Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / cadence-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <piotrs@cadence.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_device.h>
19 #include <linux/iopoll.h>
20 #include <linux/slab.h>
21
22 /*
23  * HPNFC can work in 3 modes:
24  * -  PIO - can work in master or slave DMA
25  * -  CDMA - needs Master DMA for accessing command descriptors.
26  * -  Generic mode - can use only slave DMA.
27  * CDMA and PIO modes can be used to execute only base commands.
28  * Generic mode can be used to execute any command
29  * on NAND flash memory. Driver uses CDMA mode for
30  * block erasing, page reading, page programing.
31  * Generic mode is used for executing rest of commands.
32  */
33
34 #define MAX_ADDRESS_CYC         6
35 #define MAX_ERASE_ADDRESS_CYC   3
36 #define MAX_DATA_SIZE           0xFFFC
37 #define DMA_DATA_SIZE_ALIGN     8
38
39 /* Register definition. */
40 /*
41  * Command register 0.
42  * Writing data to this register will initiate a new transaction
43  * of the NF controller.
44  */
45 #define CMD_REG0                        0x0000
46 /* Command type field mask. */
47 #define         CMD_REG0_CT             GENMASK(31, 30)
48 /* Command type CDMA. */
49 #define         CMD_REG0_CT_CDMA        0uL
50 /* Command type generic. */
51 #define         CMD_REG0_CT_GEN         3uL
52 /* Command thread number field mask. */
53 #define         CMD_REG0_TN             GENMASK(27, 24)
54
55 /* Command register 2. */
56 #define CMD_REG2                        0x0008
57 /* Command register 3. */
58 #define CMD_REG3                        0x000C
59 /* Pointer register to select which thread status will be selected. */
60 #define CMD_STATUS_PTR                  0x0010
61 /* Command status register for selected thread. */
62 #define CMD_STATUS                      0x0014
63
64 /* Interrupt status register. */
65 #define INTR_STATUS                     0x0110
66 #define         INTR_STATUS_SDMA_ERR    BIT(22)
67 #define         INTR_STATUS_SDMA_TRIGG  BIT(21)
68 #define         INTR_STATUS_UNSUPP_CMD  BIT(19)
69 #define         INTR_STATUS_DDMA_TERR   BIT(18)
70 #define         INTR_STATUS_CDMA_TERR   BIT(17)
71 #define         INTR_STATUS_CDMA_IDL    BIT(16)
72
73 /* Interrupt enable register. */
74 #define INTR_ENABLE                             0x0114
75 #define         INTR_ENABLE_INTR_EN             BIT(31)
76 #define         INTR_ENABLE_SDMA_ERR_EN         BIT(22)
77 #define         INTR_ENABLE_SDMA_TRIGG_EN       BIT(21)
78 #define         INTR_ENABLE_UNSUPP_CMD_EN       BIT(19)
79 #define         INTR_ENABLE_DDMA_TERR_EN        BIT(18)
80 #define         INTR_ENABLE_CDMA_TERR_EN        BIT(17)
81 #define         INTR_ENABLE_CDMA_IDLE_EN        BIT(16)
82
83 /* Controller internal state. */
84 #define CTRL_STATUS                             0x0118
85 #define         CTRL_STATUS_INIT_COMP           BIT(9)
86 #define         CTRL_STATUS_CTRL_BUSY           BIT(8)
87
88 /* Command Engine threads state. */
89 #define TRD_STATUS                              0x0120
90
91 /* Command Engine interrupt thread error status. */
92 #define TRD_ERR_INT_STATUS                      0x0128
93 /* Command Engine interrupt thread error enable. */
94 #define TRD_ERR_INT_STATUS_EN                   0x0130
95 /* Command Engine interrupt thread complete status. */
96 #define TRD_COMP_INT_STATUS                     0x0138
97
98 /*
99  * Transfer config 0 register.
100  * Configures data transfer parameters.
101  */
102 #define TRAN_CFG_0                              0x0400
103 /* Offset value from the beginning of the page. */
104 #define         TRAN_CFG_0_OFFSET               GENMASK(31, 16)
105 /* Numbers of sectors to transfer within singlNF device's page. */
106 #define         TRAN_CFG_0_SEC_CNT              GENMASK(7, 0)
107
108 /*
109  * Transfer config 1 register.
110  * Configures data transfer parameters.
111  */
112 #define TRAN_CFG_1                              0x0404
113 /* Size of last data sector. */
114 #define         TRAN_CFG_1_LAST_SEC_SIZE        GENMASK(31, 16)
115 /* Size of not-last data sector. */
116 #define         TRAN_CFG_1_SECTOR_SIZE          GENMASK(15, 0)
117
118 /* ECC engine configuration register 0. */
119 #define ECC_CONFIG_0                            0x0428
120 /* Correction strength. */
121 #define         ECC_CONFIG_0_CORR_STR           GENMASK(10, 8)
122 /* Enable erased pages detection mechanism. */
123 #define         ECC_CONFIG_0_ERASE_DET_EN       BIT(1)
124 /* Enable controller ECC check bits generation and correction. */
125 #define         ECC_CONFIG_0_ECC_EN             BIT(0)
126
127 /* ECC engine configuration register 1. */
128 #define ECC_CONFIG_1                            0x042C
129
130 /* Multiplane settings register. */
131 #define MULTIPLANE_CFG                          0x0434
132 /* Cache operation settings. */
133 #define CACHE_CFG                               0x0438
134
135 /* DMA settings register. */
136 #define DMA_SETINGS                             0x043C
137 /* Enable SDMA error report on access unprepared slave DMA interface. */
138 #define         DMA_SETINGS_SDMA_ERR_RSP        BIT(17)
139
140 /* Transferred data block size for the slave DMA module. */
141 #define SDMA_SIZE                               0x0440
142
143 /* Thread number associated with transferred data block
144  * for the slave DMA module.
145  */
146 #define SDMA_TRD_NUM                            0x0444
147 /* Thread number mask. */
148 #define         SDMA_TRD_NUM_SDMA_TRD           GENMASK(2, 0)
149
150 #define CONTROL_DATA_CTRL                       0x0494
151 /* Thread number mask. */
152 #define         CONTROL_DATA_CTRL_SIZE          GENMASK(15, 0)
153
154 #define CTRL_VERSION                            0x800
155 #define         CTRL_VERSION_REV                GENMASK(7, 0)
156
157 /* Available hardware features of the controller. */
158 #define CTRL_FEATURES                           0x804
159 /* Support for NV-DDR2/3 work mode. */
160 #define         CTRL_FEATURES_NVDDR_2_3         BIT(28)
161 /* Support for NV-DDR work mode. */
162 #define         CTRL_FEATURES_NVDDR             BIT(27)
163 /* Support for asynchronous work mode. */
164 #define         CTRL_FEATURES_ASYNC             BIT(26)
165 /* Support for asynchronous work mode. */
166 #define         CTRL_FEATURES_N_BANKS           GENMASK(25, 24)
167 /* Slave and Master DMA data width. */
168 #define         CTRL_FEATURES_DMA_DWITH64       BIT(21)
169 /* Availability of Control Data feature.*/
170 #define         CTRL_FEATURES_CONTROL_DATA      BIT(10)
171
172 /* BCH Engine identification register 0 - correction strengths. */
173 #define BCH_CFG_0                               0x838
174 #define         BCH_CFG_0_CORR_CAP_0            GENMASK(7, 0)
175 #define         BCH_CFG_0_CORR_CAP_1            GENMASK(15, 8)
176 #define         BCH_CFG_0_CORR_CAP_2            GENMASK(23, 16)
177 #define         BCH_CFG_0_CORR_CAP_3            GENMASK(31, 24)
178
179 /* BCH Engine identification register 1 - correction strengths. */
180 #define BCH_CFG_1                               0x83C
181 #define         BCH_CFG_1_CORR_CAP_4            GENMASK(7, 0)
182 #define         BCH_CFG_1_CORR_CAP_5            GENMASK(15, 8)
183 #define         BCH_CFG_1_CORR_CAP_6            GENMASK(23, 16)
184 #define         BCH_CFG_1_CORR_CAP_7            GENMASK(31, 24)
185
186 /* BCH Engine identification register 2 - sector sizes. */
187 #define BCH_CFG_2                               0x840
188 #define         BCH_CFG_2_SECT_0                GENMASK(15, 0)
189 #define         BCH_CFG_2_SECT_1                GENMASK(31, 16)
190
191 /* BCH Engine identification register 3. */
192 #define BCH_CFG_3                               0x844
193 #define         BCH_CFG_3_METADATA_SIZE         GENMASK(23, 16)
194
195 /* Ready/Busy# line status. */
196 #define RBN_SETINGS                             0x1004
197
198 /* Common settings. */
199 #define COMMON_SET                              0x1008
200 /* 16 bit device connected to the NAND Flash interface. */
201 #define         COMMON_SET_DEVICE_16BIT         BIT(8)
202
203 /* Skip_bytes registers. */
204 #define SKIP_BYTES_CONF                         0x100C
205 #define         SKIP_BYTES_MARKER_VALUE         GENMASK(31, 16)
206 #define         SKIP_BYTES_NUM_OF_BYTES         GENMASK(7, 0)
207
208 #define SKIP_BYTES_OFFSET                       0x1010
209 #define          SKIP_BYTES_OFFSET_VALUE        GENMASK(23, 0)
210
211 /* Timings configuration. */
212 #define ASYNC_TOGGLE_TIMINGS                    0x101c
213 #define         ASYNC_TOGGLE_TIMINGS_TRH        GENMASK(28, 24)
214 #define         ASYNC_TOGGLE_TIMINGS_TRP        GENMASK(20, 16)
215 #define         ASYNC_TOGGLE_TIMINGS_TWH        GENMASK(12, 8)
216 #define         ASYNC_TOGGLE_TIMINGS_TWP        GENMASK(4, 0)
217
218 #define TIMINGS0                                0x1024
219 #define         TIMINGS0_TADL                   GENMASK(31, 24)
220 #define         TIMINGS0_TCCS                   GENMASK(23, 16)
221 #define         TIMINGS0_TWHR                   GENMASK(15, 8)
222 #define         TIMINGS0_TRHW                   GENMASK(7, 0)
223
224 #define TIMINGS1                                0x1028
225 #define         TIMINGS1_TRHZ                   GENMASK(31, 24)
226 #define         TIMINGS1_TWB                    GENMASK(23, 16)
227 #define         TIMINGS1_TVDLY                  GENMASK(7, 0)
228
229 #define TIMINGS2                                0x102c
230 #define         TIMINGS2_TFEAT                  GENMASK(25, 16)
231 #define         TIMINGS2_CS_HOLD_TIME           GENMASK(13, 8)
232 #define         TIMINGS2_CS_SETUP_TIME          GENMASK(5, 0)
233
234 /* Configuration of the resynchronization of slave DLL of PHY. */
235 #define DLL_PHY_CTRL                            0x1034
236 #define         DLL_PHY_CTRL_DLL_RST_N          BIT(24)
237 #define         DLL_PHY_CTRL_EXTENDED_WR_MODE   BIT(17)
238 #define         DLL_PHY_CTRL_EXTENDED_RD_MODE   BIT(16)
239 #define         DLL_PHY_CTRL_RS_HIGH_WAIT_CNT   GENMASK(11, 8)
240 #define         DLL_PHY_CTRL_RS_IDLE_CNT        GENMASK(7, 0)
241
242 /* Register controlling DQ related timing. */
243 #define PHY_DQ_TIMING                           0x2000
244 /* Register controlling DSQ related timing.  */
245 #define PHY_DQS_TIMING                          0x2004
246 #define         PHY_DQS_TIMING_DQS_SEL_OE_END   GENMASK(3, 0)
247 #define         PHY_DQS_TIMING_PHONY_DQS_SEL    BIT(16)
248 #define         PHY_DQS_TIMING_USE_PHONY_DQS    BIT(20)
249
250 /* Register controlling the gate and loopback control related timing. */
251 #define PHY_GATE_LPBK_CTRL                      0x2008
252 #define         PHY_GATE_LPBK_CTRL_RDS          GENMASK(24, 19)
253
254 /* Register holds the control for the master DLL logic. */
255 #define PHY_DLL_MASTER_CTRL                     0x200C
256 #define         PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
257
258 /* Register holds the control for the slave DLL logic. */
259 #define PHY_DLL_SLAVE_CTRL                      0x2010
260
261 /* This register handles the global control settings for the PHY. */
262 #define PHY_CTRL                                0x2080
263 #define         PHY_CTRL_SDR_DQS                BIT(14)
264 #define         PHY_CTRL_PHONY_DQS              GENMASK(9, 4)
265
266 /*
267  * This register handles the global control settings
268  * for the termination selects for reads.
