2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 size_t *retlen, const u_char *buf);
77 static void cfi_amdstd_destroy(struct mtd_info *);
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 .probe = NULL, /* Not usable directly */
95 .destroy = cfi_amdstd_destroy,
96 .name = "cfi_cmdset_0002",
101 /* #define DEBUG_CFI_FEATURES */
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
107 const char* erase_suspend[3] = {
108 "Not supported", "Read only", "Read/write"
110 const char* top_bottom[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
116 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp->SiliconRevision & 1) ? "Not required" : "Required");
120 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
123 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
125 if (extp->BlkProt == 0)
126 printk(" Block protection: Not supported\n");
128 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
131 printk(" Temporary block unprotect: %s\n",
132 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 printk(" Burst mode: %s\n",
136 extp->BurstMode ? "Supported" : "Not supported");
137 if (extp->PageMode == 0)
138 printk(" Page mode: Not supported\n");
140 printk(" Page mode: %d word page\n", extp->PageMode << 2);
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp->VppMin >> 4, extp->VppMin & 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp->VppMax >> 4, extp->VppMax & 0xf);
147 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info *mtd)
158 struct map_info *map = mtd->priv;
159 struct cfi_private *cfi = map->fldrv_priv;
160 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 __u8 major = extp->MajorVersion;
162 __u8 minor = extp->MinorVersion;
164 if (((major << 8) | minor) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map->name, cfi->mfr, cfi->id);
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
175 if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
186 (cfi->mfr == CFI_MFR_MACRONIX)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map->name);
189 extp->TopBottom = 2; /* bottom boot */
191 if (cfi->id & 0x80) {
192 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 extp->TopBottom = 3; /* top boot */
195 extp->TopBottom = 2; /* bottom boot */
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map->name, major, minor,
200 extp->TopBottom == 2 ? "bottom" : "top");
205 static void fixup_use_write_buffers(struct mtd_info *mtd)
207 struct map_info *map = mtd->priv;
208 struct cfi_private *cfi = map->fldrv_priv;
209 if (cfi->cfiq->BufWriteTimeoutTyp) {
210 pr_debug("Using buffer write method\n");
211 mtd->_write = cfi_amdstd_write_buffers;
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
218 struct map_info *map = mtd->priv;
219 struct cfi_private *cfi = map->fldrv_priv;
220 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 struct cfi_pri_atmel atmel_pri;
223 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
226 if (atmel_pri.Features & 0x02)
227 extp->EraseSuspend = 2;
229 /* Some chips got it backwards... */
230 if (cfi->id == AT49BV6416) {
231 if (atmel_pri.BottomBoot)
236 if (atmel_pri.BottomBoot)
242 /* burst write mode not supported */
243 cfi->cfiq->BufWriteTimeoutTyp = 0;
244 cfi->cfiq->BufWriteTimeoutMax = 0;
247 static void fixup_use_secsi(struct mtd_info *mtd)
249 /* Setup for chips with a secsi area */
250 mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
254 static void fixup_use_erase_chip(struct mtd_info *mtd)
256 struct map_info *map = mtd->priv;
257 struct cfi_private *cfi = map->fldrv_priv;
258 if ((cfi->cfiq->NumEraseRegions == 1) &&
259 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 mtd->_erase = cfi_amdstd_erase_chip;
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
271 mtd->_lock = cfi_atmel_lock;
272 mtd->_unlock = cfi_atmel_unlock;
273 mtd->flags |= MTD_POWERUP_LOCK;
276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
278 struct map_info *map = mtd->priv;
279 struct cfi_private *cfi = map->fldrv_priv;
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
287 cfi->cfiq->NumEraseRegions = 1;
290 static void fixup_sst39vf(struct mtd_info *mtd)
292 struct map_info *map = mtd->priv;
293 struct cfi_private *cfi = map->fldrv_priv;
295 fixup_old_sst_eraseregion(mtd);
297 cfi->addr_unlock1 = 0x5555;
298 cfi->addr_unlock2 = 0x2AAA;
301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
303 struct map_info *map = mtd->priv;
304 struct cfi_private *cfi = map->fldrv_priv;
306 fixup_old_sst_eraseregion(mtd);
308 cfi->addr_unlock1 = 0x555;
309 cfi->addr_unlock2 = 0x2AA;
311 cfi->sector_erase_cmd = CMD(0x50);
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
316 struct map_info *map = mtd->priv;
317 struct cfi_private *cfi = map->fldrv_priv;
319 fixup_sst39vf_rev_b(mtd);
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
325 cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
330 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
332 struct map_info *map = mtd->priv;
333 struct cfi_private *cfi = map->fldrv_priv;
335 if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
336 cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
337 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
342 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
344 struct map_info *map = mtd->priv;
345 struct cfi_private *cfi = map->fldrv_priv;
347 if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
348 cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
349 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
354 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
356 struct map_info *map = mtd->priv;
357 struct cfi_private *cfi = map->fldrv_priv;
360 * S29NS512P flash uses more than 8bits to report number of sectors,
361 * which is not permitted by CFI.
363 cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
364 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table[] = {
370 { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
371 { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
372 { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
373 { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
374 { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
375 { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
376 { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
377 { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
381 static struct cfi_fixup cfi_fixup_table[] = {
382 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
383 #ifdef AMD_BOOTLOC_BUG
384 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
385 { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
386 { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
388 { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
389 { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
390 { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
391 { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
392 { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
393 { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
394 { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
395 { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
396 { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
397 { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
398 { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
399 { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
400 { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
401 { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
402 { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
408 static struct cfi_fixup jedec_fixup_table[] = {
409 { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
410 { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
411 { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
415 static struct cfi_fixup fixup_table[] = {
416 /* The CFI vendor ids and the JEDEC vendor IDs appear
417 * to be common. It is like the devices id's are as
418 * well. This table is to pick all cases where
419 * we know that is the case.
421 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
422 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
427 static void cfi_fixup_major_minor(struct cfi_private *cfi,
428 struct cfi_pri_amdstd *extp)
430 if (cfi->mfr == CFI_MFR_SAMSUNG) {
431 if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
432 (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
434 * Samsung K8P2815UQB and K8D6x16UxM chips
435 * report major=0 / minor=0.
436 * K8D3x16UxC chips report major=3 / minor=3.
438 printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
439 " Extended Query version to 1.%c\n",
441 extp->MajorVersion = '1';
446 * SST 38VF640x chips report major=0xFF / minor=0xFF.
448 if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
449 extp->MajorVersion = '1';
450 extp->MinorVersion = '0';
454 static int is_m29ew(struct cfi_private *cfi)
456 if (cfi->mfr == CFI_MFR_INTEL &&
457 ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
458 (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
466 * particular, it can occur when the sequence
467 * Erase Confirm -> Suspend -> Program -> Resume
468 * causes a lockup due to internal timing issues. The consequence is that the
469 * erase cannot be resumed without inserting a dummy command after programming
470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471 * that writes an F0 command code before the RESUME command.
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
476 struct cfi_private *cfi = map->fldrv_priv;
477 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
479 map_write(map, CMD(0xF0), adr);
483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487 * command is issued after an ERASE RESUME operation without waiting for a
488 * minimum delay. The result is that once the ERASE seems to be completed
489 * (no bits are toggling), the contents of the Flash memory block on which
490 * the erase was ongoing could be inconsistent with the expected values
491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492 * values), causing a consequent failure of the ERASE operation.
493 * The occurrence of this issue could be high, especially when file system
494 * operations on the Flash are intensive. As a result, it is recommended
495 * that a patch be applied. Intensive file system operations can cause many
496 * calls to the garbage routine to free Flash space (also by erasing physical
497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498 * commands can occur. The problem disappears when a delay is inserted after
499 * the RESUME command by using the udelay() function available in Linux.
