mtd: rawnand: Use the new ECC engine type enumeration
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / arasan-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27
28 #define PKT_REG                         0x00
29 #define   PKT_SIZE(x)                   FIELD_PREP(GENMASK(10, 0), (x))
30 #define   PKT_STEPS(x)                  FIELD_PREP(GENMASK(23, 12), (x))
31
32 #define MEM_ADDR1_REG                   0x04
33
34 #define MEM_ADDR2_REG                   0x08
35 #define   ADDR2_STRENGTH(x)             FIELD_PREP(GENMASK(27, 25), (x))
36 #define   ADDR2_CS(x)                   FIELD_PREP(GENMASK(31, 30), (x))
37
38 #define CMD_REG                         0x0C
39 #define   CMD_1(x)                      FIELD_PREP(GENMASK(7, 0), (x))
40 #define   CMD_2(x)                      FIELD_PREP(GENMASK(15, 8), (x))
41 #define   CMD_PAGE_SIZE(x)              FIELD_PREP(GENMASK(25, 23), (x))
42 #define   CMD_DMA_ENABLE                BIT(27)
43 #define   CMD_NADDRS(x)                 FIELD_PREP(GENMASK(30, 28), (x))
44 #define   CMD_ECC_ENABLE                BIT(31)
45
46 #define PROG_REG                        0x10
47 #define   PROG_PGRD                     BIT(0)
48 #define   PROG_ERASE                    BIT(2)
49 #define   PROG_STATUS                   BIT(3)
50 #define   PROG_PGPROG                   BIT(4)
51 #define   PROG_RDID                     BIT(6)
52 #define   PROG_RDPARAM                  BIT(7)
53 #define   PROG_RST                      BIT(8)
54 #define   PROG_GET_FEATURE              BIT(9)
55 #define   PROG_SET_FEATURE              BIT(10)
56
57 #define INTR_STS_EN_REG                 0x14
58 #define INTR_SIG_EN_REG                 0x18
59 #define INTR_STS_REG                    0x1C
60 #define   WRITE_READY                   BIT(0)
61 #define   READ_READY                    BIT(1)
62 #define   XFER_COMPLETE                 BIT(2)
63 #define   DMA_BOUNDARY                  BIT(6)
64 #define   EVENT_MASK                    GENMASK(7, 0)
65
66 #define READY_STS_REG                   0x20
67
68 #define DMA_ADDR0_REG                   0x50
69 #define DMA_ADDR1_REG                   0x24
70
71 #define FLASH_STS_REG                   0x28
72
73 #define DATA_PORT_REG                   0x30
74
75 #define ECC_CONF_REG                    0x34
76 #define   ECC_CONF_COL(x)               FIELD_PREP(GENMASK(15, 0), (x))
77 #define   ECC_CONF_LEN(x)               FIELD_PREP(GENMASK(26, 16), (x))
78 #define   ECC_CONF_BCH_EN               BIT(27)
79
80 #define ECC_ERR_CNT_REG                 0x38
81 #define   GET_PKT_ERR_CNT(x)            FIELD_GET(GENMASK(7, 0), (x))
82 #define   GET_PAGE_ERR_CNT(x)           FIELD_GET(GENMASK(16, 8), (x))
83
84 #define ECC_SP_REG                      0x3C
85 #define   ECC_SP_CMD1(x)                FIELD_PREP(GENMASK(7, 0), (x))
86 #define   ECC_SP_CMD2(x)                FIELD_PREP(GENMASK(15, 8), (x))
87 #define   ECC_SP_ADDRS(x)               FIELD_PREP(GENMASK(30, 28), (x))
88
89 #define ECC_1ERR_CNT_REG                0x40
90 #define ECC_2ERR_CNT_REG                0x44
91
92 #define DATA_INTERFACE_REG              0x6C
93 #define   DIFACE_SDR_MODE(x)            FIELD_PREP(GENMASK(2, 0), (x))
94 #define   DIFACE_DDR_MODE(x)            FIELD_PREP(GENMASK(5, 3), (X))
95 #define   DIFACE_SDR                    0
96 #define   DIFACE_NVDDR                  BIT(9)
97
98 #define ANFC_MAX_CS                     2
99 #define ANFC_DFLT_TIMEOUT_US            1000000
100 #define ANFC_MAX_CHUNK_SIZE             SZ_1M
101 #define ANFC_MAX_PARAM_SIZE             SZ_4K
102 #define ANFC_MAX_STEPS                  SZ_2K
103 #define ANFC_MAX_PKT_SIZE               (SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC               5U
105 #define ANFC_RSVD_ECC_BYTES             21
106
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK     100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK       80000000
109
110 /**
111  * struct anfc_op - Defines how to execute an operation
112  * @pkt_reg: Packet register
113  * @addr1_reg: Memory address 1 register
114  * @addr2_reg: Memory address 2 register
115  * @cmd_reg: Command register
116  * @prog_reg: Program register
117  * @steps: Number of "packets" to read/write
118  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119  * @len: Data transfer length
120  * @read: Data transfer direction from the controller point of view
121  */
122 struct anfc_op {
123         u32 pkt_reg;
124         u32 addr1_reg;
125         u32 addr2_reg;
126         u32 cmd_reg;
127         u32 prog_reg;
128         int steps;
129         unsigned int rdy_timeout_ms;
130         unsigned int len;
131         bool read;
132         u8 *buf;
133 };
134
135 /**
136  * struct anand - Defines the NAND chip related information
137  * @node:               Used to store NAND chips into a list
138  * @chip:               NAND chip information structure
139  * @cs:                 Chip select line
140  * @rb:                 Ready-busy line
141  * @page_sz:            Register value of the page_sz field to use
142  * @clk:                Expected clock frequency to use
143  * @timings:            Data interface timing mode to use
144  * @ecc_conf:           Hardware ECC configuration value
