mtd: sh_flctl: Simplify the hardware ecc page read/write
[linux-2.6-microblaze.git] / drivers / mtd / nand / ndfc.c
1 /*
2  *  drivers/mtd/ndfc.c
3  *
4  *  Overview:
5  *   Platform independent driver for NDFC (NanD Flash Controller)
6  *   integrated into EP440 cores
7  *
8  *   Ported to an OF platform driver by Sean MacLennan
9  *
10  *   The NDFC supports multiple chips, but this driver only supports a
11  *   single chip since I do not have access to any boards with
12  *   multiple chips.
13  *
14  *  Author: Thomas Gleixner
15  *
16  *  Copyright 2006 IBM
17  *  Copyright 2008 PIKA Technologies
18  *    Sean MacLennan <smaclennan@pikatech.com>
19  *
20  *  This program is free software; you can redistribute  it and/or modify it
21  *  under  the terms of  the GNU General  Public License as published by the
22  *  Free Software Foundation;  either version 2 of the  License, or (at your
23  *  option) any later version.
24  *
25  */
26 #include <linux/module.h>
27 #include <linux/mtd/nand.h>
28 #include <linux/mtd/nand_ecc.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/ndfc.h>
31 #include <linux/slab.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/of_platform.h>
34 #include <asm/io.h>
35
36 #define NDFC_MAX_CS    4
37
38 struct ndfc_controller {
39         struct platform_device *ofdev;
40         void __iomem *ndfcbase;
41         struct mtd_info mtd;
42         struct nand_chip chip;
43         int chip_select;
44         struct nand_hw_control ndfc_control;
45 };
46
47 static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS];
48
49 static void ndfc_select_chip(struct mtd_info *mtd, int chip)
50 {
51         uint32_t ccr;
52         struct nand_chip *nchip = mtd->priv;
53         struct ndfc_controller *ndfc = nchip->priv;
54
55         ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
56         if (chip >= 0) {
57                 ccr &= ~NDFC_CCR_BS_MASK;
58                 ccr |= NDFC_CCR_BS(chip + ndfc->chip_select);
59         } else
60                 ccr |= NDFC_CCR_RESET_CE;
61         out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
62 }
63
64 static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
65 {
66         struct nand_chip *chip = mtd->priv;
67         struct ndfc_controller *ndfc = chip->priv;
68
69         if (cmd == NAND_CMD_NONE)
70                 return;
71
72         if (ctrl & NAND_CLE)
73                 writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD);
74         else
75                 writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE);
76 }
77
78 static int ndfc_ready(struct mtd_info *mtd)
79 {
80         struct nand_chip *chip = mtd->priv;
81         struct ndfc_controller *ndfc = chip->priv;
82
83         return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY;
84 }
85
86 static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode)
87 {
88         uint32_t ccr;
89         struct nand_chip *chip = mtd->priv;
90         struct ndfc_controller *ndfc = chip->priv;
91
92         ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
93         ccr |= NDFC_CCR_RESET_ECC;
94         out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
95         wmb();
96 }
97
98 static int ndfc_calculate_ecc(struct mtd_info *mtd,
99                               const u_char *dat, u_char *ecc_code)
100 {
101         struct nand_chip *chip = mtd->priv;
102         struct ndfc_controller *ndfc = chip->priv;
103         uint32_t ecc;
104         uint8_t *p = (uint8_t *)&ecc;
105
106         wmb();
107         ecc = in_be32(ndfc->ndfcbase + NDFC_ECC);
108         /* The NDFC uses Smart Media (SMC) bytes order */
109         ecc_code[0] = p[1];
110         ecc_code[1] = p[2];
111         ecc_code[2] = p[3];
112
113         return 0;
114 }
115
116 /*
117  * Speedups for buffer read/write/verify
118  *
119  * NDFC allows 32bit read/write of data. So we can speed up the buffer
120  * functions. No further checking, as nand_base will always read/write
121  * page aligned.
