Merge tag 'kvmarm-fixes-5.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / arasan-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27
28 #define PKT_REG                         0x00
29 #define   PKT_SIZE(x)                   FIELD_PREP(GENMASK(10, 0), (x))
30 #define   PKT_STEPS(x)                  FIELD_PREP(GENMASK(23, 12), (x))
31
32 #define MEM_ADDR1_REG                   0x04
33
34 #define MEM_ADDR2_REG                   0x08
35 #define   ADDR2_STRENGTH(x)             FIELD_PREP(GENMASK(27, 25), (x))
36 #define   ADDR2_CS(x)                   FIELD_PREP(GENMASK(31, 30), (x))
37
38 #define CMD_REG                         0x0C
39 #define   CMD_1(x)                      FIELD_PREP(GENMASK(7, 0), (x))
40 #define   CMD_2(x)                      FIELD_PREP(GENMASK(15, 8), (x))
41 #define   CMD_PAGE_SIZE(x)              FIELD_PREP(GENMASK(25, 23), (x))
42 #define   CMD_DMA_ENABLE                BIT(27)
43 #define   CMD_NADDRS(x)                 FIELD_PREP(GENMASK(30, 28), (x))
44 #define   CMD_ECC_ENABLE                BIT(31)
45
46 #define PROG_REG                        0x10
47 #define   PROG_PGRD                     BIT(0)
48 #define   PROG_ERASE                    BIT(2)
49 #define   PROG_STATUS                   BIT(3)
50 #define   PROG_PGPROG                   BIT(4)
51 #define   PROG_RDID                     BIT(6)
52 #define   PROG_RDPARAM                  BIT(7)
53 #define   PROG_RST                      BIT(8)
54 #define   PROG_GET_FEATURE              BIT(9)
55 #define   PROG_SET_FEATURE              BIT(10)
56
57 #define INTR_STS_EN_REG                 0x14
58 #define INTR_SIG_EN_REG                 0x18
59 #define INTR_STS_REG                    0x1C
60 #define   WRITE_READY                   BIT(0)
61 #define   READ_READY                    BIT(1)
62 #define   XFER_COMPLETE                 BIT(2)
63 #define   DMA_BOUNDARY                  BIT(6)
64 #define   EVENT_MASK                    GENMASK(7, 0)
65
66 #define READY_STS_REG                   0x20
67
68 #define DMA_ADDR0_REG                   0x50
69 #define DMA_ADDR1_REG                   0x24
70
71 #define FLASH_STS_REG                   0x28
72
73 #define DATA_PORT_REG                   0x30
74
75 #define ECC_CONF_REG                    0x34
76 #define   ECC_CONF_COL(x)               FIELD_PREP(GENMASK(15, 0), (x))
77 #define   ECC_CONF_LEN(x)               FIELD_PREP(GENMASK(26, 16), (x))
78 #define   ECC_CONF_BCH_EN               BIT(27)
79
80 #define ECC_ERR_CNT_REG                 0x38
81 #define   GET_PKT_ERR_CNT(x)            FIELD_GET(GENMASK(7, 0), (x))
82 #define   GET_PAGE_ERR_CNT(x)           FIELD_GET(GENMASK(16, 8), (x))
83
84 #define ECC_SP_REG                      0x3C
85 #define   ECC_SP_CMD1(x)                FIELD_PREP(GENMASK(7, 0), (x))
86 #define   ECC_SP_CMD2(x)                FIELD_PREP(GENMASK(15, 8), (x))
87 #define   ECC_SP_ADDRS(x)               FIELD_PREP(GENMASK(30, 28), (x))
88
89 #define ECC_1ERR_CNT_REG                0x40
90 #define ECC_2ERR_CNT_REG                0x44
91
92 #define DATA_INTERFACE_REG              0x6C
93 #define   DIFACE_SDR_MODE(x)            FIELD_PREP(GENMASK(2, 0), (x))
94 #define   DIFACE_DDR_MODE(x)            FIELD_PREP(GENMASK(5, 3), (X))
95 #define   DIFACE_SDR                    0
96 #define   DIFACE_NVDDR                  BIT(9)
97
98 #define ANFC_MAX_CS                     2
99 #define ANFC_DFLT_TIMEOUT_US            1000000
100 #define ANFC_MAX_CHUNK_SIZE             SZ_1M
101 #define ANFC_MAX_PARAM_SIZE             SZ_4K
102 #define ANFC_MAX_STEPS                  SZ_2K
103 #define ANFC_MAX_PKT_SIZE               (SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC               5U
105 #define ANFC_RSVD_ECC_BYTES             21
106
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK     100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK       80000000
109
110 /**
111  * struct anfc_op - Defines how to execute an operation
112  * @pkt_reg: Packet register
113  * @addr1_reg: Memory address 1 register
114  * @addr2_reg: Memory address 2 register
115  * @cmd_reg: Command register
116  * @prog_reg: Program register
117  * @steps: Number of "packets" to read/write
118  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119  * @len: Data transfer length
120  * @read: Data transfer direction from the controller point of view
121  * @buf: Data buffer
122  */
123 struct anfc_op {
124         u32 pkt_reg;
125         u32 addr1_reg;
126         u32 addr2_reg;
127         u32 cmd_reg;
128         u32 prog_reg;
129         int steps;
130         unsigned int rdy_timeout_ms;
131         unsigned int len;
132         bool read;
133         u8 *buf;
134 };
135
136 /**
137  * struct anand - Defines the NAND chip related information
138  * @node:               Used to store NAND chips into a list
139  * @chip:               NAND chip information structure
140  * @cs:                 Chip select line
141  * @rb:                 Ready-busy line
142  * @page_sz:            Register value of the page_sz field to use
143  * @clk:                Expected clock frequency to use
144  * @timings:            Data interface timing mode to use