145  * @strength:           Register value of the ECC strength
146  * @raddr_cycles:       Row address cycle information
147  * @caddr_cycles:       Column address cycle information
148  * @ecc_bits:           Exact number of ECC bits per syndrome
149  * @ecc_total:          Total number of ECC bytes
150  * @errloc:             Array of errors located with soft BCH
151  * @hw_ecc:             Buffer to store syndromes computed by hardware
152  * @bch:                BCH structure
153  */
154 struct anand {
155         struct list_head node;
156         struct nand_chip chip;
157         unsigned int cs;
158         unsigned int rb;
159         unsigned int page_sz;
160         unsigned long clk;
161         u32 timings;
162         u32 ecc_conf;
163         u32 strength;
164         u16 raddr_cycles;
165         u16 caddr_cycles;
166         unsigned int ecc_bits;
167         unsigned int ecc_total;
168         unsigned int *errloc;
169         u8 *hw_ecc;
170         struct bch_control *bch;
171 };
172
173 /**
174  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
175  * @dev:                Pointer to the device structure
176  * @base:               Remapped register area
177  * @controller_clk:             Pointer to the system clock
178  * @bus_clk:            Pointer to the flash clock
179  * @controller:         Base controller structure
180  * @chips:              List of all NAND chips attached to the controller
181  * @assigned_cs:        Bitmask describing already assigned CS lines
182  * @cur_clk:            Current clock rate
183  */
184 struct arasan_nfc {
185         struct device *dev;
186         void __iomem *base;
187         struct clk *controller_clk;
188         struct clk *bus_clk;
189         struct nand_controller controller;
190         struct list_head chips;
191         unsigned long assigned_cs;
192         unsigned int cur_clk;
193 };
194
195 static struct anand *to_anand(struct nand_chip *nand)
196 {
197         return container_of(nand, struct anand, chip);
198 }
199
200 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
201 {
202         return container_of(ctrl, struct arasan_nfc, controller);
203 }
204
205 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
206 {
207         u32 val;
208         int ret;
209
210         ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
211                                          val & event, 0,
212                                          ANFC_DFLT_TIMEOUT_US);
213         if (ret) {
214                 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
215                 return -ETIMEDOUT;
216         }
217
218         writel_relaxed(event, nfc->base + INTR_STS_REG);
219
220         return 0;
221 }
222
223 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
224                             unsigned int timeout_ms)
225 {
226         struct anand *anand = to_anand(chip);
227         u32 val;
228         int ret;
229
230         /* There is no R/B interrupt, we must poll a register */
231         ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
232                                          val & BIT(anand->rb),
233                                          1, timeout_ms * 1000);
234         if (ret) {
235                 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
236                         readl_relaxed(nfc->base + READY_STS_REG));
237                 return -ETIMEDOUT;
238         }
239
240         return 0;
241 }
242
243 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
244 {
245         writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
246         writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
247         writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
248         writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
249         writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
250 }
251
252 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
253                                unsigned int *pktsize)
254 {
255         unsigned int nb, sz;
256
257         for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
258                 sz = len / nb;
259                 if (sz <= ANFC_MAX_PKT_SIZE)
260                         break;
261         }
262
263         if (sz * nb != len)
264                 return -ENOTSUPP;
265
266         if (steps)
267                 *steps = nb;
268
269         if (pktsize)
270                 *pktsize = sz;
271
272         return 0;
273 }
274
275 /*
276  * When using the embedded hardware ECC engine, the controller is in charge of
277  * feeding the engine with, first, the ECC residue present in the data array.
278  * A typical read operation is:
279  * 1/ Assert the read operation by sending the relevant command/address cycles
280  *    but targeting the column of the first ECC bytes in the OOB area instead of
281  *    the main data directly.
282  * 2/ After having read the relevant number of ECC bytes, the controller uses
283  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
284  *    Register" to move the pointer back at the beginning of the main data.
285  * 3/ It will read the content of the main area for a given size (pktsize) and
286  *    will feed the ECC engine with this buffer again.
