mtd: omap2: fix resource leak in prefetch-busy path
[linux-2.6-microblaze.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23
24 #include <plat/dma.h>
25 #include <plat/gpmc.h>
26 #include <plat/nand.h>
27
28 #define DRIVER_NAME     "omap2-nand"
29 #define OMAP_NAND_TIMEOUT_MS    5000
30
31 #define NAND_Ecc_P1e            (1 << 0)
32 #define NAND_Ecc_P2e            (1 << 1)
33 #define NAND_Ecc_P4e            (1 << 2)
34 #define NAND_Ecc_P8e            (1 << 3)
35 #define NAND_Ecc_P16e           (1 << 4)
36 #define NAND_Ecc_P32e           (1 << 5)
37 #define NAND_Ecc_P64e           (1 << 6)
38 #define NAND_Ecc_P128e          (1 << 7)
39 #define NAND_Ecc_P256e          (1 << 8)
40 #define NAND_Ecc_P512e          (1 << 9)
41 #define NAND_Ecc_P1024e         (1 << 10)
42 #define NAND_Ecc_P2048e         (1 << 11)
43
44 #define NAND_Ecc_P1o            (1 << 16)
45 #define NAND_Ecc_P2o            (1 << 17)
46 #define NAND_Ecc_P4o            (1 << 18)
47 #define NAND_Ecc_P8o            (1 << 19)
48 #define NAND_Ecc_P16o           (1 << 20)
49 #define NAND_Ecc_P32o           (1 << 21)
50 #define NAND_Ecc_P64o           (1 << 22)
51 #define NAND_Ecc_P128o          (1 << 23)
52 #define NAND_Ecc_P256o          (1 << 24)
53 #define NAND_Ecc_P512o          (1 << 25)
54 #define NAND_Ecc_P1024o         (1 << 26)
55 #define NAND_Ecc_P2048o         (1 << 27)
56
57 #define TF(value)       (value ? 1 : 0)
58
59 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
60 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
61 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
62 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
63 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
64 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
65 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
66 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
67
68 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
69 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
70 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
71 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
72 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
73 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
74 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
75 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
76
77 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
78 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
79 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
80 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
81 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
82 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
83 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
84 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
85
86 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
87 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
88 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
89 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
90 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
91 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
92 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
93 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
94
95 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
96 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
97
98 /* oob info generated runtime depending on ecc algorithm and layout selected */
99 static struct nand_ecclayout omap_oobinfo;
100 /* Define some generic bad / good block scan pattern which are used
101  * while scanning a device for factory marked good / bad blocks
102  */
103 static uint8_t scan_ff_pattern[] = { 0xff };
104 static struct nand_bbt_descr bb_descrip_flashbased = {
105         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
106         .offs = 0,
107         .len = 1,
108         .pattern = scan_ff_pattern,
109 };
110
111
112 struct omap_nand_info {
113         struct nand_hw_control          controller;
114         struct omap_nand_platform_data  *pdata;
115         struct mtd_info                 mtd;
116         struct nand_chip                nand;
117         struct platform_device          *pdev;
118
119         int                             gpmc_cs;
120         unsigned long                   phys_base;
121         struct completion               comp;
122         int                             dma_ch;
123         int                             gpmc_irq;
124         enum {
125                 OMAP_NAND_IO_READ = 0,  /* read */
126                 OMAP_NAND_IO_WRITE,     /* write */
127         } iomode;
128         u_char                          *buf;
129         int                                     buf_len;
130 };
131
132 /**
133  * omap_hwcontrol - hardware specific access to control-lines
134  * @mtd: MTD device structure
135  * @cmd: command to device
136  * @ctrl:
137  * NAND_NCE: bit 0 -> don't care
138  * NAND_CLE: bit 1 -> Command Latch
139  * NAND_ALE: bit 2 -> Address Latch
140  *
141  * NOTE: boards may use different bits for these!!