145  * @ecc_conf:           Hardware ECC configuration value
146  * @strength:           Register value of the ECC strength
147  * @raddr_cycles:       Row address cycle information
148  * @caddr_cycles:       Column address cycle information
149  * @ecc_bits:           Exact number of ECC bits per syndrome
150  * @ecc_total:          Total number of ECC bytes
151  * @errloc:             Array of errors located with soft BCH
152  * @hw_ecc:             Buffer to store syndromes computed by hardware
153  * @bch:                BCH structure
154  */
155 struct anand {
156         struct list_head node;
157         struct nand_chip chip;
158         unsigned int cs;
159         unsigned int rb;
160         unsigned int page_sz;
161         unsigned long clk;
162         u32 timings;
163         u32 ecc_conf;
164         u32 strength;
165         u16 raddr_cycles;
166         u16 caddr_cycles;
167         unsigned int ecc_bits;
168         unsigned int ecc_total;
169         unsigned int *errloc;
170         u8 *hw_ecc;
171         struct bch_control *bch;
172 };
173
174 /**
175  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
176  * @dev:                Pointer to the device structure
177  * @base:               Remapped register area
178  * @controller_clk:             Pointer to the system clock
179  * @bus_clk:            Pointer to the flash clock
180  * @controller:         Base controller structure
181  * @chips:              List of all NAND chips attached to the controller
182  * @assigned_cs:        Bitmask describing already assigned CS lines
183  * @cur_clk:            Current clock rate
184  */
185 struct arasan_nfc {
186         struct device *dev;
187         void __iomem *base;
188         struct clk *controller_clk;
189         struct clk *bus_clk;
190         struct nand_controller controller;
191         struct list_head chips;
192         unsigned long assigned_cs;
193         unsigned int cur_clk;
194 };
195
196 static struct anand *to_anand(struct nand_chip *nand)
197 {
198         return container_of(nand, struct anand, chip);
199 }
200
201 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
202 {
203         return container_of(ctrl, struct arasan_nfc, controller);
204 }
205
206 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
207 {
208         u32 val;
209         int ret;
210
211         ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
212                                          val & event, 0,
213                                          ANFC_DFLT_TIMEOUT_US);
214         if (ret) {
215                 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
216                 return -ETIMEDOUT;
217         }
218
219         writel_relaxed(event, nfc->base + INTR_STS_REG);
220
221         return 0;
222 }
223
224 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
225                             unsigned int timeout_ms)
226 {
227         struct anand *anand = to_anand(chip);
228         u32 val;
229         int ret;
230
231         /* There is no R/B interrupt, we must poll a register */
232         ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
233                                          val & BIT(anand->rb),
234                                          1, timeout_ms * 1000);
235         if (ret) {
236                 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
237                         readl_relaxed(nfc->base + READY_STS_REG));
238                 return -ETIMEDOUT;
239         }
240
241         return 0;
242 }
243
244 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
245 {
246         writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
247         writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
248         writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
249         writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
250         writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
251 }
252
253 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
254                                unsigned int *pktsize)
255 {
256         unsigned int nb, sz;
257
258         for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
259                 sz = len / nb;
260                 if (sz <= ANFC_MAX_PKT_SIZE)
261                         break;
262         }
263
264         if (sz * nb != len)
265                 return -ENOTSUPP;
266
267         if (steps)
268                 *steps = nb;
269
270         if (pktsize)
271                 *pktsize = sz;
272
273         return 0;
274 }
275
276 /*
277  * When using the embedded hardware ECC engine, the controller is in charge of
278  * feeding the engine with, first, the ECC residue present in the data array.
279  * A typical read operation is:
280  * 1/ Assert the read operation by sending the relevant command/address cycles
281  *    but targeting the column of the first ECC bytes in the OOB area instead of
282  *    the main data directly.
283  * 2/ After having read the relevant number of ECC bytes, the controller uses
284  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
285  *    Register" to move the pointer back at the beginning of the main data.