500 * The DELAY value must be tuned based on the customer's platform.
501 * The maximum value that fixes the problem in all cases is 500us.
502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
504 * We have chosen 500µs because this latency is acceptable.
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
509 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 * Worst case delay must be 500µs but 30-50µs should be ok as well
516 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
518 struct cfi_private *cfi = map->fldrv_priv;
519 struct device_node __maybe_unused *np = map->device_node;
520 struct mtd_info *mtd;
523 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
527 mtd->type = MTD_NORFLASH;
529 /* Fill in the default mtd operations */
530 mtd->_erase = cfi_amdstd_erase_varsize;
531 mtd->_write = cfi_amdstd_write_words;
532 mtd->_read = cfi_amdstd_read;
533 mtd->_sync = cfi_amdstd_sync;
534 mtd->_suspend = cfi_amdstd_suspend;
535 mtd->_resume = cfi_amdstd_resume;
536 mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
537 mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
538 mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
539 mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
540 mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
541 mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
542 mtd->flags = MTD_CAP_NORFLASH;
543 mtd->name = map->name;
545 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
547 pr_debug("MTD %s(): write buffer size %d\n", __func__,
550 mtd->_panic_write = cfi_amdstd_panic_write;
551 mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
553 if (cfi->cfi_mode==CFI_MODE_CFI){
554 unsigned char bootloc;
555 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
556 struct cfi_pri_amdstd *extp;
558 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
561 * It's a real CFI chip, not one for which the probe
562 * routine faked a CFI structure.
564 cfi_fixup_major_minor(cfi, extp);
567 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
573 if (extp->MajorVersion != '1' ||
574 (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
575 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
576 "version %c.%c (%#02x/%#02x).\n",
577 extp->MajorVersion, extp->MinorVersion,
578 extp->MajorVersion, extp->MinorVersion);
584 printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
585 extp->MajorVersion, extp->MinorVersion);
587 /* Install our own private info structure */
588 cfi->cmdset_priv = extp;
590 /* Apply cfi device specific fixups */
591 cfi_fixup(mtd, cfi_fixup_table);
593 #ifdef DEBUG_CFI_FEATURES
594 /* Tell the user about it in lots of lovely detail */
595 cfi_tell_features(extp);
599 if (np && of_property_read_bool(
600 np, "use-advanced-sector-protection")
601 && extp->BlkProtUnprot == 8) {
602 printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
603 mtd->_lock = cfi_ppb_lock;
604 mtd->_unlock = cfi_ppb_unlock;
605 mtd->_is_locked = cfi_ppb_is_locked;
609 bootloc = extp->TopBottom;
610 if ((bootloc < 2) || (bootloc > 5)) {
611 printk(KERN_WARNING "%s: CFI contains unrecognised boot "
612 "bank location (%d). Assuming bottom.\n",
617 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
618 printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
620 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
621 int j = (cfi->cfiq->NumEraseRegions-1)-i;
623 swap(cfi->cfiq->EraseRegionInfo[i],
624 cfi->cfiq->EraseRegionInfo[j]);
627 /* Set the default CFI lock/unlock addresses */
628 cfi->addr_unlock1 = 0x555;
629 cfi->addr_unlock2 = 0x2aa;
631 cfi_fixup(mtd, cfi_nopri_fixup_table);
633 if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
639 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
640 /* Apply jedec specific fixups */
641 cfi_fixup(mtd, jedec_fixup_table);
643 /* Apply generic fixups */
644 cfi_fixup(mtd, fixup_table);
646 for (i=0; i< cfi->numchips; i++) {
647 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
648 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
649 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
651 * First calculate the timeout max according to timeout field
652 * of struct cfi_ident that probed from chip's CFI aera, if
653 * available. Specify a minimum of 2000us, in case the CFI data
656 if (cfi->cfiq->BufWriteTimeoutTyp &&
657 cfi->cfiq->BufWriteTimeoutMax)
658 cfi->chips[i].buffer_write_time_max =
659 1 << (cfi->cfiq->BufWriteTimeoutTyp +
660 cfi->cfiq->BufWriteTimeoutMax);
662 cfi->chips[i].buffer_write_time_max = 0;
664 cfi->chips[i].buffer_write_time_max =
665 max(cfi->chips[i].buffer_write_time_max, 2000);
667 cfi->chips[i].ref_point_counter = 0;
668 init_waitqueue_head(&(cfi->chips[i].wq));
671 map->fldrv = &cfi_amdstd_chipdrv;
673 return cfi_amdstd_setup(mtd);
675 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
681 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
683 struct map_info *map = mtd->priv;
684 struct cfi_private *cfi = map->fldrv_priv;
685 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
686 unsigned long offset = 0;
689 printk(KERN_NOTICE "number of %s chips: %d\n",
690 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
691 /* Select the correct geometry setup */
692 mtd->size = devsize * cfi->numchips;
694 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
695 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
696 sizeof(struct mtd_erase_region_info),
698 if (!mtd->eraseregions)
701 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
702 unsigned long ernum, ersize;
703 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
704 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
706 if (mtd->erasesize < ersize) {
707 mtd->erasesize = ersize;
709 for (j=0; j<cfi->numchips; j++) {
710 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
711 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
712 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
714 offset += (ersize * ernum);
716 if (offset != devsize) {
718 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
722 __module_get(THIS_MODULE);
723 register_reboot_notifier(&mtd->reboot_notifier);
727 kfree(mtd->eraseregions);
729 kfree(cfi->cmdset_priv);
735 * Return true if the chip is ready.
737 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
738 * non-suspended sector) and is indicated by no toggle bits toggling.
740 * Note that anything more complicated than checking if no bits are toggling
741 * (including checking DQ5 for an error status) is tricky to get working
742 * correctly and is therefore not done (particularly with interleaved chips
743 * as each chip must be checked independently of the others).
745 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
749 d = map_read(map, addr);
750 t = map_read(map, addr);
752 return map_word_equal(map, d, t);
756 * Return true if the chip is ready and has the correct value.
758 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
759 * non-suspended sector) and it is indicated by no bits toggling.
761 * Error are indicated by toggling bits or bits held with the wrong value,
762 * or with bits toggling.
764 * Note that anything more complicated than checking if no bits are toggling
765 * (including checking DQ5 for an error status) is tricky to get working
766 * correctly and is therefore not done (particularly with interleaved chips
767 * as each chip must be checked independently of the others).
770 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
774 oldd = map_read(map, addr);
775 curd = map_read(map, addr);
777 return map_word_equal(map, oldd, curd) &&
778 map_word_equal(map, curd, expected);
781 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
783 DECLARE_WAITQUEUE(wait, current);
784 struct cfi_private *cfi = map->fldrv_priv;
786 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
789 timeo = jiffies + HZ;
791 switch (chip->state) {
795 if (chip_ready(map, adr))
798 if (time_after(jiffies, timeo)) {
799 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
802 mutex_unlock(&chip->mutex);
804 mutex_lock(&chip->mutex);
805 /* Someone else might have been playing with it. */
815 if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
816 !(mode == FL_READY || mode == FL_POINT ||
817 (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
820 /* Do not allow suspend iff read/write to EB address */
821 if ((adr & chip->in_progress_block_mask) ==
822 chip->in_progress_block_addr)
826 /* It's harmless to issue the Erase-Suspend and Erase-Resume
827 * commands when the erase algorithm isn't in progress. */
828 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
829 chip->oldstate = FL_ERASING;
830 chip->state = FL_ERASE_SUSPENDING;
831 chip->erase_suspended = 1;
833 if (chip_ready(map, adr))
836 if (time_after(jiffies, timeo)) {
837 /* Should have suspended the erase by now.