287  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
288  *    with the ones already received. It eventually trigger status flags and
289  *    then set the "Buffer Read Ready" flag.
290  * 5/ The corrected data is then available for reading from the data port
291  *    register.
292  *
293  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
294  * reports uncorrectable errors. Because of this bug, we have to use the
295  * software BCH implementation in the read path.
296  */
297 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
298                                  int oob_required, int page)
299 {
300         struct arasan_nfc *nfc = to_anfc(chip->controller);
301         struct mtd_info *mtd = nand_to_mtd(chip);
302         struct anand *anand = to_anand(chip);
303         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
304         unsigned int max_bitflips = 0;
305         dma_addr_t dma_addr;
306         int step, ret;
307         struct anfc_op nfc_op = {
308                 .pkt_reg =
309                         PKT_SIZE(chip->ecc.size) |
310                         PKT_STEPS(chip->ecc.steps),
311                 .addr1_reg =
312                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
313                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
314                 .addr2_reg =
315                         ((page >> 16) & 0xFF) |
316                         ADDR2_STRENGTH(anand->strength) |
317                         ADDR2_CS(anand->cs),
318                 .cmd_reg =
319                         CMD_1(NAND_CMD_READ0) |
320                         CMD_2(NAND_CMD_READSTART) |
321                         CMD_PAGE_SIZE(anand->page_sz) |
322                         CMD_DMA_ENABLE |
323                         CMD_NADDRS(anand->caddr_cycles +
324                                    anand->raddr_cycles),
325                 .prog_reg = PROG_PGRD,
326         };
327
328         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
329         if (dma_mapping_error(nfc->dev, dma_addr)) {
330                 dev_err(nfc->dev, "Buffer mapping error");
331                 return -EIO;
332         }
333
334         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
335         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
336
337         anfc_trigger_op(nfc, &nfc_op);
338
339         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
340         dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
341         if (ret) {
342                 dev_err(nfc->dev, "Error reading page %d\n", page);
343                 return ret;
344         }
345
346         /* Store the raw OOB bytes as well */
347         ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
348                                          mtd->oobsize, 0);
349         if (ret)
350                 return ret;
351
352         /*
353          * For each step, compute by softare the BCH syndrome over the raw data.
354          * Compare the theoretical amount of errors and compare with the
355          * hardware engine feedback.
356          */
357         for (step = 0; step < chip->ecc.steps; step++) {
358                 u8 *raw_buf = &buf[step * chip->ecc.size];
359                 unsigned int bit, byte;
360                 int bf, i;
361
362                 /* Extract the syndrome, it is not necessarily aligned */
363                 memset(anand->hw_ecc, 0, chip->ecc.bytes);
364                 nand_extract_bits(anand->hw_ecc, 0,
365                                   &chip->oob_poi[mtd->oobsize - anand->ecc_total],
366                                   anand->ecc_bits * step, anand->ecc_bits);
367
368                 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
369                                 anand->hw_ecc, NULL, NULL, anand->errloc);
370                 if (!bf) {
371                         continue;
372                 } else if (bf > 0) {
373                         for (i = 0; i < bf; i++) {
374                                 /* Only correct the data, not the syndrome */
375                                 if (anand->errloc[i] < (chip->ecc.size * 8)) {
376                                         bit = BIT(anand->errloc[i] & 7);
377                                         byte = anand->errloc[i] >> 3;
378                                         raw_buf[byte] ^= bit;
379                                 }
380                         }
381
382                         mtd->ecc_stats.corrected += bf;
383                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
384
385                         continue;
386                 }
387
388                 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
389                                                  NULL, 0, NULL, 0,
390                                                  chip->ecc.strength);
391                 if (bf > 0) {
392                         mtd->ecc_stats.corrected += bf;
393                         max_bitflips = max_t(unsigned int, max_bitflips, bf);
394                         memset(raw_buf, 0xFF, chip->ecc.size);
395                 } else if (bf < 0) {
396                         mtd->ecc_stats.failed++;
397                 }
398         }
399
400         return 0;
401 }
402
403 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
404                                   int oob_required, int page)
405 {
406         struct anand *anand = to_anand(chip);
407         struct arasan_nfc *nfc = to_anfc(chip->controller);
408         struct mtd_info *mtd = nand_to_mtd(chip);
409         unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
410         dma_addr_t dma_addr;
411         int ret;
412         struct anfc_op nfc_op = {
413                 .pkt_reg =
