Merge tag 'nfs-for-5.17-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-microblaze.git] / drivers / mtd / nand / onenand / onenand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *      auto-placement support, read-while load support, various fixes
11  *
12  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *      Flex-OneNAND support
14  *      Amul Kumar Saha <amul.saha at samsung.com>
15  *      OTP support
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29
30 #include <asm/io.h>
31
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
44                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45                                 "DIE_BDRY: SLC boundary of the die"
46                                 "LOCK: Locking information for SLC boundary"
47                                 "    : 0->Set boundary in unlocked status"
48                                 "    : 1->Set boundary in locked status");
49
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
55                         "Syntax : otp=LOCK_TYPE"
56                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57                         "          : 0 -> Default (No Blocks Locked)"
58                         "          : 1 -> OTP Block lock"
59                         "          : 2 -> 1st Block lock"
60                         "          : 3 -> BOTH OTP Block and 1st Block lock");
61
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67                                      struct mtd_oob_region *oobregion)
68 {
69         if (section > 7)
70                 return -ERANGE;
71
72         oobregion->offset = (section * 16) + 6;
73         oobregion->length = 10;
74
75         return 0;
76 }
77
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79                                       struct mtd_oob_region *oobregion)
80 {
81         if (section > 7)
82                 return -ERANGE;
83
84         oobregion->offset = (section * 16) + 2;
85         oobregion->length = 4;
86
87         return 0;
88 }
89
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91         .ecc = flexonenand_ooblayout_ecc,
92         .free = flexonenand_ooblayout_free,
93 };
94
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103                                      struct mtd_oob_region *oobregion)
104 {
105         if (section > 7)
106                 return -ERANGE;
107
108         oobregion->offset = (section * 16) + 7;
109         oobregion->length = 9;
110
111         return 0;
112 }
113
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115                                       struct mtd_oob_region *oobregion)
116 {
117         if (section >= 8)
118                 return -ERANGE;
119
120         /*
121          * free bytes are using the spare area fields marked as
122          * "Managed by internal ECC logic for Logical Sector Number area"
123          */
124         oobregion->offset = (section * 16) + 2;
125         oobregion->length = 3;
126
127         return 0;
128 }
129
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131         .ecc = onenand_ooblayout_128_ecc,
132         .free = onenand_ooblayout_128_free,
133 };
134
135 /*
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139                                        struct mtd_oob_region *oobregion)
140 {
141         if (section > 3)
142                 return -ERANGE;
143
144         oobregion->offset = (section * 16) + 8;
145         oobregion->length = 5;
146
147         return 0;
148 }
149
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151                                         struct mtd_oob_region *oobregion)
152 {
153         int sections = (mtd->oobsize / 32) * 2;
154
155         if (section >= sections)
156                 return -ERANGE;
157
158         if (section & 1) {
159                 oobregion->offset = ((section - 1) * 16) + 14;
160                 oobregion->length = 2;
161         } else  {
162                 oobregion->offset = (section * 16) + 2;
163                 oobregion->length = 3;
164         }
165
166         return 0;
167 }
168
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170         .ecc = onenand_ooblayout_32_64_ecc,
171         .free = onenand_ooblayout_32_64_free,
172 };
173
174 static const unsigned char ffchars[] = {
175         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
191 };
192
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @addr:               address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201         return readw(addr);
202 }
203
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @value:              value to write
207  * @addr:               address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213         writew(value, addr);
214 }
215
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @this:               onenand chip data structure
219  * @block:              the block
220  * @return              translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226         /* Device Flash Core select, NAND Flash Block Address */
227         if (block & this->density_mask)
228                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230         return block;
231 }
232
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @this:               onenand chip data structure
236  * @block:              the block
237  * @return              set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243         /* Device BufferRAM Select */
244         if (block & this->density_mask)
245                 return ONENAND_DDP_CHIP1;
246
247         return ONENAND_DDP_CHIP0;
248 }
249
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @page:               the page address
253  * @sector:     the sector address
254  * @return              combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260         /* Flash Page Address, Flash Sector Address */
261         int fpa, fsa;
262
263         fpa = page & ONENAND_FPA_MASK;
264         fsa = sector & ONENAND_FSA_MASK;
265
266         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @dataram1:   DataRAM index
272  * @sectors:    the sector address
273  * @count:              the number of sectors
274  * Return:              the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280         int bsa, bsc;
281
282         /* BufferRAM Sector Address */
283         bsa = sectors & ONENAND_BSA_MASK;
284
285         if (dataram1)
286                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
287         else
288                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
289
290         /* BufferRAM Sector Count */
291         bsc = count & ONENAND_BSC_MASK;
292
293         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295
296 /**
297  * flexonenand_block- For given address return block number
298  * @this:         - OneNAND device structure
299  * @addr:               - Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303         unsigned boundary, blk, die = 0;
304
305         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306                 die = 1;
307                 addr -= this->diesize[0];
308         }
309
310         boundary = this->boundary[die];
311
312         blk = addr >> (this->erase_shift - 1);
313         if (blk > boundary)
314                 blk = (blk + boundary + 1) >> 1;
315
316         blk += die ? this->density_mask : 0;
317         return blk;
318 }
319
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322         if (!FLEXONENAND(this))
323                 return addr >> this->erase_shift;
324         return flexonenand_block(this, addr);
325 }
326
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:               OneNAND device structure
330  * @block:              Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336         loff_t ofs = 0;
337         int die = 0, boundary;
338
339         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340                 block -= this->density_mask;
341                 die = 1;
342                 ofs = this->diesize[0];
343         }
344
345         boundary = this->boundary[die];
346         ofs += (loff_t)block << (this->erase_shift - 1);
347         if (block > (boundary + 1))
348                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349         return ofs;
350 }
351
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354         if (!FLEXONENAND(this))
355                 return (loff_t)block << this->erase_shift;
356         return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @dev_id:     OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369         return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @mtd:                MTD device structure
375  * @addr:               address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379         int i;
380
381         for (i = 0; i < mtd->numeraseregions; i++)
382                 if (addr < mtd->eraseregions[i].offset)
383                         break;
384         return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @mtd:                MTD device structure
391  * @cmd:                the command to be sent
392  * @addr:               offset to read from or write to
393  * @len:                number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400         struct onenand_chip *this = mtd->priv;
401         int value, block, page;
402
403         /* Address translation */
404         switch (cmd) {
405         case ONENAND_CMD_UNLOCK:
406         case ONENAND_CMD_LOCK:
407         case ONENAND_CMD_LOCK_TIGHT:
408         case ONENAND_CMD_UNLOCK_ALL:
409                 block = -1;
410                 page = -1;
411                 break;
412
413         case FLEXONENAND_CMD_PI_ACCESS:
414                 /* addr contains die index */
415                 block = addr * this->density_mask;
416                 page = -1;
417                 break;
418
419         case ONENAND_CMD_ERASE:
420         case ONENAND_CMD_MULTIBLOCK_ERASE:
421         case ONENAND_CMD_ERASE_VERIFY:
422         case ONENAND_CMD_BUFFERRAM:
423         case ONENAND_CMD_OTP_ACCESS:
424                 block = onenand_block(this, addr);
425                 page = -1;
426                 break;
427
428         case FLEXONENAND_CMD_READ_PI:
429                 cmd = ONENAND_CMD_READ;
430                 block = addr * this->density_mask;
431                 page = 0;
432                 break;
433
434         default:
435                 block = onenand_block(this, addr);
436                 if (FLEXONENAND(this))
437                         page = (int) (addr - onenand_addr(this, block))>>\
438                                 this->page_shift;
439                 else
440                         page = (int) (addr >> this->page_shift);
441                 if (ONENAND_IS_2PLANE(this)) {
442                         /* Make the even block number */
443                         block &= ~1;
444                         /* Is it the odd plane? */
445                         if (addr & this->writesize)
446                                 block++;
447                         page >>= 1;
448                 }
449                 page &= this->page_mask;
450                 break;
451         }
452
453         /* NOTE: The setting order of the registers is very important! */
454         if (cmd == ONENAND_CMD_BUFFERRAM) {
455                 /* Select DataRAM for DDP */
456                 value = onenand_bufferram_address(this, block);
457                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460                         /* It is always BufferRAM0 */
461                         ONENAND_SET_BUFFERRAM0(this);
462                 else
463                         /* Switch to the next data buffer */
464                         ONENAND_SET_NEXT_BUFFERRAM(this);
465
466                 return 0;
467         }
468
469         if (block != -1) {
470                 /* Write 'DFS, FBA' of Flash */
471                 value = onenand_block_address(this, block);
472                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474                 /* Select DataRAM for DDP */
475                 value = onenand_bufferram_address(this, block);
476                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477         }
478
479         if (page != -1) {
480                 /* Now we use page size operation */
481                 int sectors = 0, count = 0;
482                 int dataram;
483
484                 switch (cmd) {
485                 case FLEXONENAND_CMD_RECOVER_LSB:
486                 case ONENAND_CMD_READ:
487                 case ONENAND_CMD_READOOB:
488                         if (ONENAND_IS_4KB_PAGE(this))
489                                 /* It is always BufferRAM0 */
490                                 dataram = ONENAND_SET_BUFFERRAM0(this);
491                         else
492                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493                         break;
494
495                 default:
496                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497                                 cmd = ONENAND_CMD_2X_PROG;
498                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
499                         break;
500                 }
501
502                 /* Write 'FPA, FSA' of Flash */
503                 value = onenand_page_address(page, sectors);
504                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506                 /* Write 'BSA, BSC' of DataRAM */
507                 value = onenand_buffer_address(dataram, sectors, count);
508                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509         }
510
511         /* Interrupt clear */
512         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514         /* Write command */
515         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517         return 0;
518 }
519
520 /**
521  * onenand_read_ecc - return ecc status
522  * @this:               onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526         int ecc, i, result = 0;
527
528         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531         for (i = 0; i < 4; i++) {
532                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533                 if (likely(!ecc))
534                         continue;
535                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536                         return ONENAND_ECC_2BIT_ALL;
537                 else
538                         result = ONENAND_ECC_1BIT_ALL;
539         }
540
541         return result;
542 }
543
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @mtd:                MTD device structure
547  * @state:              state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555         struct onenand_chip * this = mtd->priv;
556         unsigned long timeout;
557         unsigned int flags = ONENAND_INT_MASTER;
558         unsigned int interrupt = 0;
559         unsigned int ctrl;
560
561         /* The 20 msec is enough */
562         timeout = jiffies + msecs_to_jiffies(20);
563         while (time_before(jiffies, timeout)) {
564                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566                 if (interrupt & flags)
567                         break;
568
569                 if (state != FL_READING && state != FL_PREPARING_ERASE)
570                         cond_resched();
571         }
572         /* To get correct interrupt status in timeout case */
573         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577         /*
578          * In the Spec. it checks the controller status first
579          * However if you get the correct information in case of
580          * power off recovery (POR) test, it should read ECC status first
581          */
582         if (interrupt & ONENAND_INT_READ) {
583                 int ecc = onenand_read_ecc(this);
584                 if (ecc) {
585                         if (ecc & ONENAND_ECC_2BIT_ALL) {
586                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587                                         __func__, ecc);
588                                 mtd->ecc_stats.failed++;
589                                 return -EBADMSG;
590                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
591                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592                                         __func__, ecc);
593                                 mtd->ecc_stats.corrected++;
594                         }
595                 }
596         } else if (state == FL_READING) {
597                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598                         __func__, ctrl, interrupt);
599                 return -EIO;
600         }
601
602         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604                        __func__, ctrl, interrupt);
605                 return -EIO;
606         }
607
608         if (!(interrupt & ONENAND_INT_MASTER)) {
609                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610                        __func__, ctrl, interrupt);
611                 return -EIO;
612         }
613
614         /* If there's controller error, it's a real error */
615         if (ctrl & ONENAND_CTRL_ERROR) {
616                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
617                         __func__, ctrl);
618                 if (ctrl & ONENAND_CTRL_LOCK)
619                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
620                 return -EIO;
621         }
622
623         return 0;
624 }
625
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @irq:                onenand interrupt number
629  * @dev_id:     interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635         struct onenand_chip *this = data;
636
637         /* To handle shared interrupt */
638         if (!this->complete.done)
639                 complete(&this->complete);
640
641         return IRQ_HANDLED;
642 }
643
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @mtd:                MTD device structure
647  * @state:              state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653         struct onenand_chip *this = mtd->priv;
654
655         wait_for_completion(&this->complete);
656
657         return onenand_wait(mtd, state);
658 }
659
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @mtd:                MTD device structure
663  * @state:              state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669         struct onenand_chip *this = mtd->priv;
670         unsigned long remain, timeout;
671
672         /* We use interrupt wait first */
673         this->wait = onenand_interrupt_wait;
674
675         timeout = msecs_to_jiffies(100);
676         remain = wait_for_completion_timeout(&this->complete, timeout);
677         if (!remain) {
678                 printk(KERN_INFO "OneNAND: There's no interrupt. "
679                                 "We use the normal wait\n");
680
681                 /* Release the irq */
682                 free_irq(this->irq, this);
683
684                 this->wait = onenand_wait;
685         }
686
687         return onenand_wait(mtd, state);
688 }
689
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @mtd:                MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700         struct onenand_chip *this = mtd->priv;
701         int syscfg;
702
703         init_completion(&this->complete);