838 * Send an Erase-Resume command as either
839 * there was an error (so leave the erase
840 * routine to recover from it) or we trying to
841 * use the erase-in-progress sector. */
842 put_chip(map, chip, adr);
843 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
847 mutex_unlock(&chip->mutex);
849 mutex_lock(&chip->mutex);
850 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
851 So we can just loop here. */
853 chip->state = FL_READY;
856 case FL_XIP_WHILE_ERASING:
857 if (mode != FL_READY && mode != FL_POINT &&
858 (!cfip || !(cfip->EraseSuspend&2)))
860 chip->oldstate = chip->state;
861 chip->state = FL_READY;
865 /* The machine is rebooting */
869 /* Only if there's no operation suspended... */
870 if (mode == FL_READY && chip->oldstate == FL_READY)
875 set_current_state(TASK_UNINTERRUPTIBLE);
876 add_wait_queue(&chip->wq, &wait);
877 mutex_unlock(&chip->mutex);
879 remove_wait_queue(&chip->wq, &wait);
880 mutex_lock(&chip->mutex);
886 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
888 struct cfi_private *cfi = map->fldrv_priv;
890 switch(chip->oldstate) {
892 cfi_fixup_m29ew_erase_suspend(map,
893 chip->in_progress_block_addr);
894 map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
895 cfi_fixup_m29ew_delay_after_resume(cfi);
896 chip->oldstate = FL_READY;
897 chip->state = FL_ERASING;
900 case FL_XIP_WHILE_ERASING:
901 chip->state = chip->oldstate;
902 chip->oldstate = FL_READY;
909 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
914 #ifdef CONFIG_MTD_XIP
917 * No interrupt what so ever can be serviced while the flash isn't in array
918 * mode. This is ensured by the xip_disable() and xip_enable() functions
919 * enclosing any code path where the flash is known not to be in array mode.
920 * And within a XIP disabled code path, only functions marked with __xipram
921 * may be called and nothing else (it's a good thing to inspect generated
922 * assembly to make sure inline functions were actually inlined and that gcc
923 * didn't emit calls to its own support functions). Also configuring MTD CFI
924 * support to a single buswidth and a single interleave is also recommended.
927 static void xip_disable(struct map_info *map, struct flchip *chip,
930 /* TODO: chips with no XIP use should ignore and return */
931 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
935 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
938 struct cfi_private *cfi = map->fldrv_priv;
940 if (chip->state != FL_POINT && chip->state != FL_READY) {
941 map_write(map, CMD(0xf0), adr);
942 chip->state = FL_READY;
944 (void) map_read(map, adr);
950 * When a delay is required for the flash operation to complete, the
951 * xip_udelay() function is polling for both the given timeout and pending
952 * (but still masked) hardware interrupts. Whenever there is an interrupt
953 * pending then the flash erase operation is suspended, array mode restored
954 * and interrupts unmasked. Task scheduling might also happen at that
955 * point. The CPU eventually returns from the interrupt or the call to
956 * schedule() and the suspended flash operation is resumed for the remaining
957 * of the delay period.
959 * Warning: this function _will_ fool interrupt latency tracing tools.
962 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
963 unsigned long adr, int usec)
965 struct cfi_private *cfi = map->fldrv_priv;
966 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
967 map_word status, OK = CMD(0x80);
968 unsigned long suspended, start = xip_currtime();
973 if (xip_irqpending() && extp &&
974 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
975 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
977 * Let's suspend the erase operation when supported.
978 * Note that we currently don't try to suspend
979 * interleaved chips if there is already another
980 * operation suspended (imagine what happens
981 * when one chip was already done with the current
982 * operation while another chip suspended it, then
983 * we resume the whole thing at once). Yes, it
986 map_write(map, CMD(0xb0), adr);
987 usec -= xip_elapsed_since(start);
988 suspended = xip_currtime();
990 if (xip_elapsed_since(suspended) > 100000) {
992 * The chip doesn't want to suspend
993 * after waiting for 100 msecs.
994 * This is a critical error but there
995 * is not much we can do here.
999 status = map_read(map, adr);
1000 } while (!map_word_andequal(map, status, OK, OK));
1002 /* Suspend succeeded */
1003 oldstate = chip->state;
1004 if (!map_word_bitsset(map, status, CMD(0x40)))
1006 chip->state = FL_XIP_WHILE_ERASING;
1007 chip->erase_suspended = 1;
1008 map_write(map, CMD(0xf0), adr);
1009 (void) map_read(map, adr);
1012 mutex_unlock(&chip->mutex);
1017 * We're back. However someone else might have
1018 * decided to go write to the chip if we are in
1019 * a suspended erase state. If so let's wait
1022 mutex_lock(&chip->mutex);
1023 while (chip->state != FL_XIP_WHILE_ERASING) {
1024 DECLARE_WAITQUEUE(wait, current);
1025 set_current_state(TASK_UNINTERRUPTIBLE);
1026 add_wait_queue(&chip->wq, &wait);
1027 mutex_unlock(&chip->mutex);
1029 remove_wait_queue(&chip->wq, &wait);
1030 mutex_lock(&chip->mutex);
1032 /* Disallow XIP again */
1033 local_irq_disable();
1035 /* Correct Erase Suspend Hangups for M29EW */
1036 cfi_fixup_m29ew_erase_suspend(map, adr);
1037 /* Resume the write or erase operation */
1038 map_write(map, cfi->sector_erase_cmd, adr);
1039 chip->state = oldstate;
1040 start = xip_currtime();
1041 } else if (usec >= 1000000/HZ) {
1043 * Try to save on CPU power when waiting delay
1044 * is at least a system timer tick period.
1045 * No need to be extremely accurate here.
1049 status = map_read(map, adr);
1050 } while (!map_word_andequal(map, status, OK, OK)
1051 && xip_elapsed_since(start) < usec);
1054 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1057 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1058 * the flash is actively programming or erasing since we have to poll for
1059 * the operation to complete anyway. We can't do that in a generic way with
1060 * a XIP setup so do it before the actual flash operation in this case
1061 * and stub it out from INVALIDATE_CACHE_UDELAY.
1063 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1064 INVALIDATE_CACHED_RANGE(map, from, size)
1066 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1067 UDELAY(map, chip, adr, usec)
1072 * Activating this XIP support changes the way the code works a bit. For
1073 * example the code to suspend the current process when concurrent access
1074 * happens is never executed because xip_udelay() will always return with the
1075 * same chip state as it was entered with. This is why there is no care for
1076 * the presence of add_wait_queue() or schedule() calls from within a couple
1077 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1078 * The queueing and scheduling are always happening within xip_udelay().
1080 * Similarly, get_chip() and put_chip() just happen to always be executed
1081 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1082 * is in array mode, therefore never executing many cases therein and not
1083 * causing any problem with XIP.
1088 #define xip_disable(map, chip, adr)
1089 #define xip_enable(map, chip, adr)
1090 #define XIP_INVAL_CACHED_RANGE(x...)