286  * 3/ It will read the content of the main area for a given size (pktsize) and
287  *    will feed the ECC engine with this buffer again.
288  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
289  *    with the ones already received. It eventually trigger status flags and
290  *    then set the "Buffer Read Ready" flag.
291  * 5/ The corrected data is then available for reading from the data port
292  *    register.
293  *
294  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
295  * reports uncorrectable errors. Because of this bug, we have to use the
296  * software BCH implementation in the read path.
297  */
298 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
299                                  int oob_required, int page)
300 {
301         struct arasan_nfc *nfc = to_anfc(chip->controller);
302         struct mtd_info *mtd = nand_to_mtd(chip);
303         struct anand *anand = to_anand(chip);
304         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
305         unsigned int max_bitflips = 0;
306         dma_addr_t dma_addr;
307         int step, ret;
308         struct anfc_op nfc_op = {
309                 .pkt_reg =
310                         PKT_SIZE(chip->ecc.size) |
311                         PKT_STEPS(chip->ecc.steps),
312                 .addr1_reg =
313                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
314                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
315                 .addr2_reg =
316                         ((page >> 16) & 0xFF) |
317                         ADDR2_STRENGTH(anand->strength) |
318                         ADDR2_CS(anand->cs),
319                 .cmd_reg =
320                         CMD_1(NAND_CMD_READ0) |
321                         CMD_2(NAND_CMD_READSTART) |
322                         CMD_PAGE_SIZE(anand->page_sz) |
323                         CMD_DMA_ENABLE |
324                         CMD_NADDRS(anand->caddr_cycles +
325                                    anand->raddr_cycles),
326                 .prog_reg = PROG_PGRD,
327         };
328
329         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
330         if (dma_mapping_error(nfc->dev, dma_addr)) {
331                 dev_err(nfc->dev, "Buffer mapping error");
332                 return -EIO;
333         }
334
335         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
336         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
337
338         anfc_trigger_op(nfc, &nfc_op);
339
340         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
341         dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
342         if (ret) {
343                 dev_err(nfc->dev, "Error reading page %d\n", page);
344                 return ret;
345         }
346
347         /* Store the raw OOB bytes as well */
348         ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
349                                          mtd->oobsize, 0);
350         if (ret)
351                 return ret;
352
353         /*
354          * For each step, compute by softare the BCH syndrome over the raw data.
355          * Compare the theoretical amount of errors and compare with the
356          * hardware engine feedback.
357          */
358         for (step = 0; step < chip->ecc.steps; step++) {
359                 u8 *raw_buf = &buf[step * chip->ecc.size];
360                 unsigned int bit, byte;
361                 int bf, i;
362
363                 /* Extract the syndrome, it is not necessarily aligned */
364                 memset(anand->hw_ecc, 0, chip->ecc.bytes);
365                 nand_extract_bits(anand->hw_ecc, 0,
366                                   &chip->oob_poi[mtd->oobsize - anand->ecc_total],
367                                   anand->ecc_bits * step, anand->ecc_bits);
368
369                 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
370                                 anand->hw_ecc, NULL, NULL, anand->errloc);
371                 if (!bf) {
372                         continue;
373                 } else if (bf > 0) {
374                         for (i = 0; i < bf; i++) {
375                                 /* Only correct the data, not the syndrome */
376                                 if (anand->errloc[i] < (chip->ecc.size * 8)) {
377                                         bit = BIT(anand->errloc[i] & 7);
378                                         byte = anand->errloc[i] >> 3;
379                                         raw_buf[byte] ^= bit;
380                                 }
381                         }
382
383                         mtd->ecc_stats.corrected += bf;
384                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
385
386                         continue;
387                 }
388
389                 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
390                                                  NULL, 0, NULL, 0,
391                                                  chip->ecc.strength);
392                 if (bf > 0) {
393                         mtd->ecc_stats.corrected += bf;
394                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
395                         memset(raw_buf, 0xFF, chip->ecc.size);
396                 } else if (bf < 0) {
397                         mtd->ecc_stats.failed++;
398                 }
399         }
400
401         return 0;
402 }
403
404 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
405                                   int oob_required, int page)
406 {
407         struct anand *anand = to_anand(chip);
408         struct arasan_nfc *nfc = to_anfc(chip->controller);
409         struct mtd_info *mtd = nand_to_mtd(chip);
410         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
411         dma_addr_t dma_addr;
412         int ret;