704
705         if (this->irq <= 0) {
706                 this->wait = onenand_wait;
707                 return;
708         }
709
710         if (request_irq(this->irq, &onenand_interrupt,
711                                 IRQF_SHARED, "onenand", this)) {
712                 /* If we can't get irq, use the normal wait */
713                 this->wait = onenand_wait;
714                 return;
715         }
716
717         /* Enable interrupt */
718         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719         syscfg |= ONENAND_SYS_CFG1_IOBE;
720         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722         this->wait = onenand_try_interrupt_wait;
723 }
724
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @mtd:                MTD data structure
728  * @area:               BufferRAM area
729  * @return              offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735         struct onenand_chip *this = mtd->priv;
736
737         if (ONENAND_CURRENT_BUFFERRAM(this)) {
738                 /* Note: the 'this->writesize' is a real page size */
739                 if (area == ONENAND_DATARAM)
740                         return this->writesize;
741                 if (area == ONENAND_SPARERAM)
742                         return mtd->oobsize;
743         }
744
745         return 0;
746 }
747
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @mtd:                MTD data structure
751  * @area:               BufferRAM area
752  * @buffer:     the databuffer to put/get data
753  * @offset:     offset to read from or write to
754  * @count:              number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759                 unsigned char *buffer, int offset, size_t count)
760 {
761         struct onenand_chip *this = mtd->priv;
762         void __iomem *bufferram;
763
764         bufferram = this->base + area;
765
766         bufferram += onenand_bufferram_offset(mtd, area);
767
768         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769                 unsigned short word;
770
771                 /* Align with word(16-bit) size */
772                 count--;
773
774                 /* Read word and save byte */
775                 word = this->read_word(bufferram + offset + count);
776                 buffer[count] = (word & 0xff);
777         }
778
779         memcpy(buffer, bufferram + offset, count);
780
781         return 0;
782 }
783
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @mtd:                MTD data structure
787  * @area:               BufferRAM area
788  * @buffer:     the databuffer to put/get data
789  * @offset:     offset to read from or write to
790  * @count:              number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795                 unsigned char *buffer, int offset, size_t count)
796 {
797         struct onenand_chip *this = mtd->priv;
798         void __iomem *bufferram;
799
800         bufferram = this->base + area;
801
802         bufferram += onenand_bufferram_offset(mtd, area);
803
804         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807                 unsigned short word;
808
809                 /* Align with word(16-bit) size */
810                 count--;
811
812                 /* Read word and save byte */
813                 word = this->read_word(bufferram + offset + count);
814                 buffer[count] = (word & 0xff);
815         }
816
817         memcpy(buffer, bufferram + offset, count);
818
819         this->mmcontrol(mtd, 0);
820
821         return 0;
822 }
823
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @mtd:                MTD data structure
827  * @area:               BufferRAM area
828  * @buffer:     the databuffer to put/get data
829  * @offset:     offset to read from or write to
830  * @count:              number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835                 const unsigned char *buffer, int offset, size_t count)
836 {
837         struct onenand_chip *this = mtd->priv;
838         void __iomem *bufferram;
839
840         bufferram = this->base + area;
841
842         bufferram += onenand_bufferram_offset(mtd, area);
843
844         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845                 unsigned short word;
846                 int byte_offset;
847
848                 /* Align with word(16-bit) size */
849                 count--;
850
851                 /* Calculate byte access offset */
852                 byte_offset = offset + count;
853
854                 /* Read word and save byte */
855                 word = this->read_word(bufferram + byte_offset);
856                 word = (word & ~0xff) | buffer[count];
857                 this->write_word(word, bufferram + byte_offset);
858         }
859
860         memcpy(bufferram + offset, buffer, count);
861
862         return 0;
863 }
864
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @mtd:                MTD data structure
868  * @addr:               address to check
869  * @return              blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875         struct onenand_chip *this = mtd->priv;
876         int blockpage, block, page;
877
878         /* Calculate the even block number */
879         block = (int) (addr >> this->erase_shift) & ~1;
880         /* Is it the odd plane? */
881         if (addr & this->writesize)
882                 block++;
883         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884         blockpage = (block << 7) | page;
885
886         return blockpage;
887 }
888
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @mtd:                MTD data structure
892  * @addr:               address to check
893  * @return              1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899         struct onenand_chip *this = mtd->priv;
900         int blockpage, found = 0;
901         unsigned int i;
902
903         if (ONENAND_IS_2PLANE(this))
904                 blockpage = onenand_get_2x_blockpage(mtd, addr);
905         else
906                 blockpage = (int) (addr >> this->page_shift);
907
908         /* Is there valid data? */
909         i = ONENAND_CURRENT_BUFFERRAM(this);
910         if (this->bufferram[i].blockpage == blockpage)
911                 found = 1;
912         else {
913                 /* Check another BufferRAM */
914                 i = ONENAND_NEXT_BUFFERRAM(this);
915                 if (this->bufferram[i].blockpage == blockpage) {
916                         ONENAND_SET_NEXT_BUFFERRAM(this);
917                         found = 1;
918                 }
919         }
920
921         if (found && ONENAND_IS_DDP(this)) {
922                 /* Select DataRAM for DDP */
923                 int block = onenand_block(this, addr);
924                 int value = onenand_bufferram_address(this, block);
925                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926         }
927
928         return found;
929 }
930
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @mtd:                MTD data structure
934  * @addr:               address to update
935  * @valid:              valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940                 int valid)
941 {
942         struct onenand_chip *this = mtd->priv;
943         int blockpage;
944         unsigned int i;
945
946         if (ONENAND_IS_2PLANE(this))
947                 blockpage = onenand_get_2x_blockpage(mtd, addr);
948         else
949                 blockpage = (int) (addr >> this->page_shift);
950
951         /* Invalidate another BufferRAM */
952         i = ONENAND_NEXT_BUFFERRAM(this);
953         if (this->bufferram[i].blockpage == blockpage)
954                 this->bufferram[i].blockpage = -1;
955
956         /* Update BufferRAM */
957         i = ONENAND_CURRENT_BUFFERRAM(this);
958         if (valid)
959                 this->bufferram[i].blockpage = blockpage;
960         else
961                 this->bufferram[i].blockpage = -1;
962 }
963
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @mtd:                MTD data structure
967  * @addr:               start address to invalidate
968  * @len:                length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973                 unsigned int len)
974 {
975         struct onenand_chip *this = mtd->priv;
976         int i;
977         loff_t end_addr = addr + len;
978
979         /* Invalidate BufferRAM */
980         for (i = 0; i < MAX_BUFFERRAM; i++) {
981                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982                 if (buf_addr >= addr && buf_addr < end_addr)
983                         this->bufferram[i].blockpage = -1;
984         }
985 }
986
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @mtd:                MTD device structure
990  * @new_state:  the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996         struct onenand_chip *this = mtd->priv;
997         DECLARE_WAITQUEUE(wait, current);
998
999         /*
1000          * Grab the lock and see if the device is available
1001          */
1002         while (1) {
1003                 spin_lock(&this->chip_lock);
1004                 if (this->state == FL_READY) {
1005                         this->state = new_state;
1006                         spin_unlock(&this->chip_lock);
1007                         if (new_state != FL_PM_SUSPENDED && this->enable)
1008                                 this->enable(mtd);
1009                         break;
1010                 }
1011                 if (new_state == FL_PM_SUSPENDED) {
1012                         spin_unlock(&this->chip_lock);
1013                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014                 }
1015                 set_current_state(TASK_UNINTERRUPTIBLE);
1016                 add_wait_queue(&this->wq, &wait);
1017                 spin_unlock(&this->chip_lock);
1018                 schedule();
1019                 remove_wait_queue(&this->wq, &wait);
1020         }
1021
1022         return 0;
1023 }
1024
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @mtd:                MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033         struct onenand_chip *this = mtd->priv;
1034
1035         if (this->state != FL_PM_SUSPENDED && this->disable)
1036                 this->disable(mtd);
1037         /* Release the chip */
1038         spin_lock(&this->chip_lock);
1039         this->state = FL_READY;
1040         wake_up(&this->wq);
1041         spin_unlock(&this->chip_lock);
1042 }
1043
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @mtd:                MTD device structure
1047  * @buf:                destination address
1048  * @column:     oob offset to read from
1049  * @thislen:    oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052                                 int thislen)
1053 {
1054         struct onenand_chip *this = mtd->priv;
1055
1056         this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057                              mtd->oobsize);
1058         return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059                                            column, thislen);
1060 }
1061
1062 /**
1063  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064  * @mtd:                MTD device structure
1065  * @addr:               address to recover
1066  * @status:     return value from onenand_wait / onenand_bbt_wait
1067  *
1068  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069  * lower page address and MSB page has higher page address in paired pages.
1070  * If power off occurs during MSB page program, the paired LSB page data can
1071  * become corrupt. LSB page recovery read is a way to read LSB page though page
1072  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073  * read after power up, issue LSB page recovery read.
1074  */
1075 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076 {
1077         struct onenand_chip *this = mtd->priv;
1078         int i;
1079
1080         /* Recovery is only for Flex-OneNAND */
1081         if (!FLEXONENAND(this))
1082                 return status;
1083
1084         /* check if we failed due to uncorrectable error */
1085         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086                 return status;
1087
1088         /* check if address lies in MLC region */
1089         i = flexonenand_region(mtd, addr);
1090         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091                 return status;
1092
1093         /* We are attempting to reread, so decrement stats.failed
1094          * which was incremented by onenand_wait due to read failure
1095          */
1096         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097                 __func__);
1098         mtd->ecc_stats.failed--;
1099
1100         /* Issue the LSB page recovery command */
1101         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102         return this->wait(mtd, FL_READING);
1103 }
1104
1105 /**
1106  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107  * @mtd:                MTD device structure
1108  * @from:               offset to read from
1109  * @ops:                oob operation description structure
1110  *
1111  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112  * So, read-while-load is not present.
1113  */
1114 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115                                 struct mtd_oob_ops *ops)
1116 {
1117         struct onenand_chip *this = mtd->priv;
1118         struct mtd_ecc_stats stats;
1119         size_t len = ops->len;
1120         size_t ooblen = ops->ooblen;
1121         u_char *buf = ops->datbuf;
1122         u_char *oobbuf = ops->oobbuf;
1123         int read = 0, column, thislen;
1124         int oobread = 0, oobcolumn, thisooblen, oobsize;
1125         int ret = 0;
1126         int writesize = this->writesize;
1127
1128         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129                         (int)len);
1130
1131         oobsize = mtd_oobavail(mtd, ops);
1132         oobcolumn = from & (mtd->oobsize - 1);
1133
1134         /* Do not allow reads past end of device */
1135         if (from + len > mtd->size) {
1136                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137                         __func__);
1138                 ops->retlen = 0;
1139                 ops->oobretlen = 0;
1140                 return -EINVAL;
1141         }
1142
1143         stats = mtd->ecc_stats;
1144
1145         while (read < len) {
1146                 cond_resched();
1147
1148                 thislen = min_t(int, writesize, len - read);
1149
1150                 column = from & (writesize - 1);
1151                 if (column + thislen > writesize)
1152                         thislen = writesize - column;
1153
1154                 if (!onenand_check_bufferram(mtd, from)) {
1155                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157                         ret = this->wait(mtd, FL_READING);
1158                         if (unlikely(ret))
1159                                 ret = onenand_recover_lsb(mtd, from, ret);
1160                         onenand_update_bufferram(mtd, from, !ret);
1161                         if (mtd_is_eccerr(ret))
1162                                 ret = 0;
1163                         if (ret)
1164                                 break;
1165                 }
1166
1167                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168                 if (oobbuf) {
1169                         thisooblen = oobsize - oobcolumn;
1170                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172                         if (ops->mode == MTD_OPS_AUTO_OOB)
1173                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174                         else
1175                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176                         oobread += thisooblen;
1177                         oobbuf += thisooblen;
1178                         oobcolumn = 0;
1179                 }
1180
1181                 read += thislen;
1182                 if (read == len)
1183                         break;
1184
1185                 from += thislen;
1186                 buf += thislen;
1187         }
1188
1189         /*
1190          * Return success, if no ECC failures, else -EBADMSG
1191          * fs driver will take care of that, because
1192          * retlen == desired len and result == -EBADMSG
1193          */
1194         ops->retlen = read;
1195         ops->oobretlen = oobread;
1196
1197         if (ret)
1198                 return ret;
1199
1200         if (mtd->ecc_stats.failed - stats.failed)
1201                 return -EBADMSG;
1202
1203         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206
1207 /**
1208  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209  * @mtd:                MTD device structure
1210  * @from:               offset to read from
1211  * @ops:                oob operation description structure
1212  *
1213  * OneNAND read main and/or out-of-band data
1214  */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216                                 struct mtd_oob_ops *ops)
1217 {
1218         struct onenand_chip *this = mtd->priv;
1219         struct mtd_ecc_stats stats;
1220         size_t len = ops->len;
1221         size_t ooblen = ops->ooblen;
1222         u_char *buf = ops->datbuf;
1223         u_char *oobbuf = ops->oobbuf;
1224         int read = 0, column, thislen;
1225         int oobread = 0, oobcolumn, thisooblen, oobsize;
1226         int ret = 0, boundary = 0;
1227         int writesize = this->writesize;
1228
1229         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230                         (int)len);
1231
1232         oobsize = mtd_oobavail(mtd, ops);
1233         oobcolumn = from & (mtd->oobsize - 1);
1234
1235         /* Do not allow reads past end of device */
1236         if ((from + len) > mtd->size) {
1237                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238                         __func__);
1239                 ops->retlen = 0;
1240                 ops->oobretlen = 0;
1241                 return -EINVAL;
1242         }
1243
1244         stats = mtd->ecc_stats;
1245
1246         /* Read-while-load method */
1247
1248         /* Do first load to bufferRAM */
1249         if (read < len) {
1250                 if (!onenand_check_bufferram(mtd, from)) {
1251                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252                         ret = this->wait(mtd, FL_READING);
1253                         onenand_update_bufferram(mtd, from, !ret);
1254                         if (mtd_is_eccerr(ret))
1255                                 ret = 0;
1256                 }
1257         }
1258
1259         thislen = min_t(int, writesize, len - read);
1260         column = from & (writesize - 1);
1261         if (column + thislen > writesize)
1262                 thislen = writesize - column;
1263
1264         while (!ret) {
1265                 /* If there is more to load then start next load */
1266                 from += thislen;
1267                 if (read + thislen < len) {
1268                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269                         /*
1270                          * Chip boundary handling in DDP
1271                          * Now we issued chip 1 read and pointed chip 1
1272                          * bufferram so we have to point chip 0 bufferram.