122  */
123 static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
124 {
125         struct nand_chip *chip = mtd->priv;
126         struct ndfc_controller *ndfc = chip->priv;
127         uint32_t *p = (uint32_t *) buf;
128
129         for(;len > 0; len -= 4)
130                 *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA);
131 }
132
133 static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
134 {
135         struct nand_chip *chip = mtd->priv;
136         struct ndfc_controller *ndfc = chip->priv;
137         uint32_t *p = (uint32_t *) buf;
138
139         for(;len > 0; len -= 4)
140                 out_be32(ndfc->ndfcbase + NDFC_DATA, *p++);
141 }
142
143 static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
144 {
145         struct nand_chip *chip = mtd->priv;
146         struct ndfc_controller *ndfc = chip->priv;
147         uint32_t *p = (uint32_t *) buf;
148
149         for(;len > 0; len -= 4)
150                 if (*p++ != in_be32(ndfc->ndfcbase + NDFC_DATA))
151                         return -EFAULT;
152         return 0;
153 }
154
155 /*
156  * Initialize chip structure
157  */
158 static int ndfc_chip_init(struct ndfc_controller *ndfc,
159                           struct device_node *node)
160 {
161         struct device_node *flash_np;
162         struct nand_chip *chip = &ndfc->chip;
163         struct mtd_part_parser_data ppdata;
164         int ret;
165
166         chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
167         chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
168         chip->cmd_ctrl = ndfc_hwcontrol;
169         chip->dev_ready = ndfc_ready;
170         chip->select_chip = ndfc_select_chip;
171         chip->chip_delay = 50;
172         chip->controller = &ndfc->ndfc_control;
173         chip->read_buf = ndfc_read_buf;
174         chip->write_buf = ndfc_write_buf;
175         chip->verify_buf = ndfc_verify_buf;
176         chip->ecc.correct = nand_correct_data;
177         chip->ecc.hwctl = ndfc_enable_hwecc;
178         chip->ecc.calculate = ndfc_calculate_ecc;
179         chip->ecc.mode = NAND_ECC_HW;
180         chip->ecc.size = 256;
181         chip->ecc.bytes = 3;
182         chip->ecc.strength = 1;
183         chip->priv = ndfc;
184
185         ndfc->mtd.priv = chip;
186         ndfc->mtd.owner = THIS_MODULE;
187
188         flash_np = of_get_next_child(node, NULL);
189         if (!flash_np)
190                 return -ENODEV;
191
192         ppdata.of_node = flash_np;
193         ndfc->mtd.name = kasprintf(GFP_KERNEL, "%s.%s",
194                         dev_name(&ndfc->ofdev->dev), flash_np->name);
195         if (!ndfc->mtd.name) {
196                 ret = -ENOMEM;
197                 goto err;
198         }
199
200         ret = nand_scan(&ndfc->mtd, 1);
201         if (ret)
202                 goto err;
203
204         ret = mtd_device_parse_register(&ndfc->mtd, NULL, &ppdata, NULL, 0);
205
206 err:
207         of_node_put(flash_np);
208         if (ret)
209                 kfree(ndfc->mtd.name);
210         return ret;
211 }
212
213 static int __devinit ndfc_probe(struct platform_device *ofdev)
214 {
215         struct ndfc_controller *ndfc;
216         const __be32 *reg;
217         u32 ccr;
218         int err, len, cs;
219
220         /* Read the reg property to get the chip select */
221         reg = of_get_property(ofdev->dev.of_node, "reg", &len);
222         if (reg == NULL || len != 12) {
223                 dev_err(&ofdev->dev, "unable read reg property (%d)\n", len);
224                 return -ENOENT;
225         }
226
227         cs = be32_to_cpu(reg[0]);
228         if (cs >= NDFC_MAX_CS) {
229                 dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs);
230                 return -EINVAL;
231         }
232
233         ndfc = &ndfc_ctrl[cs];
234         ndfc->chip_select = cs;
235
236         spin_lock_init(&ndfc->ndfc_control.lock);
237         init_waitqueue_head(&ndfc->ndfc_control.wq);
238         ndfc->ofdev = ofdev;
239         dev_set_drvdata(&ofdev->dev, ndfc);
240
241         ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0);
242         if (!ndfc->ndfcbase) {
243                 dev_err(&ofdev->dev, "failed to get memory\n");
244                 return -EIO;
245         }
246
247         ccr = NDFC_CCR_BS(ndfc->chip_select);
248
249         /* It is ok if ccr does not exist - just default to 0 */
250         reg = of_get_property(ofdev->dev.of_node, "ccr", NULL);
251         if (reg)
252                 ccr |= be32_to_cpup(reg);
253
254         out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
255
256         /* Set the bank settings if given */
257         reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL);
258         if (reg) {
259                 int offset = NDFC_BCFG0 + (ndfc->chip_select << 2);
260                 out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg));
261         }
262
263         err = ndfc_chip_init(ndfc, ofdev->dev.of_node);
264         if (err) {
265                 iounmap(ndfc->ndfcbase);
266                 return err;
267         }
268
269         return 0;
270 }
271
272 static int __devexit ndfc_remove(struct platform_device *ofdev)
273 {
274         struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev);
275
276         nand_release(&ndfc->mtd);
277         kfree(ndfc->mtd.name);
278
279         return 0;
280 }
281
282 static const struct of_device_id ndfc_match[] = {
283         { .compatible = "ibm,ndfc", },
284         {}
285 };
286 MODULE_DEVICE_TABLE(of, ndfc_match);
287
288 static struct platform_driver ndfc_driver = {
289         .driver = {
290                 .name = "ndfc",
291                 .owner = THIS_MODULE,
292                 .of_match_table = ndfc_match,
293         },
294         .probe = ndfc_probe,
295         .remove = __devexit_p(ndfc_remove),
296 };
297
298 module_platform_driver(ndfc_driver);
299
300 MODULE_LICENSE("GPL");
301 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
302 MODULE_DESCRIPTION("OF Platform driver for NDFC");