142  */
143 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
144 {
145         struct omap_nand_info *info = container_of(mtd,
146                                         struct omap_nand_info, mtd);
147
148         if (cmd != NAND_CMD_NONE) {
149                 if (ctrl & NAND_CLE)
150                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
151
152                 else if (ctrl & NAND_ALE)
153                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
154
155                 else /* NAND_NCE */
156                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
157         }
158 }
159
160 /**
161  * omap_read_buf8 - read data from NAND controller into buffer
162  * @mtd: MTD device structure
163  * @buf: buffer to store date
164  * @len: number of bytes to read
165  */
166 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
167 {
168         struct nand_chip *nand = mtd->priv;
169
170         ioread8_rep(nand->IO_ADDR_R, buf, len);
171 }
172
173 /**
174  * omap_write_buf8 - write buffer to NAND controller
175  * @mtd: MTD device structure
176  * @buf: data buffer
177  * @len: number of bytes to write
178  */
179 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
180 {
181         struct omap_nand_info *info = container_of(mtd,
182                                                 struct omap_nand_info, mtd);
183         u_char *p = (u_char *)buf;
184         u32     status = 0;
185
186         while (len--) {
187                 iowrite8(*p++, info->nand.IO_ADDR_W);
188                 /* wait until buffer is available for write */
189                 do {
190                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
191                 } while (!status);
192         }
193 }
194
195 /**
196  * omap_read_buf16 - read data from NAND controller into buffer
197  * @mtd: MTD device structure
198  * @buf: buffer to store date
199  * @len: number of bytes to read
200  */
201 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
202 {
203         struct nand_chip *nand = mtd->priv;
204
205         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
206 }
207
208 /**
209  * omap_write_buf16 - write buffer to NAND controller
210  * @mtd: MTD device structure
211  * @buf: data buffer
212  * @len: number of bytes to write
213  */
214 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
215 {
216         struct omap_nand_info *info = container_of(mtd,
217                                                 struct omap_nand_info, mtd);
218         u16 *p = (u16 *) buf;
219         u32     status = 0;
220         /* FIXME try bursts of writesw() or DMA ... */
221         len >>= 1;
222
223         while (len--) {
224                 iowrite16(*p++, info->nand.IO_ADDR_W);
225                 /* wait until buffer is available for write */
226                 do {
227                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
228                 } while (!status);
229         }
230 }
231
232 /**
233  * omap_read_buf_pref - read data from NAND controller into buffer
234  * @mtd: MTD device structure
235  * @buf: buffer to store date
236  * @len: number of bytes to read
237  */
238 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
239 {
240         struct omap_nand_info *info = container_of(mtd,
241                                                 struct omap_nand_info, mtd);
242         uint32_t r_count = 0;
243         int ret = 0;
244         u32 *p = (u32 *)buf;
245
246         /* take care of subpage reads */
247         if (len % 4) {
248                 if (info->nand.options & NAND_BUSWIDTH_16)
249                         omap_read_buf16(mtd, buf, len % 4);
250                 else
251                         omap_read_buf8(mtd, buf, len % 4);
252                 p = (u32 *) (buf + len % 4);
253                 len -= len % 4;
254         }
255
256         /* configure and start prefetch transfer */
257         ret = gpmc_prefetch_enable(info->gpmc_cs,
258                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
259         if (ret) {
260                 /* PFPW engine is busy, use cpu copy method */
261                 if (info->nand.options & NAND_BUSWIDTH_16)
262                         omap_read_buf16(mtd, (u_char *)p, len);
263                 else
264                         omap_read_buf8(mtd, (u_char *)p, len);
265         } else {
266                 do {
267                         r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
268                         r_count = r_count >> 2;
269                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
270                         p += r_count;
271                         len -= r_count << 2;
272                 } while (len);
273                 /* disable and stop the PFPW engine */
274                 gpmc_prefetch_reset(info->gpmc_cs);
275         }
276 }
277
278 /**
279  * omap_write_buf_pref - write buffer to NAND controller
280  * @mtd: MTD device structure
281  * @buf: data buffer
282  * @len: number of bytes to write
283  */
284 static void omap_write_buf_pref(struct mtd_info *mtd,
285                                         const u_char *buf, int len)
286 {
287         struct omap_nand_info *info = container_of(mtd,
288                                                 struct omap_nand_info, mtd);
289         uint32_t w_count = 0;
290         int i = 0, ret = 0;
291         u16 *p = (u16 *)buf;
292         unsigned long tim, limit;
293
294         /* take care of subpage writes */
295         if (len % 2 != 0) {
296                 writeb(*buf, info->nand.IO_ADDR_W);
297                 p = (u16 *)(buf + 1);