1273                          */
1274                         if (ONENAND_IS_DDP(this) &&
1275                             unlikely(from == (this->chipsize >> 1))) {
1276                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277                                 boundary = 1;
1278                         } else
1279                                 boundary = 0;
1280                         ONENAND_SET_PREV_BUFFERRAM(this);
1281                 }
1282                 /* While load is going, read from last bufferRAM */
1283                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285                 /* Read oob area if needed */
1286                 if (oobbuf) {
1287                         thisooblen = oobsize - oobcolumn;
1288                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290                         if (ops->mode == MTD_OPS_AUTO_OOB)
1291                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292                         else
1293                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294                         oobread += thisooblen;
1295                         oobbuf += thisooblen;
1296                         oobcolumn = 0;
1297                 }
1298
1299                 /* See if we are done */
1300                 read += thislen;
1301                 if (read == len)
1302                         break;
1303                 /* Set up for next read from bufferRAM */
1304                 if (unlikely(boundary))
1305                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306                 ONENAND_SET_NEXT_BUFFERRAM(this);
1307                 buf += thislen;
1308                 thislen = min_t(int, writesize, len - read);
1309                 column = 0;
1310                 cond_resched();
1311                 /* Now wait for load */
1312                 ret = this->wait(mtd, FL_READING);
1313                 onenand_update_bufferram(mtd, from, !ret);
1314                 if (mtd_is_eccerr(ret))
1315                         ret = 0;
1316         }
1317
1318         /*
1319          * Return success, if no ECC failures, else -EBADMSG
1320          * fs driver will take care of that, because
1321          * retlen == desired len and result == -EBADMSG
1322          */
1323         ops->retlen = read;
1324         ops->oobretlen = oobread;
1325
1326         if (ret)
1327                 return ret;
1328
1329         if (mtd->ecc_stats.failed - stats.failed)
1330                 return -EBADMSG;
1331
1332         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334 }
1335
1336 /**
1337  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338  * @mtd:                MTD device structure
1339  * @from:               offset to read from
1340  * @ops:                oob operation description structure
1341  *
1342  * OneNAND read out-of-band data from the spare area
1343  */
1344 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345                         struct mtd_oob_ops *ops)
1346 {
1347         struct onenand_chip *this = mtd->priv;
1348         struct mtd_ecc_stats stats;
1349         int read = 0, thislen, column, oobsize;
1350         size_t len = ops->ooblen;
1351         unsigned int mode = ops->mode;
1352         u_char *buf = ops->oobbuf;
1353         int ret = 0, readcmd;
1354
1355         from += ops->ooboffs;
1356
1357         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358                         (int)len);
1359
1360         /* Initialize return length value */
1361         ops->oobretlen = 0;
1362
1363         if (mode == MTD_OPS_AUTO_OOB)
1364                 oobsize = mtd->oobavail;
1365         else
1366                 oobsize = mtd->oobsize;
1367
1368         column = from & (mtd->oobsize - 1);
1369
1370         if (unlikely(column >= oobsize)) {
1371                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372                         __func__);
1373                 return -EINVAL;
1374         }
1375
1376         stats = mtd->ecc_stats;
1377
1378         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380         while (read < len) {
1381                 cond_resched();
1382
1383                 thislen = oobsize - column;
1384                 thislen = min_t(int, thislen, len);
1385
1386                 this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388                 onenand_update_bufferram(mtd, from, 0);
1389
1390                 ret = this->wait(mtd, FL_READING);
1391                 if (unlikely(ret))
1392                         ret = onenand_recover_lsb(mtd, from, ret);
1393
1394                 if (ret && !mtd_is_eccerr(ret)) {
1395                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1396                                 __func__, ret);
1397                         break;
1398                 }
1399
1400                 if (mode == MTD_OPS_AUTO_OOB)
1401                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402                 else
1403                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405                 read += thislen;
1406
1407                 if (read == len)
1408                         break;
1409
1410                 buf += thislen;
1411
1412                 /* Read more? */
1413                 if (read < len) {
1414                         /* Page size */
1415                         from += mtd->writesize;
1416                         column = 0;
1417                 }
1418         }
1419
1420         ops->oobretlen = read;
1421
1422         if (ret)
1423                 return ret;
1424
1425         if (mtd->ecc_stats.failed - stats.failed)
1426                 return -EBADMSG;
1427
1428         return 0;
1429 }
1430
1431 /**
1432  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433  * @mtd:                MTD device structure
1434  * @from:               offset to read from
1435  * @ops:                oob operation description structure
1436  *
1437  * Read main and/or out-of-band
1438  */
1439 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440                             struct mtd_oob_ops *ops)
1441 {
1442         struct onenand_chip *this = mtd->priv;
1443         int ret;
1444
1445         switch (ops->mode) {
1446         case MTD_OPS_PLACE_OOB:
1447         case MTD_OPS_AUTO_OOB:
1448                 break;
1449         case MTD_OPS_RAW:
1450                 /* Not implemented yet */
1451         default:
1452                 return -EINVAL;
1453         }
1454
1455         onenand_get_device(mtd, FL_READING);
1456         if (ops->datbuf)
1457                 ret = ONENAND_IS_4KB_PAGE(this) ?
1458                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459                         onenand_read_ops_nolock(mtd, from, ops);
1460         else
1461                 ret = onenand_read_oob_nolock(mtd, from, ops);
1462         onenand_release_device(mtd);
1463
1464         return ret;
1465 }
1466
1467 /**
1468  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469  * @mtd:                MTD device structure
1470  * @state:              state to select the max. timeout value
1471  *
1472  * Wait for command done.
1473  */
1474 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475 {
1476         struct onenand_chip *this = mtd->priv;
1477         unsigned long timeout;
1478         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479
1480         /* The 20 msec is enough */
1481         timeout = jiffies + msecs_to_jiffies(20);
1482         while (time_before(jiffies, timeout)) {
1483                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484                 if (interrupt & ONENAND_INT_MASTER)
1485                         break;
1486         }
1487         /* To get correct interrupt status in timeout case */
1488         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492
1493         if (interrupt & ONENAND_INT_READ) {
1494                 ecc = onenand_read_ecc(this);
1495                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1496                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1498                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1499                         return ONENAND_BBT_READ_ECC_ERROR;
1500                 }
1501         } else {
1502                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1504                        __func__, ctrl, interrupt, addr1, addr8);
1505                 return ONENAND_BBT_READ_FATAL_ERROR;
1506         }
1507
1508         /* Initial bad block case: 0x2400 or 0x0400 */
1509         if (ctrl & ONENAND_CTRL_ERROR) {
1510                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512                 return ONENAND_BBT_READ_ERROR;
1513         }
1514
1515         return 0;
1516 }
1517
1518 /**
1519  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520  * @mtd:                MTD device structure
1521  * @from:               offset to read from
1522  * @ops:                oob operation description structure
1523  *
1524  * OneNAND read out-of-band data from the spare area for bbt scan
1525  */
1526 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1527                             struct mtd_oob_ops *ops)
1528 {
1529         struct onenand_chip *this = mtd->priv;
1530         int read = 0, thislen, column;
1531         int ret = 0, readcmd;
1532         size_t len = ops->ooblen;
1533         u_char *buf = ops->oobbuf;
1534
1535         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536                         len);
1537
1538         /* Initialize return value */
1539         ops->oobretlen = 0;
1540
1541         /* Do not allow reads past end of device */
1542         if (unlikely((from + len) > mtd->size)) {
1543                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544                         __func__);
1545                 return ONENAND_BBT_READ_FATAL_ERROR;
1546         }
1547
1548         /* Grab the lock and see if the device is available */
1549         onenand_get_device(mtd, FL_READING);
1550
1551         column = from & (mtd->oobsize - 1);
1552
1553         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554
1555         while (read < len) {
1556                 cond_resched();
1557
1558                 thislen = mtd->oobsize - column;
1559                 thislen = min_t(int, thislen, len);
1560
1561                 this->command(mtd, readcmd, from, mtd->oobsize);
1562
1563                 onenand_update_bufferram(mtd, from, 0);
1564
1565                 ret = this->bbt_wait(mtd, FL_READING);
1566                 if (unlikely(ret))
1567                         ret = onenand_recover_lsb(mtd, from, ret);
1568
1569                 if (ret)
1570                         break;
1571
1572                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573                 read += thislen;
1574                 if (read == len)
1575                         break;
1576
1577                 buf += thislen;
1578
1579                 /* Read more? */
1580                 if (read < len) {
1581                         /* Update Page size */
1582                         from += this->writesize;
1583                         column = 0;
1584                 }
1585         }
1586
1587         /* Deselect and wake up anyone waiting on the device */
1588         onenand_release_device(mtd);
1589
1590         ops->oobretlen = read;
1591         return ret;
1592 }
1593
1594 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595 /**
1596  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597  * @mtd:                MTD device structure
1598  * @buf:                the databuffer to verify
1599  * @to:         offset to read from
1600  */
1601 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602 {
1603         struct onenand_chip *this = mtd->priv;
1604         u_char *oob_buf = this->oob_buf;
1605         int status, i, readcmd;
1606
1607         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608
1609         this->command(mtd, readcmd, to, mtd->oobsize);
1610         onenand_update_bufferram(mtd, to, 0);
1611         status = this->wait(mtd, FL_READING);
1612         if (status)
1613                 return status;
1614
1615         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616         for (i = 0; i < mtd->oobsize; i++)
1617                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618                         return -EBADMSG;
1619
1620         return 0;
1621 }
1622
1623 /**
1624  * onenand_verify - [GENERIC] verify the chip contents after a write
1625  * @mtd:          MTD device structure
1626  * @buf:          the databuffer to verify
1627  * @addr:         offset to read from
1628  * @len:          number of bytes to read and compare
1629  */
1630 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631 {
1632         struct onenand_chip *this = mtd->priv;
1633         int ret = 0;
1634         int thislen, column;
1635
1636         column = addr & (this->writesize - 1);
1637
1638         while (len != 0) {
1639                 thislen = min_t(int, this->writesize - column, len);
1640
1641                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642
1643                 onenand_update_bufferram(mtd, addr, 0);
1644
1645                 ret = this->wait(mtd, FL_READING);
1646                 if (ret)
1647                         return ret;
1648
1649                 onenand_update_bufferram(mtd, addr, 1);
1650
1651                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652
1653                 if (memcmp(buf, this->verify_buf + column, thislen))
1654                         return -EBADMSG;
1655
1656                 len -= thislen;
1657                 buf += thislen;
1658                 addr += thislen;
1659                 column = 0;
1660         }
1661
1662         return 0;
1663 }
1664 #else
1665 #define onenand_verify(...)             (0)
1666 #define onenand_verify_oob(...)         (0)
1667 #endif
1668
1669 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1670
1671 static void onenand_panic_wait(struct mtd_info *mtd)
1672 {
1673         struct onenand_chip *this = mtd->priv;
1674         unsigned int interrupt;
1675         int i;
1676         
1677         for (i = 0; i < 2000; i++) {
1678                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679                 if (interrupt & ONENAND_INT_MASTER)
1680                         break;
1681                 udelay(10);
1682         }
1683 }
1684
1685 /**
1686  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687  * @mtd:                MTD device structure
1688  * @to:         offset to write to
1689  * @len:                number of bytes to write
1690  * @retlen:     pointer to variable to store the number of written bytes
1691  * @buf:                the data to write
1692  *
1693  * Write with ECC
1694  */
1695 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696                          size_t *retlen, const u_char *buf)
1697 {
1698         struct onenand_chip *this = mtd->priv;
1699         int column, subpage;
1700         int written = 0;
1701
1702         if (this->state == FL_PM_SUSPENDED)
1703                 return -EBUSY;
1704
1705         /* Wait for any existing operation to clear */
1706         onenand_panic_wait(mtd);
1707