414                         PKT_SIZE(chip->ecc.size) |
415                         PKT_STEPS(chip->ecc.steps),
416                 .addr1_reg =
417                         (page & 0xFF) << (8 * (anand->caddr_cycles)) |
418                         (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
419                 .addr2_reg =
420                         ((page >> 16) & 0xFF) |
421                         ADDR2_STRENGTH(anand->strength) |
422                         ADDR2_CS(anand->cs),
423                 .cmd_reg =
424                         CMD_1(NAND_CMD_SEQIN) |
425                         CMD_2(NAND_CMD_PAGEPROG) |
426                         CMD_PAGE_SIZE(anand->page_sz) |
427                         CMD_DMA_ENABLE |
428                         CMD_NADDRS(anand->caddr_cycles +
429                                    anand->raddr_cycles) |
430                         CMD_ECC_ENABLE,
431                 .prog_reg = PROG_PGPROG,
432         };
433
434         writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
435         writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
436                        ECC_SP_ADDRS(anand->caddr_cycles),
437                        nfc->base + ECC_SP_REG);
438
439         dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
440         if (dma_mapping_error(nfc->dev, dma_addr)) {
441                 dev_err(nfc->dev, "Buffer mapping error");
442                 return -EIO;
443         }
444
445         writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
446         writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
447
448         anfc_trigger_op(nfc, &nfc_op);
449         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
450         dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
451         if (ret) {
452                 dev_err(nfc->dev, "Error writing page %d\n", page);
453                 return ret;
454         }
455
456         /* Spare data is not protected */
457         if (oob_required)
458                 ret = nand_write_oob_std(chip, page);
459
460         return ret;
461 }
462
463 /* NAND framework ->exec_op() hooks and related helpers */
464 static int anfc_parse_instructions(struct nand_chip *chip,
465                                    const struct nand_subop *subop,
466                                    struct anfc_op *nfc_op)
467 {
468         struct anand *anand = to_anand(chip);
469         const struct nand_op_instr *instr = NULL;
470         bool first_cmd = true;
471         unsigned int op_id;
472         int ret, i;
473
474         memset(nfc_op, 0, sizeof(*nfc_op));
475         nfc_op->addr2_reg = ADDR2_CS(anand->cs);
476         nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
477
478         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
479                 unsigned int offset, naddrs, pktsize;
480                 const u8 *addrs;
481                 u8 *buf;
482
483                 instr = &subop->instrs[op_id];
484
485                 switch (instr->type) {
486                 case NAND_OP_CMD_INSTR:
487                         if (first_cmd)
488                                 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
489                         else
490                                 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
491
492                         first_cmd = false;
493                         break;
494
495                 case NAND_OP_ADDR_INSTR:
496                         offset = nand_subop_get_addr_start_off(subop, op_id);
497                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
498                         addrs = &instr->ctx.addr.addrs[offset];
499                         nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
500
501                         for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
502                                 if (i < 4)
503                                         nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
504                                 else
505                                         nfc_op->addr2_reg |= addrs[i];
506                         }
507
508                         break;
509                 case NAND_OP_DATA_IN_INSTR:
510                         nfc_op->read = true;
511                         fallthrough;
512                 case NAND_OP_DATA_OUT_INSTR:
513                         offset = nand_subop_get_data_start_off(subop, op_id);
514                         buf = instr->ctx.data.buf.in;
515                         nfc_op->buf = &buf[offset];
516                         nfc_op->len = nand_subop_get_data_len(subop, op_id);
517                         ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
518                                                   &pktsize);
519                         if (ret)
520                                 return ret;
521
522                         /*
523                          * Number of DATA cycles must be aligned on 4, this
524                          * means the controller might read/write more than
525                          * requested. This is harmless most of the time as extra
526                          * DATA are discarded in the write path and read pointer
527                          * adjusted in the read path.
528                          *
529                          * FIXME: The core should mark operations where
530                          * reading/writing more is allowed so the exec_op()
531                          * implementation can take the right decision when the
532                          * alignment constraint is not met: adjust the number of
533                          * DATA cycles when it's allowed, reject the operation
534                          * otherwise.
