, val);
863
864         spin_unlock_irq(&davinci_nand_lock);
865
866         /* Scan to find existence of the device(s) */
867         nand_controller_init(&info->controller);
868         info->controller.ops = &davinci_nand_controller_ops;
869         info->chip.controller = &info->controller;
870         ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
871         if (ret < 0) {
872                 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
873                 return ret;
874         }
875
876         if (pdata->parts)
877                 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
878         else
879                 ret = mtd_device_register(mtd, NULL, 0);
880         if (ret < 0)
881                 goto err_cleanup_nand;
882
883         val = davinci_nand_readl(info, NRCSR_OFFSET);
884         dev_info(&pdev->dev, "controller rev. %d.%d\n",
885                (val >> 8) & 0xff, val & 0xff);
886
887         return 0;
888
889 err_cleanup_nand:
890         nand_cleanup(&info->chip);
891
892         return ret;
893 }
894
895 static int nand_davinci_remove(struct platform_device *pdev)
896 {
897         struct davinci_nand_info *info = platform_get_drvdata(pdev);
898         struct nand_chip *chip = &info->chip;
899         int ret;
900
901         spin_lock_irq(&davinci_nand_lock);
902         if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
903                 ecc4_busy = false;
904         spin_unlock_irq(&davinci_nand_lock);
905
906         ret = mtd_device_unregister(nand_to_mtd(chip));
907         WARN_ON(ret);
908         nand_cleanup(chip);
909
910         return 0;
911 }
912
913 static struct platform_driver nand_davinci_driver = {
914         .probe          = nand_davinci_probe,
915         .remove         = nand_davinci_remove,
916         .driver         = {
917                 .name   = "davinci_nand",
918                 .of_match_table = of_match_ptr(davinci_nand_of_match),
919         },
920 };
921 MODULE_ALIAS("platform:davinci_nand");
922
923 module_platform_driver(nand_davinci_driver);
924
925 MODULE_LICENSE("GPL");
926 MODULE_AUTHOR("Texas Instruments");
927 MODULE_DESCRIPTION("Davinci NAND flash driver");
928