mtd: Introduce mtd_block_isreserved()
[linux-2.6-microblaze.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/mm.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99                              struct mtd_oob_ops *ops);
100
101 /*
102  * For devices which display every fart in the system on a separate LED. Is
103  * compiled away when LED support is disabled.
104  */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108                                         loff_t ofs, uint64_t len)
109 {
110         struct nand_chip *chip = mtd->priv;
111         int ret = 0;
112
113         /* Start address must align on block boundary */
114         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115                 pr_debug("%s: unaligned address\n", __func__);
116                 ret = -EINVAL;
117         }
118
119         /* Length must align on block boundary */
120         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121                 pr_debug("%s: length not block aligned\n", __func__);
122                 ret = -EINVAL;
123         }
124
125         return ret;
126 }
127
128 /**
129  * nand_release_device - [GENERIC] release chip
130  * @mtd: MTD device structure
131  *
132  * Release chip lock and wake up anyone waiting on the device.
133  */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136         struct nand_chip *chip = mtd->priv;
137
138         /* Release the controller and the chip */
139         spin_lock(&chip->controller->lock);
140         chip->controller->active = NULL;
141         chip->state = FL_READY;
142         wake_up(&chip->controller->wq);
143         spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154         struct nand_chip *chip = mtd->priv;
155         return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161  * @mtd: MTD device structure
162  *
163  * Default read function for 16bit buswidth with endianness conversion.
164  *
165  */
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 }
171
172 /**
173  * nand_read_word - [DEFAULT] read one word from the chip
174  * @mtd: MTD device structure
175  *
176  * Default read function for 16bit buswidth without endianness conversion.
177  */
178 static u16 nand_read_word(struct mtd_info *mtd)
179 {
180         struct nand_chip *chip = mtd->priv;
181         return readw(chip->IO_ADDR_R);
182 }
183
184 /**
185  * nand_select_chip - [DEFAULT] control CE line
186  * @mtd: MTD device structure
187  * @chipnr: chipnumber to select, -1 for deselect
188  *
189  * Default select function for 1 chip devices.
190  */
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192 {
193         struct nand_chip *chip = mtd->priv;
194
195         switch (chipnr) {
196         case -1:
197                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198                 break;
199         case 0:
200                 break;
201
202         default:
203                 BUG();
204         }
205 }
206
207 /**
208  * nand_write_byte - [DEFAULT] write single byte to chip
209  * @mtd: MTD device structure
210  * @byte: value to write
211  *
212  * Default function to write a byte to I/O[7:0]
213  */
214 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
215 {
216         struct nand_chip *chip = mtd->priv;
217
218         chip->write_buf(mtd, &byte, 1);
219 }
220
221 /**
222  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
223  * @mtd: MTD device structure
224  * @byte: value to write
225  *
226  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227  */
228 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
229 {
230         struct nand_chip *chip = mtd->priv;
231         uint16_t word = byte;
232
233         /*
234          * It's not entirely clear what should happen to I/O[15:8] when writing
235          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236          *
237          *    When the host supports a 16-bit bus width, only data is
238          *    transferred at the 16-bit width. All address and command line
239          *    transfers shall use only the lower 8-bits of the data bus. During
240          *    command transfers, the host may place any value on the upper
241          *    8-bits of the data bus. During address transfers, the host shall
242          *    set the upper 8-bits of the data bus to 00h.
243          *
244          * One user of the write_byte callback is nand_onfi_set_features. The
245          * four parameters are specified to be written to I/O[7:0], but this is
246          * neither an address nor a command transfer. Let's assume a 0 on the
247          * upper I/O lines is OK.
248          */
249         chip->write_buf(mtd, (uint8_t *)&word, 2);
250 }
251
252 /**
253  * nand_write_buf - [DEFAULT] write buffer to chip
254  * @mtd: MTD device structure
255  * @buf: data buffer
256  * @len: number of bytes to write
257  *
258  * Default write function for 8bit buswidth.
259  */
260 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
261 {
262         struct nand_chip *chip = mtd->priv;
263
264         iowrite8_rep(chip->IO_ADDR_W, buf, len);
265 }
266
267 /**
268  * nand_read_buf - [DEFAULT] read chip data into buffer
269  * @mtd: MTD device structure
270  * @buf: buffer to store date
271  * @len: number of bytes to read
272  *
273  * Default read function for 8bit buswidth.
274  */
275 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
276 {
277         struct nand_chip *chip = mtd->priv;
278
279         ioread8_rep(chip->IO_ADDR_R, buf, len);
280 }
281
282 /**
283  * nand_write_buf16 - [DEFAULT] write buffer to chip
284  * @mtd: MTD device structure
285  * @buf: data buffer
286  * @len: number of bytes to write
287  *
288  * Default write function for 16bit buswidth.
289  */
290 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
291 {
292         struct nand_chip *chip = mtd->priv;
293         u16 *p = (u16 *) buf;
294
295         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
296 }
297
298 /**
299  * nand_read_buf16 - [DEFAULT] read chip data into buffer
300  * @mtd: MTD device structure
301  * @buf: buffer to store date
302  * @len: number of bytes to read
303  *
304  * Default read function for 16bit buswidth.
305  */
306 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
307 {
308         struct nand_chip *chip = mtd->priv;
309         u16 *p = (u16 *) buf;
310
311         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
312 }
313
314 /**
315  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
316  * @mtd: MTD device structure
317  * @ofs: offset from device start
318  * @getchip: 0, if the chip is already selected
319  *
320  * Check, if the block is bad.
321  */
322 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
323 {
324         int page, chipnr, res = 0, i = 0;
325         struct nand_chip *chip = mtd->priv;
326         u16 bad;
327
328         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
329                 ofs += mtd->erasesize - mtd->writesize;
330
331         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
332
333         if (getchip) {
334                 chipnr = (int)(ofs >> chip->chip_shift);
335
336                 nand_get_device(mtd, FL_READING);
337
338                 /* Select the NAND device */
339                 chip->select_chip(mtd, chipnr);
340         }
341
342         do {
343                 if (chip->options & NAND_BUSWIDTH_16) {
344                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
345                                         chip->badblockpos & 0xFE, page);
346                         bad = cpu_to_le16(chip->read_word(mtd));
347                         if (chip->badblockpos & 0x1)
348                                 bad >>= 8;
349                         else
350                                 bad &= 0xFF;
351                 } else {
352                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
353                                         page);
354                         bad = chip->read_byte(mtd);
355                 }
356
357                 if (likely(chip->badblockbits == 8))
358                         res = bad != 0xFF;
359                 else
360                         res = hweight8(bad) < chip->badblockbits;
361                 ofs += mtd->writesize;
362                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
363                 i++;
364         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
365
366         if (getchip) {
367                 chip->select_chip(mtd, -1);
368                 nand_release_device(mtd);
369         }
370
371         return res;
372 }
373
374 /**
375  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
376  * @mtd: MTD device structure
377  * @ofs: offset from device start
378  *
379  * This is the default implementation, which can be overridden by a hardware
380  * specific driver. It provides the details for writing a bad block marker to a
381  * block.
382  */
383 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
384 {
385         struct nand_chip *chip = mtd->priv;
386         struct mtd_oob_ops ops;
387         uint8_t buf[2] = { 0, 0 };
388         int ret = 0, res, i = 0;
389
390         ops.datbuf = NULL;
391         ops.oobbuf = buf;
392         ops.ooboffs = chip->badblockpos;
393         if (chip->options & NAND_BUSWIDTH_16) {
394                 ops.ooboffs &= ~0x01;
395                 ops.len = ops.ooblen = 2;
396         } else {
397                 ops.len = ops.ooblen = 1;
398         }
399         ops.mode = MTD_OPS_PLACE_OOB;
400
401         /* Write to first/last page(s) if necessary */
402         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
403                 ofs += mtd->erasesize - mtd->writesize;
404         do {
405                 res = nand_do_write_oob(mtd, ofs, &ops);
406                 if (!ret)
407                         ret = res;
408
409                 i++;
410                 ofs += mtd->writesize;
411         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
412
413         return ret;
414 }
415
416 /**
417  * nand_block_markbad_lowlevel - mark a block bad
418  * @mtd: MTD device structure
419  * @ofs: offset from device start
420  *
421  * This function performs the generic NAND bad block marking steps (i.e., bad
422  * block table(s) and/or marker(s)). We only allow the hardware driver to
423  * specify how to write bad block markers to OOB (chip->block_markbad).
424  *
425  * We try operations in the following order:
426  *  (1) erase the affected block, to allow OOB marker to be written cleanly
427  *  (2) write bad block marker to OOB area of affected block (unless flag
428  *      NAND_BBT_NO_OOB_BBM is present)
429  *  (3) update the BBT
430  * Note that we retain the first error encountered in (2) or (3), finish the
431  * procedures, and dump the error in the end.
432 */
433 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
434 {
435         struct nand_chip *chip = mtd->priv;
436         int res, ret = 0;
437
438         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
439                 struct erase_info einfo;
440
441                 /* Attempt erase before marking OOB */
442                 memset(&einfo, 0, sizeof(einfo));
443                 einfo.mtd = mtd;
444                 einfo.addr = ofs;
445                 einfo.len = 1ULL << chip->phys_erase_shift;
446                 nand_erase_nand(mtd, &einfo, 0);
447
448                 /* Write bad block marker to OOB */
449                 nand_get_device(mtd, FL_WRITING);
450                 ret = chip->block_markbad(mtd, ofs);
451                 nand_release_device(mtd);
452         }
453
454         /* Mark block bad in BBT */
455         if (chip->bbt) {
456                 res = nand_markbad_bbt(mtd, ofs);
457                 if (!ret)
458                         ret = res;
459         }
460
461         if (!ret)
462                 mtd->ecc_stats.badblocks++;
463
464         return ret;
465 }
466
467 /**
468  * nand_check_wp - [GENERIC] check if the chip is write protected
469  * @mtd: MTD device structure
470  *
471  * Check, if the device is write protected. The function expects, that the
472  * device is already selected.
473  */
474 static int nand_check_wp(struct mtd_info *mtd)
475 {
476         struct nand_chip *chip = mtd->priv;
477
478         /* Broken xD cards report WP despite being writable */
479         if (chip->options & NAND_BROKEN_XD)
480                 return 0;
481
482         /* Check the WP bit */
483         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
484         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
485 }
486
487 /**
488  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489  * @mtd: MTD device structure
490  * @ofs: offset from device start
491  *
492  * Check if the block is mark as reserved.
493  */
494 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
495 {
496         struct nand_chip *chip = mtd->priv;
497
498         if (!chip->bbt)
499                 return 0;
500         /* Return info from the table */
501         return nand_isreserved_bbt(mtd, ofs);
502 }
503
504 /**
505  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
506  * @mtd: MTD device structure
507  * @ofs: offset from device start
508  * @getchip: 0, if the chip is already selected
509  * @allowbbt: 1, if its allowed to access the bbt area
510  *
511  * Check, if the block is bad. Either by reading the bad block table or
512  * calling of the scan function.
513  */
514 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
515                                int allowbbt)
516 {
517         struct nand_chip *chip = mtd->priv;
518
519         if (!chip->bbt)
520                 return chip->block_bad(mtd, ofs, getchip);
521
522         /* Return info from the table */
523         return nand_isbad_bbt(mtd, ofs, allowbbt);
524 }
525
526 /**
527  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
528  * @mtd: MTD device structure
529  * @timeo: Timeout
530  *
531  * Helper function for nand_wait_ready used when needing to wait in interrupt
532  * context.
533  */
534 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
535 {
536         struct nand_chip *chip = mtd->priv;
537         int i;
538
539         /* Wait for the device to get ready */
540         for (i = 0; i < timeo; i++) {
541                 if (chip->dev_ready(mtd))
542                         break;
543                 touch_softlockup_watchdog();
544                 mdelay(1);
545         }
546 }
547
548 /* Wait for the ready pin, after a command. The timeout is caught later. */
549 void nand_wait_ready(struct mtd_info *mtd)
550 {
551         struct nand_chip *chip = mtd->priv;
552         unsigned long timeo = jiffies + msecs_to_jiffies(20);
553
554         /* 400ms timeout */
555         if (in_interrupt() || oops_in_progress)
556                 return panic_nand_wait_ready(mtd, 400);
557
558         led_trigger_event(nand_led_trigger, LED_FULL);
559         /* Wait until command is processed or timeout occurs */
560         do {
561                 if (chip->dev_ready(mtd))
562                         break;
563                 touch_softlockup_watchdog();
564         } while (time_before(jiffies, timeo));
565         led_trigger_event(nand_led_trigger, LED_OFF);
566 }
567 EXPORT_SYMBOL_GPL(nand_wait_ready);
568
569 /**
570  * nand_command - [DEFAULT] Send command to NAND device
571  * @mtd: MTD device structure
572  * @command: the command to be sent
573  * @column: the column address for this command, -1 if none
574  * @page_addr: the page address for this command, -1 if none
575  *
576  * Send command to NAND device. This function is used for small page devices
577  * (512 Bytes per page).
578  */
579 static void nand_command(struct mtd_info *mtd, unsigned int command,
580                          int column, int page_addr)
581 {
582         register struct nand_chip *chip = mtd->priv;
583         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
584
585         /* Write out the command to the device */
586         if (command == NAND_CMD_SEQIN) {
587                 int readcmd;
588
589                 if (column >= mtd->writesize) {
590                         /* OOB area */
591                         column -= mtd->writesize;
592                         readcmd = NAND_CMD_READOOB;
593                 } else if (column < 256) {
594                         /* First 256 bytes --> READ0 */
595                         readcmd = NAND_CMD_READ0;
596                 } else {
597                         column -= 256;
598                         readcmd = NAND_CMD_READ1;
599                 }
600                 chip->cmd_ctrl(mtd, readcmd, ctrl);
601                 ctrl &= ~NAND_CTRL_CHANGE;
602         }
603         chip->cmd_ctrl(mtd, command, ctrl);
604
605         /* Address cycle, when necessary */
606         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
607         /* Serially input address */
608         if (column != -1) {
609                 /* Adjust columns for 16 bit buswidth */
610                 if (chip->options & NAND_BUSWIDTH_16 &&
611                                 !nand_opcode_8bits(command))
612                         column >>= 1;
613                 chip->cmd_ctrl(mtd, column, ctrl);
614                 ctrl &= ~NAND_CTRL_CHANGE;
615         }
616         if (page_addr != -1) {
617                 chip->cmd_ctrl(mtd, page_addr, ctrl);
618                 ctrl &= ~NAND_CTRL_CHANGE;
619                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
620                 /* One more address cycle for devices > 32MiB */
621                 if (chip->chipsize > (32 << 20))
622                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
623         }
624         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
625
626         /*
627          * Program and erase have their own busy handlers status and sequential
628          * in needs no delay
629          */
630         switch (command) {
631
632         case NAND_CMD_PAGEPROG:
633         case NAND_CMD_ERASE1:
634         case NAND_CMD_ERASE2:
635         case NAND_CMD_SEQIN:
636         case NAND_CMD_STATUS:
637                 return;
638
639         case NAND_CMD_RESET:
640                 if (chip->dev_ready)
641                         break;
642                 udelay(chip->chip_delay);
643                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
644                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
645                 chip->cmd_ctrl(mtd,
646                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
647                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
648                                 ;
649                 return;
650
651                 /* This applies to read commands */
652         default:
653                 /*
654                  * If we don't have access to the busy pin, we apply the given
655                  * command delay
656                  */
657                 if (!chip->dev_ready) {
658                         udelay(chip->chip_delay);
659                         return;
660                 }
661         }
662         /*
663          * Apply this short delay always to ensure that we do wait tWB in
664          * any case on any machine.