535                          */
536                         nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
537                                            PKT_STEPS(nfc_op->steps);
538                         break;
539                 case NAND_OP_WAITRDY_INSTR:
540                         nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
541                         break;
542                 }
543         }
544
545         return 0;
546 }
547
548 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
549 {
550         unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
551         unsigned int last_len = nfc_op->len % 4;
552         unsigned int offset, dir;
553         u8 *buf = nfc_op->buf;
554         int ret, i;
555
556         for (i = 0; i < nfc_op->steps; i++) {
557                 dir = nfc_op->read ? READ_READY : WRITE_READY;
558                 ret = anfc_wait_for_event(nfc, dir);
559                 if (ret) {
560                         dev_err(nfc->dev, "PIO %s ready signal not received\n",
561                                 nfc_op->read ? "Read" : "Write");
562                         return ret;
563                 }
564
565                 offset = i * (dwords * 4);
566                 if (nfc_op->read)
567                         ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
568                                      dwords);
569                 else
570                         iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
571                                       dwords);
572         }
573
574         if (last_len) {
575                 u32 remainder;
576
577                 offset = nfc_op->len - last_len;
578
579                 if (nfc_op->read) {
580                         remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
581                         memcpy(&buf[offset], &remainder, last_len);
582                 } else {
583                         memcpy(&remainder, &buf[offset], last_len);
584                         writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
585                 }
586         }
587
588         return anfc_wait_for_event(nfc, XFER_COMPLETE);
589 }
590
591 static int anfc_misc_data_type_exec(struct nand_chip *chip,
592                                     const struct nand_subop *subop,
593                                     u32 prog_reg)
594 {
595         struct arasan_nfc *nfc = to_anfc(chip->controller);
596         struct anfc_op nfc_op = {};
597         int ret;
598
599         ret = anfc_parse_instructions(chip, subop, &nfc_op);
600         if (ret)
601                 return ret;
602
603         nfc_op.prog_reg = prog_reg;
604         anfc_trigger_op(nfc, &nfc_op);
605
606         if (nfc_op.rdy_timeout_ms) {
607                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
608                 if (ret)
609                         return ret;
610         }
611
612         return anfc_rw_pio_op(nfc, &nfc_op);
613 }
614
615 static int anfc_param_read_type_exec(struct nand_chip *chip,
616                                      const struct nand_subop *subop)
617 {
618         return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
619 }
620
621 static int anfc_data_read_type_exec(struct nand_chip *chip,
622                                     const struct nand_subop *subop)
623 {
624         return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
625 }
626
627 static int anfc_param_write_type_exec(struct nand_chip *chip,
628                                       const struct nand_subop *subop)
629 {
630         return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
631 }
632
633 static int anfc_data_write_type_exec(struct nand_chip *chip,
634                                      const struct nand_subop *subop)
635 {
636         return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
637 }
638
639 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
640                                        const struct nand_subop *subop,
641                                        u32 prog_reg)
642 {
643         struct arasan_nfc *nfc = to_anfc(chip->controller);
644         struct anfc_op nfc_op = {};
645         int ret;
646
647         ret = anfc_parse_instructions(chip, subop, &nfc_op);
648         if (ret)
649                 return ret;
650
651         nfc_op.prog_reg = prog_reg;
652         anfc_trigger_op(nfc, &nfc_op);
653
654         ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
655         if (ret)
656                 return ret;
657
658         if (nfc_op.rdy_timeout_ms)
659                 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
660
661         return ret;
662 }
663
664 static int anfc_status_type_exec(struct nand_chip *chip,
665                                  const struct nand_subop *subop)
666 {
667         struct arasan_nfc *nfc = to_anfc(chip->controller);
668         u32 tmp;
669         int ret;
670
671         /* See anfc_check_op() for details about this constraint */
672         if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
673                 return -ENOTSUPP;
674
675         ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
676         if (ret)
677                 return ret;
678
679         tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
680         memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
681
682         return 0;
683 }
684
685 static int anfc_reset_type_exec(struct nand_chip *chip,
686                                 const struct nand_subop *subop)
687 {
688         return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
689 }
690
691 static int anfc_erase_type_exec(struct nand_chip *chip,
692                                 const struct nand_subop *subop)
693 {
694         return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
695 }
696
697 static int anfc_wait_type_exec(struct nand_chip *chip,
698                                const struct nand_subop *subop)
699 {
700         struct arasan_nfc *nfc = to_anfc(chip->controller);
701         struct anfc_op nfc_op = {};
702         int ret;
703
704         ret = anfc_parse_instructions(chip, subop, &nfc_op);
705         if (ret)
706                 return ret;
707
708         return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
709 }
710
711 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
712         NAND_OP_PARSER_PATTERN(
713                 anfc_param_read_type_exec,
714                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
715                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
716                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
717                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
718         NAND_OP_PARSER_PATTERN(
719                 anfc_param_write_type_exec,
720                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
721                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
722                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
723         NAND_OP_PARSER_PATTERN(
724                 anfc_data_read_type_exec,
725                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
726                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
727                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
728                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
729                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
730         NAND_OP_PARSER_PATTERN(
731                 anfc_data_write_type_exec,
732                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
733                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
734                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
735                 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
736         NAND_OP_PARSER_PATTERN(
737                 anfc_reset_type_exec,
738                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
739                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
740         NAND_OP_PARSER_PATTERN(
741                 anfc_erase_type_exec,
742                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
743                 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
744                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
745                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
746         NAND_OP_PARSER_PATTERN(
747                 anfc_status_type_exec,
748                 NAND_OP_PARSER_PAT_CMD_ELEM(false),
749                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
750         NAND_OP_PARSER_PATTERN(
751                 anfc_wait_type_exec,
752                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
753         );
754
755 static int anfc_select_target(struct nand_chip *chip, int target)
756 {
757         struct anand *anand = to_anand(chip);
758         struct arasan_nfc *nfc = to_anfc(chip->controller);
759         int ret;
760
761         /* Update the controller timings and the potential ECC configuration */
762         writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
763
764         /* Update clock frequency */
765         if (nfc->cur_clk != anand->clk) {
766                 clk_disable_unprepare(nfc->controller_clk);
767                 ret = clk_set_rate(nfc->controller_clk, anand->clk);
768                 if (ret) {
769                         dev_err(nfc->dev, "Failed to change clock rate\n");
770                         return ret;
771                 }
772
773                 ret = clk_prepare_enable(nfc->controller_clk);
774                 if (ret) {
775                         dev_err(nfc->dev,
776                                 "Failed to re-enable the controller clock\n");
777                         return ret;
778                 }
779
780                 nfc->cur_clk = anand->clk;
781         }
782
783         return 0;
784 }
785
786 static int anfc_check_op(struct nand_chip *chip,
787                          const struct nand_operation *op)
788 {
789         const struct nand_op_instr *instr;
790         int op_id;
791
792         /*
793          * The controller abstracts all the NAND operations and do not support
794          * data only operations.