298                 len--;
299         }
300
301         /*  configure and start prefetch transfer */
302         ret = gpmc_prefetch_enable(info->gpmc_cs,
303                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
304         if (ret) {
305                 /* PFPW engine is busy, use cpu copy method */
306                 if (info->nand.options & NAND_BUSWIDTH_16)
307                         omap_write_buf16(mtd, (u_char *)p, len);
308                 else
309                         omap_write_buf8(mtd, (u_char *)p, len);
310         } else {
311                 while (len) {
312                         w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
313                         w_count = w_count >> 1;
314                         for (i = 0; (i < w_count) && len; i++, len -= 2)
315                                 iowrite16(*p++, info->nand.IO_ADDR_W);
316                 }
317                 /* wait for data to flushed-out before reset the prefetch */
318                 tim = 0;
319                 limit = (loops_per_jiffy *
320                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
321                 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
322                         cpu_relax();
323
324                 /* disable and stop the PFPW engine */
325                 gpmc_prefetch_reset(info->gpmc_cs);
326         }
327 }
328
329 /*
330  * omap_nand_dma_cb: callback on the completion of dma transfer
331  * @lch: logical channel
332  * @ch_satuts: channel status
333  * @data: pointer to completion data structure
334  */
335 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
336 {
337         complete((struct completion *) data);
338 }
339
340 /*
341  * omap_nand_dma_transfer: configer and start dma transfer
342  * @mtd: MTD device structure
343  * @addr: virtual address in RAM of source/destination
344  * @len: number of data bytes to be transferred
345  * @is_write: flag for read/write operation
346  */
347 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
348                                         unsigned int len, int is_write)
349 {
350         struct omap_nand_info *info = container_of(mtd,
351                                         struct omap_nand_info, mtd);
352         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
353                                                         DMA_FROM_DEVICE;
354         dma_addr_t dma_addr;
355         int ret;
356         unsigned long tim, limit;
357
358         /* The fifo depth is 64 bytes max.
359          * But configure the FIFO-threahold to 32 to get a sync at each frame
360          * and frame length is 32 bytes.
361          */
362         int buf_len = len >> 6;
363
364         if (addr >= high_memory) {
365                 struct page *p1;
366
367                 if (((size_t)addr & PAGE_MASK) !=
368                         ((size_t)(addr + len - 1) & PAGE_MASK))
369                         goto out_copy;
370                 p1 = vmalloc_to_page(addr);
371                 if (!p1)
372                         goto out_copy;
373                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
374         }
375
376         dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
377         if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
378                 dev_err(&info->pdev->dev,
379                         "Couldn't DMA map a %d byte buffer\n", len);
380                 goto out_copy;
381         }
382
383         if (is_write) {
384             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
385                                                 info->phys_base, 0, 0);
386             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
387                                                         dma_addr, 0, 0);
388             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
389                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
390                                         OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
391         } else {
392             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
393                                                 info->phys_base, 0, 0);
394             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
395                                                         dma_addr, 0, 0);
396             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
397                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
398                                         OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
399         }
400         /*  configure and start prefetch transfer */
401         ret = gpmc_prefetch_enable(info->gpmc_cs,
402                         PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
403         if (ret)
404                 /* PFPW engine is busy, use cpu copy method */
405                 goto out_copy_unmap;
406
407         init_completion(&info->comp);
408
409         omap_start_dma(info->dma_ch);
410
411         /* setup and start DMA using dma_addr */
412         wait_for_completion(&info->comp);
413         tim = 0;
414         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
415         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
416                 cpu_relax();
417
418         /* disable and stop the PFPW engine */
419         gpmc_prefetch_reset(info->gpmc_cs);
420
421         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
422         return 0;
423
424 out_copy_unmap:
425         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
426 out_copy:
427         if (info->nand.options & NAND_BUSWIDTH_16)
428                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
429                         : omap_write_buf16(mtd, (u_char *) addr, len);
430         else
431                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
432                         : omap_write_buf8(mtd, (u_char *) addr, len);
433         return 0;
434 }
435
436 /**
437  * omap_read_buf_dma_pref - read data from NAND controller into buffer
438  * @mtd: MTD device structure
439  * @buf: buffer to store date
440  * @len: number of bytes to read
441  */
442 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
443 {
444         if (len <= mtd->oobsize)
445                 omap_read_buf_pref(mtd, buf, len);
446         else
447                 /* start transfer in DMA mode */
448                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
449 }
450
451 /**
452  * omap_write_buf_dma_pref - write buffer to NAND controller
453  * @mtd: MTD device structure
454  * @buf: data buffer
455  * @len: number of bytes to write
456  */
457 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
458                                         const u_char *buf, int len)
459 {
460         if (len <= mtd->oobsize)
461                 omap_write_buf_pref(mtd, buf, len);
462         else
463                 /* start transfer in DMA mode */
464                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
465 }
466
467 /*
468  * omap_nand_irq - GMPC irq handler
469  * @this_irq: gpmc irq number
470  * @dev: omap_nand_info structure pointer is passed here
471  */
472 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
473 {
474         struct omap_nand_info *info = (struct omap_nand_info *) dev;
475         u32 bytes;
476         u32 irq_stat;
477
478         irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
479         bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
480         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
481         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
482                 if (irq_stat & 0x2)
483                         goto done;
484
485                 if (info->buf_len && (info->buf_len < bytes))
486                         bytes = info->buf_len;
487                 else if (!info->buf_len)
488                         bytes = 0;
489                 iowrite32_rep(info->nand.IO_ADDR_W,
490                                                 (u32 *)info->buf, bytes >> 2);
491                 info->buf = info->buf + bytes;
492                 info->buf_len -= bytes;
493
494         } else {
495                 ioread32_rep(info->nand.IO_ADDR_R,
496                                                 (u32 *)info->buf, bytes >> 2);
497                 info->buf = info->buf + bytes;
498
499                 if (irq_stat & 0x2)
500                         goto done;
501         }
502         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
503
504         return IRQ_HANDLED;
505
506 done:
507         complete(&info->comp);
508         /* disable irq */
509         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
510
511         /* clear status */
512         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
513
514         return IRQ_HANDLED;
515 }
516
517 /*
518  * omap_read_buf_irq_pref - read data from NAND controller into buffer
519  * @mtd: MTD device structure
520  * @buf: buffer to store date
521  * @len: number of bytes to read
522  */
523 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
524 {
525         struct omap_nand_info *info = container_of(mtd,
526                                                 struct omap_nand_info, mtd);
527         int ret = 0;
528
529         if (len <= mtd->oobsize) {
530                 omap_read_buf_pref(mtd, buf, len);
531                 return;
532         }
533
534         info->iomode = OMAP_NAND_IO_READ;
535         info->buf = buf;
536         init_completion(&info->comp);
537
538         /*  configure and start prefetch transfer */
539         ret = gpmc_prefetch_enable(info->gpmc_cs,
540                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
541         if (ret)
542                 /* PFPW engine is busy, use cpu copy method */
543                 goto out_copy;
544
545         info->buf_len = len;
546         /* enable irq */
547         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
548                 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
549
550         /* waiting for read to complete */
551         wait_for_completion(&info->comp);
552
553         /* disable and stop the PFPW engine */
554         gpmc_prefetch_reset(info->gpmc_cs);
555         return;
556
557 out_copy:
558         if (info->nand.options & NAND_BUSWIDTH_16)
559                 omap_read_buf16(mtd, buf, len);
560         else
561                 omap_read_buf8(mtd, buf, len);
562 }
563
564 /*
565  * omap_write_buf_irq_pref - write buffer to NAND controller
566  * @mtd: MTD device structure
567  * @buf: data buffer
568  * @len: number of bytes to write
569  */
570 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
571                                         const u_char *buf, int len)
572 {
573         struct omap_nand_info *info = container_of(mtd,
574                                                 struct omap_nand_info, mtd);
575         int ret = 0;
576         unsigned long tim, limit;
577
578         if (len <= mtd->oobsize) {
579                 omap_write_buf_pref(mtd, buf, len);
580                 return;
581         }
582
583         info->iomode = OMAP_NAND_IO_WRITE;
584         info->buf = (u_char *) buf;