665          */
666         ndelay(100);
667
668         nand_wait_ready(mtd);
669 }
670
671 /**
672  * nand_command_lp - [DEFAULT] Send command to NAND large page device
673  * @mtd: MTD device structure
674  * @command: the command to be sent
675  * @column: the column address for this command, -1 if none
676  * @page_addr: the page address for this command, -1 if none
677  *
678  * Send command to NAND device. This is the version for the new large page
679  * devices. We don't have the separate regions as we have in the small page
680  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
681  */
682 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
683                             int column, int page_addr)
684 {
685         register struct nand_chip *chip = mtd->priv;
686
687         /* Emulate NAND_CMD_READOOB */
688         if (command == NAND_CMD_READOOB) {
689                 column += mtd->writesize;
690                 command = NAND_CMD_READ0;
691         }
692
693         /* Command latch cycle */
694         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
695
696         if (column != -1 || page_addr != -1) {
697                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
698
699                 /* Serially input address */
700                 if (column != -1) {
701                         /* Adjust columns for 16 bit buswidth */
702                         if (chip->options & NAND_BUSWIDTH_16 &&
703                                         !nand_opcode_8bits(command))
704                                 column >>= 1;
705                         chip->cmd_ctrl(mtd, column, ctrl);
706                         ctrl &= ~NAND_CTRL_CHANGE;
707                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
708                 }
709                 if (page_addr != -1) {
710                         chip->cmd_ctrl(mtd, page_addr, ctrl);
711                         chip->cmd_ctrl(mtd, page_addr >> 8,
712                                        NAND_NCE | NAND_ALE);
713                         /* One more address cycle for devices > 128MiB */
714                         if (chip->chipsize > (128 << 20))
715                                 chip->cmd_ctrl(mtd, page_addr >> 16,
716                                                NAND_NCE | NAND_ALE);
717                 }
718         }
719         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
720
721         /*
722          * Program and erase have their own busy handlers status, sequential
723          * in, and deplete1 need no delay.
724          */
725         switch (command) {
726
727         case NAND_CMD_CACHEDPROG:
728         case NAND_CMD_PAGEPROG:
729         case NAND_CMD_ERASE1:
730         case NAND_CMD_ERASE2:
731         case NAND_CMD_SEQIN:
732         case NAND_CMD_RNDIN:
733         case NAND_CMD_STATUS:
734                 return;
735
736         case NAND_CMD_RESET:
737                 if (chip->dev_ready)
738                         break;
739                 udelay(chip->chip_delay);
740                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
741                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
742                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
743                                NAND_NCE | NAND_CTRL_CHANGE);
744                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
745                                 ;
746                 return;
747
748         case NAND_CMD_RNDOUT:
749                 /* No ready / busy check necessary */
750                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
751                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753                                NAND_NCE | NAND_CTRL_CHANGE);
754                 return;
755
756         case NAND_CMD_READ0:
757                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
758                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760                                NAND_NCE | NAND_CTRL_CHANGE);
761
762                 /* This applies to read commands */
763         default:
764                 /*
765                  * If we don't have access to the busy pin, we apply the given
766                  * command delay.
767                  */
768                 if (!chip->dev_ready) {
769                         udelay(chip->chip_delay);
770                         return;
771                 }
772         }
773
774         /*
775          * Apply this short delay always to ensure that we do wait tWB in
776          * any case on any machine.
777          */
778         ndelay(100);
779
780         nand_wait_ready(mtd);
781 }
782
783 /**
784  * panic_nand_get_device - [GENERIC] Get chip for selected access
785  * @chip: the nand chip descriptor
786  * @mtd: MTD device structure
787  * @new_state: the state which is requested
788  *
789  * Used when in panic, no locks are taken.
790  */
791 static void panic_nand_get_device(struct nand_chip *chip,
792                       struct mtd_info *mtd, int new_state)
793 {
794         /* Hardware controller shared among independent devices */
795         chip->controller->active = chip;
796         chip->state = new_state;
797 }
798
799 /**
800  * nand_get_device - [GENERIC] Get chip for selected access
801  * @mtd: MTD device structure
802  * @new_state: the state which is requested
803  *
804  * Get the device and lock it for exclusive access
805  */
806 static int
807 nand_get_device(struct mtd_info *mtd, int new_state)
808 {
809         struct nand_chip *chip = mtd->priv;
810         spinlock_t *lock = &chip->controller->lock;
811         wait_queue_head_t *wq = &chip->controller->wq;
812         DECLARE_WAITQUEUE(wait, current);
813 retry:
814         spin_lock(lock);
815
816         /* Hardware controller shared among independent devices */
817         if (!chip->controller->active)
818                 chip->controller->active = chip;
819
820         if (chip->controller->active == chip && chip->state == FL_READY) {
821                 chip->state = new_state;
822                 spin_unlock(lock);
823                 return 0;
824         }
825         if (new_state == FL_PM_SUSPENDED) {
826                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
827                         chip->state = FL_PM_SUSPENDED;
828                         spin_unlock(lock);
829                         return 0;
830                 }
831         }
832         set_current_state(TASK_UNINTERRUPTIBLE);
833         add_wait_queue(wq, &wait);
834         spin_unlock(lock);
835         schedule();
836         remove_wait_queue(wq, &wait);
837         goto retry;
838 }
839
840 /**
841  * panic_nand_wait - [GENERIC] wait until the command is done
842  * @mtd: MTD device structure
843  * @chip: NAND chip structure
844  * @timeo: timeout
845  *
846  * Wait for command done. This is a helper function for nand_wait used when
847  * we are in interrupt context. May happen when in panic and trying to write
848  * an oops through mtdoops.
849  */
850 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
851                             unsigned long timeo)
852 {
853         int i;
854         for (i = 0; i < timeo; i++) {
855                 if (chip->dev_ready) {
856                         if (chip->dev_ready(mtd))
857                                 break;
858                 } else {
859                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
860                                 break;
861                 }
862                 mdelay(1);
863         }
864 }
865
866 /**
867  * nand_wait - [DEFAULT] wait until the command is done
868  * @mtd: MTD device structure
869  * @chip: NAND chip structure
870  *
871  * Wait for command done. This applies to erase and program only. Erase can
872  * take up to 400ms and program up to 20ms according to general NAND and
873  * SmartMedia specs.
874  */
875 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
876 {
877
878         int status, state = chip->state;
879         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
880
881         led_trigger_event(nand_led_trigger, LED_FULL);
882
883         /*
884          * Apply this short delay always to ensure that we do wait tWB in any
885          * case on any machine.
886          */
887         ndelay(100);
888
889         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
890
891         if (in_interrupt() || oops_in_progress)
892                 panic_nand_wait(mtd, chip, timeo);
893         else {
894                 timeo = jiffies + msecs_to_jiffies(timeo);
895                 while (time_before(jiffies, timeo)) {
896                         if (chip->dev_ready) {
897                                 if (chip->dev_ready(mtd))
898                                         break;
899                         } else {
900                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901                                         break;
902                         }
903                         cond_resched();
904                 }
905         }
906         led_trigger_event(nand_led_trigger, LED_OFF);
907
908         status = (int)chip->read_byte(mtd);
909         /* This can happen if in case of timeout or buggy dev_ready */
910         WARN_ON(!(status & NAND_STATUS_READY));
911         return status;
912 }
913
914 /**
915  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
916  * @mtd: mtd info
917  * @ofs: offset to start unlock from
918  * @len: length to unlock
919  * @invert: when = 0, unlock the range of blocks within the lower and
920  *                    upper boundary address
921  *          when = 1, unlock the range of blocks outside the boundaries
922  *                    of the lower and upper boundary address
923  *
924  * Returs unlock status.
925  */
926 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
927                                         uint64_t len, int invert)
928 {
929         int ret = 0;
930         int status, page;
931         struct nand_chip *chip = mtd->priv;
932
933         /* Submit address of first page to unlock */
934         page = ofs >> chip->page_shift;
935         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
936
937         /* Submit address of last page to unlock */
938         page = (ofs + len) >> chip->page_shift;
939         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
940                                 (page | invert) & chip->pagemask);
941
942         /* Call wait ready function */
943         status = chip->waitfunc(mtd, chip);
944         /* See if device thinks it succeeded */
945         if (status & NAND_STATUS_FAIL) {
946                 pr_debug("%s: error status = 0x%08x\n",
947                                         __func__, status);
948                 ret = -EIO;
949         }
950
951         return ret;
952 }
953
954 /**
955  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
956  * @mtd: mtd info
957  * @ofs: offset to start unlock from
958  * @len: length to unlock
959  *
960  * Returns unlock status.
961  */
962 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
963 {
964         int ret = 0;
965         int chipnr;
966         struct nand_chip *chip = mtd->priv;
967
968         pr_debug("%s: start = 0x%012llx, len = %llu\n",
969                         __func__, (unsigned long long)ofs, len);
970
971         if (check_offs_len(mtd, ofs, len))
972                 ret = -EINVAL;
973
974         /* Align to last block address if size addresses end of the device */
975         if (ofs + len == mtd->size)
976                 len -= mtd->erasesize;
977
978         nand_get_device(mtd, FL_UNLOCKING);
979
980         /* Shift to get chip number */
981         chipnr = ofs >> chip->chip_shift;
982
983         chip->select_chip(mtd, chipnr);
984
985         /* Check, if it is write protected */
986         if (nand_check_wp(mtd)) {
987                 pr_debug("%s: device is write protected!\n",
988                                         __func__);
989                 ret = -EIO;
990                 goto out;
991         }
992
993         ret = __nand_unlock(mtd, ofs, len, 0);
994
995 out:
996         chip->select_chip(mtd, -1);
997         nand_release_device(mtd);
998
999         return ret;
1000 }
1001 EXPORT_SYMBOL(nand_unlock);
1002
1003 /**
1004  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1005  * @mtd: mtd info
1006  * @ofs: offset to start unlock from
1007  * @len: length to unlock
1008  *
1009  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1010  * have this feature, but it allows only to lock all blocks, not for specified
1011  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1012  * now.
1013  *
1014  * Returns lock status.
1015  */
1016 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1017 {
1018         int ret = 0;
1019         int chipnr, status, page;
1020         struct nand_chip *chip = mtd->priv;
1021
1022         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1023                         __func__, (unsigned long long)ofs, len);
1024
1025         if (check_offs_len(mtd, ofs, len))
1026                 ret = -EINVAL;
1027
1028         nand_get_device(mtd, FL_LOCKING);
1029
1030         /* Shift to get chip number */
1031         chipnr = ofs >> chip->chip_shift;
1032
1033         chip->select_chip(mtd, chipnr);
1034
1035         /* Check, if it is write protected */
1036         if (nand_check_wp(mtd)) {
1037                 pr_debug("%s: device is write protected!\n",
1038                                         __func__);
1039                 status = MTD_ERASE_FAILED;
1040                 ret = -EIO;
1041                 goto out;
1042         }
1043
1044         /* Submit address of first page to lock */
1045         page = ofs >> chip->page_shift;
1046         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1047
1048         /* Call wait ready function */
1049         status = chip->waitfunc(mtd, chip);
1050         /* See if device thinks it succeeded */
1051         if (status & NAND_STATUS_FAIL) {
1052                 pr_debug("%s: error status = 0x%08x\n",
1053                                         __func__, status);
1054                 ret = -EIO;
1055                 goto out;
1056         }
1057
1058         ret = __nand_unlock(mtd, ofs, len, 0x1);
1059
1060 out:
1061         chip->select_chip(mtd, -1);
1062         nand_release_device(mtd);
1063
1064         return ret;
1065 }
1066 EXPORT_SYMBOL(nand_lock);
1067
1068 /**
1069  * nand_read_page_raw - [INTERN] read raw page data without ecc
1070  * @mtd: mtd info structure
1071  * @chip: nand chip info structure
1072  * @buf: buffer to store read data
1073  * @oob_required: caller requires OOB data read to chip->oob_poi
1074  * @page: page number to read
1075  *
1076  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1077  */
1078 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1079                               uint8_t *buf, int oob_required, int page)
1080 {
1081         chip->read_buf(mtd, buf, mtd->writesize);
1082         if (oob_required)
1083                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1084         return 0;
1085 }
1086
1087 /**
1088  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1089  * @mtd: mtd info structure
1090  * @chip: nand chip info structure
1091  * @buf: buffer to store read data
1092  * @oob_required: caller requires OOB data read to chip->oob_poi
1093  * @page: page number to read
1094  *
1095  * We need a special oob layout and handling even when OOB isn't used.
1096  */
1097 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1098                                        struct nand_chip *chip, uint8_t *buf,
1099                                        int oob_required, int page)
1100 {
1101         int eccsize = chip->ecc.size;
1102         int eccbytes = chip->ecc.bytes;
1103         uint8_t *oob = chip->oob_poi;
1104         int steps, size;
1105
1106         for (steps = chip->ecc.steps; steps > 0; steps--) {
1107                 chip->read_buf(mtd, buf, eccsize);
1108                 buf += eccsize;
1109
1110                 if (chip->ecc.prepad) {
1111                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1112                         oob += chip->ecc.prepad;
1113                 }
1114
1115                 chip->read_buf(mtd, oob, eccbytes);
1116                 oob += eccbytes;
1117
1118                 if (chip->ecc.postpad) {
1119                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1120                         oob += chip->ecc.postpad;
1121                 }
1122         }
1123
1124         size = mtd->oobsize - (oob - chip->oob_poi);
1125         if (size)
1126                 chip->read_buf(mtd, oob, size);
1127
1128         return 0;
1129 }
1130
1131 /**
1132  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1133  * @mtd: mtd info structure
1134  * @chip: nand chip info structure
1135  * @buf: buffer to store read data
1136  * @oob_required: caller requires OOB data read to chip->oob_poi
1137  * @page: page number to read
1138  */
1139 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1140                                 uint8_t *buf, int oob_required, int page)
1141 {
1142         int i, eccsize = chip->ecc.size;
1143         int eccbytes = chip->ecc.bytes;
1144         int eccsteps = chip->ecc.steps;
1145         uint8_t *p = buf;
1146         uint8_t *ecc_calc = chip->buffers->ecccalc;
1147         uint8_t *ecc_code = chip->buffers->ecccode;
1148         uint32_t *eccpos = chip->ecc.layout->eccpos;
1149         unsigned int max_bitflips = 0;
1150
1151         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1152
1153         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1154                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1155
1156         for (i = 0; i < chip->ecc.total; i++)
1157                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1158
1159         eccsteps = chip->ecc.steps;
1160         p = buf;
1161
1162         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1163                 int stat;
1164
1165                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1166                 if (stat < 0) {
1167                         mtd->ecc_stats.failed++;
1168                 } else {
1169                         mtd->ecc_stats.corrected += stat;
1170                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1171                 }
1172         }
1173         return max_bitflips;
1174 }
1175
1176 /**
1177  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1178  * @mtd: mtd info structure
1179  * @chip: nand chip info structure
1180  * @data_offs: offset of requested data within the page
1181  * @readlen: data length
1182  * @bufpoi: buffer to store read data
1183  * @page: page number to read
1184  */
1185 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1186                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1187                         int page)
1188 {
1189         int start_step, end_step, num_steps;
1190         uint32_t *eccpos = chip->ecc.layout->eccpos;
1191         uint8_t *p;
1192         int data_col_addr, i, gaps = 0;
1193         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1194         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1195         int index;
1196         unsigned int max_bitflips = 0;
1197
1198         /* Column address within the page aligned to ECC size (256bytes) */
1199         start_step = data_offs / chip->ecc.size;
1200         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1201         num_steps = end_step - start_step + 1;
1202         index = start_step * chip->ecc.bytes;
1203
1204         /* Data size aligned to ECC ecc.size */
1205         datafrag_len = num_steps * chip->ecc.size;
1206         eccfrag_len = num_steps * chip->ecc.bytes;
1207
1208         data_col_addr = start_step * chip->ecc.size;
1209         /* If we read not a page aligned data */
1210         if (data_col_addr != 0)
1211                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1212
1213         p = bufpoi + data_col_addr;
1214         chip->read_buf(mtd, p, datafrag_len);
1215
1216         /* Calculate ECC */
1217         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1218                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1219
1220         /*
1221          * The performance is faster if we position offsets according to
1222          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1223          */
1224         for (i = 0; i < eccfrag_len - 1; i++) {
1225                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1226                         gaps = 1;
1227                         break;
1228                 }
1229         }
1230         if (gaps) {
1231                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1232                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1233         } else {
1234                 /*
1235                  * Send the command to read the particular ECC bytes take care
1236                  * about buswidth alignment in read_buf.