1092 #define UDELAY(map, chip, adr, usec) \
1094 mutex_unlock(&chip->mutex); \
1096 mutex_lock(&chip->mutex); \
1099 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1101 mutex_unlock(&chip->mutex); \
1102 INVALIDATE_CACHED_RANGE(map, adr, len); \
1104 mutex_lock(&chip->mutex); \
1109 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1111 unsigned long cmd_addr;
1112 struct cfi_private *cfi = map->fldrv_priv;
1117 /* Ensure cmd read/writes are aligned. */
1118 cmd_addr = adr & ~(map_bankwidth(map)-1);
1120 mutex_lock(&chip->mutex);
1121 ret = get_chip(map, chip, cmd_addr, FL_READY);
1123 mutex_unlock(&chip->mutex);
1127 if (chip->state != FL_POINT && chip->state != FL_READY) {
1128 map_write(map, CMD(0xf0), cmd_addr);
1129 chip->state = FL_READY;
1132 map_copy_from(map, buf, adr, len);
1134 put_chip(map, chip, cmd_addr);
1136 mutex_unlock(&chip->mutex);
1141 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1143 struct map_info *map = mtd->priv;
1144 struct cfi_private *cfi = map->fldrv_priv;
1149 /* ofs: offset within the first chip that the first read should start */
1150 chipnum = (from >> cfi->chipshift);
1151 ofs = from - (chipnum << cfi->chipshift);
1154 unsigned long thislen;
1156 if (chipnum >= cfi->numchips)
1159 if ((len + ofs -1) >> cfi->chipshift)
1160 thislen = (1<<cfi->chipshift) - ofs;
1164 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1178 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1179 loff_t adr, size_t len, u_char *buf, size_t grouplen);
1181 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1182 loff_t adr, size_t len)
1184 struct cfi_private *cfi = map->fldrv_priv;
1186 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1187 cfi->device_type, NULL);
1188 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1189 cfi->device_type, NULL);
1190 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1191 cfi->device_type, NULL);
1193 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1196 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1197 loff_t adr, size_t len)
1199 struct cfi_private *cfi = map->fldrv_priv;
1201 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1202 cfi->device_type, NULL);
1203 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1204 cfi->device_type, NULL);
1205 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1206 cfi->device_type, NULL);
1207 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1208 cfi->device_type, NULL);
1210 INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1213 static inline int do_read_secsi_onechip(struct map_info *map,
1214 struct flchip *chip, loff_t adr,
1215 size_t len, u_char *buf,
1218 DECLARE_WAITQUEUE(wait, current);
1219 unsigned long timeo = jiffies + HZ;
1222 mutex_lock(&chip->mutex);
1224 if (chip->state != FL_READY){
1225 set_current_state(TASK_UNINTERRUPTIBLE);
1226 add_wait_queue(&chip->wq, &wait);
1228 mutex_unlock(&chip->mutex);
1231 remove_wait_queue(&chip->wq, &wait);
1232 timeo = jiffies + HZ;
1239 chip->state = FL_READY;
1241 otp_enter(map, chip, adr, len);
1242 map_copy_from(map, buf, adr, len);
1243 otp_exit(map, chip, adr, len);
1246 mutex_unlock(&chip->mutex);
1251 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1253 struct map_info *map = mtd->priv;
1254 struct cfi_private *cfi = map->fldrv_priv;
1259 /* ofs: offset within the first chip that the first read should start */
1260 /* 8 secsi bytes per chip */
1265 unsigned long thislen;
1267 if (chipnum >= cfi->numchips)
1270 if ((len + ofs -1) >> 3)
1271 thislen = (1<<3) - ofs;
1275 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1290 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1291 unsigned long adr, map_word datum,
1294 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1295 size_t len, u_char *buf, size_t grouplen)
1299 unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1300 int gap = adr - bus_ofs;
1301 int n = min_t(int, len, map_bankwidth(map) - gap);
1302 map_word datum = map_word_ff(map);
1304 if (n != map_bankwidth(map)) {
1305 /* partial write of a word, load old contents */
1306 otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1307 datum = map_read(map, bus_ofs);
1308 otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1311 datum = map_word_load_partial(map, datum, buf, gap, n);
1312 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1324 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1325 size_t len, u_char *buf, size_t grouplen)
1327 struct cfi_private *cfi = map->fldrv_priv;
1329 unsigned long timeo;
1332 /* make sure area matches group boundaries */
1333 if ((adr != 0) || (len != grouplen))
1336 mutex_lock(&chip->mutex);
1337 ret = get_chip(map, chip, chip->start, FL_LOCKING);
1339 mutex_unlock(&chip->mutex);
1342 chip->state = FL_LOCKING;
1344 /* Enter lock register command */
1345 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1346 cfi->device_type, NULL);
1347 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1348 cfi->device_type, NULL);
1349 cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1350 cfi->device_type, NULL);
1352 /* read lock register */
1353 lockreg = cfi_read_query(map, 0);
1355 /* set bit 0 to protect extended memory block */
1358 /* set bit 0 to protect extended memory block */
1359 /* write lock register */
1360 map_write(map, CMD(0xA0), chip->start);
1361 map_write(map, CMD(lockreg), chip->start);
1363 /* wait for chip to become ready */
1364 timeo = jiffies + msecs_to_jiffies(2);
1366 if (chip_ready(map, adr))
1369 if (time_after(jiffies, timeo)) {
1370 pr_err("Waiting for chip to be ready timed out.\n");
1374 UDELAY(map, chip, 0, 1);
1377 /* exit protection commands */
1378 map_write(map, CMD(0x90), chip->start);
1379 map_write(map, CMD(0x00), chip->start);
1381 chip->state = FL_READY;
1382 put_chip(map, chip, chip->start);
1383 mutex_unlock(&chip->mutex);
1388 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1389 size_t *retlen, u_char *buf,
1390 otp_op_t action, int user_regs)
1392 struct map_info *map = mtd->priv;
1393 struct cfi_private *cfi = map->fldrv_priv;
1394 int ofs_factor = cfi->interleave * cfi->device_type;
1397 struct flchip *chip;
1398 uint8_t otp, lockreg;
1401 size_t user_size, factory_size, otpsize;
1402 loff_t user_offset, factory_offset, otpoffset;
1403 int user_locked = 0, otplocked;
1407 for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1408 chip = &cfi->chips[chipnum];
1412 /* Micron M29EW family */
1413 if (is_m29ew(cfi)) {
1416 /* check whether secsi area is factory locked
1418 mutex_lock(&chip->mutex);
1419 ret = get_chip(map, chip, base, FL_CFI_QUERY);
1421 mutex_unlock(&chip->mutex);
1424 cfi_qry_mode_on(base, map, cfi);
1425 otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1426 cfi_qry_mode_off(base, map, cfi);
1427 put_chip(map, chip, base);
1428 mutex_unlock(&chip->mutex);
1431 /* factory locked */
1433 factory_size = 0x100;
1435 /* customer lockable */
1439 mutex_lock(&chip->mutex);
1440 ret = get_chip(map, chip, base, FL_LOCKING);
1442 mutex_unlock(&chip->mutex);
1446 /* Enter lock register command */
1447 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1448 chip->start, map, cfi,
1449 cfi->device_type, NULL);
1450 cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1451 chip->start, map, cfi,
1452 cfi->device_type, NULL);
1453 cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1454 chip->start, map, cfi,
1455 cfi->device_type, NULL);
1456 /* read lock register */
1457 lockreg = cfi_read_query(map, 0);
1458 /* exit protection commands */
1459 map_write(map, CMD(0x90), chip->start);
1460 map_write(map, CMD(0x00), chip->start);
1461 put_chip(map, chip, chip->start);
1462 mutex_unlock(&chip->mutex);
1464 user_locked = ((lockreg & 0x01) == 0x00);
1468 otpsize = user_regs ? user_size : factory_size;
1471 otpoffset = user_regs ? user_offset : factory_offset;
1472 otplocked = user_regs ? user_locked : 1;
1475 /* return otpinfo */
1476 struct otp_info *otpinfo;
1477 len -= sizeof(*otpinfo);
1480 otpinfo = (struct otp_info *)buf;
1481 otpinfo->start = from;
1482 otpinfo->length = otpsize;
1483 otpinfo->locked = otplocked;
1484 buf += sizeof(*otpinfo);
1485 *retlen += sizeof(*otpinfo);
1487 } else if ((from < otpsize) && (len > 0)) {
1489 size = (len < otpsize - from) ? len : otpsize - from;
1490 ret = action(map, chip, otpoffset + from, size, buf,
1506 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1507 size_t *retlen, struct otp_info *buf)
1509 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1513 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1514 size_t *retlen, struct otp_info *buf)
1516 return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1520 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1521 size_t len, size_t *retlen,
1524 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1525 buf, do_read_secsi_onechip, 0);
1528 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1529 size_t len, size_t *retlen,
1532 return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1533 buf, do_read_secsi_onechip, 1);
1536 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1537 size_t len, size_t *retlen,
1540 return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1544 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1548 return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1552 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1553 unsigned long adr, map_word datum,
1556 struct cfi_private *cfi = map->fldrv_priv;
1557 unsigned long timeo = jiffies + HZ;
1559 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1560 * have a max write time of a few hundreds usec). However, we should
1561 * use the maximum timeout value given by the chip at probe time
1562 * instead. Unfortunately, struct flchip does have a field for
1563 * maximum timeout, only for typical which can be far too short
1564 * depending of the conditions. The ' + 1' is to avoid having a
1565 * timeout of 0 jiffies if HZ is smaller than 1000.