585         init_completion(&info->comp);
586
587         /* configure and start prefetch transfer : size=24 */
588         ret = gpmc_prefetch_enable(info->gpmc_cs,
589                         (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
590         if (ret)
591                 /* PFPW engine is busy, use cpu copy method */
592                 goto out_copy;
593
594         info->buf_len = len;
595         /* enable irq */
596         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
597                         (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
598
599         /* waiting for write to complete */
600         wait_for_completion(&info->comp);
601         /* wait for data to flushed-out before reset the prefetch */
602         tim = 0;
603         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
604         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
605                 cpu_relax();
606
607         /* disable and stop the PFPW engine */
608         gpmc_prefetch_reset(info->gpmc_cs);
609         return;
610
611 out_copy:
612         if (info->nand.options & NAND_BUSWIDTH_16)
613                 omap_write_buf16(mtd, buf, len);
614         else
615                 omap_write_buf8(mtd, buf, len);
616 }
617
618 /**
619  * omap_verify_buf - Verify chip data against buffer
620  * @mtd: MTD device structure
621  * @buf: buffer containing the data to compare
622  * @len: number of bytes to compare
623  */
624 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
625 {
626         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
627                                                         mtd);
628         u16 *p = (u16 *) buf;
629
630         len >>= 1;
631         while (len--) {
632                 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
633                         return -EFAULT;
634         }
635
636         return 0;
637 }
638
639 /**
640  * gen_true_ecc - This function will generate true ECC value
641  * @ecc_buf: buffer to store ecc code
642  *
643  * This generated true ECC value can be used when correcting
644  * data read from NAND flash memory core
645  */
646 static void gen_true_ecc(u8 *ecc_buf)
647 {
648         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
649                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
650
651         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
652                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
653         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
654                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
655         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
656                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
657 }
658
659 /**
660  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
661  * @ecc_data1:  ecc code from nand spare area
662  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
663  * @page_data:  page data
664  *
665  * This function compares two ECC's and indicates if there is an error.
666  * If the error can be corrected it will be corrected to the buffer.
667  * If there is no error, %0 is returned. If there is an error but it
668  * was corrected, %1 is returned. Otherwise, %-1 is returned.
669  */
670 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
671                             u8 *ecc_data2,      /* read from register */
672                             u8 *page_data)
673 {
674         uint    i;
675         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
676         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
677         u8      ecc_bit[24];
678         u8      ecc_sum = 0;
679         u8      find_bit = 0;
680         uint    find_byte = 0;
681         int     isEccFF;
682
683         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
684
685         gen_true_ecc(ecc_data1);
686         gen_true_ecc(ecc_data2);
687
688         for (i = 0; i <= 2; i++) {
689                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
690                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
691         }
692
693         for (i = 0; i < 8; i++) {
694                 tmp0_bit[i]     = *ecc_data1 % 2;
695                 *ecc_data1      = *ecc_data1 / 2;
696         }
697
698         for (i = 0; i < 8; i++) {
699                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
700                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
701         }
702
703         for (i = 0; i < 8; i++) {
704                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
705                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
706         }
707
708         for (i = 0; i < 8; i++) {
709                 comp0_bit[i]     = *ecc_data2 % 2;
710                 *ecc_data2       = *ecc_data2 / 2;
711         }
712
713         for (i = 0; i < 8; i++) {
714                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
715                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
716         }
717
718         for (i = 0; i < 8; i++) {
719                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
720                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
721         }
722
723         for (i = 0; i < 6; i++)
724                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
725
726         for (i = 0; i < 8; i++)
727                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
728
729         for (i = 0; i < 8; i++)
730                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
731