1237                  */
1238                 aligned_pos = eccpos[index] & ~(busw - 1);
1239                 aligned_len = eccfrag_len;
1240                 if (eccpos[index] & (busw - 1))
1241                         aligned_len++;
1242                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1243                         aligned_len++;
1244
1245                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1246                                         mtd->writesize + aligned_pos, -1);
1247                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1248         }
1249
1250         for (i = 0; i < eccfrag_len; i++)
1251                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1252
1253         p = bufpoi + data_col_addr;
1254         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1255                 int stat;
1256
1257                 stat = chip->ecc.correct(mtd, p,
1258                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1259                 if (stat < 0) {
1260                         mtd->ecc_stats.failed++;
1261                 } else {
1262                         mtd->ecc_stats.corrected += stat;
1263                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1264                 }
1265         }
1266         return max_bitflips;
1267 }
1268
1269 /**
1270  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1271  * @mtd: mtd info structure
1272  * @chip: nand chip info structure
1273  * @buf: buffer to store read data
1274  * @oob_required: caller requires OOB data read to chip->oob_poi
1275  * @page: page number to read
1276  *
1277  * Not for syndrome calculating ECC controllers which need a special oob layout.
1278  */
1279 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1280                                 uint8_t *buf, int oob_required, int page)
1281 {
1282         int i, eccsize = chip->ecc.size;
1283         int eccbytes = chip->ecc.bytes;
1284         int eccsteps = chip->ecc.steps;
1285         uint8_t *p = buf;
1286         uint8_t *ecc_calc = chip->buffers->ecccalc;
1287         uint8_t *ecc_code = chip->buffers->ecccode;
1288         uint32_t *eccpos = chip->ecc.layout->eccpos;
1289         unsigned int max_bitflips = 0;
1290
1291         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1292                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1293                 chip->read_buf(mtd, p, eccsize);
1294                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1295         }
1296         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1297
1298         for (i = 0; i < chip->ecc.total; i++)
1299                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1300
1301         eccsteps = chip->ecc.steps;
1302         p = buf;
1303
1304         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305                 int stat;
1306
1307                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1308                 if (stat < 0) {
1309                         mtd->ecc_stats.failed++;
1310                 } else {
1311                         mtd->ecc_stats.corrected += stat;
1312                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1313                 }
1314         }
1315         return max_bitflips;
1316 }
1317
1318 /**
1319  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1320  * @mtd: mtd info structure
1321  * @chip: nand chip info structure
1322  * @buf: buffer to store read data
1323  * @oob_required: caller requires OOB data read to chip->oob_poi
1324  * @page: page number to read
1325  *
1326  * Hardware ECC for large page chips, require OOB to be read first. For this
1327  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1328  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1329  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1330  * the data area, by overwriting the NAND manufacturer bad block markings.
1331  */
1332 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1333         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1334 {
1335         int i, eccsize = chip->ecc.size;
1336         int eccbytes = chip->ecc.bytes;
1337         int eccsteps = chip->ecc.steps;
1338         uint8_t *p = buf;
1339         uint8_t *ecc_code = chip->buffers->ecccode;
1340         uint32_t *eccpos = chip->ecc.layout->eccpos;
1341         uint8_t *ecc_calc = chip->buffers->ecccalc;
1342         unsigned int max_bitflips = 0;
1343
1344         /* Read the OOB area first */
1345         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1346         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1347         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1348
1349         for (i = 0; i < chip->ecc.total; i++)
1350                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1351
1352         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1353                 int stat;
1354
1355                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1356                 chip->read_buf(mtd, p, eccsize);
1357                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1358
1359                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1360                 if (stat < 0) {
1361                         mtd->ecc_stats.failed++;
1362                 } else {
1363                         mtd->ecc_stats.corrected += stat;
1364                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1365                 }
1366         }
1367         return max_bitflips;
1368 }
1369
1370 /**
1371  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1372  * @mtd: mtd info structure
1373  * @chip: nand chip info structure
1374  * @buf: buffer to store read data
1375  * @oob_required: caller requires OOB data read to chip->oob_poi
1376  * @page: page number to read
1377  *
1378  * The hw generator calculates the error syndrome automatically. Therefore we
1379  * need a special oob layout and handling.
1380  */
1381 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1382                                    uint8_t *buf, int oob_required, int page)
1383 {
1384         int i, eccsize = chip->ecc.size;
1385         int eccbytes = chip->ecc.bytes;
1386         int eccsteps = chip->ecc.steps;
1387         uint8_t *p = buf;
1388         uint8_t *oob = chip->oob_poi;
1389         unsigned int max_bitflips = 0;
1390
1391         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1392                 int stat;
1393
1394                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1395                 chip->read_buf(mtd, p, eccsize);
1396
1397                 if (chip->ecc.prepad) {
1398                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1399                         oob += chip->ecc.prepad;
1400                 }
1401
1402                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1403                 chip->read_buf(mtd, oob, eccbytes);
1404                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1405
1406                 if (stat < 0) {
1407                         mtd->ecc_stats.failed++;
1408                 } else {
1409                         mtd->ecc_stats.corrected += stat;
1410                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1411                 }
1412
1413                 oob += eccbytes;
1414
1415                 if (chip->ecc.postpad) {
1416                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1417                         oob += chip->ecc.postpad;
1418                 }
1419         }
1420
1421         /* Calculate remaining oob bytes */
1422         i = mtd->oobsize - (oob - chip->oob_poi);
1423         if (i)
1424                 chip->read_buf(mtd, oob, i);
1425
1426         return max_bitflips;
1427 }
1428
1429 /**
1430  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1431  * @chip: nand chip structure
1432  * @oob: oob destination address
1433  * @ops: oob ops structure
1434  * @len: size of oob to transfer
1435  */
1436 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1437                                   struct mtd_oob_ops *ops, size_t len)
1438 {
1439         switch (ops->mode) {
1440
1441         case MTD_OPS_PLACE_OOB:
1442         case MTD_OPS_RAW:
1443                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1444                 return oob + len;
1445
1446         case MTD_OPS_AUTO_OOB: {
1447                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1448                 uint32_t boffs = 0, roffs = ops->ooboffs;
1449                 size_t bytes = 0;
1450
1451                 for (; free->length && len; free++, len -= bytes) {
1452                         /* Read request not from offset 0? */
1453                         if (unlikely(roffs)) {
1454                                 if (roffs >= free->length) {
1455                                         roffs -= free->length;
1456                                         continue;
1457                                 }
1458                                 boffs = free->offset + roffs;
1459                                 bytes = min_t(size_t, len,
1460                                               (free->length - roffs));
1461                                 roffs = 0;
1462                         } else {
1463                                 bytes = min_t(size_t, len, free->length);
1464                                 boffs = free->offset;
1465                         }
1466                         memcpy(oob, chip->oob_poi + boffs, bytes);
1467                         oob += bytes;
1468                 }
1469                 return oob;
1470         }
1471         default:
1472                 BUG();
1473         }
1474         return NULL;
1475 }
1476
1477 /**
1478  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1479  * @mtd: MTD device structure
1480  * @retry_mode: the retry mode to use
1481  *
1482  * Some vendors supply a special command to shift the Vt threshold, to be used
1483  * when there are too many bitflips in a page (i.e., ECC error). After setting
1484  * a new threshold, the host should retry reading the page.
1485  */
1486 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1487 {
1488         struct nand_chip *chip = mtd->priv;
1489
1490         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1491
1492         if (retry_mode >= chip->read_retries)
1493                 return -EINVAL;
1494
1495         if (!chip->setup_read_retry)
1496                 return -EOPNOTSUPP;
1497
1498         return chip->setup_read_retry(mtd, retry_mode);
1499 }
1500
1501 /**
1502  * nand_do_read_ops - [INTERN] Read data with ECC
1503  * @mtd: MTD device structure
1504  * @from: offset to read from
1505  * @ops: oob ops structure
1506  *
1507  * Internal function. Called with chip held.
1508  */
1509 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1510                             struct mtd_oob_ops *ops)
1511 {
1512         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1513         struct nand_chip *chip = mtd->priv;
1514         int ret = 0;
1515         uint32_t readlen = ops->len;
1516         uint32_t oobreadlen = ops->ooblen;
1517         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1518                 mtd->oobavail : mtd->oobsize;
1519
1520         uint8_t *bufpoi, *oob, *buf;
1521         int use_bufpoi;
1522         unsigned int max_bitflips = 0;
1523         int retry_mode = 0;
1524         bool ecc_fail = false;
1525
1526         chipnr = (int)(from >> chip->chip_shift);
1527         chip->select_chip(mtd, chipnr);
1528
1529         realpage = (int)(from >> chip->page_shift);
1530         page = realpage & chip->pagemask;
1531
1532         col = (int)(from & (mtd->writesize - 1));
1533
1534         buf = ops->datbuf;
1535         oob = ops->oobbuf;
1536         oob_required = oob ? 1 : 0;
1537
1538         while (1) {
1539                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1540
1541                 bytes = min(mtd->writesize - col, readlen);
1542                 aligned = (bytes == mtd->writesize);
1543
1544                 if (!aligned)
1545                         use_bufpoi = 1;
1546                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1547                         use_bufpoi = !virt_addr_valid(buf);
1548                 else
1549                         use_bufpoi = 0;
1550
1551                 /* Is the current page in the buffer? */
1552                 if (realpage != chip->pagebuf || oob) {
1553                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1554
1555                         if (use_bufpoi && aligned)
1556                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1557                                                  __func__, buf);
1558
1559 read_retry:
1560                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1561
1562                         /*
1563                          * Now read the page into the buffer.  Absent an error,
1564                          * the read methods return max bitflips per ecc step.
1565                          */
1566                         if (unlikely(ops->mode == MTD_OPS_RAW))
1567                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1568                                                               oob_required,
1569                                                               page);
1570                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1571                                  !oob)
1572                                 ret = chip->ecc.read_subpage(mtd, chip,
1573                                                         col, bytes, bufpoi,
1574                                                         page);
1575                         else
1576                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1577                                                           oob_required, page);
1578                         if (ret < 0) {
1579                                 if (use_bufpoi)
1580                                         /* Invalidate page cache */
1581                                         chip->pagebuf = -1;
1582                                 break;
1583                         }
1584
1585                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1586
1587                         /* Transfer not aligned data */
1588                         if (use_bufpoi) {
1589                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1590                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1591                                     (ops->mode != MTD_OPS_RAW)) {
1592                                         chip->pagebuf = realpage;
1593                                         chip->pagebuf_bitflips = ret;
1594                                 } else {
1595                                         /* Invalidate page cache */
1596                                         chip->pagebuf = -1;
1597                                 }
1598                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1599                         }
1600
1601                         if (unlikely(oob)) {
1602                                 int toread = min(oobreadlen, max_oobsize);
1603
1604                                 if (toread) {
1605                                         oob = nand_transfer_oob(chip,
1606                                                 oob, ops, toread);
1607                                         oobreadlen -= toread;
1608                                 }
1609                         }
1610
1611                         if (chip->options & NAND_NEED_READRDY) {
1612                                 /* Apply delay or wait for ready/busy pin */
1613                                 if (!chip->dev_ready)
1614                                         udelay(chip->chip_delay);
1615                                 else
1616                                         nand_wait_ready(mtd);
1617                         }
1618
1619                         if (mtd->ecc_stats.failed - ecc_failures) {
1620                                 if (retry_mode + 1 < chip->read_retries) {
1621                                         retry_mode++;
1622                                         ret = nand_setup_read_retry(mtd,
1623                                                         retry_mode);
1624                                         if (ret < 0)
1625                                                 break;
1626
1627                                         /* Reset failures; retry */
1628                                         mtd->ecc_stats.failed = ecc_failures;
1629                                         goto read_retry;
1630                                 } else {
1631                                         /* No more retry modes; real failure */
1632                                         ecc_fail = true;
1633                                 }
1634                         }
1635
1636                         buf += bytes;
1637                 } else {
1638                         memcpy(buf, chip->buffers->databuf + col, bytes);
1639                         buf += bytes;
1640                         max_bitflips = max_t(unsigned int, max_bitflips,
1641                                              chip->pagebuf_bitflips);
1642                 }
1643
1644                 readlen -= bytes;
1645
1646                 /* Reset to retry mode 0 */
1647                 if (retry_mode) {
1648                         ret = nand_setup_read_retry(mtd, 0);
1649                         if (ret < 0)
1650                                 break;
1651                         retry_mode = 0;
1652                 }
1653
1654                 if (!readlen)
1655                         break;
1656
1657                 /* For subsequent reads align to page boundary */
1658                 col = 0;
1659                 /* Increment page address */
1660                 realpage++;
1661
1662                 page = realpage & chip->pagemask;
1663                 /* Check, if we cross a chip boundary */
1664                 if (!page) {
1665                         chipnr++;
1666                         chip->select_chip(mtd, -1);
1667                         chip->select_chip(mtd, chipnr);
1668                 }
1669         }
1670         chip->select_chip(mtd, -1);
1671
1672         ops->retlen = ops->len - (size_t) readlen;
1673         if (oob)
1674                 ops->oobretlen = ops->ooblen - oobreadlen;
1675
1676         if (ret < 0)
1677                 return ret;
1678
1679         if (ecc_fail)
1680                 return -EBADMSG;
1681
1682         return max_bitflips;
1683 }
1684
1685 /**
1686  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1687  * @mtd: MTD device structure
1688  * @from: offset to read from
1689  * @len: number of bytes to read
1690  * @retlen: pointer to variable to store the number of read bytes
1691  * @buf: the databuffer to put data
1692  *
1693  * Get hold of the chip and call nand_do_read.