795          *
796          * TODO: The nand_op_parser framework should be extended to
797          * support custom checks on DATA instructions.
798          */
799         for (op_id = 0; op_id < op->ninstrs; op_id++) {
800                 instr = &op->instrs[op_id];
801
802                 switch (instr->type) {
803                 case NAND_OP_ADDR_INSTR:
804                         if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
805                                 return -ENOTSUPP;
806
807                         break;
808                 case NAND_OP_DATA_IN_INSTR:
809                 case NAND_OP_DATA_OUT_INSTR:
810                         if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
811                                 return -ENOTSUPP;
812
813                         if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
814                                 return -ENOTSUPP;
815
816                         break;
817                 default:
818                         break;
819                 }
820         }
821
822         /*
823          * The controller does not allow to proceed with a CMD+DATA_IN cycle
824          * manually on the bus by reading data from the data register. Instead,
825          * the controller abstract a status read operation with its own status
826          * register after ordering a read status operation. Hence, we cannot
827          * support any CMD+DATA_IN operation other than a READ STATUS.
828          *
829          * TODO: The nand_op_parser() framework should be extended to describe
830          * fixed patterns instead of open-coding this check here.
831          */
832         if (op->ninstrs == 2 &&
833             op->instrs[0].type == NAND_OP_CMD_INSTR &&
834             op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
835             op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
836                 return -ENOTSUPP;
837
838         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
839 }
840
841 static int anfc_exec_op(struct nand_chip *chip,
842                         const struct nand_operation *op,
843                         bool check_only)
844 {
845         int ret;
846
847         if (check_only)
848                 return anfc_check_op(chip, op);
849
850         ret = anfc_select_target(chip, op->cs);
851         if (ret)
852                 return ret;
853
854         return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
855 }
856
857 static int anfc_setup_interface(struct nand_chip *chip, int target,
858                                 const struct nand_interface_config *conf)
859 {
860         struct anand *anand = to_anand(chip);
861         struct arasan_nfc *nfc = to_anfc(chip->controller);
862         struct device_node *np = nfc->dev->of_node;
863
864         if (target < 0)
865                 return 0;
866
867         anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode);
868         anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
869
870         /*
871          * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
872          * with f > 90MHz (default clock is 100MHz) but signals are unstable
873          * with higher modes. Hence we decrease a little bit the clock rate to
874          * 80MHz when using modes 2-5 with this SoC.
875          */
876         if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
877             conf->timings.mode >= 2)
878                 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
879
880         return 0;
881 }
882
883 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
884 {
885         unsigned int bch_gf_mag, ecc_bits;
886
887         switch (step_size) {
888         case SZ_512:
889                 bch_gf_mag = 13;
890                 break;
891         case SZ_1K:
892                 bch_gf_mag = 14;
893                 break;
894         default:
895                 return -EINVAL;
896         }
897
898         ecc_bits = bch_gf_mag * strength;
899
900         return DIV_ROUND_UP(ecc_bits, 8);
901 }
902
903 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
904
905 static const int anfc_hw_ecc_1024_strengths[] = {24};
906
907 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
908         {
909                 .stepsize = SZ_512,
910                 .strengths = anfc_hw_ecc_512_strengths,
911                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
912         },
913         {
914                 .stepsize = SZ_1K,
915                 .strengths = anfc_hw_ecc_1024_strengths,
916                 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
917         },
918 };
919
920 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
921         .stepinfos = anfc_hw_ecc_step_infos,
922         .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
923         .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
924 };
925
926 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
927                                        struct nand_chip *chip)
928 {
929         struct anand *anand = to_anand(chip);
930         struct mtd_info *mtd = nand_to_mtd(chip);
931         struct nand_ecc_ctrl *ecc = &chip->ecc;
932         unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
933         int ret;
934
935         switch (mtd->writesize) {
936         case SZ_512:
937         case SZ_2K:
938         case SZ_4K:
939         case SZ_8K:
940         case SZ_16K:
941                 break;
942         default:
943                 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
944                 return -EINVAL;
945         }
946
947         ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
948         if (ret)
949                 return ret;
950