1567 unsigned long uWriteTimeout = (HZ / 1000) + 1;
1574 mutex_lock(&chip->mutex);
1575 ret = get_chip(map, chip, adr, mode);
1577 mutex_unlock(&chip->mutex);
1581 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1582 __func__, adr, datum.x[0]);
1584 if (mode == FL_OTP_WRITE)
1585 otp_enter(map, chip, adr, map_bankwidth(map));
1588 * Check for a NOP for the case when the datum to write is already
1589 * present - it saves time and works around buggy chips that corrupt
1590 * data at other locations when 0xff is written to a location that
1591 * already contains 0xff.
1593 oldd = map_read(map, adr);
1594 if (map_word_equal(map, oldd, datum)) {
1595 pr_debug("MTD %s(): NOP\n",
1600 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1602 xip_disable(map, chip, adr);
1605 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1607 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1608 map_write(map, datum, adr);
1611 INVALIDATE_CACHE_UDELAY(map, chip,
1612 adr, map_bankwidth(map),
1613 chip->word_write_time);
1615 /* See comment above for timeout value. */
1616 timeo = jiffies + uWriteTimeout;
1618 if (chip->state != mode) {
1619 /* Someone's suspended the write. Sleep */
1620 DECLARE_WAITQUEUE(wait, current);
1622 set_current_state(TASK_UNINTERRUPTIBLE);
1623 add_wait_queue(&chip->wq, &wait);
1624 mutex_unlock(&chip->mutex);
1626 remove_wait_queue(&chip->wq, &wait);
1627 timeo = jiffies + (HZ / 2); /* FIXME */
1628 mutex_lock(&chip->mutex);
1632 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1633 xip_enable(map, chip, adr);
1634 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1635 xip_disable(map, chip, adr);
1639 if (chip_ready(map, adr))
1642 /* Latency issues. Drop the lock, wait a while and retry */
1643 UDELAY(map, chip, adr, 1);
1645 /* Did we succeed? */
1646 if (!chip_good(map, adr, datum)) {
1647 /* reset on all failures. */
1648 map_write(map, CMD(0xF0), chip->start);
1649 /* FIXME - should have reset delay before continuing */
1651 if (++retry_cnt <= MAX_RETRIES)
1656 xip_enable(map, chip, adr);
1658 if (mode == FL_OTP_WRITE)
1659 otp_exit(map, chip, adr, map_bankwidth(map));
1660 chip->state = FL_READY;
1662 put_chip(map, chip, adr);
1663 mutex_unlock(&chip->mutex);
1669 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1670 size_t *retlen, const u_char *buf)
1672 struct map_info *map = mtd->priv;
1673 struct cfi_private *cfi = map->fldrv_priv;
1676 unsigned long ofs, chipstart;
1677 DECLARE_WAITQUEUE(wait, current);
1679 chipnum = to >> cfi->chipshift;
1680 ofs = to - (chipnum << cfi->chipshift);
1681 chipstart = cfi->chips[chipnum].start;
1683 /* If it's not bus-aligned, do the first byte write */
1684 if (ofs & (map_bankwidth(map)-1)) {
1685 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1686 int i = ofs - bus_ofs;
1691 mutex_lock(&cfi->chips[chipnum].mutex);
1693 if (cfi->chips[chipnum].state != FL_READY) {
1694 set_current_state(TASK_UNINTERRUPTIBLE);
1695 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1697 mutex_unlock(&cfi->chips[chipnum].mutex);
1700 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1704 /* Load 'tmp_buf' with old contents of flash */
1705 tmp_buf = map_read(map, bus_ofs+chipstart);
1707 mutex_unlock(&cfi->chips[chipnum].mutex);
1709 /* Number of bytes to copy from buffer */
1710 n = min_t(int, len, map_bankwidth(map)-i);
1712 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1714 ret = do_write_oneword(map, &cfi->chips[chipnum],
1715 bus_ofs, tmp_buf, FL_WRITING);
1724 if (ofs >> cfi->chipshift) {
1727 if (chipnum == cfi->numchips)
1732 /* We are now aligned, write as much as possible */
1733 while(len >= map_bankwidth(map)) {
1736 datum = map_word_load(map, buf);
1738 ret = do_write_oneword(map, &cfi->chips[chipnum],
1739 ofs, datum, FL_WRITING);
1743 ofs += map_bankwidth(map);
1744 buf += map_bankwidth(map);
1745 (*retlen) += map_bankwidth(map);
1746 len -= map_bankwidth(map);
1748 if (ofs >> cfi->chipshift) {
1751 if (chipnum == cfi->numchips)
1753 chipstart = cfi->chips[chipnum].start;
1757 /* Write the trailing bytes if any */
1758 if (len & (map_bankwidth(map)-1)) {
1762 mutex_lock(&cfi->chips[chipnum].mutex);
1764 if (cfi->chips[chipnum].state != FL_READY) {
1765 set_current_state(TASK_UNINTERRUPTIBLE);
1766 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1768 mutex_unlock(&cfi->chips[chipnum].mutex);
1771 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1775 tmp_buf = map_read(map, ofs + chipstart);
1777 mutex_unlock(&cfi->chips[chipnum].mutex);
1779 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1781 ret = do_write_oneword(map, &cfi->chips[chipnum],
1782 ofs, tmp_buf, FL_WRITING);
1794 * FIXME: interleaved mode not tested, and probably not supported!
1796 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1797 unsigned long adr, const u_char *buf,
1800 struct cfi_private *cfi = map->fldrv_priv;
1801 unsigned long timeo = jiffies + HZ;
1803 * Timeout is calculated according to CFI data, if available.
1804 * See more comments in cfi_cmdset_0002().