1694  */
1695 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1696                      size_t *retlen, uint8_t *buf)
1697 {
1698         struct mtd_oob_ops ops;
1699         int ret;
1700
1701         nand_get_device(mtd, FL_READING);
1702         ops.len = len;
1703         ops.datbuf = buf;
1704         ops.oobbuf = NULL;
1705         ops.mode = MTD_OPS_PLACE_OOB;
1706         ret = nand_do_read_ops(mtd, from, &ops);
1707         *retlen = ops.retlen;
1708         nand_release_device(mtd);
1709         return ret;
1710 }
1711
1712 /**
1713  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1714  * @mtd: mtd info structure
1715  * @chip: nand chip info structure
1716  * @page: page number to read
1717  */
1718 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1719                              int page)
1720 {
1721         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1722         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1723         return 0;
1724 }
1725
1726 /**
1727  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1728  *                          with syndromes
1729  * @mtd: mtd info structure
1730  * @chip: nand chip info structure
1731  * @page: page number to read
1732  */
1733 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1734                                   int page)
1735 {
1736         uint8_t *buf = chip->oob_poi;
1737         int length = mtd->oobsize;
1738         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1739         int eccsize = chip->ecc.size;
1740         uint8_t *bufpoi = buf;
1741         int i, toread, sndrnd = 0, pos;
1742
1743         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1744         for (i = 0; i < chip->ecc.steps; i++) {
1745                 if (sndrnd) {
1746                         pos = eccsize + i * (eccsize + chunk);
1747                         if (mtd->writesize > 512)
1748                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1749                         else
1750                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1751                 } else
1752                         sndrnd = 1;
1753                 toread = min_t(int, length, chunk);
1754                 chip->read_buf(mtd, bufpoi, toread);
1755                 bufpoi += toread;
1756                 length -= toread;
1757         }
1758         if (length > 0)
1759                 chip->read_buf(mtd, bufpoi, length);
1760
1761         return 0;
1762 }
1763
1764 /**
1765  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1766  * @mtd: mtd info structure
1767  * @chip: nand chip info structure
1768  * @page: page number to write
1769  */
1770 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1771                               int page)
1772 {
1773         int status = 0;
1774         const uint8_t *buf = chip->oob_poi;
1775         int length = mtd->oobsize;
1776
1777         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1778         chip->write_buf(mtd, buf, length);
1779         /* Send command to program the OOB data */
1780         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1781
1782         status = chip->waitfunc(mtd, chip);
1783
1784         return status & NAND_STATUS_FAIL ? -EIO : 0;
1785 }
1786
1787 /**
1788  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1789  *                           with syndrome - only for large page flash
1790  * @mtd: mtd info structure
1791  * @chip: nand chip info structure
1792  * @page: page number to write
1793  */
1794 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1795                                    struct nand_chip *chip, int page)
1796 {
1797         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1798         int eccsize = chip->ecc.size, length = mtd->oobsize;
1799         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1800         const uint8_t *bufpoi = chip->oob_poi;
1801
1802         /*
1803          * data-ecc-data-ecc ... ecc-oob
1804          * or
1805          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1806          */
1807         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1808                 pos = steps * (eccsize + chunk);
1809                 steps = 0;
1810         } else
1811                 pos = eccsize;
1812
1813         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1814         for (i = 0; i < steps; i++) {
1815                 if (sndcmd) {
1816                         if (mtd->writesize <= 512) {
1817                                 uint32_t fill = 0xFFFFFFFF;
1818
1819                                 len = eccsize;
1820                                 while (len > 0) {
1821                                         int num = min_t(int, len, 4);
1822                                         chip->write_buf(mtd, (uint8_t *)&fill,
1823                                                         num);
1824                                         len -= num;
1825                                 }
1826                         } else {
1827                                 pos = eccsize + i * (eccsize + chunk);
1828                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1829                         }
1830                 } else
1831                         sndcmd = 1;
1832                 len = min_t(int, length, chunk);
1833                 chip->write_buf(mtd, bufpoi, len);
1834                 bufpoi += len;
1835                 length -= len;
1836         }
1837         if (length > 0)
1838                 chip->write_buf(mtd, bufpoi, length);
1839
1840         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1841         status = chip->waitfunc(mtd, chip);
1842
1843         return status & NAND_STATUS_FAIL ? -EIO : 0;
1844 }
1845
1846 /**
1847  * nand_do_read_oob - [INTERN] NAND read out-of-band
1848  * @mtd: MTD device structure
1849  * @from: offset to read from
1850  * @ops: oob operations description structure
1851  *
1852  * NAND read out-of-band data from the spare area.
1853  */
1854 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1855                             struct mtd_oob_ops *ops)
1856 {
1857         int page, realpage, chipnr;
1858         struct nand_chip *chip = mtd->priv;
1859         struct mtd_ecc_stats stats;
1860         int readlen = ops->ooblen;
1861         int len;
1862         uint8_t *buf = ops->oobbuf;
1863         int ret = 0;
1864
1865         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1866                         __func__, (unsigned long long)from, readlen);
1867
1868         stats = mtd->ecc_stats;
1869
1870         if (ops->mode == MTD_OPS_AUTO_OOB)
1871                 len = chip->ecc.layout->oobavail;
1872         else
1873                 len = mtd->oobsize;
1874
1875         if (unlikely(ops->ooboffs >= len)) {
1876                 pr_debug("%s: attempt to start read outside oob\n",
1877                                 __func__);
1878                 return -EINVAL;
1879         }
1880
1881         /* Do not allow reads past end of device */
1882         if (unlikely(from >= mtd->size ||
1883                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1884                                         (from >> chip->page_shift)) * len)) {
1885                 pr_debug("%s: attempt to read beyond end of device\n",
1886                                 __func__);
1887                 return -EINVAL;
1888         }
1889
1890         chipnr = (int)(from >> chip->chip_shift);
1891         chip->select_chip(mtd, chipnr);
1892
1893         /* Shift to get page */
1894         realpage = (int)(from >> chip->page_shift);
1895         page = realpage & chip->pagemask;
1896
1897         while (1) {
1898                 if (ops->mode == MTD_OPS_RAW)
1899                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1900                 else
1901                         ret = chip->ecc.read_oob(mtd, chip, page);
1902
1903                 if (ret < 0)
1904                         break;
1905
1906                 len = min(len, readlen);
1907                 buf = nand_transfer_oob(chip, buf, ops, len);
1908
1909                 if (chip->options & NAND_NEED_READRDY) {
1910                         /* Apply delay or wait for ready/busy pin */
1911                         if (!chip->dev_ready)
1912                                 udelay(chip->chip_delay);
1913                         else
1914                                 nand_wait_ready(mtd);
1915                 }
1916
1917                 readlen -= len;
1918                 if (!readlen)
1919                         break;
1920
1921                 /* Increment page address */
1922                 realpage++;
1923
1924                 page = realpage & chip->pagemask;
1925                 /* Check, if we cross a chip boundary */
1926                 if (!page) {
1927                         chipnr++;
1928                         chip->select_chip(mtd, -1);
1929                         chip->select_chip(mtd, chipnr);
1930                 }
1931         }
1932         chip->select_chip(mtd, -1);
1933
1934         ops->oobretlen = ops->ooblen - readlen;
1935
1936         if (ret < 0)
1937                 return ret;
1938
1939         if (mtd->ecc_stats.failed - stats.failed)
1940                 return -EBADMSG;
1941
1942         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1943 }
1944
1945 /**
1946  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1947  * @mtd: MTD device structure
1948  * @from: offset to read from
1949  * @ops: oob operation description structure
1950  *
1951  * NAND read data and/or out-of-band data.
1952  */
1953 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1954                          struct mtd_oob_ops *ops)
1955 {
1956         int ret = -ENOTSUPP;
1957
1958         ops->retlen = 0;
1959
1960         /* Do not allow reads past end of device */
1961         if (ops->datbuf && (from + ops->len) > mtd->size) {
1962                 pr_debug("%s: attempt to read beyond end of device\n",
1963                                 __func__);
1964                 return -EINVAL;
1965         }
1966
1967         nand_get_device(mtd, FL_READING);
1968
1969         switch (ops->mode) {
1970         case MTD_OPS_PLACE_OOB:
1971         case MTD_OPS_AUTO_OOB:
1972         case MTD_OPS_RAW:
1973                 break;
1974
1975         default:
1976                 goto out;
1977         }
1978
1979         if (!ops->datbuf)
1980                 ret = nand_do_read_oob(mtd, from, ops);
1981         else
1982                 ret = nand_do_read_ops(mtd, from, ops);
1983
1984 out:
1985         nand_release_device(mtd);
1986         return ret;
1987 }
1988
1989
1990 /**
1991  * nand_write_page_raw - [INTERN] raw page write function
1992  * @mtd: mtd info structure
1993  * @chip: nand chip info structure
1994  * @buf: data buffer
1995  * @oob_required: must write chip->oob_poi to OOB
1996  *
1997  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1998  */
1999 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2000                                 const uint8_t *buf, int oob_required)
2001 {
2002         chip->write_buf(mtd, buf, mtd->writesize);
2003         if (oob_required)
2004                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2005
2006         return 0;
2007 }
2008
2009 /**
2010  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2011  * @mtd: mtd info structure
2012  * @chip: nand chip info structure
2013  * @buf: data buffer
2014  * @oob_required: must write chip->oob_poi to OOB
2015  *
2016  * We need a special oob layout and handling even when ECC isn't checked.
2017  */
2018 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2019                                         struct nand_chip *chip,
2020                                         const uint8_t *buf, int oob_required)
2021 {
2022         int eccsize = chip->ecc.size;
2023         int eccbytes = chip->ecc.bytes;
2024         uint8_t *oob = chip->oob_poi;
2025         int steps, size;
2026
2027         for (steps = chip->ecc.steps; steps > 0; steps--) {
2028                 chip->write_buf(mtd, buf, eccsize);
2029                 buf += eccsize;
2030
2031                 if (chip->ecc.prepad) {
2032                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2033                         oob += chip->ecc.prepad;
2034                 }
2035
2036                 chip->write_buf(mtd, oob, eccbytes);
2037                 oob += eccbytes;
2038
2039                 if (chip->ecc.postpad) {
2040                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2041                         oob += chip->ecc.postpad;
2042                 }
2043         }
2044
2045         size = mtd->oobsize - (oob - chip->oob_poi);
2046         if (size)
2047                 chip->write_buf(mtd, oob, size);
2048
2049         return 0;
2050 }
2051 /**
2052  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2053  * @mtd: mtd info structure
2054  * @chip: nand chip info structure
2055  * @buf: data buffer
2056  * @oob_required: must write chip->oob_poi to OOB
2057  */
2058 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2059                                   const uint8_t *buf, int oob_required)
2060 {
2061         int i, eccsize = chip->ecc.size;
2062         int eccbytes = chip->ecc.bytes;
2063         int eccsteps = chip->ecc.steps;
2064         uint8_t *ecc_calc = chip->buffers->ecccalc;
2065         const uint8_t *p = buf;
2066         uint32_t *eccpos = chip->ecc.layout->eccpos;
2067
2068         /* Software ECC calculation */
2069         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2070                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2071
2072         for (i = 0; i < chip->ecc.total; i++)
2073                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2074
2075         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2076 }
2077
2078 /**
2079  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2080  * @mtd: mtd info structure
2081  * @chip: nand chip info structure
2082  * @buf: data buffer
2083  * @oob_required: must write chip->oob_poi to OOB
2084  */
2085 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2086                                   const uint8_t *buf, int oob_required)
2087 {
2088         int i, eccsize = chip->ecc.size;
2089         int eccbytes = chip->ecc.bytes;
2090         int eccsteps = chip->ecc.steps;
2091         uint8_t *ecc_calc = chip->buffers->ecccalc;
2092         const uint8_t *p = buf;
2093         uint32_t *eccpos = chip->ecc.layout->eccpos;
2094
2095         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2096                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2097                 chip->write_buf(mtd, p, eccsize);
2098                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2099         }
2100
2101         for (i = 0; i < chip->ecc.total; i++)
2102                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2103
2104         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2105
2106         return 0;
2107 }
2108
2109
2110 /**
2111  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2112  * @mtd:        mtd info structure
2113  * @chip:       nand chip info structure
2114  * @offset:     column address of subpage within the page
2115  * @data_len:   data length
2116  * @buf:        data buffer
2117  * @oob_required: must write chip->oob_poi to OOB
2118  */
2119 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2120                                 struct nand_chip *chip, uint32_t offset,
2121                                 uint32_t data_len, const uint8_t *buf,
2122                                 int oob_required)
2123 {
2124         uint8_t *oob_buf  = chip->oob_poi;
2125         uint8_t *ecc_calc = chip->buffers->ecccalc;
2126         int ecc_size      = chip->ecc.size;
2127         int ecc_bytes     = chip->ecc.bytes;
2128         int ecc_steps     = chip->ecc.steps;
2129         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2130         uint32_t start_step = offset / ecc_size;
2131         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2132         int oob_bytes       = mtd->oobsize / ecc_steps;
2133         int step, i;
2134
2135         for (step = 0; step < ecc_steps; step++) {
2136                 /* configure controller for WRITE access */
2137                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2138
2139                 /* write data (untouched subpages already masked by 0xFF) */
2140                 chip->write_buf(mtd, buf, ecc_size);
2141
2142                 /* mask ECC of un-touched subpages by padding 0xFF */
2143                 if ((step < start_step) || (step > end_step))
2144                         memset(ecc_calc, 0xff, ecc_bytes);
2145                 else
2146                         chip->ecc.calculate(mtd, buf, ecc_calc);
2147
2148                 /* mask OOB of un-touched subpages by padding 0xFF */
2149                 /* if oob_required, preserve OOB metadata of written subpage */
2150                 if (!oob_required || (step < start_step) || (step > end_step))
2151                         memset(oob_buf, 0xff, oob_bytes);
2152
2153                 buf += ecc_size;
2154                 ecc_calc += ecc_bytes;
2155                 oob_buf  += oob_bytes;
2156         }
2157
2158         /* copy calculated ECC for whole page to chip->buffer->oob */
2159         /* this include masked-value(0xFF) for unwritten subpages */
2160         ecc_calc = chip->buffers->ecccalc;
2161         for (i = 0; i < chip->ecc.total; i++)
2162                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2163
2164         /* write OOB buffer to NAND device */
2165         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2166
2167         return 0;
2168 }
2169
2170
2171 /**
2172  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2173  * @mtd: mtd info structure
2174  * @chip: nand chip info structure
2175  * @buf: data buffer
2176  * @oob_required: must write chip->oob_poi to OOB
2177  *
2178  * The hw generator calculates the error syndrome automatically. Therefore we
2179  * need a special oob layout and handling.