269  */
270 #define PHY_TSEL                                0x2084
271
272 /* Generic command layout. */
273 #define GCMD_LAY_CS                     GENMASK_ULL(11, 8)
274 /*
275  * This bit informs the minicotroller if it has to wait for tWB
276  * after sending the last CMD/ADDR/DATA in the sequence.
277  */
278 #define GCMD_LAY_TWB                    BIT_ULL(6)
279 /* Type of generic instruction. */
280 #define GCMD_LAY_INSTR                  GENMASK_ULL(5, 0)
281
282 /* Generic CMD sequence type. */
283 #define         GCMD_LAY_INSTR_CMD      0
284 /* Generic ADDR sequence type. */
285 #define         GCMD_LAY_INSTR_ADDR     1
286 /* Generic data transfer sequence type. */
287 #define         GCMD_LAY_INSTR_DATA     2
288
289 /* Input part of generic command type of input is command. */
290 #define GCMD_LAY_INPUT_CMD              GENMASK_ULL(23, 16)
291
292 /* Generic command address sequence - address fields. */
293 #define GCMD_LAY_INPUT_ADDR             GENMASK_ULL(63, 16)
294 /* Generic command address sequence - address size. */
295 #define GCMD_LAY_INPUT_ADDR_SIZE        GENMASK_ULL(13, 11)
296
297 /* Transfer direction field of generic command data sequence. */
298 #define GCMD_DIR                        BIT_ULL(11)
299 /* Read transfer direction of generic command data sequence. */
300 #define         GCMD_DIR_READ           0
301 /* Write transfer direction of generic command data sequence. */
302 #define         GCMD_DIR_WRITE          1
303
304 /* ECC enabled flag of generic command data sequence - ECC enabled. */
305 #define GCMD_ECC_EN                     BIT_ULL(12)
306 /* Generic command data sequence - sector size. */
307 #define GCMD_SECT_SIZE                  GENMASK_ULL(31, 16)
308 /* Generic command data sequence - sector count. */
309 #define GCMD_SECT_CNT                   GENMASK_ULL(39, 32)
310 /* Generic command data sequence - last sector size. */
311 #define GCMD_LAST_SIZE                  GENMASK_ULL(55, 40)
312
313 /* CDMA descriptor fields. */
314 /* Erase command type of CDMA descriptor. */
315 #define CDMA_CT_ERASE           0x1000
316 /* Program page command type of CDMA descriptor. */
317 #define CDMA_CT_WR              0x2100
318 /* Read page command type of CDMA descriptor. */
319 #define CDMA_CT_RD              0x2200
320
321 /* Flash pointer memory shift. */
322 #define CDMA_CFPTR_MEM_SHIFT    24
323 /* Flash pointer memory mask. */
324 #define CDMA_CFPTR_MEM          GENMASK(26, 24)
325
326 /*
327  * Command DMA descriptor flags. If set causes issue interrupt after
328  * the completion of descriptor processing.
329  */
330 #define CDMA_CF_INT             BIT(8)
331 /*
332  * Command DMA descriptor flags - the next descriptor
333  * address field is valid and descriptor processing should continue.
334  */
335 #define CDMA_CF_CONT            BIT(9)
336 /* DMA master flag of command DMA descriptor. */
337 #define CDMA_CF_DMA_MASTER      BIT(10)
338
339 /* Operation complete status of command descriptor. */
340 #define CDMA_CS_COMP            BIT(15)
341 /* Operation complete status of command descriptor. */
342 /* Command descriptor status - operation fail. */
343 #define CDMA_CS_FAIL            BIT(14)
344 /* Command descriptor status - page erased. */
345 #define CDMA_CS_ERP             BIT(11)
346 /* Command descriptor status - timeout occurred. */
347 #define CDMA_CS_TOUT            BIT(10)
348 /*
349  * Maximum amount of correction applied to one ECC sector.
350  * It is part of command descriptor status.
351  */
352 #define CDMA_CS_MAXERR          GENMASK(9, 2)
353 /* Command descriptor status - uncorrectable ECC error. */
354 #define CDMA_CS_UNCE            BIT(1)
355 /* Command descriptor status - descriptor error. */
356 #define CDMA_CS_ERR             BIT(0)
357
358 /* Status of operation - OK. */
359 #define STAT_OK                 0
360 /* Status of operation - FAIL. */
361 #define STAT_FAIL               2
362 /* Status of operation - uncorrectable ECC error. */
363 #define STAT_ECC_UNCORR         3
364 /* Status of operation - page erased. */
365 #define STAT_ERASED             5
366 /* Status of operation - correctable ECC error. */
367 #define STAT_ECC_CORR           6
368 /* Status of operation - unsuspected state. */
369 #define STAT_UNKNOWN            7
370 /* Status of operation - operation is not completed yet. */
371 #define STAT_BUSY               0xFF
372
373 #define BCH_MAX_NUM_CORR_CAPS           8
374 #define BCH_MAX_NUM_SECTOR_SIZES        2
375
376 struct cadence_nand_timings {
377         u32 async_toggle_timings;
378         u32 timings0;
379         u32 timings1;
380         u32 timings2;
381         u32 dll_phy_ctrl;
382         u32 phy_ctrl;
383         u32 phy_dqs_timing;
384         u32 phy_gate_lpbk_ctrl;
385 };
386
387 /* Command DMA descriptor. */
388 struct cadence_nand_cdma_desc {
389         /* Next descriptor address. */
390         u64 next_pointer;
391
392         /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
393         u32 flash_pointer;
394         /*field appears in HPNFC version 13*/
395         u16 bank;
396         u16 rsvd0;
397
398         /* Operation the controller needs to perform. */
399         u16 command_type;
400         u16 rsvd1;
401         /* Flags for operation of this command. */
402         u16 command_flags;
403         u16 rsvd2;
404
405         /* System/host memory address required for data DMA commands. */
406         u64 memory_pointer;
407
408         /* Status of operation. */
409         u32 status;
410         u32 rsvd3;
411
412         /* Address pointer to sync buffer location. */
413         u64 sync_flag_pointer;
414
415         /* Controls the buffer sync mechanism. */
416         u32 sync_arguments;
417         u32 rsvd4;
418
419         /* Control data pointer. */
420         u64 ctrl_data_ptr;
421 };
422
423 /* Interrupt status. */
424 struct cadence_nand_irq_status {
425         /* Thread operation complete status. */
426         u32 trd_status;
427         /* Thread operation error. */
428         u32 trd_error;
429         /* Controller status. */
430         u32 status;
431 };
432
433 /* Cadence NAND flash controller capabilities get from driver data. */
434 struct cadence_nand_dt_devdata {
435         /* Skew value of the output signals of the NAND Flash interface. */
436         u32 if_skew;
437         /* It informs if slave DMA interface is connected to DMA engine. */
438         unsigned int has_dma:1;
439 };
440
441 /* Cadence NAND flash controller capabilities read from registers. */
442 struct cdns_nand_caps {
443         /* Maximum number of banks supported by hardware. */
444         u8 max_banks;
445         /* Slave and Master DMA data width in bytes (4 or 8). */
446         u8 data_dma_width;
447         /* Control Data feature supported. */
448         bool data_control_supp;
449         /* Is PHY type DLL. */
450         bool is_phy_type_dll;
451 };
452
453 struct cdns_nand_ctrl {
454         struct device *dev;
455         struct nand_controller controller;
456         struct cadence_nand_cdma_desc *cdma_desc;
457         /* IP capability. */
458         const struct cadence_nand_dt_devdata *caps1;
459         struct cdns_nand_caps caps2;
460         u8 ctrl_rev;
461         dma_addr_t dma_cdma_desc;
462         u8 *buf;
463         u32 buf_size;
464         u8 curr_corr_str_idx;
465
466         /* Register interface. */
467         void __iomem *reg;
468
469         struct {
470                 void __iomem *virt;
471                 dma_addr_t dma;
472         } io;
473
474         int irq;
475         /* Interrupts that have happened. */
476         struct cadence_nand_irq_status irq_status;
477         /* Interrupts we are waiting for. */
478         struct cadence_nand_irq_status irq_mask;
479         struct completion complete;
480         /* Protect irq_mask and irq_status. */
481         spinlock_t irq_lock;
482
483         int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
484         struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
485         struct nand_ecc_caps ecc_caps;
486
487         int curr_trans_type;
488
489         struct dma_chan *dmac;
490
491         u32 nf_clk_rate;
492         /*
493          * Estimated Board delay. The value includes the total
494          * round trip delay for the signals and is used for deciding on values
495          * associated with data read capture.
496          */
497         u32 board_delay;
498
499         struct nand_chip *selected_chip;
500
501         unsigned long assigned_cs;
502         struct list_head chips;
503         u8 bch_metadata_size;
504 };
505
506 struct cdns_nand_chip {
507         struct cadence_nand_timings timings;
508         struct nand_chip chip;
509         u8 nsels;
510         struct list_head node;
511
512         /*
513          * part of oob area of NAND flash memory page.
514          * This part is available for user to read or write.