413         struct anfc_op nfc_op = {
414                 .pkt_reg =
415                         PKT_SIZE(chip->ecc.size) |
416                         PKT_STEPS(chip->ecc.steps),
417                 .addr1_reg =
418                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
419                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
420                 .addr2_reg =
421                         ((page >> 16) & 0xFF) |
422                         ADDR2_STRENGTH(anand->strength) |
423                         ADDR2_CS(anand->cs),
424                 .cmd_reg =
425                         CMD_1(NAND_CMD_SEQIN) |
426                         CMD_2(NAND_CMD_PAGEPROG) |
427                         CMD_PAGE_SIZE(anand->page_sz) |
428                         CMD_DMA_ENABLE |
429                         CMD_NADDRS(anand->caddr_cycles +
430                                    anand->raddr_cycles) |
431                         CMD_ECC_ENABLE,
432                 .prog_reg = PROG_PGPROG,
433         };
434
435         writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
436         writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
437                        ECC_SP_ADDRS(anand->caddr_cycles),
438                        nfc->base + ECC_SP_REG);
439
440         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
441         if (dma_mapping_error(nfc->dev, dma_addr)) {
442                 dev_err(nfc->dev, "Buffer mapping error");
443                 return -EIO;
444         }
445
446         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
447         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
448
449         anfc_trigger_op(nfc, &nfc_op);
450         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
451         dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
452         if (ret) {
453                 dev_err(nfc->dev, "Error writing page %d\n", page);
454                 return ret;
455         }
456
457         /* Spare data is not protected */
458         if (oob_required)
459                 ret = nand_write_oob_std(chip, page);
460
461         return ret;
462 }
463
464 /* NAND framework ->exec_op() hooks and related helpers */
465 static int anfc_parse_instructions(struct nand_chip *chip,
466                                    const struct nand_subop *subop,
467                                    struct anfc_op *nfc_op)
468 {
469         struct anand *anand = to_anand(chip);
470         const struct nand_op_instr *instr = NULL;
471         bool first_cmd = true;
472         unsigned int op_id;
473         int ret, i;
474
475         memset(nfc_op, 0, sizeof(*nfc_op));
476         nfc_op->addr2_reg = ADDR2_CS(anand->cs);
477         nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
478
479         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
480                 unsigned int offset, naddrs, pktsize;
481                 const u8 *addrs;
482                 u8 *buf;
483
484                 instr = &subop->instrs[op_id];
485
486                 switch (instr->type) {
487                 case NAND_OP_CMD_INSTR:
488                         if (first_cmd)
489                                 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
490                         else
491                                 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
492
493                         first_cmd = false;
494                         break;
495
496                 case NAND_OP_ADDR_INSTR:
497                         offset = nand_subop_get_addr_start_off(subop, op_id);
498                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
499                         addrs = &instr->ctx.addr.addrs[offset];
500                         nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
501
502                         for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
503                                 if (i < 4)
504                                         nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
505                                 else
506                                         nfc_op->addr2_reg |= addrs[i];
507                         }
508
509                         break;
510                 case NAND_OP_DATA_IN_INSTR:
511                         nfc_op->read = true;
512                         fallthrough;
513                 case NAND_OP_DATA_OUT_INSTR:
514                         offset = nand_subop_get_data_start_off(subop, op_id);
515                         buf = instr->ctx.data.buf.in;
516                         nfc_op->buf = &buf[offset];
517                         nfc_op->len = nand_subop_get_data_len(subop, op_id);
518                         ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
519                                                   &pktsize);
520                         if (ret)
521                                 return ret;
522
523                         /*
524                          * Number of DATA cycles must be aligned on 4, this
525                          * means the controller might read/write more than
526                          * requested. This is harmless most of the time as extra
527                          * DATA are discarded in the write path and read pointer
528                          * adjusted in the read path.
529                          *
530                          * FIXME: The core should mark operations where
531                          * reading/writing more is allowed so the exec_op()
532                          * implementation can take the right decision when the
533                          * alignment constraint is not met: adjust the number of
534                          * DATA cycles when it's allowed, reject the operation
535                          * otherwise.
