Merge tag 'thermal-v5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/therma...
[linux-2.6-microblaze.git] / drivers / mmc / host / sh_mmcif.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MMCIF eMMC driver.
4  *
5  * Copyright (C) 2010 Renesas Solutions Corp.
6  * Yusuke Goda <yusuke.goda.sx@renesas.com>
7  */
8
9 /*
10  * The MMCIF driver is now processing MMC requests asynchronously, according
11  * to the Linux MMC API requirement.
12  *
13  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14  * data, and optional stop. To achieve asynchronous processing each of these
15  * stages is split into two halves: a top and a bottom half. The top half
16  * initialises the hardware, installs a timeout handler to handle completion
17  * timeouts, and returns. In case of the command stage this immediately returns
18  * control to the caller, leaving all further processing to run asynchronously.
19  * All further request processing is performed by the bottom halves.
20  *
21  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22  * thread, a DMA completion callback, if DMA is used, a timeout work, and
23  * request- and stage-specific handler methods.
24  *
25  * Each bottom half run begins with either a hardware interrupt, a DMA callback
26  * invocation, or a timeout work run. In case of an error or a successful
27  * processing completion, the MMC core is informed and the request processing is
28  * finished. In case processing has to continue, i.e., if data has to be read
29  * from or written to the card, or if a stop command has to be sent, the next
30  * top half is called, which performs the necessary hardware handling and
31  * reschedules the timeout work. This returns the driver state machine into the
32  * bottom half waiting state.
33  */
34
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/sh_mmcif.h>
47 #include <linux/mmc/slot-gpio.h>
48 #include <linux/mod_devicetable.h>
49 #include <linux/mutex.h>
50 #include <linux/of_device.h>
51 #include <linux/pagemap.h>
52 #include <linux/platform_device.h>
53 #include <linux/pm_qos.h>
54 #include <linux/pm_runtime.h>
55 #include <linux/sh_dma.h>
56 #include <linux/spinlock.h>
57 #include <linux/module.h>
58
59 #define DRIVER_NAME     "sh_mmcif"
60
61 /* CE_CMD_SET */
62 #define CMD_MASK                0x3f000000
63 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
64 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
66 #define CMD_SET_RBSY            (1 << 21) /* R1b */
67 #define CMD_SET_CCSEN           (1 << 20)
68 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
69 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
70 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
71 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
72 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
73 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
74 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
75 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
76 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
77 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
79 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
80 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
81 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
82 #define CMD_SET_CCSH            (1 << 5)
83 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
84 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
85 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
86 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
87
88 /* CE_CMD_CTRL */
89 #define CMD_CTRL_BREAK          (1 << 0)
90
91 /* CE_BLOCK_SET */
92 #define BLOCK_SIZE_MASK         0x0000ffff
93
94 /* CE_INT */
95 #define INT_CCSDE               (1 << 29)
96 #define INT_CMD12DRE            (1 << 26)
97 #define INT_CMD12RBE            (1 << 25)
98 #define INT_CMD12CRE            (1 << 24)
99 #define INT_DTRANE              (1 << 23)
100 #define INT_BUFRE               (1 << 22)
101 #define INT_BUFWEN              (1 << 21)
102 #define INT_BUFREN              (1 << 20)
103 #define INT_CCSRCV              (1 << 19)
104 #define INT_RBSYE               (1 << 17)
105 #define INT_CRSPE               (1 << 16)
106 #define INT_CMDVIO              (1 << 15)
107 #define INT_BUFVIO              (1 << 14)
108 #define INT_WDATERR             (1 << 11)
109 #define INT_RDATERR             (1 << 10)
110 #define INT_RIDXERR             (1 << 9)
111 #define INT_RSPERR              (1 << 8)
112 #define INT_CCSTO               (1 << 5)
113 #define INT_CRCSTO              (1 << 4)
114 #define INT_WDATTO              (1 << 3)
115 #define INT_RDATTO              (1 << 2)
116 #define INT_RBSYTO              (1 << 1)
117 #define INT_RSPTO               (1 << 0)
118 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
119                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
121                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
124                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127 #define INT_CCS                 (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129 /* CE_INT_MASK */
130 #define MASK_ALL                0x00000000
131 #define MASK_MCCSDE             (1 << 29)
132 #define MASK_MCMD12DRE          (1 << 26)
133 #define MASK_MCMD12RBE          (1 << 25)
134 #define MASK_MCMD12CRE          (1 << 24)
135 #define MASK_MDTRANE            (1 << 23)
136 #define MASK_MBUFRE             (1 << 22)
137 #define MASK_MBUFWEN            (1 << 21)
138 #define MASK_MBUFREN            (1 << 20)
139 #define MASK_MCCSRCV            (1 << 19)
140 #define MASK_MRBSYE             (1 << 17)
141 #define MASK_MCRSPE             (1 << 16)
142 #define MASK_MCMDVIO            (1 << 15)
143 #define MASK_MBUFVIO            (1 << 14)
144 #define MASK_MWDATERR           (1 << 11)
145 #define MASK_MRDATERR           (1 << 10)
146 #define MASK_MRIDXERR           (1 << 9)
147 #define MASK_MRSPERR            (1 << 8)
148 #define MASK_MCCSTO             (1 << 5)
149 #define MASK_MCRCSTO            (1 << 4)
150 #define MASK_MWDATTO            (1 << 3)
151 #define MASK_MRDATTO            (1 << 2)
152 #define MASK_MRBSYTO            (1 << 1)
153 #define MASK_MRSPTO             (1 << 0)
154
155 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157                                  MASK_MCRCSTO | MASK_MWDATTO | \
158                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