515          */
516         u32 avail_oob_size;
517
518         /* Sector size. There are few sectors per mtd->writesize */
519         u32 sector_size;
520         u32 sector_count;
521
522         /* Offset of BBM. */
523         u8 bbm_offs;
524         /* Number of bytes reserved for BBM. */
525         u8 bbm_len;
526         /* ECC strength index. */
527         u8 corr_str_idx;
528
529         u8 cs[];
530 };
531
532 struct ecc_info {
533         int (*calc_ecc_bytes)(int step_size, int strength);
534         int max_step_size;
535 };
536
537 static inline struct
538 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
539 {
540         return container_of(chip, struct cdns_nand_chip, chip);
541 }
542
543 static inline struct
544 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
545 {
546         return container_of(controller, struct cdns_nand_ctrl, controller);
547 }
548
549 static bool
550 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
551                         u32 buf_len)
552 {
553         u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
554
555         return buf && virt_addr_valid(buf) &&
556                 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
557                 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
558 }
559
560 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
561                                        u32 reg_offset, u32 timeout_us,
562                                        u32 mask, bool is_clear)
563 {
564         u32 val;
565         int ret;
566
567         ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
568                                          val, !(val & mask) == is_clear,
569                                          10, timeout_us);
570
571         if (ret < 0) {
572                 dev_err(cdns_ctrl->dev,
573                         "Timeout while waiting for reg %x with mask %x is clear %d\n",
574                         reg_offset, mask, is_clear);
575         }
576
577         return ret;
578 }
579
580 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
581                                        bool enable)
582 {
583         u32 reg;
584
585         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
586                                         1000000,
587                                         CTRL_STATUS_CTRL_BUSY, true))
588                 return -ETIMEDOUT;
589
590         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
591
592         if (enable)
593                 reg |= ECC_CONFIG_0_ECC_EN;
594         else
595                 reg &= ~ECC_CONFIG_0_ECC_EN;
596
597         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
598
599         return 0;
600 }
601
602 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
603                                           u8 corr_str_idx)
604 {
605         u32 reg;
606
607         if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
608                 return;
609
610         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
611         reg &= ~ECC_CONFIG_0_CORR_STR;
612         reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
613         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
614
615         cdns_ctrl->curr_corr_str_idx = corr_str_idx;
616 }
617
618 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
619                                              u8 strength)
620 {
621         int i, corr_str_idx = -1;
622
623         for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
624                 if (cdns_ctrl->ecc_strengths[i] == strength) {
625                         corr_str_idx = i;
626                         break;
627                 }
628         }
629
630         return corr_str_idx;
631 }
632
633 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
634                                             u16 marker_value)
635 {
636         u32 reg;
637
638         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
639                                         1000000,
640                                         CTRL_STATUS_CTRL_BUSY, true))
641                 return -ETIMEDOUT;
642
643         reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
644         reg &= ~SKIP_BYTES_MARKER_VALUE;
645         reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
646                           marker_value);
647
648         writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
649
650         return 0;
651 }
652
653 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
654                                             u8 num_of_bytes,
655                                             u32 offset_value,
656                                             int enable)
657 {
658         u32 reg, skip_bytes_offset;
659
660         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
661                                         1000000,
662                                         CTRL_STATUS_CTRL_BUSY, true))
663                 return -ETIMEDOUT;
664
665         if (!enable) {
666                 num_of_bytes = 0;
667                 offset_value = 0;
668         }
669
670         reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
671         reg &= ~SKIP_BYTES_NUM_OF_BYTES;
672         reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
673                           num_of_bytes);
674         skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
675                                        offset_value);
676
677         writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
678         writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
679
680         return 0;
681 }
682
683 /* Functions enables/disables hardware detection of erased data */
684 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
685                                              bool enable,
686                                              u8 bitflips_threshold)
687 {
688         u32 reg;
689
690         reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
691
692         if (enable)
693                 reg |= ECC_CONFIG_0_ERASE_DET_EN;
694         else
695                 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
696
697         writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
698         writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
699 }
700
701 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
702                                            bool bit_bus16)
703 {
704         u32 reg;
705
706         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
707                                         1000000,
708                                         CTRL_STATUS_CTRL_BUSY, true))
709                 return -ETIMEDOUT;
710
711         reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
712
713         if (!bit_bus16)
714                 reg &= ~COMMON_SET_DEVICE_16BIT;
715         else
716                 reg |= COMMON_SET_DEVICE_16BIT;
717         writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
718
719         return 0;
720 }
721
722 static void
723 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
724                              struct cadence_nand_irq_status *irq_status)
725 {
726         writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
727         writel_relaxed(irq_status->trd_status,
728                        cdns_ctrl->reg + TRD_COMP_INT_STATUS);
729         writel_relaxed(irq_status->trd_error,
730                        cdns_ctrl->reg + TRD_ERR_INT_STATUS);
731 }
732
733 static void
734 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
735                              struct cadence_nand_irq_status *irq_status)
736 {
737         irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
738         irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
739                                                + TRD_COMP_INT_STATUS);
740         irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
741                                               + TRD_ERR_INT_STATUS);
742 }
743
744 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
745                         struct cadence_nand_irq_status *irq_status)
746 {
747         cadence_nand_read_int_status(cdns_ctrl, irq_status);
748
749         return irq_status->status || irq_status->trd_status ||
750                 irq_status->trd_error;
751 }
752
753 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
754 {
755         unsigned long flags;
756
757         spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
758         memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
759         memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
760         spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
761 }
762
763 /*
764  * This is the interrupt service routine. It handles all interrupts
765  * sent to this device.
766  */
767 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
768 {
769         struct cdns_nand_ctrl *cdns_ctrl = dev_id;
770         struct cadence_nand_irq_status irq_status;
771         irqreturn_t result = IRQ_NONE;
772
773         spin_lock(&cdns_ctrl->irq_lock);
774
775         if (irq_detected(cdns_ctrl, &irq_status)) {
776                 /* Handle interrupt. */
777                 /* First acknowledge it. */
778                 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
779                 /* Status in the device context for someone to read. */
780                 cdns_ctrl->irq_status.status |= irq_status.status;
781                 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
782                 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
783                 /* Notify anyone who cares that it happened. */
784                 complete(&cdns_ctrl->complete);
785                 /* Tell the OS that we've handled this. */
786                 result = IRQ_HANDLED;
787         }
788         spin_unlock(&cdns_ctrl->irq_lock);
789
790         return result;
791 }
792
793 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
794                                       struct cadence_nand_irq_status *irq_mask)
795 {
796         writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
797                        cdns_ctrl->reg + INTR_ENABLE);
798
799         writel_relaxed(irq_mask->trd_error,
800                        cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
801 }
802
803 static void
804 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
805                           struct cadence_nand_irq_status *irq_mask,
806                           struct cadence_nand_irq_status *irq_status)
807 {
808         unsigned long timeout = msecs_to_jiffies(10000);
809         unsigned long time_left;
810
811         time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
812                                                 timeout);
813
814         *irq_status = cdns_ctrl->irq_status;
815         if (time_left == 0) {
816                 /* Timeout error. */
817                 dev_err(cdns_ctrl->dev, "timeout occurred:\n");
818                 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
819                         irq_status->status, irq_mask->status);
820                 dev_err(cdns_ctrl->dev,
821                         "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
822                         irq_status->trd_status, irq_mask->trd_status);
823                 dev_err(cdns_ctrl->dev,
824                         "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
825                         irq_status->trd_error, irq_mask->trd_error);
826         }
827 }
828
829 /* Execute generic command on NAND controller. */
830 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
831                                          u8 chip_nr,
832                                          u64 mini_ctrl_cmd)
833 {
834         u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
835
836         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
837         mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
838         mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
839
840         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
841                                         1000000,
842                                         CTRL_STATUS_CTRL_BUSY, true))
843                 return -ETIMEDOUT;
844
845         cadence_nand_reset_irq(cdns_ctrl);
846
847         writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
848         writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
849
850         /* Select generic command. */
851         reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
852         /* Thread number. */
853         reg |= FIELD_PREP(CMD_REG0_TN, 0);
854
855         /* Issue command. */
856         writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
857
858         return 0;
859 }
860
861 /* Wait for data on slave DMA interface. */
862 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
863                                      u8 *out_sdma_trd,
864                                      u32 *out_sdma_size)
865 {
866         struct cadence_nand_irq_status irq_mask, irq_status;
867
868         irq_mask.trd_status = 0;
869         irq_mask.trd_error = 0;
870         irq_mask.status = INTR_STATUS_SDMA_TRIGG
871                 | INTR_STATUS_SDMA_ERR
872                 | INTR_STATUS_UNSUPP_CMD;
873
874         cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
875         cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
876         if (irq_status.status == 0) {
877                 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
878                 return -ETIMEDOUT;
879         }
880
881         if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
882                 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
883                 *out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
884                 *out_sdma_trd =
885                         FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
886         } else {
887                 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
888                         irq_status.status);
889                 return -EIO;
890         }
891
892         return 0;
893 }
894
895 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
896 {
897         u32  reg;
898
899         reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
900
901         cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
902
903         if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
904                 cdns_ctrl->caps2.data_dma_width = 8;
905         else
906                 cdns_ctrl->caps2.data_dma_width = 4;
907
908         if (reg & CTRL_FEATURES_CONTROL_DATA)
909                 cdns_ctrl->caps2.data_control_supp = true;
910
911         if (reg & (CTRL_FEATURES_NVDDR_2_3
912                    | CTRL_FEATURES_NVDDR))
913                 cdns_ctrl->caps2.is_phy_type_dll = true;
914 }
915
916 /* Prepare CDMA descriptor. */
917 static void
918 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
919                                char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
920                                    dma_addr_t ctrl_data_ptr, u16 ctype)
921 {
922         struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
923
924         memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
925
926         /* Set fields for one descriptor. */
927         cdma_desc->flash_pointer = flash_ptr;
928         if (cdns_ctrl->ctrl_rev >= 13)
929                 cdma_desc->bank = nf_mem;
930         else
931                 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
932
933         cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
934         cdma_desc->command_flags  |= CDMA_CF_INT;
935
936         cdma_desc->memory_pointer = mem_ptr;
937         cdma_desc->status = 0;
938         cdma_desc->sync_flag_pointer = 0;
939         cdma_desc->sync_arguments = 0;
940
941         cdma_desc->command_type = ctype;
942         cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
943 }
944
945 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
946                                         u32 desc_status)
947 {
948         if (desc_status & CDMA_CS_ERP)
949                 return STAT_ERASED;
950
951         if (desc_status & CDMA_CS_UNCE)
952                 return STAT_ECC_UNCORR;
953
954         if (desc_status & CDMA_CS_ERR) {
955                 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
956                 return STAT_FAIL;
957         }
958
959         if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
960                 return STAT_ECC_CORR;
961
962         return STAT_FAIL;
963 }
964
965 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
966 {
967         struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
968         u8 status = STAT_BUSY;
969
970         if (desc_ptr->status & CDMA_CS_FAIL) {
971                 status = cadence_nand_check_desc_error(cdns_ctrl,
972                                                        desc_ptr->status);
973                 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
974         } else if (desc_ptr->status & CDMA_CS_COMP) {
975                 /* Descriptor finished with no errors. */
976                 if (desc_ptr->command_flags & CDMA_CF_CONT) {
977                         dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
978                         status = STAT_UNKNOWN;
979                 } else {
980                         /* Last descriptor.  */
981                         status = STAT_OK;
982                 }
983         }
984
985         return status;
986 }
987
988 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
989                                   u8 thread)
990 {
991         u32 reg;
992         int status;
993
994         /* Wait for thread ready. */
995         status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
996                                              1000000,
997                                              BIT(thread), true);
998         if (status)
999                 return status;
1000
1001         cadence_nand_reset_irq(cdns_ctrl);
1002         reinit_completion(&cdns_ctrl->complete);
1003
1004         writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1005                        cdns_ctrl->reg + CMD_REG2);
1006         writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1007
1008         /* Select CDMA mode. */
1009         reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1010         /* Thread number. */
1011         reg |= FIELD_PREP(CMD_REG0_TN, thread);
1012         /* Issue command. */
1013         writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1014
1015         return 0;
1016 }
1017
1018 /* Send SDMA command and wait for finish. */
1019 static u32
1020 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1021                                 u8 thread)
1022 {
1023         struct cadence_nand_irq_status irq_mask, irq_status = {0};
1024         int status;
1025
1026         irq_mask.trd_status = BIT(thread);
1027         irq_mask.trd_error = BIT(thread);
1028         irq_mask.status = INTR_STATUS_CDMA_TERR;
1029
1030         cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1031
1032         status = cadence_nand_cdma_send(cdns_ctrl, thread);
1033         if (status)
1034                 return status;
1035
1036         cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1037
1038         if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1039             irq_status.trd_error == 0) {
1040                 dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1041                 return -ETIMEDOUT;
1042         }
1043         if (irq_status.status & irq_mask.status) {
1044                 dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1045                 return -EIO;
1046         }
1047
1048         return 0;
1049 }
1050
1051 /*
1052  * ECC size depends on configured ECC strength and on maximum supported
1053  * ECC step size.