732         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
733         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
734
735         for (i = 0; i < 24; i++)
736                 ecc_sum += ecc_bit[i];
737
738         switch (ecc_sum) {
739         case 0:
740                 /* Not reached because this function is not called if
741                  *  ECC values are equal
742                  */
743                 return 0;
744
745         case 1:
746                 /* Uncorrectable error */
747                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
748                 return -1;
749
750         case 11:
751                 /* UN-Correctable error */
752                 pr_debug("ECC UNCORRECTED_ERROR B\n");
753                 return -1;
754
755         case 12:
756                 /* Correctable error */
757                 find_byte = (ecc_bit[23] << 8) +
758                             (ecc_bit[21] << 7) +
759                             (ecc_bit[19] << 6) +
760                             (ecc_bit[17] << 5) +
761                             (ecc_bit[15] << 4) +
762                             (ecc_bit[13] << 3) +
763                             (ecc_bit[11] << 2) +
764                             (ecc_bit[9]  << 1) +
765                             ecc_bit[7];
766
767                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
768
769                 pr_debug("Correcting single bit ECC error at offset: "
770                                 "%d, bit: %d\n", find_byte, find_bit);
771
772                 page_data[find_byte] ^= (1 << find_bit);
773
774                 return 1;
775         default:
776                 if (isEccFF) {
777                         if (ecc_data2[0] == 0 &&
778                             ecc_data2[1] == 0 &&
779                             ecc_data2[2] == 0)
780                                 return 0;
781                 }
782                 pr_debug("UNCORRECTED_ERROR default\n");
783                 return -1;
784         }
785 }
786
787 /**
788  * omap_correct_data - Compares the ECC read with HW generated ECC
789  * @mtd: MTD device structure
790  * @dat: page data
791  * @read_ecc: ecc read from nand flash
792  * @calc_ecc: ecc read from HW ECC registers
793  *
794  * Compares the ecc read from nand spare area with ECC registers values
795  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
796  * detection and correction. If there are no errors, %0 is returned. If
797  * there were errors and all of the errors were corrected, the number of
798  * corrected errors is returned. If uncorrectable errors exist, %-1 is
799  * returned.
800  */
801 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
802                                 u_char *read_ecc, u_char *calc_ecc)
803 {
804         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
805                                                         mtd);
806         int blockCnt = 0, i = 0, ret = 0;
807         int stat = 0;
808
809         /* Ex NAND_ECC_HW12_2048 */
810         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
811                         (info->nand.ecc.size  == 2048))
812                 blockCnt = 4;
813         else
814                 blockCnt = 1;
815
816         for (i = 0; i < blockCnt; i++) {
817                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
818                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
819                         if (ret < 0)
820                                 return ret;
821                         /* keep track of the number of corrected errors */
822                         stat += ret;
823                 }
824                 read_ecc += 3;
825                 calc_ecc += 3;
826                 dat      += 512;
827         }
828         return stat;
829 }
830
831 /**
832  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
833  * @mtd: MTD device structure
834  * @dat: The pointer to data on which ecc is computed
835  * @ecc_code: The ecc_code buffer
836  *
837  * Using noninverted ECC can be considered ugly since writing a blank
838  * page ie. padding will clear the ECC bytes. This is no problem as long
839  * nobody is trying to write data on the seemingly unused page. Reading
840  * an erased page will produce an ECC mismatch between generated and read
841  * ECC bytes that has to be dealt with separately.
842  */
843 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
844                                 u_char *ecc_code)
845 {
846         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
847                                                         mtd);
848         return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
849 }
850
851 /**
852  * omap_enable_hwecc - This function enables the hardware ecc functionality
853  * @mtd: MTD device structure
854  * @mode: Read/Write mode
855  */
856 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
857 {
858         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
859                                                         mtd);
860         struct nand_chip *chip = mtd->priv;
861         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
862
863         gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
864 }
865
866 /**
867  * omap_wait - wait until the command is done
868  * @mtd: MTD device structure
869  * @chip: NAND Chip structure
870  *
871  * Wait function is called during Program and erase operations and
872  * the way it is called from MTD layer, we should wait till the NAND
873  * chip is ready after the programming/erase operation has completed.