536                          */
537                         nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
538                                            PKT_STEPS(nfc_op->steps);
539                         break;
540                 case NAND_OP_WAITRDY_INSTR:
541                         nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
542                         break;
543                 }
544         }
545
546         return 0;
547 }
548
549 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
550 {
551         unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
552         unsigned int last_len = nfc_op->len % 4;
553         unsigned int offset, dir;
554         u8 *buf = nfc_op->buf;
555         int ret, i;
556
557         for (i = 0; i < nfc_op->steps; i++) {
558                 dir = nfc_op->read ? READ_READY : WRITE_READY;
559                 ret = anfc_wait_for_event(nfc, dir);
560                 if (ret) {
561                         dev_err(nfc->dev, "PIO %s ready signal not received\n",
562                                 nfc_op->read ? "Read" : "Write");
563                         return ret;
564                 }
565
566                 offset = i * (dwords * 4);
567                 if (nfc_op->read)
568                         ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
569                                      dwords);
570                 else
571                         iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
572                                       dwords);
573         }
574
575         if (last_len) {
576                 u32 remainder;
577
578                 offset = nfc_op->len - last_len;
579
580                 if (nfc_op->read) {
581                         remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
582                         memcpy(&buf[offset], &remainder, last_len);
583                 } else {
584                         memcpy(&remainder, &buf[offset], last_len);
585                         writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
586                 }
587         }
588
589         return anfc_wait_for_event(nfc, XFER_COMPLETE);
590 }
591
592 static int anfc_misc_data_type_exec(struct nand_chip *chip,
593                                     const struct nand_subop *subop,
594                                     u32 prog_reg)
595 {
596         struct arasan_nfc *nfc = to_anfc(chip->controller);
597         struct anfc_op nfc_op = {};
598         int ret;
599
600         ret = anfc_parse_instructions(chip, subop, &nfc_op);
601         if (ret)
602                 return ret;
603
604         nfc_op.prog_reg = prog_reg;
605         anfc_trigger_op(nfc, &nfc_op);
606
607         if (nfc_op.rdy_timeout_ms) {
608                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
609                 if (ret)
610                         return ret;
611         }
612
613         return anfc_rw_pio_op(nfc, &nfc_op);
614 }
615
616 static int anfc_param_read_type_exec(struct nand_chip *chip,
617                                      const struct nand_subop *subop)
618 {
619         return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
620 }
621
622 static int anfc_data_read_type_exec(struct nand_chip *chip,
623                                     const struct nand_subop *subop)
624 {
625         return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
626 }
627
628 static int anfc_param_write_type_exec(struct nand_chip *chip,
629                                       const struct nand_subop *subop)
630 {
631         return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
632 }
633
634 static int anfc_data_write_type_exec(struct nand_chip *chip,
635                                      const struct nand_subop *subop)
636 {
637         return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
638 }
639
640 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
641                                        const struct nand_subop *subop,
642                                        u32 prog_reg)
643 {
644         struct arasan_nfc *nfc = to_anfc(chip->controller);
645         struct anfc_op nfc_op = {};
646         int ret;
647
648         ret = anfc_parse_instructions(chip, subop, &nfc_op);
649         if (ret)
650                 return ret;
651
652         nfc_op.prog_reg = prog_reg;
653         anfc_trigger_op(nfc, &nfc_op);
654
655         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
656         if (ret)
657                 return ret;
658
659         if (nfc_op.rdy_timeout_ms)
660                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
661
662         return ret;
663 }
664
665 static int anfc_status_type_exec(struct nand_chip *chip,
666                                  const struct nand_subop *subop)
667 {
668         struct arasan_nfc *nfc = to_anfc(chip->controller);
669         u32 tmp;
670         int ret;
671
672         /* See anfc_check_op() for details about this constraint */
673         if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
674                 return -ENOTSUPP;
675
676         ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
677         if (ret)
678                 return ret;
679
680         tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
681         memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
682
683         return 0;
684 }
685
686 static int anfc_reset_type_exec(struct nand_chip *chip,
687                                 const struct nand_subop *subop)
688 {
689         return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
690 }
691
692 static int anfc_erase_type_exec(struct nand_chip *chip,
693                                 const struct nand_subop *subop)
694 {
695         return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
696 }
697
698 static int anfc_wait_type_exec(struct nand_chip *chip,
699                                const struct nand_subop *subop)
700 {
701         struct arasan_nfc *nfc = to_anfc(chip->controller);
702         struct anfc_op nfc_op = {};
703         int ret;
704
705         ret = anfc_parse_instructions(chip, subop, &nfc_op);
706         if (ret)
707                 return ret;
708
709         return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
710 }
711
712 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
713         NAND_OP_PARSER_PATTERN(
714                 anfc_param_read_type_exec,
715                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
716                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
717                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
718                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
719         NAND_OP_PARSER_PATTERN(
720                 anfc_param_write_type_exec,
721                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
722                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
723                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
724         NAND_OP_PARSER_PATTERN(
725                 anfc_data_read_type_exec,
726                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
727                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
728                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
729                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
730                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
731         NAND_OP_PARSER_PATTERN(
732                 anfc_data_write_type_exec,
733                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
734                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
735                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
736                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
737         NAND_OP_PARSER_PATTERN(
738                 anfc_reset_type_exec,
739                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
740                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
741         NAND_OP_PARSER_PATTERN(
742                 anfc_erase_type_exec,
743                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
744                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
745                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
746                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
747         NAND_OP_PARSER_PATTERN(
748                 anfc_status_type_exec,
749                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
750                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
751         NAND_OP_PARSER_PATTERN(
752                 anfc_wait_type_exec,
753                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
754         );
755
756 static int anfc_select_target(struct nand_chip *chip, int target)
757 {
758         struct anand *anand = to_anand(chip);
759         struct arasan_nfc *nfc = to_anfc(chip->controller);
760         int ret;
761
762         /* Update the controller timings and the potential ECC configuration */
763         writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
764
765         /* Update clock frequency */
766         if (nfc->cur_clk != anand->clk) {
767                 clk_disable_unprepare(nfc->controller_clk);
768                 ret = clk_set_rate(nfc->controller_clk, anand->clk);
769                 if (ret) {
770                         dev_err(nfc->dev, "Failed to change clock rate\n");
771                         return ret;
772                 }
773
774                 ret = clk_prepare_enable(nfc->controller_clk);
775                 if (ret) {
776                         dev_err(nfc->dev,
777                                 "Failed to re-enable the controller clock\n");
778                         return ret;
779                 }
780
781                 nfc->cur_clk = anand->clk;
782         }
783
784         return 0;
785 }
786
787 static int anfc_check_op(struct nand_chip *chip,
788                          const struct nand_operation *op)
789 {
790         const struct nand_op_instr *instr;
791         int op_id;
792
793         /*
794          * The controller abstracts all the NAND operations and do not support
795          * data only operations.