2180  */
2181 static int nand_write_page_syndrome(struct mtd_info *mtd,
2182                                     struct nand_chip *chip,
2183                                     const uint8_t *buf, int oob_required)
2184 {
2185         int i, eccsize = chip->ecc.size;
2186         int eccbytes = chip->ecc.bytes;
2187         int eccsteps = chip->ecc.steps;
2188         const uint8_t *p = buf;
2189         uint8_t *oob = chip->oob_poi;
2190
2191         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2192
2193                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2194                 chip->write_buf(mtd, p, eccsize);
2195
2196                 if (chip->ecc.prepad) {
2197                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2198                         oob += chip->ecc.prepad;
2199                 }
2200
2201                 chip->ecc.calculate(mtd, p, oob);
2202                 chip->write_buf(mtd, oob, eccbytes);
2203                 oob += eccbytes;
2204
2205                 if (chip->ecc.postpad) {
2206                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2207                         oob += chip->ecc.postpad;
2208                 }
2209         }
2210
2211         /* Calculate remaining oob bytes */
2212         i = mtd->oobsize - (oob - chip->oob_poi);
2213         if (i)
2214                 chip->write_buf(mtd, oob, i);
2215
2216         return 0;
2217 }
2218
2219 /**
2220  * nand_write_page - [REPLACEABLE] write one page
2221  * @mtd: MTD device structure
2222  * @chip: NAND chip descriptor
2223  * @offset: address offset within the page
2224  * @data_len: length of actual data to be written
2225  * @buf: the data to write
2226  * @oob_required: must write chip->oob_poi to OOB
2227  * @page: page number to write
2228  * @cached: cached programming
2229  * @raw: use _raw version of write_page
2230  */
2231 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2232                 uint32_t offset, int data_len, const uint8_t *buf,
2233                 int oob_required, int page, int cached, int raw)
2234 {
2235         int status, subpage;
2236
2237         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2238                 chip->ecc.write_subpage)
2239                 subpage = offset || (data_len < mtd->writesize);
2240         else
2241                 subpage = 0;
2242
2243         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2244
2245         if (unlikely(raw))
2246                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2247                                                         oob_required);
2248         else if (subpage)
2249                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2250                                                          buf, oob_required);
2251         else
2252                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2253
2254         if (status < 0)
2255                 return status;
2256
2257         /*
2258          * Cached progamming disabled for now. Not sure if it's worth the
2259          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2260          */
2261         cached = 0;
2262
2263         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2264
2265                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2266                 status = chip->waitfunc(mtd, chip);
2267                 /*
2268                  * See if operation failed and additional status checks are
2269                  * available.
2270                  */
2271                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2272                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2273                                                page);
2274
2275                 if (status & NAND_STATUS_FAIL)
2276                         return -EIO;
2277         } else {
2278                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2279                 status = chip->waitfunc(mtd, chip);
2280         }
2281
2282         return 0;
2283 }
2284
2285 /**
2286  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2287  * @mtd: MTD device structure
2288  * @oob: oob data buffer
2289  * @len: oob data write length
2290  * @ops: oob ops structure
2291  */
2292 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2293                               struct mtd_oob_ops *ops)
2294 {
2295         struct nand_chip *chip = mtd->priv;
2296
2297         /*
2298          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2299          * data from a previous OOB read.
2300          */
2301         memset(chip->oob_poi, 0xff, mtd->oobsize);
2302
2303         switch (ops->mode) {
2304
2305         case MTD_OPS_PLACE_OOB:
2306         case MTD_OPS_RAW:
2307                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2308                 return oob + len;
2309
2310         case MTD_OPS_AUTO_OOB: {
2311                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2312                 uint32_t boffs = 0, woffs = ops->ooboffs;
2313                 size_t bytes = 0;
2314
2315                 for (; free->length && len; free++, len -= bytes) {
2316                         /* Write request not from offset 0? */
2317                         if (unlikely(woffs)) {
2318                                 if (woffs >= free->length) {
2319                                         woffs -= free->length;
2320                                         continue;
2321                                 }
2322                                 boffs = free->offset + woffs;
2323                                 bytes = min_t(size_t, len,
2324                                               (free->length - woffs));
2325                                 woffs = 0;
2326                         } else {
2327                                 bytes = min_t(size_t, len, free->length);
2328                                 boffs = free->offset;
2329                         }
2330                         memcpy(chip->oob_poi + boffs, oob, bytes);
2331                         oob += bytes;
2332                 }
2333                 return oob;
2334         }
2335         default:
2336                 BUG();
2337         }
2338         return NULL;
2339 }
2340
2341 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2342
2343 /**
2344  * nand_do_write_ops - [INTERN] NAND write with ECC
2345  * @mtd: MTD device structure
2346  * @to: offset to write to
2347  * @ops: oob operations description structure
2348  *
2349  * NAND write with ECC.
2350  */
2351 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2352                              struct mtd_oob_ops *ops)
2353 {
2354         int chipnr, realpage, page, blockmask, column;
2355         struct nand_chip *chip = mtd->priv;
2356         uint32_t writelen = ops->len;
2357
2358         uint32_t oobwritelen = ops->ooblen;
2359         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2360                                 mtd->oobavail : mtd->oobsize;
2361
2362         uint8_t *oob = ops->oobbuf;
2363         uint8_t *buf = ops->datbuf;
2364         int ret;
2365         int oob_required = oob ? 1 : 0;
2366
2367         ops->retlen = 0;
2368         if (!writelen)
2369                 return 0;
2370
2371         /* Reject writes, which are not page aligned */
2372         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2373                 pr_notice("%s: attempt to write non page aligned data\n",
2374                            __func__);
2375                 return -EINVAL;
2376         }
2377
2378         column = to & (mtd->writesize - 1);
2379
2380         chipnr = (int)(to >> chip->chip_shift);
2381         chip->select_chip(mtd, chipnr);
2382
2383         /* Check, if it is write protected */
2384         if (nand_check_wp(mtd)) {
2385                 ret = -EIO;
2386                 goto err_out;
2387         }
2388
2389         realpage = (int)(to >> chip->page_shift);
2390         page = realpage & chip->pagemask;
2391         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2392
2393         /* Invalidate the page cache, when we write to the cached page */
2394         if (to <= (chip->pagebuf << chip->page_shift) &&
2395             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2396                 chip->pagebuf = -1;
2397
2398         /* Don't allow multipage oob writes with offset */
2399         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2400                 ret = -EINVAL;
2401                 goto err_out;
2402         }
2403
2404         while (1) {
2405                 int bytes = mtd->writesize;
2406                 int cached = writelen > bytes && page != blockmask;
2407                 uint8_t *wbuf = buf;
2408                 int use_bufpoi;
2409                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2410
2411                 if (part_pagewr)
2412                         use_bufpoi = 1;
2413                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2414                         use_bufpoi = !virt_addr_valid(buf);
2415                 else
2416                         use_bufpoi = 0;
2417
2418                 /* Partial page write?, or need to use bounce buffer */
2419                 if (use_bufpoi) {
2420                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2421                                          __func__, buf);
2422                         cached = 0;
2423                         if (part_pagewr)
2424                                 bytes = min_t(int, bytes - column, writelen);
2425                         chip->pagebuf = -1;
2426                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2427                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2428                         wbuf = chip->buffers->databuf;
2429                 }
2430
2431                 if (unlikely(oob)) {
2432                         size_t len = min(oobwritelen, oobmaxlen);
2433                         oob = nand_fill_oob(mtd, oob, len, ops);
2434                         oobwritelen -= len;
2435                 } else {
2436                         /* We still need to erase leftover OOB data */
2437                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2438                 }
2439                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2440                                         oob_required, page, cached,
2441                                         (ops->mode == MTD_OPS_RAW));
2442                 if (ret)
2443                         break;
2444
2445                 writelen -= bytes;
2446                 if (!writelen)
2447                         break;
2448
2449                 column = 0;
2450                 buf += bytes;
2451                 realpage++;
2452
2453                 page = realpage & chip->pagemask;
2454                 /* Check, if we cross a chip boundary */
2455                 if (!page) {
2456                         chipnr++;
2457                         chip->select_chip(mtd, -1);
2458                         chip->select_chip(mtd, chipnr);
2459                 }
2460         }
2461
2462         ops->retlen = ops->len - writelen;
2463         if (unlikely(oob))
2464                 ops->oobretlen = ops->ooblen;
2465
2466 err_out:
2467         chip->select_chip(mtd, -1);
2468         return ret;
2469 }
2470
2471 /**
2472  * panic_nand_write - [MTD Interface] NAND write with ECC
2473  * @mtd: MTD device structure
2474  * @to: offset to write to
2475  * @len: number of bytes to write
2476  * @retlen: pointer to variable to store the number of written bytes
2477  * @buf: the data to write
2478  *
2479  * NAND write with ECC. Used when performing writes in interrupt context, this
2480  * may for example be called by mtdoops when writing an oops while in panic.
2481  */
2482 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2483                             size_t *retlen, const uint8_t *buf)
2484 {
2485         struct nand_chip *chip = mtd->priv;
2486         struct mtd_oob_ops ops;
2487         int ret;
2488
2489         /* Wait for the device to get ready */
2490         panic_nand_wait(mtd, chip, 400);
2491
2492         /* Grab the device */
2493         panic_nand_get_device(chip, mtd, FL_WRITING);
2494
2495         ops.len = len;
2496         ops.datbuf = (uint8_t *)buf;
2497         ops.oobbuf = NULL;
2498         ops.mode = MTD_OPS_PLACE_OOB;
2499
2500         ret = nand_do_write_ops(mtd, to, &ops);
2501
2502         *retlen = ops.retlen;
2503         return ret;
2504 }
2505
2506 /**
2507  * nand_write - [MTD Interface] NAND write with ECC
2508  * @mtd: MTD device structure
2509  * @to: offset to write to
2510  * @len: number of bytes to write
2511  * @retlen: pointer to variable to store the number of written bytes
2512  * @buf: the data to write
2513  *
2514  * NAND write with ECC.
2515  */
2516 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2517                           size_t *retlen, const uint8_t *buf)
2518 {
2519         struct mtd_oob_ops ops;
2520         int ret;
2521
2522         nand_get_device(mtd, FL_WRITING);
2523         ops.len = len;
2524         ops.datbuf = (uint8_t *)buf;
2525         ops.oobbuf = NULL;
2526         ops.mode = MTD_OPS_PLACE_OOB;
2527         ret = nand_do_write_ops(mtd, to, &ops);
2528         *retlen = ops.retlen;
2529         nand_release_device(mtd);
2530         return ret;
2531 }
2532
2533 /**
2534  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2535  * @mtd: MTD device structure
2536  * @to: offset to write to
2537  * @ops: oob operation description structure
2538  *
2539  * NAND write out-of-band.
2540  */
2541 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2542                              struct mtd_oob_ops *ops)
2543 {
2544         int chipnr, page, status, len;
2545         struct nand_chip *chip = mtd->priv;
2546
2547         pr_debug("%s: to = 0x%08x, len = %i\n",
2548                          __func__, (unsigned int)to, (int)ops->ooblen);
2549
2550         if (ops->mode == MTD_OPS_AUTO_OOB)
2551                 len = chip->ecc.layout->oobavail;
2552         else
2553                 len = mtd->oobsize;
2554
2555         /* Do not allow write past end of page */
2556         if ((ops->ooboffs + ops->ooblen) > len) {
2557                 pr_debug("%s: attempt to write past end of page\n",
2558                                 __func__);
2559                 return -EINVAL;
2560         }
2561
2562         if (unlikely(ops->ooboffs >= len)) {
2563                 pr_debug("%s: attempt to start write outside oob\n",
2564                                 __func__);
2565                 return -EINVAL;
2566         }
2567
2568         /* Do not allow write past end of device */
2569         if (unlikely(to >= mtd->size ||
2570                      ops->ooboffs + ops->ooblen >
2571                         ((mtd->size >> chip->page_shift) -
2572                          (to >> chip->page_shift)) * len)) {
2573                 pr_debug("%s: attempt to write beyond end of device\n",
2574                                 __func__);
2575                 return -EINVAL;
2576         }
2577
2578         chipnr = (int)(to >> chip->chip_shift);
2579         chip->select_chip(mtd, chipnr);
2580
2581         /* Shift to get page */
2582         page = (int)(to >> chip->page_shift);
2583
2584         /*
2585          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2586          * of my DiskOnChip 2000 test units) will clear the whole data page too
2587          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2588          * it in the doc2000 driver in August 1999.  dwmw2.
2589          */
2590         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2591
2592         /* Check, if it is write protected */
2593         if (nand_check_wp(mtd)) {
2594                 chip->select_chip(mtd, -1);
2595                 return -EROFS;
2596         }
2597
2598         /* Invalidate the page cache, if we write to the cached page */
2599         if (page == chip->pagebuf)
2600                 chip->pagebuf = -1;
2601
2602         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2603
2604         if (ops->mode == MTD_OPS_RAW)
2605                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2606         else
2607                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2608
2609         chip->select_chip(mtd, -1);
2610
2611         if (status)
2612                 return status;
2613
2614         ops->oobretlen = ops->ooblen;
2615
2616         return 0;
2617 }
2618
2619 /**
2620  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2621  * @mtd: MTD device structure
2622  * @to: offset to write to
2623  * @ops: oob operation description structure
2624  */
2625 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2626                           struct mtd_oob_ops *ops)
2627 {
2628         int ret = -ENOTSUPP;
2629
2630         ops->retlen = 0;
2631
2632         /* Do not allow writes past end of device */
2633         if (ops->datbuf && (to + ops->len) > mtd->size) {
2634                 pr_debug("%s: attempt to write beyond end of device\n",
2635                                 __func__);
2636                 return -EINVAL;
2637         }
2638
2639         nand_get_device(mtd, FL_WRITING);
2640
2641         switch (ops->mode) {
2642         case MTD_OPS_PLACE_OOB:
2643         case MTD_OPS_AUTO_OOB:
2644         case MTD_OPS_RAW:
2645                 break;
2646
2647         default:
2648                 goto out;
2649         }
2650
2651         if (!ops->datbuf)
2652                 ret = nand_do_write_oob(mtd, to, ops);
2653         else
2654                 ret = nand_do_write_ops(mtd, to, ops);
2655
2656 out:
2657         nand_release_device(mtd);
2658         return ret;
2659 }
2660
2661 /**
2662  * single_erase - [GENERIC] NAND standard block erase command function
2663  * @mtd: MTD device structure
2664  * @page: the page address of the block which will be erased
2665  *
2666  * Standard erase command for NAND chips. Returns NAND status.
2667  */
2668 static int single_erase(struct mtd_info *mtd, int page)
2669 {
2670         struct nand_chip *chip = mtd->priv;
2671         /* Send commands to erase a block */
2672         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2673         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2674
2675         return chip->waitfunc(mtd, chip);
2676 }
2677
2678 /**
2679  * nand_erase - [MTD Interface] erase block(s)
2680  * @mtd: MTD device structure
2681  * @instr: erase instruction
2682  *
2683  * Erase one ore more blocks.
2684  */
2685 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2686 {
2687         return nand_erase_nand(mtd, instr, 0);
2688 }
2689
2690 /**
2691  * nand_erase_nand - [INTERN] erase block(s)
2692  * @mtd: MTD device structure
2693  * @instr: erase instruction
2694  * @allowbbt: allow erasing the bbt area
2695  *
2696  * Erase one ore more blocks.
2697  */
2698 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2699                     int allowbbt)
2700 {
2701         int page, status, pages_per_block, ret, chipnr;
2702         struct nand_chip *chip = mtd->priv;
2703         loff_t len;
2704
2705         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2706                         __func__, (unsigned long long)instr->addr,
2707                         (unsigned long long)instr->len);
2708
2709         if (check_offs_len(mtd, instr->addr, instr->len))
2710                 return -EINVAL;
2711
2712         /* Grab the lock and see if the device is available */
2713         nand_get_device(mtd, FL_ERASING);
2714
2715         /* Shift to get first page */
2716         page = (int)(instr->addr >> chip->page_shift);
2717         chipnr = (int)(instr->addr >> chip->chip_shift);
2718
2719         /* Calculate pages in each block */
2720         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2721
2722         /* Select the NAND device */
2723         chip->select_chip(mtd, chipnr);
2724
2725         /* Check, if it is write protected */
2726         if (nand_check_wp(mtd)) {
2727                 pr_debug("%s: device is write protected!\n",
2728                                 __func__);
2729                 instr->state = MTD_ERASE_FAILED;
2730                 goto erase_exit;
2731         }
2732
2733         /* Loop through the pages */
2734         len = instr->len;
2735
2736         instr->state = MTD_ERASING;
2737
2738         while (len) {
2739                 /* Check if we have a bad block, we do not erase bad blocks! */
2740                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2741                                         chip->page_shift, 0, allowbbt)) {
2742                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2743                                     __func__, page);
2744                         instr->state = MTD_ERASE_FAILED;
2745                         goto erase_exit;
2746                 }
2747
2748                 /*
2749                  * Invalidate the page cache, if we erase the block which
2750                  * contains the current cached page.