1708         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709                         (int)len);
1710
1711         /* Reject writes, which are not page aligned */
1712         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714                         __func__);
1715                 return -EINVAL;
1716         }
1717
1718         column = to & (mtd->writesize - 1);
1719
1720         /* Loop until all data write */
1721         while (written < len) {
1722                 int thislen = min_t(int, mtd->writesize - column, len - written);
1723                 u_char *wbuf = (u_char *) buf;
1724
1725                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726
1727                 /* Partial page write */
1728                 subpage = thislen < mtd->writesize;
1729                 if (subpage) {
1730                         memset(this->page_buf, 0xff, mtd->writesize);
1731                         memcpy(this->page_buf + column, buf, thislen);
1732                         wbuf = this->page_buf;
1733                 }
1734
1735                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737
1738                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739
1740                 onenand_panic_wait(mtd);
1741
1742                 /* In partial page write we don't update bufferram */
1743                 onenand_update_bufferram(mtd, to, !subpage);
1744                 if (ONENAND_IS_2PLANE(this)) {
1745                         ONENAND_SET_BUFFERRAM1(this);
1746                         onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747                 }
1748
1749                 written += thislen;
1750
1751                 if (written == len)
1752                         break;
1753
1754                 column = 0;
1755                 to += thislen;
1756                 buf += thislen;
1757         }
1758
1759         *retlen = written;
1760         return 0;
1761 }
1762
1763 /**
1764  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765  * @mtd:                MTD device structure
1766  * @oob_buf:    oob buffer
1767  * @buf:                source address
1768  * @column:     oob offset to write to
1769  * @thislen:    oob length to write
1770  */
1771 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772                                   const u_char *buf, int column, int thislen)
1773 {
1774         return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775 }
1776
1777 /**
1778  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779  * @mtd:                MTD device structure
1780  * @to:         offset to write to
1781  * @ops:                oob operation description structure
1782  *
1783  * Write main and/or oob with ECC
1784  */
1785 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786                                 struct mtd_oob_ops *ops)
1787 {
1788         struct onenand_chip *this = mtd->priv;
1789         int written = 0, column, thislen = 0, subpage = 0;
1790         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792         size_t len = ops->len;
1793         size_t ooblen = ops->ooblen;
1794         const u_char *buf = ops->datbuf;
1795         const u_char *oob = ops->oobbuf;
1796         u_char *oobbuf;
1797         int ret = 0, cmd;
1798
1799         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800                         (int)len);
1801
1802         /* Initialize retlen, in case of early exit */
1803         ops->retlen = 0;
1804         ops->oobretlen = 0;
1805
1806         /* Reject writes, which are not page aligned */
1807         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809                         __func__);
1810                 return -EINVAL;
1811         }
1812
1813         /* Check zero length */
1814         if (!len)
1815                 return 0;
1816         oobsize = mtd_oobavail(mtd, ops);
1817         oobcolumn = to & (mtd->oobsize - 1);
1818
1819         column = to & (mtd->writesize - 1);
1820
1821         /* Loop until all data write */
1822         while (1) {
1823                 if (written < len) {
1824                         u_char *wbuf = (u_char *) buf;
1825
1826                         thislen = min_t(int, mtd->writesize - column, len - written);
1827                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828
1829                         cond_resched();
1830
1831                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832
1833                         /* Partial page write */
1834                         subpage = thislen < mtd->writesize;
1835                         if (subpage) {
1836                                 memset(this->page_buf, 0xff, mtd->writesize);
1837                                 memcpy(this->page_buf + column, buf, thislen);
1838                                 wbuf = this->page_buf;
1839                         }
1840
1841                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842
1843                         if (oob) {
1844                                 oobbuf = this->oob_buf;
1845
1846                                 /* We send data to spare ram with oobsize
1847                                  * to prevent byte access */
1848                                 memset(oobbuf, 0xff, mtd->oobsize);
1849                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1850                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851                                 else
1852                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853
1854                                 oobwritten += thisooblen;
1855                                 oob += thisooblen;
1856                                 oobcolumn = 0;
1857                         } else
1858                                 oobbuf = (u_char *) ffchars;
1859
1860                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861                 } else
1862                         ONENAND_SET_NEXT_BUFFERRAM(this);
1863
1864                 /*
1865                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1866                  * write-while-program feature.
1867                  */
1868                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869                         ONENAND_SET_PREV_BUFFERRAM(this);
1870
1871                         ret = this->wait(mtd, FL_WRITING);
1872
1873                         /* In partial page write we don't update bufferram */
1874                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875                         if (ret) {
1876                                 written -= prevlen;
1877                                 printk(KERN_ERR "%s: write failed %d\n",
1878                                         __func__, ret);
1879                                 break;
1880                         }
1881
1882                         if (written == len) {
1883                                 /* Only check verify write turn on */
1884                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1885                                 if (ret)
1886                                         printk(KERN_ERR "%s: verify failed %d\n",
1887                                                 __func__, ret);
1888                                 break;
1889                         }
1890
1891                         ONENAND_SET_NEXT_BUFFERRAM(this);
1892                 }
1893
1894                 this->ongoing = 0;
1895                 cmd = ONENAND_CMD_PROG;
1896
1897                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1898                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899                     likely(onenand_block(this, to) != 0) &&
1900                     ONENAND_IS_4KB_PAGE(this) &&
1901                     ((written + thislen) < len)) {
1902                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1903                         this->ongoing = 1;
1904                 }
1905
1906                 this->command(mtd, cmd, to, mtd->writesize);
1907
1908                 /*
1909                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1910                  */
1911                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912                         ret = this->wait(mtd, FL_WRITING);
1913
1914                         /* In partial page write we don't update bufferram */
1915                         onenand_update_bufferram(mtd, to, !ret && !subpage);
1916                         if (ret) {
1917                                 printk(KERN_ERR "%s: write failed %d\n",
1918                                         __func__, ret);
1919                                 break;
1920                         }
1921
1922                         /* Only check verify write turn on */
1923                         ret = onenand_verify(mtd, buf, to, thislen);
1924                         if (ret) {
1925                                 printk(KERN_ERR "%s: verify failed %d\n",
1926                                         __func__, ret);
1927                                 break;
1928                         }
1929
1930                         written += thislen;
1931
1932                         if (written == len)
1933                                 break;
1934
1935                 } else
1936                         written += thislen;
1937
1938                 column = 0;
1939                 prev_subpage = subpage;
1940                 prev = to;
1941                 prevlen = thislen;
1942                 to += thislen;
1943                 buf += thislen;
1944                 first = 0;
1945         }
1946
1947         /* In error case, clear all bufferrams */
1948         if (written != len)
1949                 onenand_invalidate_bufferram(mtd, 0, -1);
1950
1951         ops->retlen = written;
1952         ops->oobretlen = oobwritten;
1953
1954         return ret;
1955 }
1956
1957
1958 /**
1959  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960  * @mtd:                MTD device structure
1961  * @to:                 offset to write to
1962  * @ops:                oob operation description structure
1963  *
1964  * OneNAND write out-of-band
1965  */
1966 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1967                                     struct mtd_oob_ops *ops)
1968 {
1969         struct onenand_chip *this = mtd->priv;
1970         int column, ret = 0, oobsize;
1971         int written = 0, oobcmd;
1972         u_char *oobbuf;
1973         size_t len = ops->ooblen;
1974         const u_char *buf = ops->oobbuf;
1975         unsigned int mode = ops->mode;
1976
1977         to += ops->ooboffs;
1978
1979         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1980                         (int)len);
1981
1982         /* Initialize retlen, in case of early exit */
1983         ops->oobretlen = 0;
1984
1985         if (mode == MTD_OPS_AUTO_OOB)
1986                 oobsize = mtd->oobavail;
1987         else
1988                 oobsize = mtd->oobsize;
1989
1990         column = to & (mtd->oobsize - 1);
1991
1992         if (unlikely(column >= oobsize)) {
1993                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1994                         __func__);
1995                 return -EINVAL;
1996         }
1997
1998         /* For compatibility with NAND: Do not allow write past end of page */
1999         if (unlikely(column + len > oobsize)) {
2000                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2001                         __func__);
2002                 return -EINVAL;
2003         }
2004
2005         oobbuf = this->oob_buf;
2006
2007         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2008
2009         /* Loop until all data write */
2010         while (written < len) {
2011                 int thislen = min_t(int, oobsize, len - written);
2012
2013                 cond_resched();
2014
2015                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2016
2017                 /* We send data to spare ram with oobsize
2018                  * to prevent byte access */
2019                 memset(oobbuf, 0xff, mtd->oobsize);
2020                 if (mode == MTD_OPS_AUTO_OOB)
2021                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2022                 else
2023                         memcpy(oobbuf + column, buf, thislen);
2024                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2025
2026                 if (ONENAND_IS_4KB_PAGE(this)) {
2027                         /* Set main area of DataRAM to 0xff*/
2028                         memset(this->page_buf, 0xff, mtd->writesize);
2029                         this->write_bufferram(mtd, ONENAND_DATARAM,
2030                                          this->page_buf, 0, mtd->writesize);
2031                 }
2032
2033                 this->command(mtd, oobcmd, to, mtd->oobsize);
2034
2035                 onenand_update_bufferram(mtd, to, 0);
2036                 if (ONENAND_IS_2PLANE(this)) {
2037                         ONENAND_SET_BUFFERRAM1(this);
2038                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2039                 }
2040
2041                 ret = this->wait(mtd, FL_WRITING);
2042                 if (ret) {
2043                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2044                         break;
2045                 }
2046
2047                 ret = onenand_verify_oob(mtd, oobbuf, to);
2048                 if (ret) {
2049                         printk(KERN_ERR "%s: verify failed %d\n",
2050                                 __func__, ret);
2051                         break;
2052                 }
2053
2054                 written += thislen;
2055                 if (written == len)
2056                         break;
2057
2058                 to += mtd->writesize;
2059                 buf += thislen;
2060                 column = 0;
2061         }
2062
2063         ops->oobretlen = written;
2064
2065         return ret;
2066 }
2067
2068 /**
2069  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070  * @mtd:                MTD device structure
2071  * @to:                 offset to write
2072  * @ops:                oob operation description structure
2073  */
2074 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2075                              struct mtd_oob_ops *ops)
2076 {
2077         int ret;
2078
2079         switch (ops->mode) {
2080         case MTD_OPS_PLACE_OOB:
2081         case MTD_OPS_AUTO_OOB:
2082                 break;
2083         case MTD_OPS_RAW:
2084                 /* Not implemented yet */
2085         default:
2086                 return -EINVAL;
2087         }
2088
2089         onenand_get_device(mtd, FL_WRITING);
2090         if (ops->datbuf)
2091                 ret = onenand_write_ops_nolock(mtd, to, ops);
2092         else
2093                 ret = onenand_write_oob_nolock(mtd, to, ops);
2094         onenand_release_device(mtd);
2095
2096         return ret;
2097 }
2098
2099 /**
2100  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2101  * @mtd:                MTD device structure
2102  * @ofs:                offset from device start
2103  * @allowbbt:   1, if its allowed to access the bbt area
2104  *
2105  * Check, if the block is bad. Either by reading the bad block table or
2106  * calling of the scan function.