874  *
875  * Erase can take up to 400ms and program up to 20ms according to
876  * general NAND and SmartMedia specs
877  */
878 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
879 {
880         struct nand_chip *this = mtd->priv;
881         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
882                                                         mtd);
883         unsigned long timeo = jiffies;
884         int status = NAND_STATUS_FAIL, state = this->state;
885
886         if (state == FL_ERASING)
887                 timeo += (HZ * 400) / 1000;
888         else
889                 timeo += (HZ * 20) / 1000;
890
891         gpmc_nand_write(info->gpmc_cs,
892                         GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
893         while (time_before(jiffies, timeo)) {
894                 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
895                 if (status & NAND_STATUS_READY)
896                         break;
897                 cond_resched();
898         }
899         return status;
900 }
901
902 /**
903  * omap_dev_ready - calls the platform specific dev_ready function
904  * @mtd: MTD device structure
905  */
906 static int omap_dev_ready(struct mtd_info *mtd)
907 {
908         unsigned int val = 0;
909         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
910                                                         mtd);
911
912         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
913         if ((val & 0x100) == 0x100) {
914                 /* Clear IRQ Interrupt */
915                 val |= 0x100;
916                 val &= ~(0x0);
917                 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
918         } else {
919                 unsigned int cnt = 0;
920                 while (cnt++ < 0x1FF) {
921                         if  ((val & 0x100) == 0x100)
922                                 return 0;
923                         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
924                 }
925         }
926
927         return 1;
928 }
929
930 static int __devinit omap_nand_probe(struct platform_device *pdev)
931 {
932         struct omap_nand_info           *info;
933         struct omap_nand_platform_data  *pdata;
934         int                             err;
935         int                             i, offset;
936
937         pdata = pdev->dev.platform_data;
938         if (pdata == NULL) {
939                 dev_err(&pdev->dev, "platform data missing\n");
940                 return -ENODEV;
941         }
942
943         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
944         if (!info)
945                 return -ENOMEM;
946
947         platform_set_drvdata(pdev, info);
948
949         spin_lock_init(&info->controller.lock);
950         init_waitqueue_head(&info->controller.wq);
951
952         info->pdev = pdev;
953
954         info->gpmc_cs           = pdata->cs;
955         info->phys_base         = pdata->phys_base;
956
957         info->mtd.priv          = &info->nand;
958         info->mtd.name          = dev_name(&pdev->dev);
959         info->mtd.owner         = THIS_MODULE;
960
961         info->nand.options      = pdata->devsize;
962         info->nand.options      |= NAND_SKIP_BBTSCAN;
963
964         /* NAND write protect off */
965         gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
966
967         if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
968                                 pdev->dev.driver->name)) {
969                 err = -EBUSY;
970                 goto out_free_info;
971         }
972
973         info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
974         if (!info->nand.IO_ADDR_R) {
975                 err = -ENOMEM;
976                 goto out_release_mem_region;
977         }
978
979         info->nand.controller = &info->controller;
980
981         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
982         info->nand.cmd_ctrl  = omap_hwcontrol;
983
984         /*
985          * If RDY/BSY line is connected to OMAP then use the omap ready
986          * funcrtion and the generic nand_wait function which reads the status
987          * register after monitoring the RDY/BSY line.Otherwise use a standard
988          * chip delay which is slightly more than tR (AC Timing) of the NAND
989          * device and read status register until you get a failure or success
990          */
991         if (pdata->dev_ready) {
992                 info->nand.dev_ready = omap_dev_ready;
993                 info->nand.chip_delay = 0;
994         } else {
995                 info->nand.waitfunc = omap_wait;
996                 info->nand.chip_delay = 50;
997         }
998
999         switch (pdata->xfer_type) {
1000         case NAND_OMAP_PREFETCH_POLLED:
1001                 info->nand.read_buf   = omap_read_buf_pref;
1002                 info->nand.write_buf  = omap_write_buf_pref;
1003                 break;
1004
1005         case NAND_OMAP_POLLED:
1006                 if (info->nand.options & NAND_BUSWIDTH_16) {
1007                         info->nand.read_buf   = omap_read_buf16;
1008                         info->nand.write_buf  = omap_write_buf16;
1009                 } else {
1010                         info->nand.read_buf   = omap_read_buf8;
1011                         info->nand.write_buf  = omap_write_buf8;
1012                 }
1013                 break;
1014
1015         case NAND_OMAP_PREFETCH_DMA:
1016                 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017                                 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018                 if (err < 0) {