951         switch (ecc->strength) {
952         case 12:
953                 anand->strength = 0x1;
954                 break;
955         case 8:
956                 anand->strength = 0x2;
957                 break;
958         case 4:
959                 anand->strength = 0x3;
960                 break;
961         case 24:
962                 anand->strength = 0x4;
963                 break;
964         default:
965                 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
966                 return -EINVAL;
967         }
968
969         switch (ecc->size) {
970         case SZ_512:
971                 bch_gf_mag = 13;
972                 bch_prim_poly = 0x201b;
973                 break;
974         case SZ_1K:
975                 bch_gf_mag = 14;
976                 bch_prim_poly = 0x4443;
977                 break;
978         default:
979                 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
980                 return -EINVAL;
981         }
982
983         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
984
985         ecc->steps = mtd->writesize / ecc->size;
986         ecc->algo = NAND_ECC_ALGO_BCH;
987         anand->ecc_bits = bch_gf_mag * ecc->strength;
988         ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
989         anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
990         ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
991         anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
992                           ECC_CONF_LEN(anand->ecc_total) |
993                           ECC_CONF_BCH_EN;
994
995         anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
996                                            sizeof(*anand->errloc), GFP_KERNEL);
997         if (!anand->errloc)
998                 return -ENOMEM;
999
1000         anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1001         if (!anand->hw_ecc)
1002                 return -ENOMEM;
1003
1004         /* Enforce bit swapping to fit the hardware */
1005         anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1006         if (!anand->bch)
1007                 return -EINVAL;
1008
1009         ecc->read_page = anfc_read_page_hw_ecc;
1010         ecc->write_page = anfc_write_page_hw_ecc;
1011
1012         return 0;
1013 }
1014
1015 static int anfc_attach_chip(struct nand_chip *chip)
1016 {
1017         struct anand *anand = to_anand(chip);
1018         struct arasan_nfc *nfc = to_anfc(chip->controller);
1019         struct mtd_info *mtd = nand_to_mtd(chip);
1020         int ret = 0;
1021
1022         if (mtd->writesize <= SZ_512)
1023                 anand->caddr_cycles = 1;
1024         else
1025                 anand->caddr_cycles = 2;
1026
1027         if (chip->options & NAND_ROW_ADDR_3)
1028                 anand->raddr_cycles = 3;
1029         else
1030                 anand->raddr_cycles = 2;
1031
1032         switch (mtd->writesize) {
1033         case 512:
1034                 anand->page_sz = 0;
1035                 break;
1036         case 1024:
1037                 anand->page_sz = 5;
1038                 break;
1039         case 2048:
1040                 anand->page_sz = 1;
1041                 break;
1042         case 4096:
1043                 anand->page_sz = 2;
1044                 break;
1045         case 8192:
1046                 anand->page_sz = 3;
1047                 break;
1048         case 16384:
1049                 anand->page_sz = 4;
1050                 break;
1051         default:
1052                 return -EINVAL;
1053         }
1054
1055         /* These hooks are valid for all ECC providers */
1056         chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1057         chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1058
1059         switch (chip->ecc.engine_type) {
1060         case NAND_ECC_ENGINE_TYPE_NONE:
1061         case NAND_ECC_ENGINE_TYPE_SOFT:
1062         case NAND_ECC_ENGINE_TYPE_ON_DIE:
1063                 break;
1064         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1065                 ret = anfc_init_hw_ecc_controller(nfc, chip);
1066                 break;
1067         default:
1068                 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1069                         chip->ecc.engine_type);
1070                 return -EINVAL;
1071         }
1072
1073         return ret;
1074 }
1075
1076 static void anfc_detach_chip(struct nand_chip *chip)
1077 {
1078         struct anand *anand = to_anand(chip);
1079
1080         if (anand->bch)
1081                 bch_free(anand->bch);
1082 }
1083
1084 static const struct nand_controller_ops anfc_ops = {
1085         .exec_op = anfc_exec_op,
1086         .setup_interface = anfc_setup_interface,
1087         .attach_chip = anfc_attach_chip,
1088         .detach_chip = anfc_detach_chip,
1089 };
1090
1091 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1092 {
1093         struct anand *anand;
1094         struct nand_chip *chip;
1095         struct mtd_info *mtd;
1096         int cs, rb, ret;
1097
1098         anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1099         if (!anand)
1100                 return -ENOMEM;
1101
1102         /* We do not support multiple CS per chip yet */
1103         if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1104                 dev_err(nfc->dev, "Invalid reg property\n");
1105                 return -EINVAL;
1106         }
1107
1108         ret = of_property_read_u32(np, "reg", &cs);
1109         if (ret)
1110                 return ret;
1111
1112         ret = of_property_read_u32(np, "nand-rb", &rb);
1113         if (ret)
1114                 return ret;
1115