796          *
797          * TODO: The nand_op_parser framework should be extended to
798          * support custom checks on DATA instructions.
799          */
800         for (op_id = 0; op_id < op->ninstrs; op_id++) {
801                 instr = &op->instrs[op_id];
802
803                 switch (instr->type) {
804                 case NAND_OP_ADDR_INSTR:
805                         if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
806                                 return -ENOTSUPP;
807
808                         break;
809                 case NAND_OP_DATA_IN_INSTR:
810                 case NAND_OP_DATA_OUT_INSTR:
811                         if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
812                                 return -ENOTSUPP;
813
814                         if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
815                                 return -ENOTSUPP;
816
817                         break;
818                 default:
819                         break;
820                 }
821         }
822
823         /*
824          * The controller does not allow to proceed with a CMD+DATA_IN cycle
825          * manually on the bus by reading data from the data register. Instead,
826          * the controller abstract a status read operation with its own status
827          * register after ordering a read status operation. Hence, we cannot
828          * support any CMD+DATA_IN operation other than a READ STATUS.
829          *
830          * TODO: The nand_op_parser() framework should be extended to describe
831          * fixed patterns instead of open-coding this check here.
832          */
833         if (op->ninstrs == 2 &&
834             op->instrs[0].type == NAND_OP_CMD_INSTR &&
835             op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
836             op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
837                 return -ENOTSUPP;
838
839         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
840 }
841
842 static int anfc_exec_op(struct nand_chip *chip,
843                         const struct nand_operation *op,
844                         bool check_only)
845 {
846         int ret;
847
848         if (check_only)
849                 return anfc_check_op(chip, op);
850
851         ret = anfc_select_target(chip, op->cs);
852         if (ret)
853                 return ret;
854
855         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
856 }
857
858 static int anfc_setup_interface(struct nand_chip *chip, int target,
859                                 const struct nand_interface_config *conf)
860 {
861         struct anand *anand = to_anand(chip);
862         struct arasan_nfc *nfc = to_anfc(chip->controller);
863         struct device_node *np = nfc->dev->of_node;
864
865         if (target < 0)
866                 return 0;
867
868         anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode);
869         anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
870
871         /*
872          * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
873          * with f > 90MHz (default clock is 100MHz) but signals are unstable
874          * with higher modes. Hence we decrease a little bit the clock rate to
875          * 80MHz when using modes 2-5 with this SoC.
876          */
877         if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
878             conf->timings.mode >= 2)
879                 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
880
881         return 0;
882 }
883
884 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
885 {
886         unsigned int bch_gf_mag, ecc_bits;
887
888         switch (step_size) {
889         case SZ_512:
890                 bch_gf_mag = 13;
891                 break;
892         case SZ_1K:
893                 bch_gf_mag = 14;
894                 break;
895         default:
896                 return -EINVAL;
897         }
898
899         ecc_bits = bch_gf_mag * strength;
900
901         return DIV_ROUND_UP(ecc_bits, 8);
902 }
903
904 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
905
906 static const int anfc_hw_ecc_1024_strengths[] = {24};
907
908 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
909         {
910                 .stepsize = SZ_512,
911                 .strengths = anfc_hw_ecc_512_strengths,
912                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
913         },
914         {
915                 .stepsize = SZ_1K,
916                 .strengths = anfc_hw_ecc_1024_strengths,
917                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
918         },
919 };
920
921 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
922         .stepinfos = anfc_hw_ecc_step_infos,
923         .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
924         .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
925 };
926
927 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
928                                        struct nand_chip *chip)
929 {
930         struct anand *anand = to_anand(chip);
931         struct mtd_info *mtd = nand_to_mtd(chip);
932         struct nand_ecc_ctrl *ecc = &chip->ecc;
933         unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
934         int ret;
935
936         switch (mtd->writesize) {
937         case SZ_512:
938         case SZ_2K:
939         case SZ_4K:
940         case SZ_8K:
941         case SZ_16K:
942                 break;
943         default:
944                 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
945                 return -EINVAL;
946         }
947
948         ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
949         if (ret)
950                 return ret;
951