2751                  */
2752                 if (page <= chip->pagebuf && chip->pagebuf <
2753                     (page + pages_per_block))
2754                         chip->pagebuf = -1;
2755
2756                 status = chip->erase(mtd, page & chip->pagemask);
2757
2758                 /*
2759                  * See if operation failed and additional status checks are
2760                  * available
2761                  */
2762                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2763                         status = chip->errstat(mtd, chip, FL_ERASING,
2764                                                status, page);
2765
2766                 /* See if block erase succeeded */
2767                 if (status & NAND_STATUS_FAIL) {
2768                         pr_debug("%s: failed erase, page 0x%08x\n",
2769                                         __func__, page);
2770                         instr->state = MTD_ERASE_FAILED;
2771                         instr->fail_addr =
2772                                 ((loff_t)page << chip->page_shift);
2773                         goto erase_exit;
2774                 }
2775
2776                 /* Increment page address and decrement length */
2777                 len -= (1ULL << chip->phys_erase_shift);
2778                 page += pages_per_block;
2779
2780                 /* Check, if we cross a chip boundary */
2781                 if (len && !(page & chip->pagemask)) {
2782                         chipnr++;
2783                         chip->select_chip(mtd, -1);
2784                         chip->select_chip(mtd, chipnr);
2785                 }
2786         }
2787         instr->state = MTD_ERASE_DONE;
2788
2789 erase_exit:
2790
2791         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2792
2793         /* Deselect and wake up anyone waiting on the device */
2794         chip->select_chip(mtd, -1);
2795         nand_release_device(mtd);
2796
2797         /* Do call back function */
2798         if (!ret)
2799                 mtd_erase_callback(instr);
2800
2801         /* Return more or less happy */
2802         return ret;
2803 }
2804
2805 /**
2806  * nand_sync - [MTD Interface] sync
2807  * @mtd: MTD device structure
2808  *
2809  * Sync is actually a wait for chip ready function.
2810  */
2811 static void nand_sync(struct mtd_info *mtd)
2812 {
2813         pr_debug("%s: called\n", __func__);
2814
2815         /* Grab the lock and see if the device is available */
2816         nand_get_device(mtd, FL_SYNCING);
2817         /* Release it and go back */
2818         nand_release_device(mtd);
2819 }
2820
2821 /**
2822  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2823  * @mtd: MTD device structure
2824  * @offs: offset relative to mtd start
2825  */
2826 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2827 {
2828         return nand_block_checkbad(mtd, offs, 1, 0);
2829 }
2830
2831 /**
2832  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2833  * @mtd: MTD device structure
2834  * @ofs: offset relative to mtd start
2835  */
2836 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2837 {
2838         int ret;
2839
2840         ret = nand_block_isbad(mtd, ofs);
2841         if (ret) {
2842                 /* If it was bad already, return success and do nothing */
2843                 if (ret > 0)
2844                         return 0;
2845                 return ret;
2846         }
2847
2848         return nand_block_markbad_lowlevel(mtd, ofs);
2849 }
2850
2851 /**
2852  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2853  * @mtd: MTD device structure
2854  * @chip: nand chip info structure
2855  * @addr: feature address.
2856  * @subfeature_param: the subfeature parameters, a four bytes array.
2857  */
2858 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2859                         int addr, uint8_t *subfeature_param)
2860 {
2861         int status;
2862         int i;
2863
2864         if (!chip->onfi_version ||
2865             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2866               & ONFI_OPT_CMD_SET_GET_FEATURES))
2867                 return -EINVAL;
2868
2869         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2870         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2871                 chip->write_byte(mtd, subfeature_param[i]);
2872
2873         status = chip->waitfunc(mtd, chip);
2874         if (status & NAND_STATUS_FAIL)
2875                 return -EIO;
2876         return 0;
2877 }
2878
2879 /**
2880  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2881  * @mtd: MTD device structure
2882  * @chip: nand chip info structure
2883  * @addr: feature address.
2884  * @subfeature_param: the subfeature parameters, a four bytes array.
2885  */
2886 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2887                         int addr, uint8_t *subfeature_param)
2888 {
2889         int i;
2890
2891         if (!chip->onfi_version ||
2892             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2893               & ONFI_OPT_CMD_SET_GET_FEATURES))
2894                 return -EINVAL;
2895
2896         /* clear the sub feature parameters */
2897         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2898
2899         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2900         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2901                 *subfeature_param++ = chip->read_byte(mtd);
2902         return 0;
2903 }
2904
2905 /**
2906  * nand_suspend - [MTD Interface] Suspend the NAND flash
2907  * @mtd: MTD device structure
2908  */
2909 static int nand_suspend(struct mtd_info *mtd)
2910 {
2911         return nand_get_device(mtd, FL_PM_SUSPENDED);
2912 }
2913
2914 /**
2915  * nand_resume - [MTD Interface] Resume the NAND flash
2916  * @mtd: MTD device structure
2917  */
2918 static void nand_resume(struct mtd_info *mtd)
2919 {
2920         struct nand_chip *chip = mtd->priv;
2921
2922         if (chip->state == FL_PM_SUSPENDED)
2923                 nand_release_device(mtd);
2924         else
2925                 pr_err("%s called for a chip which is not in suspended state\n",
2926                         __func__);
2927 }
2928
2929 /* Set default functions */
2930 static void nand_set_defaults(struct nand_chip *chip, int busw)
2931 {
2932         /* check for proper chip_delay setup, set 20us if not */
2933         if (!chip->chip_delay)
2934                 chip->chip_delay = 20;
2935
2936         /* check, if a user supplied command function given */
2937         if (chip->cmdfunc == NULL)
2938                 chip->cmdfunc = nand_command;
2939
2940         /* check, if a user supplied wait function given */
2941         if (chip->waitfunc == NULL)
2942                 chip->waitfunc = nand_wait;
2943
2944         if (!chip->select_chip)
2945                 chip->select_chip = nand_select_chip;
2946
2947         /* set for ONFI nand */
2948         if (!chip->onfi_set_features)
2949                 chip->onfi_set_features = nand_onfi_set_features;
2950         if (!chip->onfi_get_features)
2951                 chip->onfi_get_features = nand_onfi_get_features;
2952
2953         /* If called twice, pointers that depend on busw may need to be reset */
2954         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2955                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2956         if (!chip->read_word)
2957                 chip->read_word = nand_read_word;
2958         if (!chip->block_bad)
2959                 chip->block_bad = nand_block_bad;
2960         if (!chip->block_markbad)
2961                 chip->block_markbad = nand_default_block_markbad;
2962         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2963                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2964         if (!chip->write_byte || chip->write_byte == nand_write_byte)
2965                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2966         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2967                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2968         if (!chip->scan_bbt)
2969                 chip->scan_bbt = nand_default_bbt;
2970
2971         if (!chip->controller) {
2972                 chip->controller = &chip->hwcontrol;
2973                 spin_lock_init(&chip->controller->lock);
2974                 init_waitqueue_head(&chip->controller->wq);
2975         }
2976
2977 }
2978
2979 /* Sanitize ONFI strings so we can safely print them */
2980 static void sanitize_string(uint8_t *s, size_t len)
2981 {
2982         ssize_t i;
2983
2984         /* Null terminate */
2985         s[len - 1] = 0;
2986
2987         /* Remove non printable chars */
2988         for (i = 0; i < len - 1; i++) {
2989                 if (s[i] < ' ' || s[i] > 127)
2990                         s[i] = '?';
2991         }
2992
2993         /* Remove trailing spaces */
2994         strim(s);
2995 }
2996
2997 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2998 {
2999         int i;
3000         while (len--) {
3001                 crc ^= *p++ << 8;
3002                 for (i = 0; i < 8; i++)
3003                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3004         }
3005
3006         return crc;
3007 }
3008
3009 /* Parse the Extended Parameter Page. */
3010 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3011                 struct nand_chip *chip, struct nand_onfi_params *p)
3012 {
3013         struct onfi_ext_param_page *ep;
3014         struct onfi_ext_section *s;
3015         struct onfi_ext_ecc_info *ecc;
3016         uint8_t *cursor;
3017         int ret = -EINVAL;
3018         int len;
3019         int i;
3020
3021         len = le16_to_cpu(p->ext_param_page_length) * 16;
3022         ep = kmalloc(len, GFP_KERNEL);
3023         if (!ep)
3024                 return -ENOMEM;
3025
3026         /* Send our own NAND_CMD_PARAM. */
3027         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3028
3029         /* Use the Change Read Column command to skip the ONFI param pages. */
3030         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3031                         sizeof(*p) * p->num_of_param_pages , -1);
3032
3033         /* Read out the Extended Parameter Page. */
3034         chip->read_buf(mtd, (uint8_t *)ep, len);
3035         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3036                 != le16_to_cpu(ep->crc))) {
3037                 pr_debug("fail in the CRC.\n");
3038                 goto ext_out;
3039         }
3040
3041         /*
3042          * Check the signature.
3043          * Do not strictly follow the ONFI spec, maybe changed in future.
3044          */
3045         if (strncmp(ep->sig, "EPPS", 4)) {
3046                 pr_debug("The signature is invalid.\n");
3047                 goto ext_out;
3048         }
3049
3050         /* find the ECC section. */
3051         cursor = (uint8_t *)(ep + 1);
3052         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3053                 s = ep->sections + i;
3054                 if (s->type == ONFI_SECTION_TYPE_2)
3055                         break;
3056                 cursor += s->length * 16;
3057         }
3058         if (i == ONFI_EXT_SECTION_MAX) {
3059                 pr_debug("We can not find the ECC section.\n");
3060                 goto ext_out;
3061         }
3062
3063         /* get the info we want. */
3064         ecc = (struct onfi_ext_ecc_info *)cursor;
3065
3066         if (!ecc->codeword_size) {
3067                 pr_debug("Invalid codeword size\n");
3068                 goto ext_out;
3069         }
3070
3071         chip->ecc_strength_ds = ecc->ecc_bits;
3072         chip->ecc_step_ds = 1 << ecc->codeword_size;
3073         ret = 0;
3074
3075 ext_out:
3076         kfree(ep);
3077         return ret;
3078 }
3079
3080 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3081 {
3082         struct nand_chip *chip = mtd->priv;
3083         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3084
3085         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3086                         feature);
3087 }
3088
3089 /*
3090  * Configure chip properties from Micron vendor-specific ONFI table
3091  */
3092 static void nand_onfi_detect_micron(struct nand_chip *chip,
3093                 struct nand_onfi_params *p)
3094 {
3095         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3096
3097         if (le16_to_cpu(p->vendor_revision) < 1)
3098                 return;
3099
3100         chip->read_retries = micron->read_retry_options;
3101         chip->setup_read_retry = nand_setup_read_retry_micron;
3102 }
3103
3104 /*
3105  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3106  */
3107 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3108                                         int *busw)
3109 {
3110         struct nand_onfi_params *p = &chip->onfi_params;
3111         int i, j;
3112         int val;
3113
3114         /* Try ONFI for unknown chip or LP */
3115         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3116         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3117                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3118                 return 0;
3119
3120         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3121         for (i = 0; i < 3; i++) {
3122                 for (j = 0; j < sizeof(*p); j++)
3123                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3124                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3125                                 le16_to_cpu(p->crc)) {
3126                         break;
3127                 }
3128         }
3129
3130         if (i == 3) {
3131                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3132                 return 0;
3133         }
3134
3135         /* Check version */
3136         val = le16_to_cpu(p->revision);
3137         if (val & (1 << 5))
3138                 chip->onfi_version = 23;
3139         else if (val & (1 << 4))
3140                 chip->onfi_version = 22;
3141         else if (val & (1 << 3))
3142                 chip->onfi_version = 21;
3143         else if (val & (1 << 2))
3144                 chip->onfi_version = 20;
3145         else if (val & (1 << 1))
3146                 chip->onfi_version = 10;
3147
3148         if (!chip->onfi_version) {
3149                 pr_info("unsupported ONFI version: %d\n", val);
3150                 return 0;
3151         }
3152
3153         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3154         sanitize_string(p->model, sizeof(p->model));
3155         if (!mtd->name)
3156                 mtd->name = p->model;
3157
3158         mtd->writesize = le32_to_cpu(p->byte_per_page);
3159
3160         /*
3161          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3162          * (don't ask me who thought of this...). MTD assumes that these
3163          * dimensions will be power-of-2, so just truncate the remaining area.
3164          */
3165         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3166         mtd->erasesize *= mtd->writesize;
3167
3168         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3169
3170         /* See erasesize comment */
3171         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3172         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3173         chip->bits_per_cell = p->bits_per_cell;
3174
3175         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3176                 *busw = NAND_BUSWIDTH_16;
3177         else
3178                 *busw = 0;
3179
3180         if (p->ecc_bits != 0xff) {
3181                 chip->ecc_strength_ds = p->ecc_bits;
3182                 chip->ecc_step_ds = 512;
3183         } else if (chip->onfi_version >= 21 &&
3184                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3185
3186                 /*
3187                  * The nand_flash_detect_ext_param_page() uses the
3188                  * Change Read Column command which maybe not supported
3189                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3190                  * now. We do not replace user supplied command function.
3191                  */
3192                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3193                         chip->cmdfunc = nand_command_lp;
3194
3195                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3196                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3197                         pr_warn("Failed to detect ONFI extended param page\n");
3198         } else {
3199                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3200         }
3201
3202         if (p->jedec_id == NAND_MFR_MICRON)
3203                 nand_onfi_detect_micron(chip, p);
3204
3205         return 1;
3206 }
3207
3208 /*
3209  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3210  */
3211 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3212                                         int *busw)
3213 {
3214         struct nand_jedec_params *p = &chip->jedec_params;
3215         struct jedec_ecc_info *ecc;
3216         int val;
3217         int i, j;
3218
3219         /* Try JEDEC for unknown chip or LP */
3220         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3221         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3222                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3223                 chip->read_byte(mtd) != 'C')
3224                 return 0;
3225
3226         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3227         for (i = 0; i < 3; i++) {
3228                 for (j = 0; j < sizeof(*p); j++)
3229                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3230
3231                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3232                                 le16_to_cpu(p->crc))
3233                         break;
3234         }
3235
3236         if (i == 3) {
3237                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3238                 return 0;
3239         }
3240
3241         /* Check version */
3242         val = le16_to_cpu(p->revision);
3243         if (val & (1 << 2))
3244                 chip->jedec_version = 10;
3245         else if (val & (1 << 1))
3246                 chip->jedec_version = 1; /* vendor specific version */
3247
3248         if (!chip->jedec_version) {
3249                 pr_info("unsupported JEDEC version: %d\n", val);
3250                 return 0;
3251         }
3252
3253         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3254         sanitize_string(p->model, sizeof(p->model));
3255         if (!mtd->name)
3256                 mtd->name = p->model;
3257
3258         mtd->writesize = le32_to_cpu(p->byte_per_page);
3259
3260         /* Please reference to the comment for nand_flash_detect_onfi. */
3261         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3262         mtd->erasesize *= mtd->writesize;
3263
3264         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3265
3266         /* Please reference to the comment for nand_flash_detect_onfi. */
3267         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3268         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3269         chip->bits_per_cell = p->bits_per_cell;
3270
3271         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3272                 *busw = NAND_BUSWIDTH_16;
3273         else
3274                 *busw = 0;
3275
3276         /* ECC info */
3277         ecc = &p->ecc_info[0];
3278
3279         if (ecc->codeword_size >= 9) {
3280                 chip->ecc_strength_ds = ecc->ecc_bits;
3281                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3282         } else {
3283                 pr_warn("Invalid codeword size\n");
3284         }
3285
3286         return 1;
3287 }
3288
3289 /*
3290  * nand_id_has_period - Check if an ID string has a given wraparound period
3291  * @id_data: the ID string
3292  * @arrlen: the length of the @id_data array
3293  * @period: the period of repitition
3294  *
3295  * Check if an ID string is repeated within a given sequence of bytes at
3296  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3297  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3298  * if the repetition has a period of @period; otherwise, returns zero.