2107  */
2108 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2109 {
2110         struct onenand_chip *this = mtd->priv;
2111         struct bbm_info *bbm = this->bbm;
2112
2113         /* Return info from the table */
2114         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2115 }
2116
2117
2118 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2119                                            struct erase_info *instr)
2120 {
2121         struct onenand_chip *this = mtd->priv;
2122         loff_t addr = instr->addr;
2123         int len = instr->len;
2124         unsigned int block_size = (1 << this->erase_shift);
2125         int ret = 0;
2126
2127         while (len) {
2128                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2129                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2130                 if (ret) {
2131                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2132                                __func__, onenand_block(this, addr));
2133                         instr->fail_addr = addr;
2134                         return -1;
2135                 }
2136                 len -= block_size;
2137                 addr += block_size;
2138         }
2139         return 0;
2140 }
2141
2142 /**
2143  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2144  * @mtd:                MTD device structure
2145  * @instr:              erase instruction
2146  * @block_size:         block size
2147  *
2148  * Erase one or more blocks up to 64 block at a time
2149  */
2150 static int onenand_multiblock_erase(struct mtd_info *mtd,
2151                                     struct erase_info *instr,
2152                                     unsigned int block_size)
2153 {
2154         struct onenand_chip *this = mtd->priv;
2155         loff_t addr = instr->addr;
2156         int len = instr->len;
2157         int eb_count = 0;
2158         int ret = 0;
2159         int bdry_block = 0;
2160
2161         if (ONENAND_IS_DDP(this)) {
2162                 loff_t bdry_addr = this->chipsize >> 1;
2163                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2164                         bdry_block = bdry_addr >> this->erase_shift;
2165         }
2166
2167         /* Pre-check bbs */
2168         while (len) {
2169                 /* Check if we have a bad block, we do not erase bad blocks */
2170                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2171                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2172                                "at addr 0x%012llx\n",
2173                                __func__, (unsigned long long) addr);
2174                         return -EIO;
2175                 }
2176                 len -= block_size;
2177                 addr += block_size;
2178         }
2179
2180         len = instr->len;
2181         addr = instr->addr;
2182
2183         /* loop over 64 eb batches */
2184         while (len) {
2185                 struct erase_info verify_instr = *instr;
2186                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2187
2188                 verify_instr.addr = addr;
2189                 verify_instr.len = 0;
2190
2191                 /* do not cross chip boundary */
2192                 if (bdry_block) {
2193                         int this_block = (addr >> this->erase_shift);
2194
2195                         if (this_block < bdry_block) {
2196                                 max_eb_count = min(max_eb_count,
2197                                                    (bdry_block - this_block));
2198                         }
2199                 }
2200
2201                 eb_count = 0;
2202
2203                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2204                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2205                                       addr, block_size);
2206                         onenand_invalidate_bufferram(mtd, addr, block_size);
2207
2208                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2209                         if (ret) {
2210                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2211                                        "block %d\n", __func__,
2212                                        onenand_block(this, addr));
2213                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2214                                 return -EIO;
2215                         }
2216
2217                         len -= block_size;
2218                         addr += block_size;
2219                         eb_count++;
2220                 }
2221
2222                 /* last block of 64-eb series */
2223                 cond_resched();
2224                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2225                 onenand_invalidate_bufferram(mtd, addr, block_size);
2226
2227                 ret = this->wait(mtd, FL_ERASING);
2228                 /* Check if it is write protected */
2229                 if (ret) {
2230                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2231                                __func__, onenand_block(this, addr));
2232                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2233                         return -EIO;
2234                 }
2235
2236                 len -= block_size;
2237                 addr += block_size;
2238                 eb_count++;
2239
2240                 /* verify */
2241                 verify_instr.len = eb_count * block_size;
2242                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2243                         instr->fail_addr = verify_instr.fail_addr;
2244                         return -EIO;
2245                 }
2246
2247         }
2248         return 0;
2249 }
2250
2251
2252 /**
2253  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2254  * @mtd:                MTD device structure
2255  * @instr:              erase instruction
2256  * @region:     erase region
2257  * @block_size: erase block size
2258  *
2259  * Erase one or more blocks one block at a time
2260  */
2261 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2262                                         struct erase_info *instr,
2263                                         struct mtd_erase_region_info *region,
2264                                         unsigned int block_size)
2265 {
2266         struct onenand_chip *this = mtd->priv;
2267         loff_t addr = instr->addr;
2268         int len = instr->len;
2269         loff_t region_end = 0;
2270         int ret = 0;
2271
2272         if (region) {
2273                 /* region is set for Flex-OneNAND */
2274                 region_end = region->offset + region->erasesize * region->numblocks;
2275         }
2276
2277         /* Loop through the blocks */
2278         while (len) {
2279                 cond_resched();
2280
2281                 /* Check if we have a bad block, we do not erase bad blocks */
2282                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2283                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2284                                         "at addr 0x%012llx\n",
2285                                         __func__, (unsigned long long) addr);
2286                         return -EIO;
2287                 }
2288
2289                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2290
2291                 onenand_invalidate_bufferram(mtd, addr, block_size);
2292
2293                 ret = this->wait(mtd, FL_ERASING);
2294                 /* Check, if it is write protected */
2295                 if (ret) {
2296                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2297                                 __func__, onenand_block(this, addr));
2298                         instr->fail_addr = addr;
2299                         return -EIO;
2300                 }
2301
2302                 len -= block_size;
2303                 addr += block_size;
2304
2305                 if (region && addr == region_end) {
2306                         if (!len)
2307                                 break;
2308                         region++;
2309
2310                         block_size = region->erasesize;
2311                         region_end = region->offset + region->erasesize * region->numblocks;
2312
2313                         if (len & (block_size - 1)) {
2314                                 /* FIXME: This should be handled at MTD partitioning level. */
2315                                 printk(KERN_ERR "%s: Unaligned address\n",
2316                                         __func__);
2317                                 return -EIO;
2318                         }
2319                 }
2320         }
2321         return 0;
2322 }
2323
2324 /**
2325  * onenand_erase - [MTD Interface] erase block(s)
2326  * @mtd:                MTD device structure
2327  * @instr:              erase instruction
2328  *
2329  * Erase one or more blocks
2330  */
2331 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2332 {
2333         struct onenand_chip *this = mtd->priv;
2334         unsigned int block_size;
2335         loff_t addr = instr->addr;
2336         loff_t len = instr->len;
2337         int ret = 0;
2338         struct mtd_erase_region_info *region = NULL;
2339         loff_t region_offset = 0;
2340
2341         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2342                         (unsigned long long)instr->addr,
2343                         (unsigned long long)instr->len);
2344
2345         if (FLEXONENAND(this)) {
2346                 /* Find the eraseregion of this address */
2347                 int i = flexonenand_region(mtd, addr);
2348
2349                 region = &mtd->eraseregions[i];
2350                 block_size = region->erasesize;
2351
2352                 /* Start address within region must align on block boundary.
2353                  * Erase region's start offset is always block start address.
2354                  */
2355                 region_offset = region->offset;
2356         } else
2357                 block_size = 1 << this->erase_shift;
2358
2359         /* Start address must align on block boundary */
2360         if (unlikely((addr - region_offset) & (block_size - 1))) {
2361                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2362                 return -EINVAL;
2363         }
2364
2365         /* Length must align on block boundary */
2366         if (unlikely(len & (block_size - 1))) {
2367                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2368                 return -EINVAL;
2369         }
2370
2371         /* Grab the lock and see if the device is available */
2372         onenand_get_device(mtd, FL_ERASING);
2373
2374         if (ONENAND_IS_4KB_PAGE(this) || region ||
2375             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2376                 /* region is set for Flex-OneNAND (no mb erase) */
2377                 ret = onenand_block_by_block_erase(mtd, instr,
2378                                                    region, block_size);
2379         } else {
2380                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2381         }
2382
2383         /* Deselect and wake up anyone waiting on the device */
2384         onenand_release_device(mtd);
2385
2386         return ret;
2387 }
2388
2389 /**
2390  * onenand_sync - [MTD Interface] sync
2391  * @mtd:                MTD device structure
2392  *
2393  * Sync is actually a wait for chip ready function
2394  */
2395 static void onenand_sync(struct mtd_info *mtd)
2396 {
2397         pr_debug("%s: called\n", __func__);
2398
2399         /* Grab the lock and see if the device is available */
2400         onenand_get_device(mtd, FL_SYNCING);
2401
2402         /* Release it and go back */
2403         onenand_release_device(mtd);
2404 }
2405
2406 /**
2407  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2408  * @mtd:                MTD device structure
2409  * @ofs:                offset relative to mtd start
2410  *
2411  * Check whether the block is bad
2412  */
2413 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2414 {
2415         int ret;
2416
2417         onenand_get_device(mtd, FL_READING);
2418         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2419         onenand_release_device(mtd);
2420         return ret;
2421 }
2422
2423 /**
2424  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2425  * @mtd:                MTD device structure
2426  * @ofs:                offset from device start
2427  *
2428  * This is the default implementation, which can be overridden by
2429  * a hardware specific driver.
2430  */
2431 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2432 {
2433         struct onenand_chip *this = mtd->priv;
2434         struct bbm_info *bbm = this->bbm;
2435         u_char buf[2] = {0, 0};
2436         struct mtd_oob_ops ops = {
2437                 .mode = MTD_OPS_PLACE_OOB,
2438                 .ooblen = 2,
2439                 .oobbuf = buf,
2440                 .ooboffs = 0,
2441         };
2442         int block;
2443
2444         /* Get block number */
2445         block = onenand_block(this, ofs);
2446         if (bbm->bbt)
2447                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2448
2449         /* We write two bytes, so we don't have to mess with 16-bit access */
2450         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2451         /* FIXME : What to do when marking SLC block in partition
2452          *         with MLC erasesize? For now, it is not advisable to
2453          *         create partitions containing both SLC and MLC regions.
2454          */
2455         return onenand_write_oob_nolock(mtd, ofs, &ops);
2456 }
2457
2458 /**
2459  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2460  * @mtd:                MTD device structure
2461  * @ofs:                offset relative to mtd start
2462  *
2463  * Mark the block as bad
2464  */
2465 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2466 {
2467         struct onenand_chip *this = mtd->priv;
2468         int ret;
2469
2470         ret = onenand_block_isbad(mtd, ofs);
2471         if (ret) {
2472                 /* If it was bad already, return success and do nothing */
2473                 if (ret > 0)
2474                         return 0;
2475                 return ret;
2476         }
2477
2478         onenand_get_device(mtd, FL_WRITING);
2479         ret = this->block_markbad(mtd, ofs);
2480         onenand_release_device(mtd);
2481         return ret;
2482 }
2483
2484 /**
2485  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2486  * @mtd:                MTD device structure
2487  * @ofs:                offset relative to mtd start
2488  * @len:                number of bytes to lock or unlock
2489  * @cmd:                lock or unlock command
2490  *
2491  * Lock or unlock one or more blocks
2492  */
2493 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2494 {
2495         struct onenand_chip *this = mtd->priv;
2496         int start, end, block, value, status;
2497         int wp_status_mask;
2498
2499         start = onenand_block(this, ofs);
2500         end = onenand_block(this, ofs + len) - 1;
2501
2502         if (cmd == ONENAND_CMD_LOCK)
2503                 wp_status_mask = ONENAND_WP_LS;
2504         else
2505                 wp_status_mask = ONENAND_WP_US;
2506
2507         /* Continuous lock scheme */
2508         if (this->options & ONENAND_HAS_CONT_LOCK) {
2509                 /* Set start block address */
2510                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2511                 /* Set end block address */
2512                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2513                 /* Write lock command */
2514                 this->command(mtd, cmd, 0, 0);
2515
2516                 /* There's no return value */
2517                 this->wait(mtd, FL_LOCKING);
2518
2519                 /* Sanity check */
2520                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2521                     & ONENAND_CTRL_ONGO)
2522                         continue;
2523
2524                 /* Check lock status */
2525                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2526                 if (!(status & wp_status_mask))
2527                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2528                                 __func__, status);
2529
2530                 return 0;
2531         }
2532
2533         /* Block lock scheme */
2534         for (block = start; block < end + 1; block++) {
2535                 /* Set block address */
2536                 value = onenand_block_address(this, block);
2537                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2538                 /* Select DataRAM for DDP */
2539                 value = onenand_bufferram_address(this, block);
2540                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2541                 /* Set start block address */
2542                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2543                 /* Write lock command */
2544                 this->command(mtd, cmd, 0, 0);
2545
2546                 /* There's no return value */
2547                 this->wait(mtd, FL_LOCKING);
2548
2549                 /* Sanity check */
2550                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2551                     & ONENAND_CTRL_ONGO)
2552                         continue;
2553
2554                 /* Check lock status */
2555                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2556                 if (!(status & wp_status_mask))
2557                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2558                                 __func__, block, status);
2559         }
2560
2561         return 0;
2562 }
2563
2564 /**
2565  * onenand_lock - [MTD Interface] Lock block(s)
2566  * @mtd:                MTD device structure
2567  * @ofs:                offset relative to mtd start
2568  * @len:                number of bytes to unlock
2569  *
2570  * Lock one or more blocks
2571  */
2572 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2573 {
2574         int ret;
2575
2576         onenand_get_device(mtd, FL_LOCKING);
2577         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2578         onenand_release_device(mtd);
2579         return ret;
2580 }
2581
2582 /**
2583  * onenand_unlock - [MTD Interface] Unlock block(s)
2584  * @mtd:                MTD device structure
2585  * @ofs:                offset relative to mtd start
2586  * @len:                number of bytes to unlock
2587  *
2588  * Unlock one or more blocks
2589  */
2590 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2591 {
2592         int ret;
2593
2594         onenand_get_device(mtd, FL_LOCKING);
2595         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2596         onenand_release_device(mtd);
2597         return ret;
2598 }
2599
2600 /**
2601  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2602  * @this:               onenand chip data structure
2603  *
2604  * Check lock status
2605  */
2606 static int onenand_check_lock_status(struct onenand_chip *this)
2607 {
2608         unsigned int value, block, status;
2609         unsigned int end;
2610