1806 unsigned long uWriteTimeout =
1807 usecs_to_jiffies(chip->buffer_write_time_max);
1809 unsigned long cmd_adr;
1816 mutex_lock(&chip->mutex);
1817 ret = get_chip(map, chip, adr, FL_WRITING);
1819 mutex_unlock(&chip->mutex);
1823 datum = map_word_load(map, buf);
1825 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1826 __func__, adr, datum.x[0]);
1828 XIP_INVAL_CACHED_RANGE(map, adr, len);
1830 xip_disable(map, chip, cmd_adr);
1832 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1833 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1835 /* Write Buffer Load */
1836 map_write(map, CMD(0x25), cmd_adr);
1838 chip->state = FL_WRITING_TO_BUFFER;
1840 /* Write length of data to come */
1841 words = len / map_bankwidth(map);
1842 map_write(map, CMD(words - 1), cmd_adr);
1845 while(z < words * map_bankwidth(map)) {
1846 datum = map_word_load(map, buf);
1847 map_write(map, datum, adr + z);
1849 z += map_bankwidth(map);
1850 buf += map_bankwidth(map);
1852 z -= map_bankwidth(map);
1856 /* Write Buffer Program Confirm: GO GO GO */
1857 map_write(map, CMD(0x29), cmd_adr);
1858 chip->state = FL_WRITING;
1860 INVALIDATE_CACHE_UDELAY(map, chip,
1861 adr, map_bankwidth(map),
1862 chip->word_write_time);
1864 timeo = jiffies + uWriteTimeout;
1867 if (chip->state != FL_WRITING) {
1868 /* Someone's suspended the write. Sleep */
1869 DECLARE_WAITQUEUE(wait, current);
1871 set_current_state(TASK_UNINTERRUPTIBLE);
1872 add_wait_queue(&chip->wq, &wait);
1873 mutex_unlock(&chip->mutex);
1875 remove_wait_queue(&chip->wq, &wait);
1876 timeo = jiffies + (HZ / 2); /* FIXME */
1877 mutex_lock(&chip->mutex);
1881 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1884 if (chip_good(map, adr, datum)) {
1885 xip_enable(map, chip, adr);
1889 /* Latency issues. Drop the lock, wait a while and retry */
1890 UDELAY(map, chip, adr, 1);
1894 * Recovery from write-buffer programming failures requires
1895 * the write-to-buffer-reset sequence. Since the last part
1896 * of the sequence also works as a normal reset, we can run
1897 * the same commands regardless of why we are here.
1899 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1901 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1902 cfi->device_type, NULL);
1903 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1904 cfi->device_type, NULL);
1905 cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1906 cfi->device_type, NULL);
1907 xip_enable(map, chip, adr);
1908 /* FIXME - should have reset delay before continuing */
1910 printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1915 chip->state = FL_READY;
1917 put_chip(map, chip, adr);
1918 mutex_unlock(&chip->mutex);
1924 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1925 size_t *retlen, const u_char *buf)
1927 struct map_info *map = mtd->priv;
1928 struct cfi_private *cfi = map->fldrv_priv;
1929 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1934 chipnum = to >> cfi->chipshift;
1935 ofs = to - (chipnum << cfi->chipshift);
1937 /* If it's not bus-aligned, do the first word write */
1938 if (ofs & (map_bankwidth(map)-1)) {
1939 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1940 if (local_len > len)
1942 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1943 local_len, retlen, buf);
1950 if (ofs >> cfi->chipshift) {
1953 if (chipnum == cfi->numchips)
1958 /* Write buffer is worth it only if more than one word to write... */
1959 while (len >= map_bankwidth(map) * 2) {
1960 /* We must not cross write block boundaries */
1961 int size = wbufsize - (ofs & (wbufsize-1));
1965 if (size % map_bankwidth(map))
1966 size -= size % map_bankwidth(map);
1968 ret = do_write_buffer(map, &cfi->chips[chipnum],
1978 if (ofs >> cfi->chipshift) {
1981 if (chipnum == cfi->numchips)
1987 size_t retlen_dregs = 0;
1989 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1990 len, &retlen_dregs, buf);
1992 *retlen += retlen_dregs;
2000 * Wait for the flash chip to become ready to write data
2002 * This is only called during the panic_write() path. When panic_write()
2003 * is called, the kernel is in the process of a panic, and will soon be
2004 * dead. Therefore we don't take any locks, and attempt to get access
2005 * to the chip as soon as possible.
2007 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2010 struct cfi_private *cfi = map->fldrv_priv;
2015 * If the driver thinks the chip is idle, and no toggle bits
2016 * are changing, then the chip is actually idle for sure.
2018 if (chip->state == FL_READY && chip_ready(map, adr))
2022 * Try several times to reset the chip and then wait for it
2023 * to become idle. The upper limit of a few milliseconds of
2024 * delay isn't a big problem: the kernel is dying anyway. It
2025 * is more important to save the messages.
2027 while (retries > 0) {
2028 const unsigned long timeo = (HZ / 1000) + 1;
2030 /* send the reset command */
2031 map_write(map, CMD(0xF0), chip->start);
2033 /* wait for the chip to become ready */
2034 for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2035 if (chip_ready(map, adr))
2044 /* the chip never became ready */
2049 * Write out one word of data to a single flash chip during a kernel panic
2051 * This is only called during the panic_write() path. When panic_write()
2052 * is called, the kernel is in the process of a panic, and will soon be
2053 * dead. Therefore we don't take any locks, and attempt to get access
2054 * to the chip as soon as possible.
2056 * The implementation of this routine is intentionally similar to
2057 * do_write_oneword(), in order to ease code maintenance.
2059 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2060 unsigned long adr, map_word datum)
2062 const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2063 struct cfi_private *cfi = map->fldrv_priv;
2071 ret = cfi_amdstd_panic_wait(map, chip, adr);
2075 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2076 __func__, adr, datum.x[0]);
2079 * Check for a NOP for the case when the datum to write is already
2080 * present - it saves time and works around buggy chips that corrupt
2081 * data at other locations when 0xff is written to a location that
2082 * already contains 0xff.
2084 oldd = map_read(map, adr);
2085 if (map_word_equal(map, oldd, datum)) {
2086 pr_debug("MTD %s(): NOP\n", __func__);
2093 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2094 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2095 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2096 map_write(map, datum, adr);
2098 for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2099 if (chip_ready(map, adr))
2105 if (!chip_good(map, adr, datum)) {
2106 /* reset on all failures. */
2107 map_write(map, CMD(0xF0), chip->start);
2108 /* FIXME - should have reset delay before continuing */
2110 if (++retry_cnt <= MAX_RETRIES)
2122 * Write out some data during a kernel panic
2124 * This is used by the mtdoops driver to save the dying messages from a
2125 * kernel which has panic'd.
2127 * This routine ignores all of the locking used throughout the rest of the
2128 * driver, in order to ensure that the data gets written out no matter what
2129 * state this driver (and the flash chip itself) was in when the kernel crashed.
2131 * The implementation of this routine is intentionally similar to
2132 * cfi_amdstd_write_words(), in order to ease code maintenance.