1019                         info->dma_ch = -1;
1020                         dev_err(&pdev->dev, "DMA request failed!\n");
1021                         goto out_release_mem_region;
1022                 } else {
1023                         omap_set_dma_dest_burst_mode(info->dma_ch,
1024                                         OMAP_DMA_DATA_BURST_16);
1025                         omap_set_dma_src_burst_mode(info->dma_ch,
1026                                         OMAP_DMA_DATA_BURST_16);
1027
1028                         info->nand.read_buf   = omap_read_buf_dma_pref;
1029                         info->nand.write_buf  = omap_write_buf_dma_pref;
1030                 }
1031                 break;
1032
1033         case NAND_OMAP_PREFETCH_IRQ:
1034                 err = request_irq(pdata->gpmc_irq,
1035                                 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036                 if (err) {
1037                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038                                                         pdata->gpmc_irq, err);
1039                         goto out_release_mem_region;
1040                 } else {
1041                         info->gpmc_irq       = pdata->gpmc_irq;
1042                         info->nand.read_buf  = omap_read_buf_irq_pref;
1043                         info->nand.write_buf = omap_write_buf_irq_pref;
1044                 }
1045                 break;
1046
1047         default:
1048                 dev_err(&pdev->dev,
1049                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1050                 err = -EINVAL;
1051                 goto out_release_mem_region;
1052         }
1053
1054         info->nand.verify_buf = omap_verify_buf;
1055
1056         /* selsect the ecc type */
1057         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058                 info->nand.ecc.mode = NAND_ECC_SOFT;
1059         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061                 info->nand.ecc.bytes            = 3;
1062                 info->nand.ecc.size             = 512;
1063                 info->nand.ecc.strength         = 1;
1064                 info->nand.ecc.calculate        = omap_calculate_ecc;
1065                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1066                 info->nand.ecc.correct          = omap_correct_data;
1067                 info->nand.ecc.mode             = NAND_ECC_HW;
1068         }
1069
1070         /* DIP switches on some boards change between 8 and 16 bit
1071          * bus widths for flash.  Try the other width if the first try fails.
1072          */
1073         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1074                 info->nand.options ^= NAND_BUSWIDTH_16;
1075                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1076                         err = -ENXIO;
1077                         goto out_release_mem_region;
1078                 }
1079         }
1080
1081         /* rom code layout */
1082         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1083
1084                 if (info->nand.options & NAND_BUSWIDTH_16)
1085                         offset = 2;
1086                 else {
1087                         offset = 1;
1088                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1089                 }
1090                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1091                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1092                         omap_oobinfo.eccpos[i] = i+offset;
1093
1094                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1095                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1096                                         (offset + omap_oobinfo.eccbytes);
1097
1098                 info->nand.ecc.layout = &omap_oobinfo;
1099         }
1100
1101         /* second phase scan */
1102         if (nand_scan_tail(&info->mtd)) {
1103                 err = -ENXIO;
1104                 goto out_release_mem_region;
1105         }
1106
1107         mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
1108                                   pdata->nr_parts);
1109
1110         platform_set_drvdata(pdev, &info->mtd);
1111
1112         return 0;
1113
1114 out_release_mem_region:
1115         release_mem_region(info->phys_base, NAND_IO_SIZE);
1116 out_free_info:
1117         kfree(info);
1118
1119         return err;
1120 }
1121
1122 static int omap_nand_remove(struct platform_device *pdev)
1123 {
1124         struct mtd_info *mtd = platform_get_drvdata(pdev);
1125         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1126                                                         mtd);
1127
1128         platform_set_drvdata(pdev, NULL);
1129         if (info->dma_ch != -1)
1130                 omap_free_dma(info->dma_ch);
1131
1132         if (info->gpmc_irq)
1133                 free_irq(info->gpmc_irq, info);
1134
1135         /* Release NAND device, its internal structures and partitions */
1136         nand_release(&info->mtd);
1137         iounmap(info->nand.IO_ADDR_R);
1138         kfree(&info->mtd);
1139         return 0;
1140 }
1141
1142 static struct platform_driver omap_nand_driver = {
1143         .probe          = omap_nand_probe,
1144         .remove         = omap_nand_remove,
1145         .driver         = {
1146                 .name   = DRIVER_NAME,
1147                 .owner  = THIS_MODULE,
1148         },
1149 };
1150
1151 module_platform_driver(omap_nand_driver);
1152
1153 MODULE_ALIAS("platform:" DRIVER_NAME);
1154 MODULE_LICENSE("GPL");
1155 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");