3299  */
3300 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3301 {
3302         int i, j;
3303         for (i = 0; i < period; i++)
3304                 for (j = i + period; j < arrlen; j += period)
3305                         if (id_data[i] != id_data[j])
3306                                 return 0;
3307         return 1;
3308 }
3309
3310 /*
3311  * nand_id_len - Get the length of an ID string returned by CMD_READID
3312  * @id_data: the ID string
3313  * @arrlen: the length of the @id_data array
3314
3315  * Returns the length of the ID string, according to known wraparound/trailing
3316  * zero patterns. If no pattern exists, returns the length of the array.
3317  */
3318 static int nand_id_len(u8 *id_data, int arrlen)
3319 {
3320         int last_nonzero, period;
3321
3322         /* Find last non-zero byte */
3323         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3324                 if (id_data[last_nonzero])
3325                         break;
3326
3327         /* All zeros */
3328         if (last_nonzero < 0)
3329                 return 0;
3330
3331         /* Calculate wraparound period */
3332         for (period = 1; period < arrlen; period++)
3333                 if (nand_id_has_period(id_data, arrlen, period))
3334                         break;
3335
3336         /* There's a repeated pattern */
3337         if (period < arrlen)
3338                 return period;
3339
3340         /* There are trailing zeros */
3341         if (last_nonzero < arrlen - 1)
3342                 return last_nonzero + 1;
3343
3344         /* No pattern detected */
3345         return arrlen;
3346 }
3347
3348 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3349 static int nand_get_bits_per_cell(u8 cellinfo)
3350 {
3351         int bits;
3352
3353         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3354         bits >>= NAND_CI_CELLTYPE_SHIFT;
3355         return bits + 1;
3356 }
3357
3358 /*
3359  * Many new NAND share similar device ID codes, which represent the size of the
3360  * chip. The rest of the parameters must be decoded according to generic or
3361  * manufacturer-specific "extended ID" decoding patterns.
3362  */
3363 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3364                                 u8 id_data[8], int *busw)
3365 {
3366         int extid, id_len;
3367         /* The 3rd id byte holds MLC / multichip data */
3368         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3369         /* The 4th id byte is the important one */
3370         extid = id_data[3];
3371
3372         id_len = nand_id_len(id_data, 8);
3373
3374         /*
3375          * Field definitions are in the following datasheets:
3376          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3377          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3378          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3379          *
3380          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3381          * ID to decide what to do.
3382          */
3383         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3384                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3385                 /* Calc pagesize */
3386                 mtd->writesize = 2048 << (extid & 0x03);
3387                 extid >>= 2;
3388                 /* Calc oobsize */
3389                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3390                 case 1:
3391                         mtd->oobsize = 128;
3392                         break;
3393                 case 2:
3394                         mtd->oobsize = 218;
3395                         break;
3396                 case 3:
3397                         mtd->oobsize = 400;
3398                         break;
3399                 case 4:
3400                         mtd->oobsize = 436;
3401                         break;
3402                 case 5:
3403                         mtd->oobsize = 512;
3404                         break;
3405                 case 6:
3406                         mtd->oobsize = 640;
3407                         break;
3408                 case 7:
3409                 default: /* Other cases are "reserved" (unknown) */
3410                         mtd->oobsize = 1024;
3411                         break;
3412                 }
3413                 extid >>= 2;
3414                 /* Calc blocksize */
3415                 mtd->erasesize = (128 * 1024) <<
3416                         (((extid >> 1) & 0x04) | (extid & 0x03));
3417                 *busw = 0;
3418         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3419                         !nand_is_slc(chip)) {
3420                 unsigned int tmp;
3421
3422                 /* Calc pagesize */
3423                 mtd->writesize = 2048 << (extid & 0x03);
3424                 extid >>= 2;
3425                 /* Calc oobsize */
3426                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3427                 case 0:
3428                         mtd->oobsize = 128;
3429                         break;
3430                 case 1:
3431                         mtd->oobsize = 224;
3432                         break;
3433                 case 2:
3434                         mtd->oobsize = 448;
3435                         break;
3436                 case 3:
3437                         mtd->oobsize = 64;
3438                         break;
3439                 case 4:
3440                         mtd->oobsize = 32;
3441                         break;
3442                 case 5:
3443                         mtd->oobsize = 16;
3444                         break;
3445                 default:
3446                         mtd->oobsize = 640;
3447                         break;
3448                 }
3449                 extid >>= 2;
3450                 /* Calc blocksize */
3451                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3452                 if (tmp < 0x03)
3453                         mtd->erasesize = (128 * 1024) << tmp;
3454                 else if (tmp == 0x03)
3455                         mtd->erasesize = 768 * 1024;
3456                 else
3457                         mtd->erasesize = (64 * 1024) << tmp;
3458                 *busw = 0;
3459         } else {
3460                 /* Calc pagesize */
3461                 mtd->writesize = 1024 << (extid & 0x03);
3462                 extid >>= 2;
3463                 /* Calc oobsize */
3464                 mtd->oobsize = (8 << (extid & 0x01)) *
3465                         (mtd->writesize >> 9);
3466                 extid >>= 2;
3467                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3468                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3469                 extid >>= 2;
3470                 /* Get buswidth information */
3471                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3472
3473                 /*
3474                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3475                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3476                  * follows:
3477                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3478                  *                         110b -> 24nm
3479                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3480                  */
3481                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3482                                 nand_is_slc(chip) &&
3483                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3484                                 !(id_data[4] & 0x80) /* !BENAND */) {
3485                         mtd->oobsize = 32 * mtd->writesize >> 9;
3486                 }
3487
3488         }
3489 }
3490
3491 /*
3492  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3493  * decodes a matching ID table entry and assigns the MTD size parameters for
3494  * the chip.
3495  */
3496 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3497                                 struct nand_flash_dev *type, u8 id_data[8],
3498                                 int *busw)
3499 {
3500         int maf_id = id_data[0];
3501
3502         mtd->erasesize = type->erasesize;
3503         mtd->writesize = type->pagesize;
3504         mtd->oobsize = mtd->writesize / 32;
3505         *busw = type->options & NAND_BUSWIDTH_16;
3506
3507         /* All legacy ID NAND are small-page, SLC */
3508         chip->bits_per_cell = 1;
3509
3510         /*
3511          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3512          * some Spansion chips have erasesize that conflicts with size
3513          * listed in nand_ids table.
3514          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3515          */
3516         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3517                         && id_data[6] == 0x00 && id_data[7] == 0x00
3518                         && mtd->writesize == 512) {
3519                 mtd->erasesize = 128 * 1024;
3520                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3521         }
3522 }
3523
3524 /*
3525  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3526  * heuristic patterns using various detected parameters (e.g., manufacturer,
3527  * page size, cell-type information).
3528  */
3529 static void nand_decode_bbm_options(struct mtd_info *mtd,
3530                                     struct nand_chip *chip, u8 id_data[8])
3531 {
3532         int maf_id = id_data[0];
3533
3534         /* Set the bad block position */
3535         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3536                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3537         else
3538                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3539
3540         /*
3541          * Bad block marker is stored in the last page of each block on Samsung
3542          * and Hynix MLC devices; stored in first two pages of each block on
3543          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3544          * AMD/Spansion, and Macronix.  All others scan only the first page.
3545          */
3546         if (!nand_is_slc(chip) &&
3547                         (maf_id == NAND_MFR_SAMSUNG ||
3548                          maf_id == NAND_MFR_HYNIX))
3549                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3550         else if ((nand_is_slc(chip) &&
3551                                 (maf_id == NAND_MFR_SAMSUNG ||
3552                                  maf_id == NAND_MFR_HYNIX ||
3553                                  maf_id == NAND_MFR_TOSHIBA ||
3554                                  maf_id == NAND_MFR_AMD ||
3555                                  maf_id == NAND_MFR_MACRONIX)) ||
3556                         (mtd->writesize == 2048 &&
3557                          maf_id == NAND_MFR_MICRON))
3558                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3559 }
3560
3561 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3562 {
3563         return type->id_len;
3564 }
3565
3566 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3567                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3568 {
3569         if (!strncmp(type->id, id_data, type->id_len)) {
3570                 mtd->writesize = type->pagesize;
3571                 mtd->erasesize = type->erasesize;
3572                 mtd->oobsize = type->oobsize;
3573
3574                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3575                 chip->chipsize = (uint64_t)type->chipsize << 20;
3576                 chip->options |= type->options;
3577                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3578                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3579
3580                 *busw = type->options & NAND_BUSWIDTH_16;
3581
3582                 if (!mtd->name)
3583                         mtd->name = type->name;
3584
3585                 return true;
3586         }
3587         return false;
3588 }
3589
3590 /*
3591  * Get the flash and manufacturer id and lookup if the type is supported.
3592  */
3593 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3594                                                   struct nand_chip *chip,
3595                                                   int *maf_id, int *dev_id,
3596                                                   struct nand_flash_dev *type)
3597 {
3598         int busw;
3599         int i, maf_idx;
3600         u8 id_data[8];
3601
3602         /* Select the device */
3603         chip->select_chip(mtd, 0);
3604
3605         /*
3606          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3607          * after power-up.
3608          */
3609         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3610
3611         /* Send the command for reading device ID */
3612         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3613
3614         /* Read manufacturer and device IDs */
3615         *maf_id = chip->read_byte(mtd);
3616         *dev_id = chip->read_byte(mtd);
3617
3618         /*
3619          * Try again to make sure, as some systems the bus-hold or other
3620          * interface concerns can cause random data which looks like a
3621          * possibly credible NAND flash to appear. If the two results do
3622          * not match, ignore the device completely.
3623          */
3624
3625         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3626
3627         /* Read entire ID string */
3628         for (i = 0; i < 8; i++)
3629                 id_data[i] = chip->read_byte(mtd);
3630
3631         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3632                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3633                         *maf_id, *dev_id, id_data[0], id_data[1]);
3634                 return ERR_PTR(-ENODEV);
3635         }
3636
3637         if (!type)
3638                 type = nand_flash_ids;
3639
3640         for (; type->name != NULL; type++) {
3641                 if (is_full_id_nand(type)) {
3642                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3643                                 goto ident_done;
3644                 } else if (*dev_id == type->dev_id) {
3645                                 break;
3646                 }
3647         }
3648
3649         chip->onfi_version = 0;
3650         if (!type->name || !type->pagesize) {
3651                 /* Check if the chip is ONFI compliant */
3652                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3653                         goto ident_done;
3654
3655                 /* Check if the chip is JEDEC compliant */
3656                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3657                         goto ident_done;
3658         }
3659
3660         if (!type->name)
3661                 return ERR_PTR(-ENODEV);
3662
3663         if (!mtd->name)
3664                 mtd->name = type->name;
3665
3666         chip->chipsize = (uint64_t)type->chipsize << 20;
3667
3668         if (!type->pagesize && chip->init_size) {
3669                 /* Set the pagesize, oobsize, erasesize by the driver */
3670                 busw = chip->init_size(mtd, chip, id_data);
3671         } else if (!type->pagesize) {
3672                 /* Decode parameters from extended ID */
3673                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3674         } else {
3675                 nand_decode_id(mtd, chip, type, id_data, &busw);
3676         }
3677         /* Get chip options */
3678         chip->options |= type->options;
3679
3680         /*
3681          * Check if chip is not a Samsung device. Do not clear the
3682          * options for chips which do not have an extended id.
3683          */
3684         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3685                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3686 ident_done:
3687
3688         /* Try to identify manufacturer */
3689         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3690                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3691                         break;
3692         }
3693
3694         if (chip->options & NAND_BUSWIDTH_AUTO) {
3695                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3696                 chip->options |= busw;
3697                 nand_set_defaults(chip, busw);
3698         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3699                 /*
3700                  * Check, if buswidth is correct. Hardware drivers should set
3701                  * chip correct!
3702                  */
3703                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3704                         *maf_id, *dev_id);
3705                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3706                 pr_warn("bus width %d instead %d bit\n",
3707                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3708                            busw ? 16 : 8);
3709                 return ERR_PTR(-EINVAL);
3710         }
3711
3712         nand_decode_bbm_options(mtd, chip, id_data);
3713
3714         /* Calculate the address shift from the page size */
3715         chip->page_shift = ffs(mtd->writesize) - 1;
3716         /* Convert chipsize to number of pages per chip -1 */
3717         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3718
3719         chip->bbt_erase_shift = chip->phys_erase_shift =
3720                 ffs(mtd->erasesize) - 1;
3721         if (chip->chipsize & 0xffffffff)
3722                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3723         else {
3724                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3725                 chip->chip_shift += 32 - 1;
3726         }
3727
3728         chip->badblockbits = 8;
3729         chip->erase = single_erase;
3730
3731         /* Do not replace user supplied command function! */
3732         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3733                 chip->cmdfunc = nand_command_lp;
3734
3735         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3736                 *maf_id, *dev_id);
3737
3738         if (chip->onfi_version)
3739                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3740                                 chip->onfi_params.model);
3741         else if (chip->jedec_version)
3742                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3743                                 chip->jedec_params.model);
3744         else
3745                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3746                                 type->name);
3747
3748         pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3749                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3750                 mtd->writesize, mtd->oobsize);
3751         return type;
3752 }
3753
3754 /**
3755  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3756  * @mtd: MTD device structure
3757  * @maxchips: number of chips to scan for
3758  * @table: alternative NAND ID table
3759  *
3760  * This is the first phase of the normal nand_scan() function. It reads the
3761  * flash ID and sets up MTD fields accordingly.
3762  *
3763  * The mtd->owner field must be set to the module of the caller.
3764  */
3765 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3766                     struct nand_flash_dev *table)
3767 {
3768         int i, nand_maf_id, nand_dev_id;
3769         struct nand_chip *chip = mtd->priv;
3770         struct nand_flash_dev *type;
3771
3772         /* Set the default functions */
3773         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3774
3775         /* Read the flash type */
3776         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3777                                    &nand_dev_id, table);
3778
3779         if (IS_ERR(type)) {
3780                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3781                         pr_warn("No NAND device found\n");
3782                 chip->select_chip(mtd, -1);
3783                 return PTR_ERR(type);
3784         }
3785
3786         chip->select_chip(mtd, -1);
3787
3788         /* Check for a chip array */
3789         for (i = 1; i < maxchips; i++) {
3790                 chip->select_chip(mtd, i);
3791                 /* See comment in nand_get_flash_type for reset */
3792                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3793                 /* Send the command for reading device ID */
3794                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3795                 /* Read manufacturer and device IDs */
3796                 if (nand_maf_id != chip->read_byte(mtd) ||
3797                     nand_dev_id != chip->read_byte(mtd)) {
3798                         chip->select_chip(mtd, -1);
3799                         break;
3800                 }
3801                 chip->select_chip(mtd, -1);
3802         }
3803         if (i > 1)
3804                 pr_info("%d chips detected\n", i);
3805
3806         /* Store the number of chips and calc total size for mtd */
3807         chip->numchips = i;
3808         mtd->size = i * chip->chipsize;
3809
3810         return 0;
3811 }
3812 EXPORT_SYMBOL(nand_scan_ident);
3813
3814 /*
3815  * Check if the chip configuration meet the datasheet requirements.