2134 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2135 size_t *retlen, const u_char *buf)
2137 struct map_info *map = mtd->priv;
2138 struct cfi_private *cfi = map->fldrv_priv;
2139 unsigned long ofs, chipstart;
2143 chipnum = to >> cfi->chipshift;
2144 ofs = to - (chipnum << cfi->chipshift);
2145 chipstart = cfi->chips[chipnum].start;
2147 /* If it's not bus aligned, do the first byte write */
2148 if (ofs & (map_bankwidth(map) - 1)) {
2149 unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2150 int i = ofs - bus_ofs;
2154 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2158 /* Load 'tmp_buf' with old contents of flash */
2159 tmp_buf = map_read(map, bus_ofs + chipstart);
2161 /* Number of bytes to copy from buffer */
2162 n = min_t(int, len, map_bankwidth(map) - i);
2164 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2166 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2176 if (ofs >> cfi->chipshift) {
2179 if (chipnum == cfi->numchips)
2184 /* We are now aligned, write as much as possible */
2185 while (len >= map_bankwidth(map)) {
2188 datum = map_word_load(map, buf);
2190 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2195 ofs += map_bankwidth(map);
2196 buf += map_bankwidth(map);
2197 (*retlen) += map_bankwidth(map);
2198 len -= map_bankwidth(map);
2200 if (ofs >> cfi->chipshift) {
2203 if (chipnum == cfi->numchips)
2206 chipstart = cfi->chips[chipnum].start;
2210 /* Write the trailing bytes if any */
2211 if (len & (map_bankwidth(map) - 1)) {
2214 ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2218 tmp_buf = map_read(map, ofs + chipstart);
2220 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2222 ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2235 * Handle devices with one erase region, that only implement
2236 * the chip erase command.
2238 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2240 struct cfi_private *cfi = map->fldrv_priv;
2241 unsigned long timeo = jiffies + HZ;
2242 unsigned long int adr;
2243 DECLARE_WAITQUEUE(wait, current);
2247 adr = cfi->addr_unlock1;
2249 mutex_lock(&chip->mutex);
2250 ret = get_chip(map, chip, adr, FL_WRITING);
2252 mutex_unlock(&chip->mutex);
2256 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2257 __func__, chip->start);
2259 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2261 xip_disable(map, chip, adr);
2264 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2265 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2266 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2267 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2268 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2269 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2271 chip->state = FL_ERASING;
2272 chip->erase_suspended = 0;
2273 chip->in_progress_block_addr = adr;
2274 chip->in_progress_block_mask = ~(map->size - 1);
2276 INVALIDATE_CACHE_UDELAY(map, chip,
2278 chip->erase_time*500);
2280 timeo = jiffies + (HZ*20);
2283 if (chip->state != FL_ERASING) {
2284 /* Someone's suspended the erase. Sleep */
2285 set_current_state(TASK_UNINTERRUPTIBLE);
2286 add_wait_queue(&chip->wq, &wait);
2287 mutex_unlock(&chip->mutex);
2289 remove_wait_queue(&chip->wq, &wait);
2290 mutex_lock(&chip->mutex);
2293 if (chip->erase_suspended) {
2294 /* This erase was suspended and resumed.
2295 Adjust the timeout */
2296 timeo = jiffies + (HZ*20); /* FIXME */
2297 chip->erase_suspended = 0;
2300 if (chip_good(map, adr, map_word_ff(map)))
2303 if (time_after(jiffies, timeo)) {
2304 printk(KERN_WARNING "MTD %s(): software timeout\n",
2310 /* Latency issues. Drop the lock, wait a while and retry */
2311 UDELAY(map, chip, adr, 1000000/HZ);
2313 /* Did we succeed? */
2315 /* reset on all failures. */
2316 map_write(map, CMD(0xF0), chip->start);
2317 /* FIXME - should have reset delay before continuing */
2319 if (++retry_cnt <= MAX_RETRIES) {
2325 chip->state = FL_READY;
2326 xip_enable(map, chip, adr);
2328 put_chip(map, chip, adr);
2329 mutex_unlock(&chip->mutex);
2335 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2337 struct cfi_private *cfi = map->fldrv_priv;
2338 unsigned long timeo = jiffies + HZ;
2339 DECLARE_WAITQUEUE(wait, current);
2345 mutex_lock(&chip->mutex);
2346 ret = get_chip(map, chip, adr, FL_ERASING);
2348 mutex_unlock(&chip->mutex);
2352 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2355 XIP_INVAL_CACHED_RANGE(map, adr, len);
2357 xip_disable(map, chip, adr);
2360 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2361 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2362 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2363 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2364 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2365 map_write(map, cfi->sector_erase_cmd, adr);
2367 chip->state = FL_ERASING;
2368 chip->erase_suspended = 0;
2369 chip->in_progress_block_addr = adr;
2370 chip->in_progress_block_mask = ~(len - 1);
2372 INVALIDATE_CACHE_UDELAY(map, chip,
2374 chip->erase_time*500);
2376 timeo = jiffies + (HZ*20);
2379 if (chip->state != FL_ERASING) {
2380 /* Someone's suspended the erase. Sleep */
2381 set_current_state(TASK_UNINTERRUPTIBLE);
2382 add_wait_queue(&chip->wq, &wait);
2383 mutex_unlock(&chip->mutex);
2385 remove_wait_queue(&chip->wq, &wait);
2386 mutex_lock(&chip->mutex);
2389 if (chip->erase_suspended) {
2390 /* This erase was suspended and resumed.
2391 Adjust the timeout */
2392 timeo = jiffies + (HZ*20); /* FIXME */
2393 chip->erase_suspended = 0;
2396 if (chip_good(map, adr, map_word_ff(map)))
2399 if (time_after(jiffies, timeo)) {
2400 printk(KERN_WARNING "MTD %s(): software timeout\n",
2406 /* Latency issues. Drop the lock, wait a while and retry */
2407 UDELAY(map, chip, adr, 1000000/HZ);
2409 /* Did we succeed? */
2411 /* reset on all failures. */
2412 map_write(map, CMD(0xF0), chip->start);
2413 /* FIXME - should have reset delay before continuing */
2415 if (++retry_cnt <= MAX_RETRIES) {
2421 chip->state = FL_READY;
2422 xip_enable(map, chip, adr);
2424 put_chip(map, chip, adr);
2425 mutex_unlock(&chip->mutex);
2430 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2432 return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2437 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2439 struct map_info *map = mtd->priv;
2440 struct cfi_private *cfi = map->fldrv_priv;
2442 if (instr->addr != 0)
2445 if (instr->len != mtd->size)
2448 return do_erase_chip(map, &cfi->chips[0]);
2451 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2452 unsigned long adr, int len, void *thunk)
2454 struct cfi_private *cfi = map->fldrv_priv;
2457 mutex_lock(&chip->mutex);
2458 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2461 chip->state = FL_LOCKING;
2463 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2465 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2466 cfi->device_type, NULL);
2467 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2468 cfi->device_type, NULL);
2469 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2470 cfi->device_type, NULL);
2471 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2472 cfi->device_type, NULL);
2473 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2474 cfi->device_type, NULL);
2475 map_write(map, CMD(0x40), chip->start + adr);
2477 chip->state = FL_READY;
2478 put_chip(map, chip, adr + chip->start);
2482 mutex_unlock(&chip->mutex);
2486 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2487 unsigned long adr, int len, void *thunk)
2489 struct cfi_private *cfi = map->fldrv_priv;
2492 mutex_lock(&chip->mutex);
2493 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2496 chip->state = FL_UNLOCKING;
2498 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2500 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2501 cfi->device_type, NULL);
2502 map_write(map, CMD(0x70), adr);
2504 chip->state = FL_READY;
2505 put_chip(map, chip, adr + chip->start);
2509 mutex_unlock(&chip->mutex);
2513 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2515 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2518 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2520 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2524 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2528 struct flchip *chip;
2533 #define MAX_SECTORS 512
2535 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2536 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2537 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2539 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2540 struct flchip *chip,
2541 unsigned long adr, int len, void *thunk)
2543 struct cfi_private *cfi = map->fldrv_priv;
2544 unsigned long timeo;
2547 mutex_lock(&chip->mutex);
2548 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2550 mutex_unlock(&chip->mutex);
2554 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2556 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2557 cfi->device_type, NULL);
2558 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2559 cfi->device_type, NULL);
2560 /* PPB entry command */
2561 cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2562 cfi->device_type, NULL);
2564 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2565 chip->state = FL_LOCKING;
2566 map_write(map, CMD(0xA0), chip->start + adr);
2567 map_write(map, CMD(0x00), chip->start + adr);
2568 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2570 * Unlocking of one specific sector is not supported, so we
2571 * have to unlock all sectors of this device instead
2573 chip->state = FL_UNLOCKING;
2574 map_write(map, CMD(0x80), chip->start);
2575 map_write(map, CMD(0x30), chip->start);
2576 } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2577 chip->state = FL_JEDEC_QUERY;
2578 /* Return locked status: 0->locked, 1->unlocked */
2579 ret = !cfi_read_query(map, adr);
2584 * Wait for some time as unlocking of all sectors takes quite long
2586 timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
2588 if (chip_ready(map, adr))
2591 if (time_after(jiffies, timeo)) {
2592 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2597 UDELAY(map, chip, adr, 1);
2600 /* Exit BC commands */
2601 map_write(map, CMD(0x90), chip->start);
2602 map_write(map, CMD(0x00), chip->start);
2604 chip->state = FL_READY;
2605 put_chip(map, chip, adr + chip->start);
2606 mutex_unlock(&chip->mutex);
2611 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2614 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2615 DO_XXLOCK_ONEBLOCK_LOCK);
2618 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2621 struct mtd_erase_region_info *regions = mtd->eraseregions;
2622 struct map_info *map = mtd->priv;
2623 struct cfi_private *cfi = map->fldrv_priv;
2624 struct ppb_lock *sect;
2634 * PPB unlocking always unlocks all sectors of the flash chip.