1054  */
1055 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1056 {
1057         int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1058
1059         return ALIGN(nbytes, 2);
1060 }
1061
1062 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1063         static int \
1064         cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1065                                                     int strength)\
1066         {\
1067                 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1068         }
1069
1070 CADENCE_NAND_CALC_ECC_BYTES(256)
1071 CADENCE_NAND_CALC_ECC_BYTES(512)
1072 CADENCE_NAND_CALC_ECC_BYTES(1024)
1073 CADENCE_NAND_CALC_ECC_BYTES(2048)
1074 CADENCE_NAND_CALC_ECC_BYTES(4096)
1075
1076 /* Function reads BCH capabilities. */
1077 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1078 {
1079         struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1080         int max_step_size = 0, nstrengths, i;
1081         u32 reg;
1082
1083         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1084         cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1085         if (cdns_ctrl->bch_metadata_size < 4) {
1086                 dev_err(cdns_ctrl->dev,
1087                         "Driver needs at least 4 bytes of BCH meta data\n");
1088                 return -EIO;
1089         }
1090
1091         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1092         cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1093         cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1094         cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1095         cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1096
1097         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1098         cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1099         cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1100         cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1101         cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1102
1103         reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1104         cdns_ctrl->ecc_stepinfos[0].stepsize =
1105                 FIELD_GET(BCH_CFG_2_SECT_0, reg);
1106
1107         cdns_ctrl->ecc_stepinfos[1].stepsize =
1108                 FIELD_GET(BCH_CFG_2_SECT_1, reg);
1109
1110         nstrengths = 0;
1111         for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1112                 if (cdns_ctrl->ecc_strengths[i] != 0)
1113                         nstrengths++;
1114         }
1115
1116         ecc_caps->nstepinfos = 0;
1117         for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1118                 /* ECC strengths are common for all step infos. */
1119                 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1120                 cdns_ctrl->ecc_stepinfos[i].strengths =
1121                         cdns_ctrl->ecc_strengths;
1122
1123                 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1124                         ecc_caps->nstepinfos++;
1125
1126                 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1127                         max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1128         }
1129         ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1130
1131         switch (max_step_size) {
1132         case 256:
1133                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1134                 break;
1135         case 512:
1136                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1137                 break;
1138         case 1024:
1139                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1140                 break;
1141         case 2048:
1142                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1143                 break;
1144         case 4096:
1145                 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1146                 break;
1147         default:
1148                 dev_err(cdns_ctrl->dev,
1149                         "Unsupported sector size(ecc step size) %d\n",
1150                         max_step_size);
1151                 return -EIO;
1152         }
1153
1154         return 0;
1155 }
1156
1157 /* Hardware initialization. */
1158 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1159 {
1160         int status;
1161         u32 reg;
1162
1163         status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1164                                              1000000,
1165                                              CTRL_STATUS_INIT_COMP, false);
1166         if (status)
1167                 return status;
1168
1169         reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1170         cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1171
1172         dev_info(cdns_ctrl->dev,
1173                  "%s: cadence nand controller version reg %x\n",
1174                  __func__, reg);
1175
1176         /* Disable cache and multiplane. */
1177         writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1178         writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1179
1180         /* Clear all interrupts. */
1181         writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1182
1183         cadence_nand_get_caps(cdns_ctrl);
1184         if (cadence_nand_read_bch_caps(cdns_ctrl))
1185                 return -EIO;
1186
1187         /*
1188          * Set IO width access to 8.
1189          * It is because during SW device discovering width access
1190          * is expected to be 8.
1191          */
1192         status = cadence_nand_set_access_width16(cdns_ctrl, false);
1193
1194         return status;
1195 }
1196
1197 #define TT_MAIN_OOB_AREAS       2
1198 #define TT_RAW_PAGE             3
1199 #define TT_BBM                  4
1200 #define TT_MAIN_OOB_AREA_EXT    5
1201
1202 /* Prepare size of data to transfer. */
1203 static void
1204 cadence_nand_prepare_data_size(struct nand_chip *chip,
1205                                int transfer_type)
1206 {
1207         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1208         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1209         struct mtd_info *mtd = nand_to_mtd(chip);
1210         u32 sec_size = 0, offset = 0, sec_cnt = 1;
1211         u32 last_sec_size = cdns_chip->sector_size;
1212         u32 data_ctrl_size = 0;
1213         u32 reg = 0;
1214
1215         if (cdns_ctrl->curr_trans_type == transfer_type)
1216                 return;
1217
1218         switch (transfer_type) {
1219         case TT_MAIN_OOB_AREA_EXT:
1220                 sec_cnt = cdns_chip->sector_count;
1221                 sec_size = cdns_chip->sector_size;
1222                 data_ctrl_size = cdns_chip->avail_oob_size;
1223                 break;
1224         case TT_MAIN_OOB_AREAS:
1225                 sec_cnt = cdns_chip->sector_count;
1226                 last_sec_size = cdns_chip->sector_size
1227                         + cdns_chip->avail_oob_size;
1228                 sec_size = cdns_chip->sector_size;
1229                 break;
1230         case TT_RAW_PAGE:
1231                 last_sec_size = mtd->writesize + mtd->oobsize;
1232                 break;
1233         case TT_BBM:
1234                 offset = mtd->writesize + cdns_chip->bbm_offs;
1235                 last_sec_size = 8;
1236                 break;
1237         }
1238
1239         reg = 0;
1240         reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1241         reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1242         writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1243
1244         reg = 0;
1245         reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1246         reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1247         writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1248
1249         if (cdns_ctrl->caps2.data_control_supp) {
1250                 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1251                 reg &= ~CONTROL_DATA_CTRL_SIZE;
1252                 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1253                 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1254         }
1255
1256         cdns_ctrl->curr_trans_type = transfer_type;
1257 }
1258
1259 static int
1260 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1261                            int page, void *buf, void *ctrl_dat, u32 buf_size,
1262                            u32 ctrl_dat_size, enum dma_data_direction dir,
1263                            bool with_ecc)
1264 {
1265         dma_addr_t dma_buf, dma_ctrl_dat = 0;
1266         u8 thread_nr = chip_nr;
1267         int status;
1268         u16 ctype;
1269
1270         if (dir == DMA_FROM_DEVICE)
1271                 ctype = CDMA_CT_RD;
1272         else
1273                 ctype = CDMA_CT_WR;
1274
1275         cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1276
1277         dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1278         if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1279                 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1280                 return -EIO;
1281         }
1282
1283         if (ctrl_dat && ctrl_dat_size) {
1284                 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1285                                               ctrl_dat_size, dir);
1286                 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1287                         dma_unmap_single(cdns_ctrl->dev, dma_buf,
1288                                          buf_size, dir);
1289                         dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1290                         return -EIO;
1291                 }
1292         }
1293
1294         cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1295                                        dma_buf, dma_ctrl_dat, ctype);
1296
1297         status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1298
1299         dma_unmap_single(cdns_ctrl->dev, dma_buf,
1300                          buf_size, dir);
1301
1302         if (ctrl_dat && ctrl_dat_size)
1303                 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1304                                  ctrl_dat_size, dir);
1305         if (status)
1306                 return status;
1307
1308         return cadence_nand_cdma_finish(cdns_ctrl);
1309 }
1310
1311 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1312                                      struct cadence_nand_timings *t)
1313 {
1314         writel_relaxed(t->async_toggle_timings,
1315                        cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1316         writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1317         writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1318         writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1319
1320         if (cdns_ctrl->caps2.is_phy_type_dll)
1321                 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1322
1323         writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1324
1325         if (cdns_ctrl->caps2.is_phy_type_dll) {
1326                 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1327                 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1328                 writel_relaxed(t->phy_dqs_timing,
1329                                cdns_ctrl->reg + PHY_DQS_TIMING);
1330                 writel_relaxed(t->phy_gate_lpbk_ctrl,
1331                                cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1332                 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1333                                cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1334                 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1335         }
1336 }
1337
1338 static int cadence_nand_select_target(struct nand_chip *chip)
1339 {
1340         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1341         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1342
1343         if (chip == cdns_ctrl->selected_chip)
1344                 return 0;
1345
1346         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1347                                         1000000,
1348                                         CTRL_STATUS_CTRL_BUSY, true))
1349                 return -ETIMEDOUT;
1350
1351         cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1352
1353         cadence_nand_set_ecc_strength(cdns_ctrl,
1354                                       cdns_chip->corr_str_idx);
1355
1356         cadence_nand_set_erase_detection(cdns_ctrl, true,
1357                                          chip->ecc.strength);
1358
1359         cdns_ctrl->curr_trans_type = -1;
1360         cdns_ctrl->selected_chip = chip;
1361
1362         return 0;
1363 }
1364
1365 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1366 {
1367         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1368         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1369         int status;
1370         u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1371
1372         cadence_nand_cdma_desc_prepare(cdns_ctrl,
1373                                        cdns_chip->cs[chip->cur_cs],
1374                                        page, 0, 0,
1375                                        CDMA_CT_ERASE);
1376         status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1377         if (status) {
1378                 dev_err(cdns_ctrl->dev, "erase operation failed\n");
1379                 return -EIO;
1380         }
1381
1382         status = cadence_nand_cdma_finish(cdns_ctrl);
1383         if (status)
1384                 return status;
1385
1386         return 0;
1387 }
1388
1389 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1390 {
1391         int status;
1392         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1393         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1394         struct mtd_info *mtd = nand_to_mtd(chip);
1395
1396         cadence_nand_prepare_data_size(chip, TT_BBM);
1397
1398         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1399
1400         /*
1401          * Read only bad block marker from offset
1402          * defined by a memory manufacturer.
1403          */
1404         status = cadence_nand_cdma_transfer(cdns_ctrl,
1405                                             cdns_chip->cs[chip->cur_cs],
1406                                             page, cdns_ctrl->buf, NULL,
1407                                             mtd->oobsize,
1408                                             0, DMA_FROM_DEVICE, false);
1409         if (status) {
1410                 dev_err(cdns_ctrl->dev, "read BBM failed\n");
1411                 return -EIO;
1412         }
1413
1414         memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1415
1416         return 0;
1417 }
1418
1419 static int cadence_nand_write_page(struct nand_chip *chip,
1420                                    const u8 *buf, int oob_required,
1421                                    int page)
1422 {
1423         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1424         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1425         struct mtd_info *mtd = nand_to_mtd(chip);
1426         int status;
1427         u16 marker_val = 0xFFFF;
1428
1429         status = cadence_nand_select_target(chip);
1430         if (status)
1431                 return status;
1432
1433         cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1434                                          mtd->writesize
1435                                          + cdns_chip->bbm_offs,
1436                                          1);
1437
1438         if (oob_required) {
1439                 marker_val = *(u16 *)(chip->oob_poi
1440                                       + cdns_chip->bbm_offs);
1441         } else {
1442                 /* Set oob data to 0xFF. */
1443                 memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1444                        cdns_chip->avail_oob_size);
1445         }
1446
1447         cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1448
1449         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1450
1451         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1452             cdns_ctrl->caps2.data_control_supp) {
1453                 u8 *oob;
1454
1455                 if (oob_required)
1456                         oob = chip->oob_poi;
1457                 else
1458                         oob = cdns_ctrl->buf + mtd->writesize;
1459
1460                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1461                                                     cdns_chip->cs[chip->cur_cs],
1462                                                     page, (void *)buf, oob,
1463                                                     mtd->writesize,
1464                                                     cdns_chip->avail_oob_size,
1465                                                     DMA_TO_DEVICE, true);
1466                 if (status) {
1467                         dev_err(cdns_ctrl->dev, "write page failed\n");
1468                         return -EIO;
1469                 }
1470
1471                 return 0;
1472         }
1473
1474         if (oob_required) {
1475                 /* Transfer the data to the oob area. */
1476                 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1477                        cdns_chip->avail_oob_size);
1478         }
1479
1480         memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1481
1482         cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1483
1484         return cadence_nand_cdma_transfer(cdns_ctrl,
1485                                           cdns_chip->cs[chip->cur_cs],
1486                                           page, cdns_ctrl->buf, NULL,
1487                                           mtd->writesize
1488                                           + cdns_chip->avail_oob_size,
1489                                           0, DMA_TO_DEVICE, true);
1490 }
1491
1492 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1493 {
1494         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1495         struct mtd_info *mtd = nand_to_mtd(chip);
1496
1497         memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1498
1499         return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1500 }
1501
1502 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1503                                        const u8 *buf, int oob_required,
1504                                        int page)
1505 {
1506         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1507         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1508         struct mtd_info *mtd = nand_to_mtd(chip);
1509         int writesize = mtd->writesize;
1510         int oobsize = mtd->oobsize;
1511         int ecc_steps = chip->ecc.steps;
1512         int ecc_size = chip->ecc.size;
1513         int ecc_bytes = chip->ecc.bytes;
1514         void *tmp_buf = cdns_ctrl->buf;
1515         int oob_skip = cdns_chip->bbm_len;
1516         size_t size = writesize + oobsize;
1517         int i, pos, len;
1518         int status = 0;
1519
1520         status = cadence_nand_select_target(chip);
1521         if (status)
1522                 return status;
1523
1524         /*
1525          * Fill the buffer with 0xff first except the full page transfer.