952         switch (ecc->strength) {
953         case 12:
954                 anand->strength = 0x1;
955                 break;
956         case 8:
957                 anand->strength = 0x2;
958                 break;
959         case 4:
960                 anand->strength = 0x3;
961                 break;
962         case 24:
963                 anand->strength = 0x4;
964                 break;
965         default:
966                 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
967                 return -EINVAL;
968         }
969
970         switch (ecc->size) {
971         case SZ_512:
972                 bch_gf_mag = 13;
973                 bch_prim_poly = 0x201b;
974                 break;
975         case SZ_1K:
976                 bch_gf_mag = 14;
977                 bch_prim_poly = 0x4443;
978                 break;
979         default:
980                 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
981                 return -EINVAL;
982         }
983
984         mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
985
986         ecc->steps = mtd->writesize / ecc->size;
987         ecc->algo = NAND_ECC_ALGO_BCH;
988         anand->ecc_bits = bch_gf_mag * ecc->strength;
989         ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
990         anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
991         ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
992         anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
993                           ECC_CONF_LEN(anand->ecc_total) |
994                           ECC_CONF_BCH_EN;
995
996         anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
997                                            sizeof(*anand->errloc), GFP_KERNEL);
998         if (!anand->errloc)
999                 return -ENOMEM;
1000
1001         anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1002         if (!anand->hw_ecc)
1003                 return -ENOMEM;
1004
1005         /* Enforce bit swapping to fit the hardware */
1006         anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1007         if (!anand->bch)
1008                 return -EINVAL;
1009
1010         ecc->read_page = anfc_read_page_hw_ecc;
1011         ecc->write_page = anfc_write_page_hw_ecc;
1012
1013         return 0;
1014 }
1015
1016 static int anfc_attach_chip(struct nand_chip *chip)
1017 {
1018         struct anand *anand = to_anand(chip);
1019         struct arasan_nfc *nfc = to_anfc(chip->controller);
1020         struct mtd_info *mtd = nand_to_mtd(chip);
1021         int ret = 0;
1022
1023         if (mtd->writesize <= SZ_512)
1024                 anand->caddr_cycles = 1;
1025         else
1026                 anand->caddr_cycles = 2;
1027
1028         if (chip->options & NAND_ROW_ADDR_3)
1029                 anand->raddr_cycles = 3;
1030         else
1031                 anand->raddr_cycles = 2;
1032
1033         switch (mtd->writesize) {
1034         case 512:
1035                 anand->page_sz = 0;
1036                 break;
1037         case 1024:
1038                 anand->page_sz = 5;
1039                 break;
1040         case 2048:
1041                 anand->page_sz = 1;
1042                 break;
1043         case 4096:
1044                 anand->page_sz = 2;
1045                 break;
1046         case 8192:
1047                 anand->page_sz = 3;
1048                 break;
1049         case 16384:
1050                 anand->page_sz = 4;
1051                 break;
1052         default:
1053                 return -EINVAL;
1054         }
1055
1056         /* These hooks are valid for all ECC providers */
1057         chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1058         chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1059
1060         switch (chip->ecc.engine_type) {
1061         case NAND_ECC_ENGINE_TYPE_NONE:
1062         case NAND_ECC_ENGINE_TYPE_SOFT:
1063         case NAND_ECC_ENGINE_TYPE_ON_DIE:
1064                 break;
1065         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1066                 ret = anfc_init_hw_ecc_controller(nfc, chip);
1067                 break;
1068         default:
1069                 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1070                         chip->ecc.engine_type);
1071                 return -EINVAL;
1072         }
1073
1074         return ret;
1075 }
1076
1077 static void anfc_detach_chip(struct nand_chip *chip)
1078 {
1079         struct anand *anand = to_anand(chip);
1080
1081         if (anand->bch)
1082                 bch_free(anand->bch);
1083 }
1084
1085 static const struct nand_controller_ops anfc_ops = {
1086         .exec_op = anfc_exec_op,
1087         .setup_interface = anfc_setup_interface,
1088         .attach_chip = anfc_attach_chip,
1089         .detach_chip = anfc_detach_chip,
1090 };
1091
1092 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1093 {
1094         struct anand *anand;
1095         struct nand_chip *chip;
1096         struct mtd_info *mtd;
1097         int cs, rb, ret;
1098
1099         anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1100         if (!anand)
1101                 return -ENOMEM;
1102
1103         /* We do not support multiple CS per chip yet */
1104         if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1105                 dev_err(nfc->dev, "Invalid reg property\n");
1106                 return -EINVAL;
1107         }
1108
1109         ret = of_property_read_u32(np, "reg", &cs);
1110         if (ret)
1111                 return ret;
1112
1113         ret = of_property_read_u32(np, "nand-rb", &rb);
1114         if (ret)
1115                 return ret;
1116