2635 * We need to re-lock all previously locked sectors. So lets
2636 * first check the locking status of all sectors and save
2637 * it for future use.
2639 sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
2644 * This code to walk all sectors is a slightly modified version
2645 * of the cfi_varsize_frob() code.
2655 int size = regions[i].erasesize;
2658 * Only test sectors that shall not be unlocked. The other
2659 * sectors shall be unlocked, so lets keep their locking
2660 * status at "unlocked" (locked=0) for the final re-locking.
2662 if ((adr < ofs) || (adr >= (ofs + len))) {
2663 sect[sectors].chip = &cfi->chips[chipnum];
2664 sect[sectors].offset = offset;
2665 sect[sectors].locked = do_ppb_xxlock(
2666 map, &cfi->chips[chipnum], adr, 0,
2667 DO_XXLOCK_ONEBLOCK_GETLOCK);
2674 if (offset == regions[i].offset + size * regions[i].numblocks)
2677 if (adr >> cfi->chipshift) {
2681 if (chipnum >= cfi->numchips)
2686 if (sectors >= MAX_SECTORS) {
2687 printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2694 /* Now unlock the whole chip */
2695 ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2696 DO_XXLOCK_ONEBLOCK_UNLOCK);
2703 * PPB unlocking always unlocks all sectors of the flash chip.
2704 * We need to re-lock all previously locked sectors.
2706 for (i = 0; i < sectors; i++) {
2708 do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2709 DO_XXLOCK_ONEBLOCK_LOCK);
2716 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2719 return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2720 DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2723 static void cfi_amdstd_sync (struct mtd_info *mtd)
2725 struct map_info *map = mtd->priv;
2726 struct cfi_private *cfi = map->fldrv_priv;
2728 struct flchip *chip;
2730 DECLARE_WAITQUEUE(wait, current);
2732 for (i=0; !ret && i<cfi->numchips; i++) {
2733 chip = &cfi->chips[i];
2736 mutex_lock(&chip->mutex);
2738 switch(chip->state) {
2742 case FL_JEDEC_QUERY:
2743 chip->oldstate = chip->state;
2744 chip->state = FL_SYNCING;
2745 /* No need to wake_up() on this state change -
2746 * as the whole point is that nobody can do anything
2747 * with the chip now anyway.
2750 mutex_unlock(&chip->mutex);
2754 /* Not an idle state */
2755 set_current_state(TASK_UNINTERRUPTIBLE);
2756 add_wait_queue(&chip->wq, &wait);
2758 mutex_unlock(&chip->mutex);
2762 remove_wait_queue(&chip->wq, &wait);
2768 /* Unlock the chips again */
2770 for (i--; i >=0; i--) {
2771 chip = &cfi->chips[i];
2773 mutex_lock(&chip->mutex);
2775 if (chip->state == FL_SYNCING) {
2776 chip->state = chip->oldstate;
2779 mutex_unlock(&chip->mutex);
2784 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2786 struct map_info *map = mtd->priv;
2787 struct cfi_private *cfi = map->fldrv_priv;
2789 struct flchip *chip;
2792 for (i=0; !ret && i<cfi->numchips; i++) {
2793 chip = &cfi->chips[i];
2795 mutex_lock(&chip->mutex);
2797 switch(chip->state) {
2801 case FL_JEDEC_QUERY:
2802 chip->oldstate = chip->state;
2803 chip->state = FL_PM_SUSPENDED;
2804 /* No need to wake_up() on this state change -
2805 * as the whole point is that nobody can do anything
2806 * with the chip now anyway.
2808 case FL_PM_SUSPENDED:
2815 mutex_unlock(&chip->mutex);
2818 /* Unlock the chips again */
2821 for (i--; i >=0; i--) {
2822 chip = &cfi->chips[i];
2824 mutex_lock(&chip->mutex);
2826 if (chip->state == FL_PM_SUSPENDED) {
2827 chip->state = chip->oldstate;
2830 mutex_unlock(&chip->mutex);
2838 static void cfi_amdstd_resume(struct mtd_info *mtd)
2840 struct map_info *map = mtd->priv;
2841 struct cfi_private *cfi = map->fldrv_priv;
2843 struct flchip *chip;
2845 for (i=0; i<cfi->numchips; i++) {
2847 chip = &cfi->chips[i];
2849 mutex_lock(&chip->mutex);
2851 if (chip->state == FL_PM_SUSPENDED) {
2852 chip->state = FL_READY;
2853 map_write(map, CMD(0xF0), chip->start);
2857 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2859 mutex_unlock(&chip->mutex);
2865 * Ensure that the flash device is put back into read array mode before
2866 * unloading the driver or rebooting. On some systems, rebooting while
2867 * the flash is in query/program/erase mode will prevent the CPU from
2868 * fetching the bootloader code, requiring a hard reset or power cycle.
2870 static int cfi_amdstd_reset(struct mtd_info *mtd)
2872 struct map_info *map = mtd->priv;
2873 struct cfi_private *cfi = map->fldrv_priv;
2875 struct flchip *chip;
2877 for (i = 0; i < cfi->numchips; i++) {
2879 chip = &cfi->chips[i];
2881 mutex_lock(&chip->mutex);
2883 ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2885 map_write(map, CMD(0xF0), chip->start);
2886 chip->state = FL_SHUTDOWN;
2887 put_chip(map, chip, chip->start);
2890 mutex_unlock(&chip->mutex);
2897 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2900 struct mtd_info *mtd;
2902 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2903 cfi_amdstd_reset(mtd);
2908 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2910 struct map_info *map = mtd->priv;
2911 struct cfi_private *cfi = map->fldrv_priv;
2913 cfi_amdstd_reset(mtd);
2914 unregister_reboot_notifier(&mtd->reboot_notifier);
2915 kfree(cfi->cmdset_priv);
2918 kfree(mtd->eraseregions);
2921 MODULE_LICENSE("GPL");
2922 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2923 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2924 MODULE_ALIAS("cfi_cmdset_0006");
2925 MODULE_ALIAS("cfi_cmdset_0701");