1526          * This simplifies the logic.
1527          */
1528         if (!buf || !oob_required)
1529                 memset(tmp_buf, 0xff, size);
1530
1531         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1532
1533         /* Arrange the buffer for syndrome payload/ecc layout. */
1534         if (buf) {
1535                 for (i = 0; i < ecc_steps; i++) {
1536                         pos = i * (ecc_size + ecc_bytes);
1537                         len = ecc_size;
1538
1539                         if (pos >= writesize)
1540                                 pos += oob_skip;
1541                         else if (pos + len > writesize)
1542                                 len = writesize - pos;
1543
1544                         memcpy(tmp_buf + pos, buf, len);
1545                         buf += len;
1546                         if (len < ecc_size) {
1547                                 len = ecc_size - len;
1548                                 memcpy(tmp_buf + writesize + oob_skip, buf,
1549                                        len);
1550                                 buf += len;
1551                         }
1552                 }
1553         }
1554
1555         if (oob_required) {
1556                 const u8 *oob = chip->oob_poi;
1557                 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1558                         (cdns_chip->sector_size + chip->ecc.bytes)
1559                         + cdns_chip->sector_size + oob_skip;
1560
1561                 /* BBM at the beginning of the OOB area. */
1562                 memcpy(tmp_buf + writesize, oob, oob_skip);
1563
1564                 /* OOB free. */
1565                 memcpy(tmp_buf + oob_data_offset, oob,
1566                        cdns_chip->avail_oob_size);
1567                 oob += cdns_chip->avail_oob_size;
1568
1569                 /* OOB ECC. */
1570                 for (i = 0; i < ecc_steps; i++) {
1571                         pos = ecc_size + i * (ecc_size + ecc_bytes);
1572                         if (i == (ecc_steps - 1))
1573                                 pos += cdns_chip->avail_oob_size;
1574
1575                         len = ecc_bytes;
1576
1577                         if (pos >= writesize)
1578                                 pos += oob_skip;
1579                         else if (pos + len > writesize)
1580                                 len = writesize - pos;
1581
1582                         memcpy(tmp_buf + pos, oob, len);
1583                         oob += len;
1584                         if (len < ecc_bytes) {
1585                                 len = ecc_bytes - len;
1586                                 memcpy(tmp_buf + writesize + oob_skip, oob,
1587                                        len);
1588                                 oob += len;
1589                         }
1590                 }
1591         }
1592
1593         cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1594
1595         return cadence_nand_cdma_transfer(cdns_ctrl,
1596                                           cdns_chip->cs[chip->cur_cs],
1597                                           page, cdns_ctrl->buf, NULL,
1598                                           mtd->writesize +
1599                                           mtd->oobsize,
1600                                           0, DMA_TO_DEVICE, false);
1601 }
1602
1603 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1604                                       int page)
1605 {
1606         return cadence_nand_write_page_raw(chip, NULL, true, page);
1607 }
1608
1609 static int cadence_nand_read_page(struct nand_chip *chip,
1610                                   u8 *buf, int oob_required, int page)
1611 {
1612         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1613         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1614         struct mtd_info *mtd = nand_to_mtd(chip);
1615         int status = 0;
1616         int ecc_err_count = 0;
1617
1618         status = cadence_nand_select_target(chip);
1619         if (status)
1620                 return status;
1621
1622         cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1623                                          mtd->writesize
1624                                          + cdns_chip->bbm_offs, 1);
1625
1626         /*
1627          * If data buffer can be accessed by DMA and data_control feature
1628          * is supported then transfer data and oob directly.
1629          */
1630         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1631             cdns_ctrl->caps2.data_control_supp) {
1632                 u8 *oob;
1633
1634                 if (oob_required)
1635                         oob = chip->oob_poi;
1636                 else
1637                         oob = cdns_ctrl->buf + mtd->writesize;
1638
1639                 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1640                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1641                                                     cdns_chip->cs[chip->cur_cs],
1642                                                     page, buf, oob,
1643                                                     mtd->writesize,
1644                                                     cdns_chip->avail_oob_size,
1645                                                     DMA_FROM_DEVICE, true);
1646         /* Otherwise use bounce buffer. */
1647         } else {
1648                 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1649                 status = cadence_nand_cdma_transfer(cdns_ctrl,
1650                                                     cdns_chip->cs[chip->cur_cs],
1651                                                     page, cdns_ctrl->buf,
1652                                                     NULL, mtd->writesize
1653                                                     + cdns_chip->avail_oob_size,
1654                                                     0, DMA_FROM_DEVICE, true);
1655
1656                 memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1657                 if (oob_required)
1658                         memcpy(chip->oob_poi,
1659                                cdns_ctrl->buf + mtd->writesize,
1660                                mtd->oobsize);
1661         }
1662
1663         switch (status) {
1664         case STAT_ECC_UNCORR:
1665                 mtd->ecc_stats.failed++;
1666                 ecc_err_count++;
1667                 break;
1668         case STAT_ECC_CORR:
1669                 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1670                                           cdns_ctrl->cdma_desc->status);
1671                 mtd->ecc_stats.corrected += ecc_err_count;
1672                 break;
1673         case STAT_ERASED:
1674         case STAT_OK:
1675                 break;
1676         default:
1677                 dev_err(cdns_ctrl->dev, "read page failed\n");
1678                 return -EIO;
1679         }
1680
1681         if (oob_required)
1682                 if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1683                         return -EIO;
1684
1685         return ecc_err_count;
1686 }
1687
1688 /* Reads OOB data from the device. */
1689 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1690 {
1691         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1692
1693         return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1694 }
1695
1696 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1697                                       u8 *buf, int oob_required, int page)
1698 {
1699         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1700         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1701         struct mtd_info *mtd = nand_to_mtd(chip);
1702         int oob_skip = cdns_chip->bbm_len;
1703         int writesize = mtd->writesize;
1704         int ecc_steps = chip->ecc.steps;
1705         int ecc_size = chip->ecc.size;
1706         int ecc_bytes = chip->ecc.bytes;
1707         void *tmp_buf = cdns_ctrl->buf;
1708         int i, pos, len;
1709         int status = 0;
1710
1711         status = cadence_nand_select_target(chip);
1712         if (status)
1713                 return status;
1714
1715         cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1716
1717         cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1718         status = cadence_nand_cdma_transfer(cdns_ctrl,
1719                                             cdns_chip->cs[chip->cur_cs],
1720                                             page, cdns_ctrl->buf, NULL,
1721                                             mtd->writesize
1722                                             + mtd->oobsize,
1723                                             0, DMA_FROM_DEVICE, false);
1724
1725         switch (status) {
1726         case STAT_ERASED:
1727         case STAT_OK:
1728                 break;
1729         default:
1730                 dev_err(cdns_ctrl->dev, "read raw page failed\n");
1731                 return -EIO;
1732         }
1733
1734         /* Arrange the buffer for syndrome payload/ecc layout. */
1735         if (buf) {
1736                 for (i = 0; i < ecc_steps; i++) {
1737                         pos = i * (ecc_size + ecc_bytes);
1738                         len = ecc_size;
1739
1740                         if (pos >= writesize)
1741                                 pos += oob_skip;
1742                         else if (pos + len > writesize)
1743                                 len = writesize - pos;
1744
1745                         memcpy(buf, tmp_buf + pos, len);
1746                         buf += len;
1747                         if (len < ecc_size) {
1748                                 len = ecc_size - len;
1749                                 memcpy(buf, tmp_buf + writesize + oob_skip,
1750                                        len);
1751                                 buf += len;
1752                         }
1753                 }
1754         }
1755
1756         if (oob_required) {
1757                 u8 *oob = chip->oob_poi;
1758                 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1759                         (cdns_chip->sector_size + chip->ecc.bytes)
1760                         + cdns_chip->sector_size + oob_skip;
1761
1762                 /* OOB free. */
1763                 memcpy(oob, tmp_buf + oob_data_offset,
1764                        cdns_chip->avail_oob_size);
1765
1766                 /* BBM at the beginning of the OOB area. */
1767                 memcpy(oob, tmp_buf + writesize, oob_skip);
1768
1769                 oob += cdns_chip->avail_oob_size;
1770
1771                 /* OOB ECC */
1772                 for (i = 0; i < ecc_steps; i++) {
1773                         pos = ecc_size + i * (ecc_size + ecc_bytes);
1774                         len = ecc_bytes;
1775
1776                         if (i == (ecc_steps - 1))
1777                                 pos += cdns_chip->avail_oob_size;
1778
1779                         if (pos >= writesize)
1780                                 pos += oob_skip;
1781                         else if (pos + len > writesize)
1782                                 len = writesize - pos;
1783
1784                         memcpy(oob, tmp_buf + pos, len);
1785                         oob += len;
1786                         if (len < ecc_bytes) {
1787                                 len = ecc_bytes - len;
1788                                 memcpy(oob, tmp_buf + writesize + oob_skip,
1789                                        len);
1790                                 oob += len;
1791                         }
1792                 }
1793         }
1794
1795         return 0;
1796 }
1797
1798 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1799                                      int page)
1800 {
1801         return cadence_nand_read_page_raw(chip, NULL, true, page);
1802 }
1803
1804 static void cadence_nand_slave_dma_transfer_finished(void *data)
1805 {
1806         struct completion *finished = data;
1807
1808         complete(finished);
1809 }
1810
1811 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1812                                            void *buf,
1813                                            dma_addr_t dev_dma, size_t len,
1814                                            enum dma_data_direction dir)
1815 {
1816         DECLARE_COMPLETION_ONSTACK(finished);
1817         struct dma_chan *chan;
1818         struct dma_device *dma_dev;
1819         dma_addr_t src_dma, dst_dma, buf_dma;
1820         struct dma_async_tx_descriptor *tx;
1821         dma_cookie_t cookie;
1822
1823         chan = cdns_ctrl->dmac;
1824         dma_dev = chan->device;
1825
1826         buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1827         if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1828                 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1829                 goto err;
1830         }
1831
1832         if (dir == DMA_FROM_DEVICE) {
1833                 src_dma = cdns_ctrl->io.dma;
1834                 dst_dma = buf_dma;
1835         } else {
1836                 src_dma = buf_dma;
1837                 dst_dma = cdns_ctrl->io.dma;
1838         }
1839
1840         tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1841                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1842         if (!tx) {
1843                 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1844                 goto err_unmap;
1845         }
1846
1847         tx->callback = cadence_nand_slave_dma_transfer_finished;
1848         tx->callback_param = &finished;
1849
1850         cookie = dmaengine_submit(tx);
1851         if (dma_submit_error(cookie)) {
1852                 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1853                 goto err_unmap;
1854         }
1855
1856         dma_async_issue_pending(cdns_ctrl->dmac);
1857         wait_for_completion(&finished);
1858
1859         dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1860
1861         return 0;
1862
1863 err_unmap:
1864         dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1865
1866 err:
1867         dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1868
1869         return -EIO;
1870 }
1871
1872 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1873                                  u8 *buf, int len)
1874 {
1875         u8 thread_nr = 0;
1876         u32 sdma_size;
1877         int status;
1878
1879         /* Wait until slave DMA interface is ready to data transfer. */
1880         status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1881         if (status)
1882                 return status;
1883
1884         if (!cdns_ctrl->caps1->has_dma) {
1885                 int len_in_words = len >> 2;
1886
1887                 /* read alingment data */
1888                 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1889                 if (sdma_size > len) {
1890                         /* read rest data from slave DMA interface if any */
1891                         ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1892                                      sdma_size / 4 - len_in_words);
1893                         /* copy rest of data */
1894                         memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
1895                                len - (len_in_words << 2));
1896                 }
1897                 return 0;
1898         }
1899
1900         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1901                 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1902                                                          cdns_ctrl->io.dma,
1903                                                          len, DMA_FROM_DEVICE);
1904                 if (status == 0)
1905                         return 0;
1906
1907                 dev_warn(cdns_ctrl->dev,
1908                          "Slave DMA transfer failed. Try again using bounce buffer.");
1909         }
1910
1911         /* If DMA transfer is not possible or failed then use bounce buffer. */
1912         status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1913                                                  cdns_ctrl->io.dma,
1914                                                  sdma_size, DMA_FROM_DEVICE);
1915
1916         if (status) {
1917                 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1918                 return status;
1919         }
1920
1921         memcpy(buf, cdns_ctrl->buf, len);
1922
1923         return 0;
1924 }
1925
1926 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1927                                   const u8 *buf, int len)
1928 {
1929         u8 thread_nr = 0;
1930         u32 sdma_size;
1931         int status;
1932
1933         /* Wait until slave DMA interface is ready to data transfer. */