1116         if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1117                 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1118                 return -EINVAL;
1119         }
1120
1121         if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1122                 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1123                 return -EINVAL;
1124         }
1125
1126         anand->cs = cs;
1127         anand->rb = rb;
1128
1129         chip = &anand->chip;
1130         mtd = nand_to_mtd(chip);
1131         mtd->dev.parent = nfc->dev;
1132         chip->controller = &nfc->controller;
1133         chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1134                         NAND_USES_DMA;
1135
1136         nand_set_flash_node(chip, np);
1137         if (!mtd->name) {
1138                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1139                 return -EINVAL;
1140         }
1141
1142         ret = nand_scan(chip, 1);
1143         if (ret) {
1144                 dev_err(nfc->dev, "Scan operation failed\n");
1145                 return ret;
1146         }
1147
1148         ret = mtd_device_register(mtd, NULL, 0);
1149         if (ret) {
1150                 nand_cleanup(chip);
1151                 return ret;
1152         }
1153
1154         list_add_tail(&anand->node, &nfc->chips);
1155
1156         return 0;
1157 }
1158
1159 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1160 {
1161         struct anand *anand, *tmp;
1162         struct nand_chip *chip;
1163         int ret;
1164
1165         list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1166                 chip = &anand->chip;
1167                 ret = mtd_device_unregister(nand_to_mtd(chip));
1168                 WARN_ON(ret);
1169                 nand_cleanup(chip);
1170                 list_del(&anand->node);
1171         }
1172 }
1173
1174 static int anfc_chips_init(struct arasan_nfc *nfc)
1175 {
1176         struct device_node *np = nfc->dev->of_node, *nand_np;
1177         int nchips = of_get_child_count(np);
1178         int ret;
1179
1180         if (!nchips || nchips > ANFC_MAX_CS) {
1181                 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1182                         nchips);
1183                 return -EINVAL;
1184         }
1185
1186         for_each_child_of_node(np, nand_np) {
1187                 ret = anfc_chip_init(nfc, nand_np);
1188                 if (ret) {
1189                         of_node_put(nand_np);
1190                         anfc_chips_cleanup(nfc);
1191                         break;
1192                 }
1193         }
1194
1195         return ret;
1196 }
1197
1198 static void anfc_reset(struct arasan_nfc *nfc)
1199 {
1200         /* Disable interrupt signals */
1201         writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1202
1203         /* Enable interrupt status */
1204         writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1205 }
1206
1207 static int anfc_probe(struct platform_device *pdev)
1208 {
1209         struct arasan_nfc *nfc;
1210         int ret;
1211
1212         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1213         if (!nfc)
1214                 return -ENOMEM;
1215
1216         nfc->dev = &pdev->dev;
1217         nand_controller_init(&nfc->controller);
1218         nfc->controller.ops = &anfc_ops;
1219         INIT_LIST_HEAD(&nfc->chips);
1220
1221         nfc->base = devm_platform_ioremap_resource(pdev, 0);
1222         if (IS_ERR(nfc->base))
1223                 return PTR_ERR(nfc->base);
1224
1225         anfc_reset(nfc);
1226
1227         nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1228         if (IS_ERR(nfc->controller_clk))
1229                 return PTR_ERR(nfc->controller_clk);
1230
1231         nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1232         if (IS_ERR(nfc->bus_clk))
1233                 return PTR_ERR(nfc->bus_clk);
1234
1235         ret = clk_prepare_enable(nfc->controller_clk);
1236         if (ret)
1237                 return ret;
1238
1239         ret = clk_prepare_enable(nfc->bus_clk);
1240         if (ret)
1241                 goto disable_controller_clk;
1242
1243         ret = anfc_chips_init(nfc);
1244         if (ret)
1245                 goto disable_bus_clk;
1246
1247         platform_set_drvdata(pdev, nfc);
1248
1249         return 0;
1250
1251 disable_bus_clk:
1252         clk_disable_unprepare(nfc->bus_clk);
1253
1254 disable_controller_clk:
1255         clk_disable_unprepare(nfc->controller_clk);
1256
1257         return ret;
1258 }
1259
1260 static int anfc_remove(struct platform_device *pdev)
1261 {
1262         struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1263
1264         anfc_chips_cleanup(nfc);
1265
1266         clk_disable_unprepare(nfc->bus_clk);
1267         clk_disable_unprepare(nfc->controller_clk);
1268
1269         return 0;
1270 }
1271
1272 static const struct of_device_id anfc_ids[] = {
1273         {
1274                 .compatible = "xlnx,zynqmp-nand-controller",
1275         },
1276         {
1277                 .compatible = "arasan,nfc-v3p10",
1278         },
1279         {}
1280 };
1281 MODULE_DEVICE_TABLE(of, anfc_ids);
1282
1283 static struct platform_driver anfc_driver = {
1284         .driver = {
1285                 .name = "arasan-nand-controller",
1286                 .of_match_table = anfc_ids,
1287         },
1288         .probe = anfc_probe,
1289         .remove = anfc_remove,
1290 };
1291 module_platform_driver(anfc_driver);
1292
1293 MODULE_LICENSE("GPL v2");
1294 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1295 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1296 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1297 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");