2611         end = this->chipsize >> this->erase_shift;
2612         for (block = 0; block < end; block++) {
2613                 /* Set block address */
2614                 value = onenand_block_address(this, block);
2615                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2616                 /* Select DataRAM for DDP */
2617                 value = onenand_bufferram_address(this, block);
2618                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2619                 /* Set start block address */
2620                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2621
2622                 /* Check lock status */
2623                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2624                 if (!(status & ONENAND_WP_US)) {
2625                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2626                                 __func__, block, status);
2627                         return 0;
2628                 }
2629         }
2630
2631         return 1;
2632 }
2633
2634 /**
2635  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2636  * @mtd:                MTD device structure
2637  *
2638  * Unlock all blocks
2639  */
2640 static void onenand_unlock_all(struct mtd_info *mtd)
2641 {
2642         struct onenand_chip *this = mtd->priv;
2643         loff_t ofs = 0;
2644         loff_t len = mtd->size;
2645
2646         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2647                 /* Set start block address */
2648                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2649                 /* Write unlock command */
2650                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2651
2652                 /* There's no return value */
2653                 this->wait(mtd, FL_LOCKING);
2654
2655                 /* Sanity check */
2656                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2657                     & ONENAND_CTRL_ONGO)
2658                         continue;
2659
2660                 /* Don't check lock status */
2661                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2662                         return;
2663
2664                 /* Check lock status */
2665                 if (onenand_check_lock_status(this))
2666                         return;
2667
2668                 /* Workaround for all block unlock in DDP */
2669                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2670                         /* All blocks on another chip */
2671                         ofs = this->chipsize >> 1;
2672                         len = this->chipsize >> 1;
2673                 }
2674         }
2675
2676         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2677 }
2678
2679 #ifdef CONFIG_MTD_ONENAND_OTP
2680
2681 /**
2682  * onenand_otp_command - Send OTP specific command to OneNAND device
2683  * @mtd:         MTD device structure
2684  * @cmd:         the command to be sent
2685  * @addr:        offset to read from or write to
2686  * @len:         number of bytes to read or write
2687  */
2688 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2689                                 size_t len)
2690 {
2691         struct onenand_chip *this = mtd->priv;
2692         int value, block, page;
2693
2694         /* Address translation */
2695         switch (cmd) {
2696         case ONENAND_CMD_OTP_ACCESS:
2697                 block = (int) (addr >> this->erase_shift);
2698                 page = -1;
2699                 break;
2700
2701         default:
2702                 block = (int) (addr >> this->erase_shift);
2703                 page = (int) (addr >> this->page_shift);
2704
2705                 if (ONENAND_IS_2PLANE(this)) {
2706                         /* Make the even block number */
2707                         block &= ~1;
2708                         /* Is it the odd plane? */
2709                         if (addr & this->writesize)
2710                                 block++;
2711                         page >>= 1;
2712                 }
2713                 page &= this->page_mask;
2714                 break;
2715         }
2716
2717         if (block != -1) {
2718                 /* Write 'DFS, FBA' of Flash */
2719                 value = onenand_block_address(this, block);
2720                 this->write_word(value, this->base +
2721                                 ONENAND_REG_START_ADDRESS1);
2722         }
2723
2724         if (page != -1) {
2725                 /* Now we use page size operation */
2726                 int sectors = 4, count = 4;
2727                 int dataram;
2728
2729                 switch (cmd) {
2730                 default:
2731                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2732                                 cmd = ONENAND_CMD_2X_PROG;
2733                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2734                         break;
2735                 }
2736
2737                 /* Write 'FPA, FSA' of Flash */
2738                 value = onenand_page_address(page, sectors);
2739                 this->write_word(value, this->base +
2740                                 ONENAND_REG_START_ADDRESS8);
2741
2742                 /* Write 'BSA, BSC' of DataRAM */
2743                 value = onenand_buffer_address(dataram, sectors, count);
2744                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2745         }
2746
2747         /* Interrupt clear */
2748         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2749
2750         /* Write command */
2751         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2752
2753         return 0;
2754 }
2755
2756 /**
2757  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2758  * @mtd:                MTD device structure
2759  * @to:                 offset to write to
2760  * @ops:                oob operation description structure
2761  *
2762  * OneNAND write out-of-band only for OTP
2763  */
2764 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2765                                     struct mtd_oob_ops *ops)
2766 {
2767         struct onenand_chip *this = mtd->priv;
2768         int column, ret = 0, oobsize;
2769         int written = 0;
2770         u_char *oobbuf;
2771         size_t len = ops->ooblen;
2772         const u_char *buf = ops->oobbuf;
2773         int block, value, status;
2774
2775         to += ops->ooboffs;
2776
2777         /* Initialize retlen, in case of early exit */
2778         ops->oobretlen = 0;
2779
2780         oobsize = mtd->oobsize;
2781
2782         column = to & (mtd->oobsize - 1);
2783
2784         oobbuf = this->oob_buf;
2785
2786         /* Loop until all data write */
2787         while (written < len) {
2788                 int thislen = min_t(int, oobsize, len - written);
2789
2790                 cond_resched();
2791
2792                 block = (int) (to >> this->erase_shift);
2793                 /*
2794                  * Write 'DFS, FBA' of Flash
2795                  * Add: F100h DQ=DFS, FBA
2796                  */
2797
2798                 value = onenand_block_address(this, block);
2799                 this->write_word(value, this->base +
2800                                 ONENAND_REG_START_ADDRESS1);
2801
2802                 /*
2803                  * Select DataRAM for DDP
2804                  * Add: F101h DQ=DBS
2805                  */
2806
2807                 value = onenand_bufferram_address(this, block);
2808                 this->write_word(value, this->base +
2809                                 ONENAND_REG_START_ADDRESS2);
2810                 ONENAND_SET_NEXT_BUFFERRAM(this);
2811
2812                 /*
2813                  * Enter OTP access mode
2814                  */
2815                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2816                 this->wait(mtd, FL_OTPING);
2817
2818                 /* We send data to spare ram with oobsize
2819                  * to prevent byte access */
2820                 memcpy(oobbuf + column, buf, thislen);
2821
2822                 /*
2823                  * Write Data into DataRAM
2824                  * Add: 8th Word
2825                  * in sector0/spare/page0
2826                  * DQ=XXFCh
2827                  */
2828                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2829                                         oobbuf, 0, mtd->oobsize);
2830
2831                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2832                 onenand_update_bufferram(mtd, to, 0);
2833                 if (ONENAND_IS_2PLANE(this)) {
2834                         ONENAND_SET_BUFFERRAM1(this);
2835                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2836                 }
2837
2838                 ret = this->wait(mtd, FL_WRITING);
2839                 if (ret) {
2840                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2841                         break;
2842                 }
2843
2844                 /* Exit OTP access mode */
2845                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2846                 this->wait(mtd, FL_RESETTING);
2847
2848                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2849                 status &= 0x60;
2850
2851                 if (status == 0x60) {
2852                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2853                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2854                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2855                 } else if (status == 0x20) {
2856                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2857                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
2858                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2859                 } else if (status == 0x40) {
2860                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2861                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2862                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2863                 } else {
2864                         printk(KERN_DEBUG "Reboot to check\n");
2865                 }
2866
2867                 written += thislen;
2868                 if (written == len)
2869                         break;
2870
2871                 to += mtd->writesize;
2872                 buf += thislen;
2873                 column = 0;
2874         }
2875
2876         ops->oobretlen = written;
2877
2878         return ret;
2879 }
2880
2881 /* Internal OTP operation */
2882 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2883                 size_t *retlen, u_char *buf);
2884
2885 /**
2886  * do_otp_read - [DEFAULT] Read OTP block area
2887  * @mtd:                MTD device structure
2888  * @from:               The offset to read
2889  * @len:                number of bytes to read
2890  * @retlen:     pointer to variable to store the number of readbytes
2891  * @buf:                the databuffer to put/get data
2892  *
2893  * Read OTP block area.
2894  */
2895 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2896                 size_t *retlen, u_char *buf)
2897 {
2898         struct onenand_chip *this = mtd->priv;
2899         struct mtd_oob_ops ops = {
2900                 .len    = len,
2901                 .ooblen = 0,
2902                 .datbuf = buf,
2903                 .oobbuf = NULL,
2904         };
2905         int ret;
2906
2907         /* Enter OTP access mode */
2908         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2909         this->wait(mtd, FL_OTPING);
2910
2911         ret = ONENAND_IS_4KB_PAGE(this) ?
2912                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2913                 onenand_read_ops_nolock(mtd, from, &ops);
2914
2915         /* Exit OTP access mode */
2916         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2917         this->wait(mtd, FL_RESETTING);
2918
2919         return ret;
2920 }
2921
2922 /**
2923  * do_otp_write - [DEFAULT] Write OTP block area
2924  * @mtd:                MTD device structure
2925  * @to:         The offset to write
2926  * @len:                number of bytes to write
2927  * @retlen:     pointer to variable to store the number of write bytes
2928  * @buf:                the databuffer to put/get data
2929  *
2930  * Write OTP block area.
2931  */
2932 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2933                 size_t *retlen, u_char *buf)
2934 {
2935         struct onenand_chip *this = mtd->priv;
2936         unsigned char *pbuf = buf;
2937         int ret;
2938         struct mtd_oob_ops ops;
2939
2940         /* Force buffer page aligned */
2941         if (len < mtd->writesize) {
2942                 memcpy(this->page_buf, buf, len);
2943                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2944                 pbuf = this->page_buf;
2945                 len = mtd->writesize;
2946         }
2947
2948         /* Enter OTP access mode */
2949         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2950         this->wait(mtd, FL_OTPING);
2951
2952         ops.len = len;
2953         ops.ooblen = 0;
2954         ops.datbuf = pbuf;
2955         ops.oobbuf = NULL;
2956         ret = onenand_write_ops_nolock(mtd, to, &ops);
2957         *retlen = ops.retlen;
2958
2959         /* Exit OTP access mode */
2960         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2961         this->wait(mtd, FL_RESETTING);
2962
2963         return ret;
2964 }
2965
2966 /**
2967  * do_otp_lock - [DEFAULT] Lock OTP block area
2968  * @mtd:                MTD device structure
2969  * @from:               The offset to lock
2970  * @len:                number of bytes to lock
2971  * @retlen:     pointer to variable to store the number of lock bytes
2972  * @buf:                the databuffer to put/get data
2973  *
2974  * Lock OTP block area.
2975  */
2976 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2977                 size_t *retlen, u_char *buf)
2978 {
2979         struct onenand_chip *this = mtd->priv;
2980         struct mtd_oob_ops ops;
2981         int ret;
2982
2983         if (FLEXONENAND(this)) {
2984
2985                 /* Enter OTP access mode */
2986                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2987                 this->wait(mtd, FL_OTPING);
2988                 /*
2989                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2990                  * main area of page 49.
2991                  */
2992                 ops.len = mtd->writesize;
2993                 ops.ooblen = 0;
2994                 ops.datbuf = buf;
2995                 ops.oobbuf = NULL;
2996                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2997                 *retlen = ops.retlen;
2998
2999                 /* Exit OTP access mode */
3000                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3001                 this->wait(mtd, FL_RESETTING);
3002         } else {
3003                 ops.mode = MTD_OPS_PLACE_OOB;
3004                 ops.ooblen = len;
3005                 ops.oobbuf = buf;
3006                 ops.ooboffs = 0;
3007                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3008                 *retlen = ops.oobretlen;
3009         }
3010
3011         return ret;
3012 }
3013
3014 /**
3015  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3016  * @mtd:                MTD device structure
3017  * @from:               The offset to read/write
3018  * @len:                number of bytes to read/write
3019  * @retlen:     pointer to variable to store the number of read bytes
3020  * @buf:                the databuffer to put/get data
3021  * @action:     do given action
3022  * @mode:               specify user and factory
3023  *
3024  * Handle OTP operation.
3025  */
3026 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3027                         size_t *retlen, u_char *buf,
3028                         otp_op_t action, int mode)
3029 {
3030         struct onenand_chip *this = mtd->priv;
3031         int otp_pages;
3032         int density;
3033         int ret = 0;
3034
3035         *retlen = 0;
3036
3037         density = onenand_get_density(this->device_id);
3038         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3039                 otp_pages = 20;
3040         else
3041                 otp_pages = 50;
3042
3043         if (mode == MTD_OTP_FACTORY) {
3044                 from += mtd->writesize * otp_pages;
3045                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3046         }
3047
3048         /* Check User/Factory boundary */
3049         if (mode == MTD_OTP_USER) {
3050                 if (mtd->writesize * otp_pages < from + len)
3051                         return 0;
3052         } else {
3053                 if (mtd->writesize * otp_pages <  len)
3054                         return 0;
3055         }
3056
3057         onenand_get_device(mtd, FL_OTPING);
3058         while (len > 0 && otp_pages > 0) {
3059                 if (!action) {  /* OTP Info functions */
3060                         struct otp_info *otpinfo;
3061
3062                         len -= sizeof(struct otp_info);
3063                         if (len <= 0) {
3064                                 ret = -ENOSPC;
3065                                 break;
3066                         }
3067
3068                         otpinfo = (struct otp_info *) buf;
3069                         otpinfo->start = from;
3070                         otpinfo->length = mtd->writesize;
3071                         otpinfo->locked = 0;
3072
3073                         from += mtd->writesize;
3074                         buf += sizeof(struct otp_info);
3075                         *retlen += sizeof(struct otp_info);
3076                 } else {
3077                         size_t tmp_retlen;
3078
3079                         ret = action(mtd, from, len, &tmp_retlen, buf);
3080                         if (ret)
3081                                 break;
3082
3083                         buf += tmp_retlen;
3084                         len -= tmp_retlen;
3085                         *retlen += tmp_retlen;
3086
3087                 }
3088                 otp_pages--;
3089         }
3090         onenand_release_device(mtd);
3091
3092         return ret;
3093 }
3094
3095 /**
3096  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3097  * @mtd:                MTD device structure
3098  * @len:                number of bytes to read
3099  * @retlen:     pointer to variable to store the number of read bytes
3100  * @buf:                the databuffer to put/get data
3101  *
3102  * Read factory OTP info.
3103  */
3104 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3105                                       size_t *retlen, struct otp_info *buf)
3106 {
3107         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3108                                 MTD_OTP_FACTORY);
3109 }
3110
3111 /**
3112  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3113  * @mtd:                MTD device structure
3114  * @from:               The offset to read
3115  * @len:                number of bytes to read
3116  * @retlen:     pointer to variable to store the number of read bytes
3117  * @buf:                the databuffer to put/get data
3118  *
3119  * Read factory OTP area.