1934         status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1935         if (status)
1936                 return status;
1937
1938         if (!cdns_ctrl->caps1->has_dma) {
1939                 int len_in_words = len >> 2;
1940
1941                 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1942                 if (sdma_size > len) {
1943                         /* copy rest of data */
1944                         memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
1945                                len - (len_in_words << 2));
1946                         /* write all expected by nand controller data */
1947                         iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1948                                       sdma_size / 4 - len_in_words);
1949                 }
1950
1951                 return 0;
1952         }
1953
1954         if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1955                 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1956                                                          cdns_ctrl->io.dma,
1957                                                          len, DMA_TO_DEVICE);
1958                 if (status == 0)
1959                         return 0;
1960
1961                 dev_warn(cdns_ctrl->dev,
1962                          "Slave DMA transfer failed. Try again using bounce buffer.");
1963         }
1964
1965         /* If DMA transfer is not possible or failed then use bounce buffer. */
1966         memcpy(cdns_ctrl->buf, buf, len);
1967
1968         status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1969                                                  cdns_ctrl->io.dma,
1970                                                  sdma_size, DMA_TO_DEVICE);
1971
1972         if (status)
1973                 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1974
1975         return status;
1976 }
1977
1978 static int cadence_nand_force_byte_access(struct nand_chip *chip,
1979                                           bool force_8bit)
1980 {
1981         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1982         int status;
1983
1984         /*
1985          * Callers of this function do not verify if the NAND is using a 16-bit
1986          * an 8-bit bus for normal operations, so we need to take care of that
1987          * here by leaving the configuration unchanged if the NAND does not have
1988          * the NAND_BUSWIDTH_16 flag set.
1989          */
1990         if (!(chip->options & NAND_BUSWIDTH_16))
1991                 return 0;
1992
1993         status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
1994
1995         return status;
1996 }
1997
1998 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
1999                                    const struct nand_subop *subop)
2000 {
2001         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2002         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2003         const struct nand_op_instr *instr;
2004         unsigned int op_id = 0;
2005         u64 mini_ctrl_cmd = 0;
2006         int ret;
2007
2008         instr = &subop->instrs[op_id];
2009
2010         if (instr->delay_ns > 0)
2011                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2012
2013         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2014                                     GCMD_LAY_INSTR_CMD);
2015         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2016                                     instr->ctx.cmd.opcode);
2017
2018         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2019                                             cdns_chip->cs[chip->cur_cs],
2020                                             mini_ctrl_cmd);
2021         if (ret)
2022                 dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2023                         instr->ctx.cmd.opcode);
2024
2025         return ret;
2026 }
2027
2028 static int cadence_nand_cmd_address(struct nand_chip *chip,
2029                                     const struct nand_subop *subop)
2030 {
2031         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2032         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2033         const struct nand_op_instr *instr;
2034         unsigned int op_id = 0;
2035         u64 mini_ctrl_cmd = 0;
2036         unsigned int offset, naddrs;
2037         u64 address = 0;
2038         const u8 *addrs;
2039         int ret;
2040         int i;
2041
2042         instr = &subop->instrs[op_id];
2043
2044         if (instr->delay_ns > 0)
2045                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2046
2047         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2048                                     GCMD_LAY_INSTR_ADDR);
2049
2050         offset = nand_subop_get_addr_start_off(subop, op_id);
2051         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2052         addrs = &instr->ctx.addr.addrs[offset];
2053
2054         for (i = 0; i < naddrs; i++)
2055                 address |= (u64)addrs[i] << (8 * i);
2056
2057         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2058                                     address);
2059         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2060                                     naddrs - 1);
2061
2062         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2063                                             cdns_chip->cs[chip->cur_cs],
2064                                             mini_ctrl_cmd);
2065         if (ret)
2066                 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2067
2068         return ret;
2069 }
2070
2071 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2072                                   const struct nand_subop *subop)
2073 {
2074         unsigned int op_id;
2075
2076         if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2077                 int i;
2078                 const struct nand_op_instr *instr = NULL;
2079                 unsigned int offset, naddrs;
2080                 const u8 *addrs;
2081                 u32 page = 0;
2082
2083                 instr = &subop->instrs[1];
2084                 offset = nand_subop_get_addr_start_off(subop, 1);
2085                 naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2086                 addrs = &instr->ctx.addr.addrs[offset];
2087
2088                 for (i = 0; i < naddrs; i++)
2089                         page |= (u32)addrs[i] << (8 * i);
2090
2091                 return cadence_nand_erase(chip, page);
2092         }
2093
2094         /*
2095          * If it is not an erase operation then handle operation
2096          * by calling exec_op function.
2097          */
2098         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2099                 int ret;
2100                 const struct nand_operation nand_op = {
2101                         .cs = chip->cur_cs,
2102                         .instrs =  &subop->instrs[op_id],
2103                         .ninstrs = 1};
2104                 ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2105                 if (ret)
2106                         return ret;
2107         }
2108
2109         return 0;
2110 }
2111
2112 static int cadence_nand_cmd_data(struct nand_chip *chip,
2113                                  const struct nand_subop *subop)
2114 {
2115         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2116         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2117         const struct nand_op_instr *instr;
2118         unsigned int offset, op_id = 0;
2119         u64 mini_ctrl_cmd = 0;
2120         int len = 0;
2121         int ret;
2122
2123         instr = &subop->instrs[op_id];
2124
2125         if (instr->delay_ns > 0)
2126                 mini_ctrl_cmd |= GCMD_LAY_TWB;
2127
2128         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2129                                     GCMD_LAY_INSTR_DATA);
2130
2131         if (instr->type == NAND_OP_DATA_OUT_INSTR)
2132                 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2133                                             GCMD_DIR_WRITE);
2134
2135         len = nand_subop_get_data_len(subop, op_id);
2136         offset = nand_subop_get_data_start_off(subop, op_id);
2137         mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2138         mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2139         if (instr->ctx.data.force_8bit) {
2140                 ret = cadence_nand_force_byte_access(chip, true);
2141                 if (ret) {
2142                         dev_err(cdns_ctrl->dev,
2143                                 "cannot change byte access generic data cmd failed\n");
2144                         return ret;
2145                 }
2146         }
2147
2148         ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2149                                             cdns_chip->cs[chip->cur_cs],
2150                                             mini_ctrl_cmd);
2151         if (ret) {
2152                 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2153                 return ret;
2154         }
2155
2156         if (instr->type == NAND_OP_DATA_IN_INSTR) {
2157                 void *buf = instr->ctx.data.buf.in + offset;
2158
2159                 ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2160         } else {
2161                 const void *buf = instr->ctx.data.buf.out + offset;
2162
2163                 ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2164         }
2165
2166         if (ret) {
2167                 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2168                 return ret;
2169         }
2170
2171         if (instr->ctx.data.force_8bit) {
2172                 ret = cadence_nand_force_byte_access(chip, false);
2173                 if (ret) {
2174                         dev_err(cdns_ctrl->dev,
2175                                 "cannot change byte access generic data cmd failed\n");
2176                 }
2177         }
2178
2179         return ret;
2180 }
2181
2182 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2183                                     const struct nand_subop *subop)
2184 {
2185         int status;
2186         unsigned int op_id = 0;
2187         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2188         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2189         const struct nand_op_instr *instr = &subop->instrs[op_id];
2190         u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2191
2192         status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2193                                              timeout_us,
2194                                              BIT(cdns_chip->cs[chip->cur_cs]),
2195                                              false);
2196         return status;
2197 }
2198
2199 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2200         NAND_OP_PARSER_PATTERN(
2201                 cadence_nand_cmd_erase,
2202                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2203                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2204                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2205                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2206         NAND_OP_PARSER_PATTERN(
2207                 cadence_nand_cmd_opcode,
2208                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2209         NAND_OP_PARSER_PATTERN(
2210                 cadence_nand_cmd_address,
2211                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2212         NAND_OP_PARSER_PATTERN(
2213                 cadence_nand_cmd_data,
2214                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2215         NAND_OP_PARSER_PATTERN(
2216                 cadence_nand_cmd_data,
2217                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2218         NAND_OP_PARSER_PATTERN(
2219                 cadence_nand_cmd_waitrdy,
2220                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2221         );
2222
2223 static int cadence_nand_exec_op(struct nand_chip *chip,
2224                                 const struct nand_operation *op,
2225                                 bool check_only)
2226 {
2227         if (!check_only) {
2228                 int status = cadence_nand_select_target(chip);
2229
2230                 if (status)
2231                         return status;
2232         }
2233
2234         return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2235                                       check_only);
2236 }
2237
2238 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2239                                        struct mtd_oob_region *oobregion)
2240 {
2241         struct nand_chip *chip = mtd_to_nand(mtd);
2242         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2243
2244         if (section)
2245                 return -ERANGE;
2246
2247         oobregion->offset = cdns_chip->bbm_len;
2248         oobregion->length = cdns_chip->avail_oob_size
2249                 - cdns_chip->bbm_len;
2250
2251         return 0;
2252 }
2253
2254 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2255                                       struct mtd_oob_region *oobregion)
2256 {
2257         struct nand_chip *chip = mtd_to_nand(mtd);
2258         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2259
2260         if (section)
2261                 return -ERANGE;
2262
2263         oobregion->offset = cdns_chip->avail_oob_size;
2264         oobregion->length = chip->ecc.total;
2265
2266         return 0;
2267 }
2268
2269 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2270         .free = cadence_nand_ooblayout_free,
2271         .ecc = cadence_nand_ooblayout_ecc,
2272 };
2273
2274 static int calc_cycl(u32 timing, u32 clock)
2275 {
2276         if (timing == 0 || clock == 0)
2277                 return 0;
2278
2279         if ((timing % clock) > 0)
2280                 return timing / clock;
2281         else
2282                 return timing / clock - 1;
2283 }
2284
2285 /* Calculate max data valid window. */
2286 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2287                                 u32 board_delay_skew_min, u32 ext_mode)
2288 {
2289         if (ext_mode == 0)
2290                 clk_period /= 2;
2291
2292         return (trp_cnt + 1) * clk_period + trhoh_min +
2293                 board_delay_skew_min;
2294 }
2295
2296 /* Calculate data valid window. */
2297 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2298                             u32 trea_max, u32 ext_mode)
2299 {
2300         if (ext_mode == 0)
2301                 clk_period /= 2;
2302
2303         return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2304 }
2305
2306 static int
2307 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2308                              const struct nand_interface_config *conf)
2309 {
2310         const struct nand_sdr_timings *sdr;
2311         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2312         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2313         struct cadence_nand_timings *t = &cdns_chip->timings;
2314         u32 reg;
2315         u32 board_delay = cdns_ctrl->board_delay;
2316         u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2317                                             cdns_ctrl->nf_clk_rate);
2318         u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2319         u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2320         u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2321         u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2322         u32 if_skew = cdns_ctrl->caps1->if_skew;
2323         u32 board_delay_skew_min = board_delay - if_skew;
2324         u32 board_delay_skew_max = board_delay + if_skew;
2325         u32 dqs_sampl_res, phony_dqs_mod;
2326         u32 tdvw, tdvw_min, tdvw_max;
2327         u32 ext_rd_mode, ext_wr_mode;
2328         u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2329         u32 sampling_point;
2330
2331         sdr = nand_get_sdr_timings(conf);
2332         if (IS_ERR(sdr))
2333                 return PTR_ERR(sdr);
2334
2335         memset(t, 0, sizeof(*t));
2336         /* Sampling point calculation. */
2337
2338         if (cdns_ctrl->caps2.is_phy_type_dll)
2339                 phony_dqs_mod = 2;
2340         else
2341                 phony_dqs_mod = 1;
2342
2343         dqs_sampl_res = clk_period / phony_dqs_mod;
2344
2345         tdvw_min = sdr->tREA_max + board_delay_skew_max;
2346         /*
2347          * The idea of those calculation is to get the optimum value
2348          * for tRP and tRH timings. If it is NOT possible to sample data
2349          * with optimal tRP/tRH settings, the parameters will be extended.