3816
3817  * If our configuration corrects A bits per B bytes and the minimum
3818  * required correction level is X bits per Y bytes, then we must ensure
3819  * both of the following are true:
3820  *
3821  * (1) A / B >= X / Y
3822  * (2) A >= X
3823  *
3824  * Requirement (1) ensures we can correct for the required bitflip density.
3825  * Requirement (2) ensures we can correct even when all bitflips are clumped
3826  * in the same sector.
3827  */
3828 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3829 {
3830         struct nand_chip *chip = mtd->priv;
3831         struct nand_ecc_ctrl *ecc = &chip->ecc;
3832         int corr, ds_corr;
3833
3834         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3835                 /* Not enough information */
3836                 return true;
3837
3838         /*
3839          * We get the number of corrected bits per page to compare
3840          * the correction density.
3841          */
3842         corr = (mtd->writesize * ecc->strength) / ecc->size;
3843         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3844
3845         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3846 }
3847
3848 /**
3849  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3850  * @mtd: MTD device structure
3851  *
3852  * This is the second phase of the normal nand_scan() function. It fills out
3853  * all the uninitialized function pointers with the defaults and scans for a
3854  * bad block table if appropriate.
3855  */
3856 int nand_scan_tail(struct mtd_info *mtd)
3857 {
3858         int i;
3859         struct nand_chip *chip = mtd->priv;
3860         struct nand_ecc_ctrl *ecc = &chip->ecc;
3861         struct nand_buffers *nbuf;
3862
3863         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3864         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3865                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3866
3867         if (!(chip->options & NAND_OWN_BUFFERS)) {
3868                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3869                                 + mtd->oobsize * 3, GFP_KERNEL);
3870                 if (!nbuf)
3871                         return -ENOMEM;
3872                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3873                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3874                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3875
3876                 chip->buffers = nbuf;
3877         } else {
3878                 if (!chip->buffers)
3879                         return -ENOMEM;
3880         }
3881
3882         /* Set the internal oob buffer location, just after the page data */
3883         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3884
3885         /*
3886          * If no default placement scheme is given, select an appropriate one.
3887          */
3888         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3889                 switch (mtd->oobsize) {
3890                 case 8:
3891                         ecc->layout = &nand_oob_8;
3892                         break;
3893                 case 16:
3894                         ecc->layout = &nand_oob_16;
3895                         break;
3896                 case 64:
3897                         ecc->layout = &nand_oob_64;
3898                         break;
3899                 case 128:
3900                         ecc->layout = &nand_oob_128;
3901                         break;
3902                 default:
3903                         pr_warn("No oob scheme defined for oobsize %d\n",
3904                                    mtd->oobsize);
3905                         BUG();
3906                 }
3907         }
3908
3909         if (!chip->write_page)
3910                 chip->write_page = nand_write_page;
3911
3912         /*
3913          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3914          * selected and we have 256 byte pagesize fallback to software ECC
3915          */
3916
3917         switch (ecc->mode) {
3918         case NAND_ECC_HW_OOB_FIRST:
3919                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3920                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3921                         pr_warn("No ECC functions supplied; "
3922                                    "hardware ECC not possible\n");
3923                         BUG();
3924                 }
3925                 if (!ecc->read_page)
3926                         ecc->read_page = nand_read_page_hwecc_oob_first;
3927
3928         case NAND_ECC_HW:
3929                 /* Use standard hwecc read page function? */
3930                 if (!ecc->read_page)
3931                         ecc->read_page = nand_read_page_hwecc;
3932                 if (!ecc->write_page)
3933                         ecc->write_page = nand_write_page_hwecc;
3934                 if (!ecc->read_page_raw)
3935                         ecc->read_page_raw = nand_read_page_raw;
3936                 if (!ecc->write_page_raw)
3937                         ecc->write_page_raw = nand_write_page_raw;
3938                 if (!ecc->read_oob)
3939                         ecc->read_oob = nand_read_oob_std;
3940                 if (!ecc->write_oob)
3941                         ecc->write_oob = nand_write_oob_std;
3942                 if (!ecc->read_subpage)
3943                         ecc->read_subpage = nand_read_subpage;
3944                 if (!ecc->write_subpage)
3945                         ecc->write_subpage = nand_write_subpage_hwecc;
3946
3947         case NAND_ECC_HW_SYNDROME:
3948                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3949                     (!ecc->read_page ||
3950                      ecc->read_page == nand_read_page_hwecc ||
3951                      !ecc->write_page ||
3952                      ecc->write_page == nand_write_page_hwecc)) {
3953                         pr_warn("No ECC functions supplied; "
3954                                    "hardware ECC not possible\n");
3955                         BUG();
3956                 }
3957                 /* Use standard syndrome read/write page function? */
3958                 if (!ecc->read_page)
3959                         ecc->read_page = nand_read_page_syndrome;
3960                 if (!ecc->write_page)
3961                         ecc->write_page = nand_write_page_syndrome;
3962                 if (!ecc->read_page_raw)
3963                         ecc->read_page_raw = nand_read_page_raw_syndrome;
3964                 if (!ecc->write_page_raw)
3965                         ecc->write_page_raw = nand_write_page_raw_syndrome;
3966                 if (!ecc->read_oob)
3967                         ecc->read_oob = nand_read_oob_syndrome;
3968                 if (!ecc->write_oob)
3969                         ecc->write_oob = nand_write_oob_syndrome;
3970
3971                 if (mtd->writesize >= ecc->size) {
3972                         if (!ecc->strength) {
3973                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3974                                 BUG();
3975                         }
3976                         break;
3977                 }
3978                 pr_warn("%d byte HW ECC not possible on "
3979                            "%d byte page size, fallback to SW ECC\n",
3980                            ecc->size, mtd->writesize);
3981                 ecc->mode = NAND_ECC_SOFT;
3982
3983         case NAND_ECC_SOFT:
3984                 ecc->calculate = nand_calculate_ecc;
3985                 ecc->correct = nand_correct_data;
3986                 ecc->read_page = nand_read_page_swecc;
3987                 ecc->read_subpage = nand_read_subpage;
3988                 ecc->write_page = nand_write_page_swecc;
3989                 ecc->read_page_raw = nand_read_page_raw;
3990                 ecc->write_page_raw = nand_write_page_raw;
3991                 ecc->read_oob = nand_read_oob_std;
3992                 ecc->write_oob = nand_write_oob_std;
3993                 if (!ecc->size)
3994                         ecc->size = 256;
3995                 ecc->bytes = 3;
3996                 ecc->strength = 1;
3997                 break;
3998
3999         case NAND_ECC_SOFT_BCH:
4000                 if (!mtd_nand_has_bch()) {
4001                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4002                         BUG();
4003                 }
4004                 ecc->calculate = nand_bch_calculate_ecc;
4005                 ecc->correct = nand_bch_correct_data;
4006                 ecc->read_page = nand_read_page_swecc;
4007                 ecc->read_subpage = nand_read_subpage;
4008                 ecc->write_page = nand_write_page_swecc;
4009                 ecc->read_page_raw = nand_read_page_raw;
4010                 ecc->write_page_raw = nand_write_page_raw;
4011                 ecc->read_oob = nand_read_oob_std;
4012                 ecc->write_oob = nand_write_oob_std;
4013                 /*
4014                  * Board driver should supply ecc.size and ecc.bytes values to
4015                  * select how many bits are correctable; see nand_bch_init()
4016                  * for details. Otherwise, default to 4 bits for large page
4017                  * devices.
4018                  */
4019                 if (!ecc->size && (mtd->oobsize >= 64)) {
4020                         ecc->size = 512;
4021                         ecc->bytes = 7;
4022                 }
4023                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4024                                                &ecc->layout);
4025                 if (!ecc->priv) {
4026                         pr_warn("BCH ECC initialization failed!\n");
4027                         BUG();
4028                 }
4029                 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
4030                 break;
4031
4032         case NAND_ECC_NONE:
4033                 pr_warn("NAND_ECC_NONE selected by board driver. "
4034                            "This is not recommended!\n");
4035                 ecc->read_page = nand_read_page_raw;
4036                 ecc->write_page = nand_write_page_raw;
4037                 ecc->read_oob = nand_read_oob_std;
4038                 ecc->read_page_raw = nand_read_page_raw;
4039                 ecc->write_page_raw = nand_write_page_raw;
4040                 ecc->write_oob = nand_write_oob_std;
4041                 ecc->size = mtd->writesize;
4042                 ecc->bytes = 0;
4043                 ecc->strength = 0;
4044                 break;
4045
4046         default:
4047                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4048                 BUG();
4049         }
4050
4051         /* For many systems, the standard OOB write also works for raw */
4052         if (!ecc->read_oob_raw)
4053                 ecc->read_oob_raw = ecc->read_oob;
4054         if (!ecc->write_oob_raw)
4055                 ecc->write_oob_raw = ecc->write_oob;
4056
4057         /*
4058          * The number of bytes available for a client to place data into
4059          * the out of band area.
4060          */
4061         ecc->layout->oobavail = 0;
4062         for (i = 0; ecc->layout->oobfree[i].length
4063                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4064                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4065         mtd->oobavail = ecc->layout->oobavail;
4066
4067         /* ECC sanity check: warn noisily if it's too weak */
4068         WARN_ON(!nand_ecc_strength_good(mtd));
4069
4070         /*
4071          * Set the number of read / write steps for one page depending on ECC
4072          * mode.
4073          */
4074         ecc->steps = mtd->writesize / ecc->size;
4075         if (ecc->steps * ecc->size != mtd->writesize) {
4076                 pr_warn("Invalid ECC parameters\n");
4077                 BUG();
4078         }
4079         ecc->total = ecc->steps * ecc->bytes;
4080
4081         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4082         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4083                 switch (ecc->steps) {
4084                 case 2:
4085                         mtd->subpage_sft = 1;
4086                         break;
4087                 case 4:
4088                 case 8:
4089                 case 16:
4090                         mtd->subpage_sft = 2;
4091                         break;
4092                 }
4093         }
4094         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4095
4096         /* Initialize state */
4097         chip->state = FL_READY;
4098
4099         /* Invalidate the pagebuffer reference */
4100         chip->pagebuf = -1;
4101
4102         /* Large page NAND with SOFT_ECC should support subpage reads */
4103         switch (ecc->mode) {
4104         case NAND_ECC_SOFT:
4105         case NAND_ECC_SOFT_BCH:
4106                 if (chip->page_shift > 9)
4107                         chip->options |= NAND_SUBPAGE_READ;
4108                 break;
4109
4110         default:
4111                 break;
4112         }
4113
4114         /* Fill in remaining MTD driver data */
4115         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4116         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4117                                                 MTD_CAP_NANDFLASH;
4118         mtd->_erase = nand_erase;
4119         mtd->_point = NULL;
4120         mtd->_unpoint = NULL;
4121         mtd->_read = nand_read;
4122         mtd->_write = nand_write;
4123         mtd->_panic_write = panic_nand_write;
4124         mtd->_read_oob = nand_read_oob;
4125         mtd->_write_oob = nand_write_oob;
4126         mtd->_sync = nand_sync;
4127         mtd->_lock = NULL;
4128         mtd->_unlock = NULL;
4129         mtd->_suspend = nand_suspend;
4130         mtd->_resume = nand_resume;
4131         mtd->_block_isreserved = nand_block_isreserved;
4132         mtd->_block_isbad = nand_block_isbad;
4133         mtd->_block_markbad = nand_block_markbad;
4134         mtd->writebufsize = mtd->writesize;
4135
4136         /* propagate ecc info to mtd_info */
4137         mtd->ecclayout = ecc->layout;
4138         mtd->ecc_strength = ecc->strength;
4139         mtd->ecc_step_size = ecc->size;
4140         /*
4141          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4142          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4143          * properly set.
4144          */
4145         if (!mtd->bitflip_threshold)
4146                 mtd->bitflip_threshold = mtd->ecc_strength;
4147
4148         /* Check, if we should skip the bad block table scan */
4149         if (chip->options & NAND_SKIP_BBTSCAN)
4150                 return 0;
4151
4152         /* Build bad block table */
4153         return chip->scan_bbt(mtd);
4154 }
4155 EXPORT_SYMBOL(nand_scan_tail);
4156
4157 /*
4158  * is_module_text_address() isn't exported, and it's mostly a pointless
4159  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4160  * to call us from in-kernel code if the core NAND support is modular.
4161  */
4162 #ifdef MODULE
4163 #define caller_is_module() (1)
4164 #else
4165 #define caller_is_module() \
4166         is_module_text_address((unsigned long)__builtin_return_address(0))
4167 #endif
4168
4169 /**
4170  * nand_scan - [NAND Interface] Scan for the NAND device
4171  * @mtd: MTD device structure
4172  * @maxchips: number of chips to scan for
4173  *
4174  * This fills out all the uninitialized function pointers with the defaults.
4175  * The flash ID is read and the mtd/chip structures are filled with the
4176  * appropriate values. The mtd->owner field must be set to the module of the
4177  * caller.
4178  */
4179 int nand_scan(struct mtd_info *mtd, int maxchips)
4180 {
4181         int ret;
4182
4183         /* Many callers got this wrong, so check for it for a while... */
4184         if (!mtd->owner && caller_is_module()) {
4185                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4186                 BUG();
4187         }
4188
4189         ret = nand_scan_ident(mtd, maxchips, NULL);
4190         if (!ret)
4191                 ret = nand_scan_tail(mtd);
4192         return ret;
4193 }
4194 EXPORT_SYMBOL(nand_scan);
4195
4196 /**
4197  * nand_release - [NAND Interface] Free resources held by the NAND device
4198  * @mtd: MTD device structure
4199  */
4200 void nand_release(struct mtd_info *mtd)
4201 {
4202         struct nand_chip *chip = mtd->priv;
4203
4204         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4205                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4206
4207         mtd_device_unregister(mtd);
4208
4209         /* Free bad block table memory */
4210         kfree(chip->bbt);
4211         if (!(chip->options & NAND_OWN_BUFFERS))
4212                 kfree(chip->buffers);
4213
4214         /* Free bad block descriptor memory */
4215         if (chip->badblock_pattern && chip->badblock_pattern->options
4216                         & NAND_BBT_DYNAMICSTRUCT)
4217                 kfree(chip->badblock_pattern);
4218 }
4219 EXPORT_SYMBOL_GPL(nand_release);
4220
4221 static int __init nand_base_init(void)
4222 {
4223         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4224         return 0;
4225 }
4226
4227 static void __exit nand_base_exit(void)
4228 {
4229         led_trigger_unregister_simple(nand_led_trigger);
4230 }
4231
4232 module_init(nand_base_init);
4233 module_exit(nand_base_exit);
4234
4235 MODULE_LICENSE("GPL");
4236 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4237 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4238 MODULE_DESCRIPTION("Generic NAND flash driver code");