1117         if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1118                 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1119                 return -EINVAL;
1120         }
1121
1122         if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1123                 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1124                 return -EINVAL;
1125         }
1126
1127         anand->cs = cs;
1128         anand->rb = rb;
1129
1130         chip = &anand->chip;
1131         mtd = nand_to_mtd(chip);
1132         mtd->dev.parent = nfc->dev;
1133         chip->controller = &nfc->controller;
1134         chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1135                         NAND_USES_DMA;
1136
1137         nand_set_flash_node(chip, np);
1138         if (!mtd->name) {
1139                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1140                 return -EINVAL;
1141         }
1142
1143         ret = nand_scan(chip, 1);
1144         if (ret) {
1145                 dev_err(nfc->dev, "Scan operation failed\n");
1146                 return ret;
1147         }
1148
1149         ret = mtd_device_register(mtd, NULL, 0);
1150         if (ret) {
1151                 nand_cleanup(chip);
1152                 return ret;
1153         }
1154
1155         list_add_tail(&anand->node, &nfc->chips);
1156
1157         return 0;
1158 }
1159
1160 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1161 {
1162         struct anand *anand, *tmp;
1163         struct nand_chip *chip;
1164         int ret;
1165
1166         list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1167                 chip = &anand->chip;
1168                 ret = mtd_device_unregister(nand_to_mtd(chip));
1169                 WARN_ON(ret);
1170                 nand_cleanup(chip);
1171                 list_del(&anand->node);
1172         }
1173 }
1174
1175 static int anfc_chips_init(struct arasan_nfc *nfc)
1176 {
1177         struct device_node *np = nfc->dev->of_node, *nand_np;
1178         int nchips = of_get_child_count(np);
1179         int ret;
1180
1181         if (!nchips || nchips > ANFC_MAX_CS) {
1182                 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1183                         nchips);
1184                 return -EINVAL;
1185         }
1186
1187         for_each_child_of_node(np, nand_np) {
1188                 ret = anfc_chip_init(nfc, nand_np);
1189                 if (ret) {
1190                         of_node_put(nand_np);
1191                         anfc_chips_cleanup(nfc);
1192                         break;
1193                 }
1194         }
1195
1196         return ret;
1197 }
1198
1199 static void anfc_reset(struct arasan_nfc *nfc)
1200 {
1201         /* Disable interrupt signals */
1202         writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1203
1204         /* Enable interrupt status */
1205         writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1206 }
1207
1208 static int anfc_probe(struct platform_device *pdev)
1209 {
1210         struct arasan_nfc *nfc;
1211         int ret;
1212
1213         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1214         if (!nfc)
1215                 return -ENOMEM;
1216
1217         nfc->dev = &pdev->dev;
1218         nand_controller_init(&nfc->controller);
1219         nfc->controller.ops = &anfc_ops;
1220         INIT_LIST_HEAD(&nfc->chips);
1221
1222         nfc->base = devm_platform_ioremap_resource(pdev, 0);
1223         if (IS_ERR(nfc->base))
1224                 return PTR_ERR(nfc->base);
1225
1226         anfc_reset(nfc);
1227
1228         nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1229         if (IS_ERR(nfc->controller_clk))
1230                 return PTR_ERR(nfc->controller_clk);
1231
1232         nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1233         if (IS_ERR(nfc->bus_clk))
1234                 return PTR_ERR(nfc->bus_clk);
1235
1236         ret = clk_prepare_enable(nfc->controller_clk);
1237         if (ret)
1238                 return ret;
1239
1240         ret = clk_prepare_enable(nfc->bus_clk);
1241         if (ret)
1242                 goto disable_controller_clk;
1243
1244         ret = anfc_chips_init(nfc);
1245         if (ret)
1246                 goto disable_bus_clk;
1247
1248         platform_set_drvdata(pdev, nfc);
1249
1250         return 0;
1251
1252 disable_bus_clk:
1253         clk_disable_unprepare(nfc->bus_clk);
1254
1255 disable_controller_clk:
1256         clk_disable_unprepare(nfc->controller_clk);
1257
1258         return ret;
1259 }
1260
1261 static int anfc_remove(struct platform_device *pdev)
1262 {
1263         struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1264
1265         anfc_chips_cleanup(nfc);
1266
1267         clk_disable_unprepare(nfc->bus_clk);
1268         clk_disable_unprepare(nfc->controller_clk);
1269
1270         return 0;
1271 }
1272
1273 static const struct of_device_id anfc_ids[] = {
1274         {
1275                 .compatible = "xlnx,zynqmp-nand-controller",
1276         },
1277         {
1278                 .compatible = "arasan,nfc-v3p10",
1279         },
1280         {}
1281 };
1282 MODULE_DEVICE_TABLE(of, anfc_ids);
1283
1284 static struct platform_driver anfc_driver = {
1285         .driver = {
1286                 .name = "arasan-nand-controller",
1287                 .of_match_table = anfc_ids,
1288         },
1289         .probe = anfc_probe,
1290         .remove = anfc_remove,
1291 };
1292 module_platform_driver(anfc_driver);
1293
1294 MODULE_LICENSE("GPL v2");
1295 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1296 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1297 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1298 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");