2350          * If clk_period is 50ns (the lowest value) this condition is met
2351          * for SDR timing modes 1, 2, 3, 4 and 5.
2352          * If clk_period is 20ns the condition is met only for SDR timing
2353          * mode 5.
2354          */
2355         if (sdr->tRC_min <= clk_period &&
2356             sdr->tRP_min <= (clk_period / 2) &&
2357             sdr->tREH_min <= (clk_period / 2)) {
2358                 /* Performance mode. */
2359                 ext_rd_mode = 0;
2360                 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2361                                  sdr->tREA_max, ext_rd_mode);
2362                 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2363                                          board_delay_skew_min,
2364                                          ext_rd_mode);
2365                 /*
2366                  * Check if data valid window and sampling point can be found
2367                  * and is not on the edge (ie. we have hold margin).
2368                  * If not extend the tRP timings.
2369                  */
2370                 if (tdvw > 0) {
2371                         if (tdvw_max <= tdvw_min ||
2372                             (tdvw_max % dqs_sampl_res) == 0) {
2373                                 /*
2374                                  * No valid sampling point so the RE pulse need
2375                                  * to be widen widening by half clock cycle.
2376                                  */
2377                                 ext_rd_mode = 1;
2378                         }
2379                 } else {
2380                         /*
2381                          * There is no valid window
2382                          * to be able to sample data the tRP need to be widen.
2383                          * Very safe calculations are performed here.
2384                          */
2385                         trp_cnt = (sdr->tREA_max + board_delay_skew_max
2386                                    + dqs_sampl_res) / clk_period;
2387                         ext_rd_mode = 1;
2388                 }
2389
2390         } else {
2391                 /* Extended read mode. */
2392                 u32 trh;
2393
2394                 ext_rd_mode = 1;
2395                 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2396                 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2397                 if (sdr->tREH_min >= trh)
2398                         trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2399                 else
2400                         trh_cnt = calc_cycl(trh, clk_period);
2401
2402                 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2403                                  sdr->tREA_max, ext_rd_mode);
2404                 /*
2405                  * Check if data valid window and sampling point can be found
2406                  * or if it is at the edge check if previous is valid
2407                  * - if not extend the tRP timings.
2408                  */
2409                 if (tdvw > 0) {
2410                         tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2411                                                  sdr->tRHOH_min,
2412                                                  board_delay_skew_min,
2413                                                  ext_rd_mode);
2414
2415                         if ((((tdvw_max / dqs_sampl_res)
2416                               * dqs_sampl_res) <= tdvw_min) ||
2417                             (((tdvw_max % dqs_sampl_res) == 0) &&
2418                              (((tdvw_max / dqs_sampl_res - 1)
2419                                * dqs_sampl_res) <= tdvw_min))) {
2420                                 /*
2421                                  * Data valid window width is lower than
2422                                  * sampling resolution and do not hit any
2423                                  * sampling point to be sure the sampling point
2424                                  * will be found the RE low pulse width will be
2425                                  *  extended by one clock cycle.
2426                                  */
2427                                 trp_cnt = trp_cnt + 1;
2428                         }
2429                 } else {
2430                         /*
2431                          * There is no valid window to be able to sample data.
2432                          * The tRP need to be widen.
2433                          * Very safe calculations are performed here.
2434                          */
2435                         trp_cnt = (sdr->tREA_max + board_delay_skew_max
2436                                    + dqs_sampl_res) / clk_period;
2437                 }
2438         }
2439
2440         tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2441                                  sdr->tRHOH_min,
2442                                  board_delay_skew_min, ext_rd_mode);
2443
2444         if (sdr->tWC_min <= clk_period &&
2445             (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2446             (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2447                 ext_wr_mode = 0;
2448         } else {
2449                 u32 twh;
2450
2451                 ext_wr_mode = 1;
2452                 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2453                 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2454                         twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2455                                             clk_period);
2456
2457                 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2458                 if (sdr->tWH_min >= twh)
2459                         twh = sdr->tWH_min;
2460
2461                 twh_cnt = calc_cycl(twh + if_skew, clk_period);
2462         }
2463
2464         reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2465         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2466         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2467         reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2468         t->async_toggle_timings = reg;
2469         dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2470
2471         tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2472         tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2473         twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2474         trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2475         reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2476
2477         /*
2478          * If timing exceeds delay field in timing register
2479          * then use maximum value.
2480          */
2481         if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2482                 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2483         else
2484                 reg |= TIMINGS0_TCCS;
2485
2486         reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2487         reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2488         t->timings0 = reg;
2489         dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2490
2491         /* The following is related to single signal so skew is not needed. */
2492         trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2493         trhz_cnt = trhz_cnt + 1;
2494         twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2495         /*
2496          * Because of the two stage syncflop the value must be increased by 3
2497          * first value is related with sync, second value is related
2498          * with output if delay.
2499          */
2500         twb_cnt = twb_cnt + 3 + 5;
2501         /*
2502          * The following is related to the we edge of the random data input
2503          * sequence so skew is not needed.
2504          */
2505         tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2506         reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2507         reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2508         reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2509         t->timings1 = reg;
2510         dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2511
2512         tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2513         if (tfeat_cnt < twb_cnt)
2514                 tfeat_cnt = twb_cnt;
2515
2516         tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2517         tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2518
2519         reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2520         reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2521         reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2522         t->timings2 = reg;
2523         dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2524
2525         if (cdns_ctrl->caps2.is_phy_type_dll) {
2526                 reg = DLL_PHY_CTRL_DLL_RST_N;
2527                 if (ext_wr_mode)
2528                         reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2529                 if (ext_rd_mode)
2530                         reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2531
2532                 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2533                 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2534                 t->dll_phy_ctrl = reg;
2535                 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2536         }
2537
2538         /* Sampling point calculation. */
2539         if ((tdvw_max % dqs_sampl_res) > 0)
2540                 sampling_point = tdvw_max / dqs_sampl_res;
2541         else
2542                 sampling_point = (tdvw_max / dqs_sampl_res - 1);
2543
2544         if (sampling_point * dqs_sampl_res > tdvw_min) {
2545                 dll_phy_dqs_timing =
2546                         FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2547                 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2548                 phony_dqs_timing = sampling_point / phony_dqs_mod;
2549
2550                 if ((sampling_point % 2) > 0) {
2551                         dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2552                         if ((tdvw_max % dqs_sampl_res) == 0)
2553                                 /*
2554                                  * Calculation for sampling point at the edge
2555                                  * of data and being odd number.