3120  */
3121 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3122                         size_t len, size_t *retlen, u_char *buf)
3123 {
3124         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3125 }
3126
3127 /**
3128  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3129  * @mtd:                MTD device structure
3130  * @retlen:     pointer to variable to store the number of read bytes
3131  * @len:                number of bytes to read
3132  * @buf:                the databuffer to put/get data
3133  *
3134  * Read user OTP info.
3135  */
3136 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3137                                       size_t *retlen, struct otp_info *buf)
3138 {
3139         return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3140                                 MTD_OTP_USER);
3141 }
3142
3143 /**
3144  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3145  * @mtd:                MTD device structure
3146  * @from:               The offset to read
3147  * @len:                number of bytes to read
3148  * @retlen:     pointer to variable to store the number of read bytes
3149  * @buf:                the databuffer to put/get data
3150  *
3151  * Read user OTP area.
3152  */
3153 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3154                         size_t len, size_t *retlen, u_char *buf)
3155 {
3156         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3157 }
3158
3159 /**
3160  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3161  * @mtd:                MTD device structure
3162  * @from:               The offset to write
3163  * @len:                number of bytes to write
3164  * @retlen:     pointer to variable to store the number of write bytes
3165  * @buf:                the databuffer to put/get data
3166  *
3167  * Write user OTP area.
3168  */
3169 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3170                         size_t len, size_t *retlen, const u_char *buf)
3171 {
3172         return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
3173                                 do_otp_write, MTD_OTP_USER);
3174 }
3175
3176 /**
3177  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3178  * @mtd:                MTD device structure
3179  * @from:               The offset to lock
3180  * @len:                number of bytes to unlock
3181  *
3182  * Write lock mark on spare area in page 0 in OTP block
3183  */
3184 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3185                         size_t len)
3186 {
3187         struct onenand_chip *this = mtd->priv;
3188         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3189         size_t retlen;
3190         int ret;
3191         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3192
3193         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3194                                                  : mtd->oobsize);
3195         /*
3196          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3197          * We write 16 bytes spare area instead of 2 bytes.
3198          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3199          * main area of page 49.
3200          */
3201
3202         from = 0;
3203         len = FLEXONENAND(this) ? mtd->writesize : 16;
3204
3205         /*
3206          * Note: OTP lock operation
3207          *       OTP block : 0xXXFC                     XX 1111 1100
3208          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3209          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3210          */
3211         if (FLEXONENAND(this))
3212                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3213
3214         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3215         if (otp == 1)
3216                 buf[otp_lock_offset] = 0xFC;
3217         else if (otp == 2)
3218                 buf[otp_lock_offset] = 0xF3;
3219         else if (otp == 3)
3220                 buf[otp_lock_offset] = 0xF0;
3221         else if (otp != 0)
3222                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3223
3224         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3225
3226         return ret ? : retlen;
3227 }
3228
3229 #endif  /* CONFIG_MTD_ONENAND_OTP */
3230
3231 /**
3232  * onenand_check_features - Check and set OneNAND features
3233  * @mtd:                MTD data structure
3234  *
3235  * Check and set OneNAND features
3236  * - lock scheme
3237  * - two plane
3238  */
3239 static void onenand_check_features(struct mtd_info *mtd)
3240 {
3241         struct onenand_chip *this = mtd->priv;
3242         unsigned int density, process, numbufs;
3243
3244         /* Lock scheme depends on density and process */
3245         density = onenand_get_density(this->device_id);
3246         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3247         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3248
3249         /* Lock scheme */
3250         switch (density) {
3251         case ONENAND_DEVICE_DENSITY_8Gb:
3252                 this->options |= ONENAND_HAS_NOP_1;
3253                 fallthrough;
3254         case ONENAND_DEVICE_DENSITY_4Gb:
3255                 if (ONENAND_IS_DDP(this))
3256                         this->options |= ONENAND_HAS_2PLANE;
3257                 else if (numbufs == 1) {
3258                         this->options |= ONENAND_HAS_4KB_PAGE;
3259                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3260                         /*
3261                          * There are two different 4KiB pagesize chips
3262                          * and no way to detect it by H/W config values.
3263                          *
3264                          * To detect the correct NOP for each chips,
3265                          * It should check the version ID as workaround.
3266                          *
3267                          * Now it has as following
3268                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3269                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3270                          */
3271                         if ((this->version_id & 0xf) == 0xe)
3272                                 this->options |= ONENAND_HAS_NOP_1;
3273                 }
3274                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3275                 break;
3276
3277         case ONENAND_DEVICE_DENSITY_2Gb:
3278                 /* 2Gb DDP does not have 2 plane */
3279                 if (!ONENAND_IS_DDP(this))
3280                         this->options |= ONENAND_HAS_2PLANE;
3281                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3282                 break;
3283
3284         case ONENAND_DEVICE_DENSITY_1Gb:
3285                 /* A-Die has all block unlock */
3286                 if (process)
3287                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3288                 break;
3289
3290         default:
3291                 /* Some OneNAND has continuous lock scheme */
3292                 if (!process)
3293                         this->options |= ONENAND_HAS_CONT_LOCK;
3294                 break;
3295         }
3296
3297         /* The MLC has 4KiB pagesize. */
3298         if (ONENAND_IS_MLC(this))
3299                 this->options |= ONENAND_HAS_4KB_PAGE;
3300
3301         if (ONENAND_IS_4KB_PAGE(this))
3302                 this->options &= ~ONENAND_HAS_2PLANE;
3303
3304         if (FLEXONENAND(this)) {
3305                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3306                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3307         }
3308
3309         if (this->options & ONENAND_HAS_CONT_LOCK)
3310                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3311         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3312                 printk(KERN_DEBUG "Chip support all block unlock\n");
3313         if (this->options & ONENAND_HAS_2PLANE)
3314                 printk(KERN_DEBUG "Chip has 2 plane\n");
3315         if (this->options & ONENAND_HAS_4KB_PAGE)
3316                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3317         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3318                 printk(KERN_DEBUG "Chip has cache program feature\n");
3319 }
3320
3321 /**
3322  * onenand_print_device_info - Print device & version ID
3323  * @device:        device ID
3324  * @version:    version ID
3325  *
3326  * Print device & version ID
3327  */
3328 static void onenand_print_device_info(int device, int version)
3329 {
3330         int vcc, demuxed, ddp, density, flexonenand;
3331
3332         vcc = device & ONENAND_DEVICE_VCC_MASK;
3333         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3334         ddp = device & ONENAND_DEVICE_IS_DDP;
3335         density = onenand_get_density(device);
3336         flexonenand = device & DEVICE_IS_FLEXONENAND;
3337         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3338                 demuxed ? "" : "Muxed ",
3339                 flexonenand ? "Flex-" : "",
3340                 ddp ? "(DDP)" : "",
3341                 (16 << density),
3342                 vcc ? "2.65/3.3" : "1.8",
3343                 device);
3344         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3345 }
3346
3347 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3348         {ONENAND_MFR_SAMSUNG, "Samsung"},
3349         {ONENAND_MFR_NUMONYX, "Numonyx"},
3350 };
3351
3352 /**
3353  * onenand_check_maf - Check manufacturer ID
3354  * @manuf:         manufacturer ID
3355  *
3356  * Check manufacturer ID
3357  */
3358 static int onenand_check_maf(int manuf)
3359 {
3360         int size = ARRAY_SIZE(onenand_manuf_ids);
3361         char *name;
3362         int i;
3363
3364         for (i = 0; i < size; i++)
3365                 if (manuf == onenand_manuf_ids[i].id)
3366                         break;
3367
3368         if (i < size)
3369                 name = onenand_manuf_ids[i].name;
3370         else
3371                 name = "Unknown";
3372
3373         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3374
3375         return (i == size);
3376 }
3377
3378 /**
3379  * flexonenand_get_boundary     - Reads the SLC boundary
3380  * @mtd:                MTD data structure
3381  */
3382 static int flexonenand_get_boundary(struct mtd_info *mtd)
3383 {
3384         struct onenand_chip *this = mtd->priv;
3385         unsigned die, bdry;
3386         int syscfg, locked;
3387
3388         /* Disable ECC */
3389         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3390         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3391
3392         for (die = 0; die < this->dies; die++) {
3393                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3394                 this->wait(mtd, FL_SYNCING);
3395
3396                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3397                 this->wait(mtd, FL_READING);
3398
3399                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3400                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3401                         locked = 0;
3402                 else
3403                         locked = 1;
3404                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3405
3406                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3407                 this->wait(mtd, FL_RESETTING);
3408
3409                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3410                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3411         }
3412
3413         /* Enable ECC */
3414         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3415         return 0;
3416 }
3417
3418 /**
3419  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3420  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3421  * @mtd:                - MTD device structure
3422  */
3423 static void flexonenand_get_size(struct mtd_info *mtd)
3424 {
3425         struct onenand_chip *this = mtd->priv;
3426         int die, i, eraseshift, density;
3427         int blksperdie, maxbdry;
3428         loff_t ofs;
3429
3430         density = onenand_get_density(this->device_id);
3431         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3432         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3433         maxbdry = blksperdie - 1;
3434         eraseshift = this->erase_shift - 1;
3435
3436         mtd->numeraseregions = this->dies << 1;
3437
3438         /* This fills up the device boundary */
3439         flexonenand_get_boundary(mtd);
3440         die = ofs = 0;
3441         i = -1;
3442         for (; die < this->dies; die++) {
3443                 if (!die || this->boundary[die-1] != maxbdry) {
3444                         i++;
3445                         mtd->eraseregions[i].offset = ofs;
3446                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3447                         mtd->eraseregions[i].numblocks =
3448                                                         this->boundary[die] + 1;
3449                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3450                         eraseshift++;
3451                 } else {
3452                         mtd->numeraseregions -= 1;
3453                         mtd->eraseregions[i].numblocks +=
3454                                                         this->boundary[die] + 1;
3455                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3456                 }
3457                 if (this->boundary[die] != maxbdry) {
3458                         i++;
3459                         mtd->eraseregions[i].offset = ofs;
3460                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3461                         mtd->eraseregions[i].numblocks = maxbdry ^
3462                                                          this->boundary[die];
3463                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3464                         eraseshift--;
3465                 } else
3466                         mtd->numeraseregions -= 1;
3467         }
3468
3469         /* Expose MLC erase size except when all blocks are SLC */
3470         mtd->erasesize = 1 << this->erase_shift;
3471         if (mtd->numeraseregions == 1)
3472                 mtd->erasesize >>= 1;
3473
3474         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3475         for (i = 0; i < mtd->numeraseregions; i++)
3476                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3477                         " numblocks: %04u]\n",
3478                         (unsigned int) mtd->eraseregions[i].offset,
3479                         mtd->eraseregions[i].erasesize,
3480                         mtd->eraseregions[i].numblocks);
3481
3482         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3483                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3484                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3485                                                  << (this->erase_shift - 1);
3486                 mtd->size += this->diesize[die];
3487         }
3488 }
3489
3490 /**
3491  * flexonenand_check_blocks_erased - Check if blocks are erased
3492  * @mtd:        mtd info structure
3493  * @start:      first erase block to check
3494  * @end:        last erase block to check
3495  *
3496  * Converting an unerased block from MLC to SLC
3497  * causes byte values to change. Since both data and its ECC
3498  * have changed, reads on the block give uncorrectable error.
3499  * This might lead to the block being detected as bad.
3500  *
3501  * Avoid this by ensuring that the block to be converted is
3502  * erased.
3503  */
3504 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3505 {
3506         struct onenand_chip *this = mtd->priv;
3507         int i, ret;
3508         int block;
3509         struct mtd_oob_ops ops = {
3510                 .mode = MTD_OPS_PLACE_OOB,
3511                 .ooboffs = 0,
3512                 .ooblen = mtd->oobsize,
3513                 .datbuf = NULL,
3514                 .oobbuf = this->oob_buf,
3515         };
3516         loff_t addr;
3517
3518         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3519
3520         for (block = start; block <= end; block++) {
3521                 addr = flexonenand_addr(this, block);
3522                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3523                         continue;
3524
3525                 /*
3526                  * Since main area write results in ECC write to spare,
3527                  * it is sufficient to check only ECC bytes for change.