2556                                  */
2557                                 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2558                                         / phony_dqs_mod - 1;
2559
2560                         if (!cdns_ctrl->caps2.is_phy_type_dll)
2561                                 phony_dqs_timing--;
2562
2563                 } else {
2564                         phony_dqs_timing--;
2565                 }
2566                 rd_del_sel = phony_dqs_timing + 3;
2567         } else {
2568                 dev_warn(cdns_ctrl->dev,
2569                          "ERROR : cannot find valid sampling point\n");
2570         }
2571
2572         reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2573         if (cdns_ctrl->caps2.is_phy_type_dll)
2574                 reg  |= PHY_CTRL_SDR_DQS;
2575         t->phy_ctrl = reg;
2576         dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2577
2578         if (cdns_ctrl->caps2.is_phy_type_dll) {
2579                 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2580                 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2581                 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2582                         dll_phy_dqs_timing);
2583                 t->phy_dqs_timing = dll_phy_dqs_timing;
2584
2585                 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2586                 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2587                         reg);
2588                 t->phy_gate_lpbk_ctrl = reg;
2589
2590                 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2591                         PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2592                 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2593         }
2594
2595         return 0;
2596 }
2597
2598 static int cadence_nand_attach_chip(struct nand_chip *chip)
2599 {
2600         struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2601         struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2602         u32 ecc_size;
2603         struct mtd_info *mtd = nand_to_mtd(chip);
2604         int ret;
2605
2606         if (chip->options & NAND_BUSWIDTH_16) {
2607                 ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2608                 if (ret)
2609                         return ret;
2610         }
2611
2612         chip->bbt_options |= NAND_BBT_USE_FLASH;
2613         chip->bbt_options |= NAND_BBT_NO_OOB;
2614         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2615
2616         chip->options |= NAND_NO_SUBPAGE_WRITE;
2617
2618         cdns_chip->bbm_offs = chip->badblockpos;
2619         cdns_chip->bbm_offs &= ~0x01;
2620         /* this value should be even number */
2621         cdns_chip->bbm_len = 2;
2622
2623         ret = nand_ecc_choose_conf(chip,
2624                                    &cdns_ctrl->ecc_caps,
2625                                    mtd->oobsize - cdns_chip->bbm_len);
2626         if (ret) {
2627                 dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2628                 return ret;
2629         }
2630
2631         dev_dbg(cdns_ctrl->dev,
2632                 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2633                 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2634
2635         /* Error correction configuration. */
2636         cdns_chip->sector_size = chip->ecc.size;
2637         cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2638         ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2639
2640         cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2641
2642         if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2643                 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2644
2645         if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2646             > mtd->oobsize)
2647                 cdns_chip->avail_oob_size -= 4;
2648
2649         ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2650         if (ret < 0)
2651                 return -EINVAL;
2652
2653         cdns_chip->corr_str_idx = (u8)ret;
2654
2655         if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2656                                         1000000,
2657                                         CTRL_STATUS_CTRL_BUSY, true))
2658                 return -ETIMEDOUT;
2659
2660         cadence_nand_set_ecc_strength(cdns_ctrl,
2661                                       cdns_chip->corr_str_idx);
2662
2663         cadence_nand_set_erase_detection(cdns_ctrl, true,
2664                                          chip->ecc.strength);
2665
2666         /* Override the default read operations. */
2667         chip->ecc.read_page = cadence_nand_read_page;
2668         chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2669         chip->ecc.write_page = cadence_nand_write_page;
2670         chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2671         chip->ecc.read_oob = cadence_nand_read_oob;
2672         chip->ecc.write_oob = cadence_nand_write_oob;
2673         chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2674         chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2675
2676         if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2677                 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2678
2679         /* Is 32-bit DMA supported? */
2680         ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2681         if (ret) {
2682                 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2683                 return ret;
2684         }
2685
2686         mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2687
2688         return 0;
2689 }
2690
2691 static const struct nand_controller_ops cadence_nand_controller_ops = {
2692         .attach_chip = cadence_nand_attach_chip,
2693         .exec_op = cadence_nand_exec_op,
2694         .setup_interface = cadence_nand_setup_interface,
2695 };
2696
2697 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2698                                   struct device_node *np)
2699 {
2700         struct cdns_nand_chip *cdns_chip;
2701         struct mtd_info *mtd;
2702         struct nand_chip *chip;
2703         int nsels, ret, i;
2704         u32 cs;
2705
2706         nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2707         if (nsels <= 0) {
2708                 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2709                 return -EINVAL;
2710         }
2711
2712         /* Allocate the nand chip structure. */
2713         cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2714                                  (nsels * sizeof(u8)),
2715                                  GFP_KERNEL);
2716         if (!cdns_chip) {
2717                 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2718                 return -ENOMEM;
2719         }
2720
2721         cdns_chip->nsels = nsels;
2722
2723         for (i = 0; i < nsels; i++) {
2724                 /* Retrieve CS id. */
2725                 ret = of_property_read_u32_index(np, "reg", i, &cs);
2726                 if (ret) {
2727                         dev_err(cdns_ctrl->dev,
2728                                 "could not retrieve reg property: %d\n",
2729                                 ret);
2730                         return ret;
2731                 }
2732
2733                 if (cs >= cdns_ctrl->caps2.max_banks) {
2734                         dev_err(cdns_ctrl->dev,
2735                                 "invalid reg value: %u (max CS = %d)\n",
2736                                 cs, cdns_ctrl->caps2.max_banks);
2737                         return -EINVAL;
2738                 }
2739
2740                 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2741                         dev_err(cdns_ctrl->dev,
2742                                 "CS %d already assigned\n", cs);
2743                         return -EINVAL;
2744                 }
2745
2746                 cdns_chip->cs[i] = cs;
2747         }
2748
2749         chip = &cdns_chip->chip;
2750         chip->controller = &cdns_ctrl->controller;
2751         nand_set_flash_node(chip, np);
2752
2753         mtd = nand_to_mtd(chip);
2754         mtd->dev.parent = cdns_ctrl->dev;
2755
2756         /*
2757          * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2758          * in the DT node, this entry will be overwritten in nand_scan_ident().
2759          */
2760         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2761
2762         ret = nand_scan(chip, cdns_chip->nsels);
2763         if (ret) {
2764                 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2765                 return ret;
2766         }
2767
2768         ret = mtd_device_register(mtd, NULL, 0);
2769         if (ret) {
2770                 dev_err(cdns_ctrl->dev,
2771                         "failed to register mtd device: %d\n", ret);
2772                 nand_cleanup(chip);
2773                 return ret;
2774         }
2775
2776         list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2777
2778         return 0;
2779 }
2780
2781 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2782 {
2783         struct cdns_nand_chip *entry, *temp;
2784         struct nand_chip *chip;
2785         int ret;
2786
2787         list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2788                 chip = &entry->chip;
2789                 ret = mtd_device_unregister(nand_to_mtd(chip));
2790                 WARN_ON(ret);
2791                 nand_cleanup(chip);
2792                 list_del(&entry->node);
2793         }
2794 }
2795
2796 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2797 {
2798         struct device_node *np = cdns_ctrl->dev->of_node;
2799         struct device_node *nand_np;
2800         int max_cs = cdns_ctrl->caps2.max_banks;
2801         int nchips, ret;
2802
2803         nchips = of_get_child_count(np);
2804
2805         if (nchips > max_cs) {
2806                 dev_err(cdns_ctrl->dev,
2807                         "too many NAND chips: %d (max = %d CS)\n",
2808                         nchips, max_cs);
2809                 return -EINVAL;
2810         }
2811
2812         for_each_child_of_node(np, nand_np) {
2813                 ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2814                 if (ret) {
2815                         of_node_put(nand_np);
2816                         cadence_nand_chips_cleanup(cdns_ctrl);
2817                         return ret;
2818                 }
2819         }
2820
2821         return 0;
2822 }
2823
2824 static void
2825 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2826 {
2827         /* Disable interrupts. */
2828         writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2829 }
2830
2831 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2832 {
2833         dma_cap_mask_t mask;
2834         int ret;
2835
2836         cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2837                                                   sizeof(*cdns_ctrl->cdma_desc),
2838                                                   &cdns_ctrl->dma_cdma_desc,
2839                                                   GFP_KERNEL);
2840         if (!cdns_ctrl->dma_cdma_desc)
2841                 return -ENOMEM;
2842
2843         cdns_ctrl->buf_size = SZ_16K;
2844         cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2845         if (!cdns_ctrl->buf) {
2846                 ret = -ENOMEM;
2847                 goto free_buf_desc;
2848         }
2849
2850         if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2851                              IRQF_SHARED, "cadence-nand-controller",
2852                              cdns_ctrl)) {
2853                 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2854                 ret = -ENODEV;
2855                 goto free_buf;
2856         }
2857
2858         spin_lock_init(&cdns_ctrl->irq_lock);
2859         init_completion(&cdns_ctrl->complete);
2860
2861         ret = cadence_nand_hw_init(cdns_ctrl);
2862         if (ret)
2863                 goto disable_irq;
2864
2865         dma_cap_zero(mask);
2866         dma_cap_set(DMA_MEMCPY, mask);
2867
2868         if (cdns_ctrl->caps1->has_dma) {
2869                 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2870                 if (!cdns_ctrl->dmac) {
2871                         dev_err(cdns_ctrl->dev,
2872                                 "Unable to get a DMA channel\n");
2873                         ret = -EBUSY;
2874                         goto disable_irq;
2875                 }
2876         }
2877
2878         nand_controller_init(&cdns_ctrl->controller);
2879         INIT_LIST_HEAD(&cdns_ctrl->chips);
2880
2881         cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2882         cdns_ctrl->curr_corr_str_idx = 0xFF;
2883
2884         ret = cadence_nand_chips_init(cdns_ctrl);
2885         if (ret) {
2886                 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2887                         ret);
2888                 goto dma_release_chnl;
2889         }
2890
2891         kfree(cdns_ctrl->buf);
2892         cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2893         if (!cdns_ctrl->buf) {
2894                 ret = -ENOMEM;
2895                 goto dma_release_chnl;
2896         }
2897
2898         return 0;
2899
2900 dma_release_chnl:
2901         if (cdns_ctrl->dmac)
2902                 dma_release_channel(cdns_ctrl->dmac);
2903
2904 disable_irq:
2905         cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2906
2907 free_buf:
2908         kfree(cdns_ctrl->buf);
2909
2910 free_buf_desc:
2911         dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2912                           cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2913
2914         return ret;
2915 }
2916
2917 /* Driver exit point. */
2918 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2919 {
2920         cadence_nand_chips_cleanup(cdns_ctrl);
2921         cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2922         kfree(cdns_ctrl->buf);
2923         dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2924                           cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2925
2926         if (cdns_ctrl->dmac)
2927                 dma_release_channel(cdns_ctrl->dmac);
2928 }
2929
2930 struct cadence_nand_dt {
2931         struct cdns_nand_ctrl cdns_ctrl;
2932         struct clk *clk;
2933 };
2934
2935 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2936         .if_skew = 0,
2937         .has_dma = 1,
2938 };
2939
2940 static const struct of_device_id cadence_nand_dt_ids[] = {
2941         {
2942                 .compatible = "cdns,hp-nfc",
2943                 .data = &cadence_nand_default
2944         }, {}
2945 };
2946
2947 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2948
2949 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2950 {
2951         struct resource *res;
2952         struct cadence_nand_dt *dt;
2953         struct cdns_nand_ctrl *cdns_ctrl;
2954         int ret;
2955         const struct of_device_id *of_id;
2956         const struct cadence_nand_dt_devdata *devdata;
2957         u32 val;
2958
2959         of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
2960         if (of_id) {
2961                 ofdev->id_entry = of_id->data;
2962                 devdata = of_id->data;
2963         } else {
2964                 pr_err("Failed to find the right device id.\n");
2965                 return -ENOMEM;
2966         }
2967
2968         dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
2969         if (!dt)
2970                 return -ENOMEM;
2971
2972         cdns_ctrl = &dt->cdns_ctrl;
2973         cdns_ctrl->caps1 = devdata;
2974
2975         cdns_ctrl->dev = &ofdev->dev;
2976         cdns_ctrl->irq = platform_get_irq(ofdev, 0);
2977         if (cdns_ctrl->irq < 0)
2978                 return cdns_ctrl->irq;
2979
2980         dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
2981
2982         cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
2983         if (IS_ERR(cdns_ctrl->reg))
2984                 return PTR_ERR(cdns_ctrl->reg);
2985
2986         res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
2987         cdns_ctrl->io.dma = res->start;
2988         cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
2989         if (IS_ERR(cdns_ctrl->io.virt))
2990                 return PTR_ERR(cdns_ctrl->io.virt);
2991
2992         dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
2993         if (IS_ERR(dt->clk))
2994                 return PTR_ERR(dt->clk);
2995
2996         cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
2997
2998         ret = of_property_read_u32(ofdev->dev.of_node,
2999                                    "cdns,board-delay-ps", &val);
3000         if (ret) {
3001                 val = 4830;
3002                 dev_info(cdns_ctrl->dev,
3003                          "missing cdns,board-delay-ps property, %d was set\n",
3004                          val);
3005         }
3006         cdns_ctrl->board_delay = val;
3007
3008         ret = cadence_nand_init(cdns_ctrl);
3009         if (ret)
3010                 return ret;
3011
3012         platform_set_drvdata(ofdev, dt);
3013         return 0;
3014 }
3015
3016 static int cadence_nand_dt_remove(struct platform_device *ofdev)
3017 {
3018         struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3019
3020         cadence_nand_remove(&dt->cdns_ctrl);
3021
3022         return 0;
3023 }
3024
3025 static struct platform_driver cadence_nand_dt_driver = {
3026         .probe          = cadence_nand_dt_probe,
3027         .remove         = cadence_nand_dt_remove,
3028         .driver         = {
3029                 .name   = "cadence-nand-controller",
3030                 .of_match_table = cadence_nand_dt_ids,
3031         },
3032 };
3033
3034 module_platform_driver(cadence_nand_dt_driver);
3035
3036 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3037 MODULE_LICENSE("GPL v2");
3038 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3039