3528                  */
3529                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3530                 if (ret)
3531                         return ret;
3532
3533                 for (i = 0; i < mtd->oobsize; i++)
3534                         if (this->oob_buf[i] != 0xff)
3535                                 break;
3536
3537                 if (i != mtd->oobsize) {
3538                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3539                                 __func__, block);
3540                         return 1;
3541                 }
3542         }
3543
3544         return 0;
3545 }
3546
3547 /*
3548  * flexonenand_set_boundary     - Writes the SLC boundary
3549  */
3550 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3551                                     int boundary, int lock)
3552 {
3553         struct onenand_chip *this = mtd->priv;
3554         int ret, density, blksperdie, old, new, thisboundary;
3555         loff_t addr;
3556
3557         /* Change only once for SDP Flex-OneNAND */
3558         if (die && (!ONENAND_IS_DDP(this)))
3559                 return 0;
3560
3561         /* boundary value of -1 indicates no required change */
3562         if (boundary < 0 || boundary == this->boundary[die])
3563                 return 0;
3564
3565         density = onenand_get_density(this->device_id);
3566         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3567         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3568
3569         if (boundary >= blksperdie) {
3570                 printk(KERN_ERR "%s: Invalid boundary value. "
3571                                 "Boundary not changed.\n", __func__);
3572                 return -EINVAL;
3573         }
3574
3575         /* Check if converting blocks are erased */
3576         old = this->boundary[die] + (die * this->density_mask);
3577         new = boundary + (die * this->density_mask);
3578         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3579         if (ret) {
3580                 printk(KERN_ERR "%s: Please erase blocks "
3581                                 "before boundary change\n", __func__);
3582                 return ret;
3583         }
3584
3585         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3586         this->wait(mtd, FL_SYNCING);
3587
3588         /* Check is boundary is locked */
3589         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3590         this->wait(mtd, FL_READING);
3591
3592         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3593         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3594                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3595                 ret = 1;
3596                 goto out;
3597         }
3598
3599         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3600                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3601
3602         addr = die ? this->diesize[0] : 0;
3603
3604         boundary &= FLEXONENAND_PI_MASK;
3605         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3606
3607         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3608         ret = this->wait(mtd, FL_ERASING);
3609         if (ret) {
3610                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3611                        __func__, die);
3612                 goto out;
3613         }
3614
3615         this->write_word(boundary, this->base + ONENAND_DATARAM);
3616         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3617         ret = this->wait(mtd, FL_WRITING);
3618         if (ret) {
3619                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3620                         __func__, die);
3621                 goto out;
3622         }
3623
3624         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3625         ret = this->wait(mtd, FL_WRITING);
3626 out:
3627         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3628         this->wait(mtd, FL_RESETTING);
3629         if (!ret)
3630                 /* Recalculate device size on boundary change*/
3631                 flexonenand_get_size(mtd);
3632
3633         return ret;
3634 }
3635
3636 /**
3637  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3638  * @mtd:                MTD device structure
3639  *
3640  * OneNAND detection method:
3641  *   Compare the values from command with ones from register
3642  */
3643 static int onenand_chip_probe(struct mtd_info *mtd)
3644 {
3645         struct onenand_chip *this = mtd->priv;
3646         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3647         int syscfg;
3648
3649         /* Save system configuration 1 */
3650         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3651         /* Clear Sync. Burst Read mode to read BootRAM */
3652         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3653
3654         /* Send the command for reading device ID from BootRAM */
3655         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3656
3657         /* Read manufacturer and device IDs from BootRAM */
3658         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3659         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3660
3661         /* Reset OneNAND to read default register values */
3662         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3663         /* Wait reset */
3664         this->wait(mtd, FL_RESETTING);
3665
3666         /* Restore system configuration 1 */
3667         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3668
3669         /* Check manufacturer ID */
3670         if (onenand_check_maf(bram_maf_id))
3671                 return -ENXIO;
3672
3673         /* Read manufacturer and device IDs from Register */
3674         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3675         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3676
3677         /* Check OneNAND device */
3678         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3679                 return -ENXIO;
3680
3681         return 0;
3682 }
3683
3684 /**
3685  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3686  * @mtd:                MTD device structure
3687  */
3688 static int onenand_probe(struct mtd_info *mtd)
3689 {
3690         struct onenand_chip *this = mtd->priv;
3691         int dev_id, ver_id;
3692         int density;
3693         int ret;
3694
3695         ret = this->chip_probe(mtd);
3696         if (ret)
3697                 return ret;
3698
3699         /* Device and version IDs from Register */
3700         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3701         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3702         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3703
3704         /* Flash device information */
3705         onenand_print_device_info(dev_id, ver_id);
3706         this->device_id = dev_id;
3707         this->version_id = ver_id;
3708
3709         /* Check OneNAND features */
3710         onenand_check_features(mtd);
3711
3712         density = onenand_get_density(dev_id);
3713         if (FLEXONENAND(this)) {
3714                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3715                 /* Maximum possible erase regions */
3716                 mtd->numeraseregions = this->dies << 1;
3717                 mtd->eraseregions =
3718                         kcalloc(this->dies << 1,
3719                                 sizeof(struct mtd_erase_region_info),
3720                                 GFP_KERNEL);
3721                 if (!mtd->eraseregions)
3722                         return -ENOMEM;
3723         }
3724
3725         /*
3726          * For Flex-OneNAND, chipsize represents maximum possible device size.
3727          * mtd->size represents the actual device size.
3728          */
3729         this->chipsize = (16 << density) << 20;
3730
3731         /* OneNAND page size & block size */
3732         /* The data buffer size is equal to page size */
3733         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3734         /* We use the full BufferRAM */
3735         if (ONENAND_IS_4KB_PAGE(this))
3736                 mtd->writesize <<= 1;
3737
3738         mtd->oobsize = mtd->writesize >> 5;
3739         /* Pages per a block are always 64 in OneNAND */
3740         mtd->erasesize = mtd->writesize << 6;
3741         /*
3742          * Flex-OneNAND SLC area has 64 pages per block.
3743          * Flex-OneNAND MLC area has 128 pages per block.
3744          * Expose MLC erase size to find erase_shift and page_mask.
3745          */
3746         if (FLEXONENAND(this))
3747                 mtd->erasesize <<= 1;
3748
3749         this->erase_shift = ffs(mtd->erasesize) - 1;
3750         this->page_shift = ffs(mtd->writesize) - 1;
3751         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3752         /* Set density mask. it is used for DDP */
3753         if (ONENAND_IS_DDP(this))
3754                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3755         /* It's real page size */
3756         this->writesize = mtd->writesize;
3757
3758         /* REVISIT: Multichip handling */
3759
3760         if (FLEXONENAND(this))
3761                 flexonenand_get_size(mtd);
3762         else
3763                 mtd->size = this->chipsize;
3764
3765         /*
3766          * We emulate the 4KiB page and 256KiB erase block size
3767          * But oobsize is still 64 bytes.
3768          * It is only valid if you turn on 2X program support,
3769          * Otherwise it will be ignored by compiler.
3770          */
3771         if (ONENAND_IS_2PLANE(this)) {
3772                 mtd->writesize <<= 1;
3773                 mtd->erasesize <<= 1;
3774         }
3775
3776         return 0;
3777 }
3778
3779 /**
3780  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3781  * @mtd:                MTD device structure
3782  */
3783 static int onenand_suspend(struct mtd_info *mtd)
3784 {
3785         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3786 }
3787
3788 /**
3789  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3790  * @mtd:                MTD device structure
3791  */
3792 static void onenand_resume(struct mtd_info *mtd)
3793 {
3794         struct onenand_chip *this = mtd->priv;
3795
3796         if (this->state == FL_PM_SUSPENDED)
3797                 onenand_release_device(mtd);
3798         else
3799                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3800                                 "in suspended state\n", __func__);
3801 }
3802
3803 /**
3804  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3805  * @mtd:                MTD device structure
3806  * @maxchips:   Number of chips to scan for
3807  *
3808  * This fills out all the not initialized function pointers
3809  * with the defaults.
3810  * The flash ID is read and the mtd/chip structures are
3811  * filled with the appropriate values.
3812  */
3813 int onenand_scan(struct mtd_info *mtd, int maxchips)
3814 {
3815         int i, ret;
3816         struct onenand_chip *this = mtd->priv;
3817
3818         if (!this->read_word)
3819                 this->read_word = onenand_readw;
3820         if (!this->write_word)
3821                 this->write_word = onenand_writew;
3822
3823         if (!this->command)
3824                 this->command = onenand_command;
3825         if (!this->wait)
3826                 onenand_setup_wait(mtd);
3827         if (!this->bbt_wait)
3828                 this->bbt_wait = onenand_bbt_wait;
3829         if (!this->unlock_all)
3830                 this->unlock_all = onenand_unlock_all;
3831
3832         if (!this->chip_probe)
3833                 this->chip_probe = onenand_chip_probe;
3834
3835         if (!this->read_bufferram)
3836                 this->read_bufferram = onenand_read_bufferram;
3837         if (!this->write_bufferram)
3838                 this->write_bufferram = onenand_write_bufferram;
3839
3840         if (!this->block_markbad)
3841                 this->block_markbad = onenand_default_block_markbad;
3842         if (!this->scan_bbt)
3843                 this->scan_bbt = onenand_default_bbt;
3844
3845         if (onenand_probe(mtd))
3846                 return -ENXIO;
3847
3848         /* Set Sync. Burst Read after probing */
3849         if (this->mmcontrol) {
3850                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3851                 this->read_bufferram = onenand_sync_read_bufferram;
3852         }
3853
3854         /* Allocate buffers, if necessary */
3855         if (!this->page_buf) {
3856                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3857                 if (!this->page_buf)
3858                         return -ENOMEM;
3859 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3860                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3861                 if (!this->verify_buf) {
3862                         kfree(this->page_buf);
3863                         return -ENOMEM;
3864                 }
3865 #endif
3866                 this->options |= ONENAND_PAGEBUF_ALLOC;
3867         }
3868         if (!this->oob_buf) {
3869                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3870                 if (!this->oob_buf) {
3871                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
3872                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3873 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3874                                 kfree(this->verify_buf);
3875 #endif
3876                                 kfree(this->page_buf);
3877                         }
3878                         return -ENOMEM;
3879                 }
3880                 this->options |= ONENAND_OOBBUF_ALLOC;
3881         }
3882
3883         this->state = FL_READY;
3884         init_waitqueue_head(&this->wq);
3885         spin_lock_init(&this->chip_lock);
3886
3887         /*
3888          * Allow subpage writes up to oobsize.
3889          */
3890         switch (mtd->oobsize) {
3891         case 128:
3892                 if (FLEXONENAND(this)) {
3893                         mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3894                         mtd->subpage_sft = 0;
3895                 } else {
3896                         mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3897                         mtd->subpage_sft = 2;
3898                 }
3899                 if (ONENAND_IS_NOP_1(this))
3900                         mtd->subpage_sft = 0;
3901                 break;
3902         case 64:
3903                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3904                 mtd->subpage_sft = 2;
3905                 break;
3906
3907         case 32:
3908                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909                 mtd->subpage_sft = 1;
3910                 break;
3911
3912         default:
3913                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3914                         __func__, mtd->oobsize);
3915                 mtd->subpage_sft = 0;
3916                 /* To prevent kernel oops */
3917                 mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3918                 break;
3919         }
3920
3921         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3922
3923         /*
3924          * The number of bytes available for a client to place data into
3925          * the out of band area
3926          */
3927         ret = mtd_ooblayout_count_freebytes(mtd);
3928         if (ret < 0)
3929                 ret = 0;
3930
3931         mtd->oobavail = ret;
3932
3933         mtd->ecc_strength = 1;
3934
3935         /* Fill in remaining MTD driver data */
3936         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3937         mtd->flags = MTD_CAP_NANDFLASH;
3938         mtd->_erase = onenand_erase;
3939         mtd->_point = NULL;
3940         mtd->_unpoint = NULL;
3941         mtd->_read_oob = onenand_read_oob;
3942         mtd->_write_oob = onenand_write_oob;
3943         mtd->_panic_write = onenand_panic_write;
3944 #ifdef CONFIG_MTD_ONENAND_OTP
3945         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3946         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3947         mtd->_get_user_prot_info = onenand_get_user_prot_info;
3948         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3949         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3950         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3951 #endif
3952         mtd->_sync = onenand_sync;
3953         mtd->_lock = onenand_lock;
3954         mtd->_unlock = onenand_unlock;
3955         mtd->_suspend = onenand_suspend;
3956         mtd->_resume = onenand_resume;
3957         mtd->_block_isbad = onenand_block_isbad;
3958         mtd->_block_markbad = onenand_block_markbad;
3959         mtd->owner = THIS_MODULE;
3960         mtd->writebufsize = mtd->writesize;
3961
3962         /* Unlock whole block */
3963         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3964                 this->unlock_all(mtd);
3965
3966         /* Set the bad block marker position */
3967         this->badblockpos = ONENAND_BADBLOCK_POS;
3968
3969         ret = this->scan_bbt(mtd);
3970         if ((!FLEXONENAND(this)) || ret)
3971                 return ret;
3972
3973         /* Change Flex-OneNAND boundaries if required */
3974         for (i = 0; i < MAX_DIES; i++)
3975                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3976                                                  flex_bdry[(2 * i) + 1]);
3977
3978         return 0;
3979 }
3980
3981 /**
3982  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3983  * @mtd:                MTD device structure
3984  */
3985 void onenand_release(struct mtd_info *mtd)
3986 {
3987         struct onenand_chip *this = mtd->priv;
3988
3989         /* Deregister partitions */
3990         mtd_device_unregister(mtd);
3991
3992         /* Free bad block table memory, if allocated */
3993         if (this->bbm) {
3994                 struct bbm_info *bbm = this->bbm;
3995                 kfree(bbm->bbt);
3996                 kfree(this->bbm);
3997         }
3998         /* Buffers allocated by onenand_scan */
3999         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4000                 kfree(this->page_buf);
4001 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4002                 kfree(this->verify_buf);
4003 #endif
4004         }
4005         if (this->options & ONENAND_OOBBUF_ALLOC)
4006                 kfree(this->oob_buf);
4007         kfree(mtd->eraseregions);
4008 }
4009
4010 EXPORT_SYMBOL_GPL(onenand_scan);
4011 EXPORT_SYMBOL_GPL(onenand_release);
4012
4013 MODULE_LICENSE("GPL");
4014 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4015 MODULE_DESCRIPTION("Generic OneNAND flash driver code");