161                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
162                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
163                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165 /* CE_HOST_STS1 */
166 #define STS1_CMDSEQ             (1 << 31)
167
168 /* CE_HOST_STS2 */
169 #define STS2_CRCSTE             (1 << 31)
170 #define STS2_CRC16E             (1 << 30)
171 #define STS2_AC12CRCE           (1 << 29)
172 #define STS2_RSPCRC7E           (1 << 28)
173 #define STS2_CRCSTEBE           (1 << 27)
174 #define STS2_RDATEBE            (1 << 26)
175 #define STS2_AC12REBE           (1 << 25)
176 #define STS2_RSPEBE             (1 << 24)
177 #define STS2_AC12IDXE           (1 << 23)
178 #define STS2_RSPIDXE            (1 << 22)
179 #define STS2_CCSTO              (1 << 15)
180 #define STS2_RDATTO             (1 << 14)
181 #define STS2_DATBSYTO           (1 << 13)
182 #define STS2_CRCSTTO            (1 << 12)
183 #define STS2_AC12BSYTO          (1 << 11)
184 #define STS2_RSPBSYTO           (1 << 10)
185 #define STS2_AC12RSPTO          (1 << 9)
186 #define STS2_RSPTO              (1 << 8)
187 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
188                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
190                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
191                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
192                                  STS2_AC12RSPTO | STS2_RSPTO)
193
194 #define CLKDEV_EMMC_DATA        52000000 /* 52 MHz */
195 #define CLKDEV_MMC_DATA         20000000 /* 20 MHz */
196 #define CLKDEV_INIT             400000   /* 400 kHz */
197
198 enum sh_mmcif_state {
199         STATE_IDLE,
200         STATE_REQUEST,
201         STATE_IOS,
202         STATE_TIMEOUT,
203 };
204
205 enum sh_mmcif_wait_for {
206         MMCIF_WAIT_FOR_REQUEST,
207         MMCIF_WAIT_FOR_CMD,
208         MMCIF_WAIT_FOR_MREAD,
209         MMCIF_WAIT_FOR_MWRITE,
210         MMCIF_WAIT_FOR_READ,
211         MMCIF_WAIT_FOR_WRITE,
212         MMCIF_WAIT_FOR_READ_END,
213         MMCIF_WAIT_FOR_WRITE_END,
214         MMCIF_WAIT_FOR_STOP,
215 };
216
217 /*
218  * difference for each SoC
219  */
220 struct sh_mmcif_host {
221         struct mmc_host *mmc;
222         struct mmc_request *mrq;
223         struct platform_device *pd;
224         struct clk *clk;
225         int bus_width;
226         unsigned char timing;
227         bool sd_error;
228         bool dying;
229         long timeout;
230         void __iomem *addr;
231         u32 *pio_ptr;
232         spinlock_t lock;                /* protect sh_mmcif_host::state */
233         enum sh_mmcif_state state;
234         enum sh_mmcif_wait_for wait_for;
235         struct delayed_work timeout_work;
236         size_t blocksize;
237         int sg_idx;
238         int sg_blkidx;
239         bool power;
240         bool ccs_enable;                /* Command Completion Signal support */
241         bool clk_ctrl2_enable;
242         struct mutex thread_lock;
243         u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
244
245         /* DMA support */
246         struct dma_chan         *chan_rx;
247         struct dma_chan         *chan_tx;
248         struct completion       dma_complete;
249         bool                    dma_active;
250 };
251
252 static const struct of_device_id sh_mmcif_of_match[] = {
253         { .compatible = "renesas,sh-mmcif" },
254         { }
255 };
256 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261                                         unsigned int reg, u32 val)
262 {
263         writel(val | readl(host->addr + reg), host->addr + reg);
264 }
265
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267                                         unsigned int reg, u32 val)
268 {
269         writel(~val & readl(host->addr + reg), host->addr + reg);
270 }
271
272 static void sh_mmcif_dma_complete(void *arg)
273 {
274         struct sh_mmcif_host *host = arg;
275         struct mmc_request *mrq = host->mrq;
276         struct device *dev = sh_mmcif_host_to_dev(host);
277
278         dev_dbg(dev, "Command completed\n");
279
280         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281                  dev_name(dev)))
282                 return;
283
284         complete(&host->dma_complete);
285 }
286
287 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 {
289         struct mmc_data *data = host->mrq->data;
290         struct scatterlist *sg = data->sg;
291         struct dma_async_tx_descriptor *desc = NULL;
292         struct dma_chan *chan = host->chan_rx;
293         struct device *dev = sh_mmcif_host_to_dev(host);
294         dma_cookie_t cookie = -EINVAL;
295         int ret;
296
297         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298                          DMA_FROM_DEVICE);
299         if (ret > 0) {
300                 host->dma_active = true;
301                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303         }
304
305         if (desc) {
306                 desc->callback = sh_mmcif_dma_complete;
307                 desc->callback_param = host;
308                 cookie = dmaengine_submit(desc);
309                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310                 dma_async_issue_pending(chan);
311         }
312         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313                 __func__, data->sg_len, ret, cookie);
314
315         if (!desc) {
316                 /* DMA failed, fall back to PIO */
317                 if (ret >= 0)
318                         ret = -EIO;
319                 host->chan_rx = NULL;
320                 host->dma_active = false;
321                 dma_release_channel(chan);
322                 /* Free the Tx channel too */
323                 chan = host->chan_tx;
324                 if (chan) {
325                         host->chan_tx = NULL;
326                         dma_release_channel(chan);
327                 }
328                 dev_warn(dev,
329                          "DMA failed: %d, falling back to PIO\n", ret);
330                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331         }
332
333         dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334                 desc, cookie, data->sg_len);
335 }
336
337 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338 {
339         struct mmc_data *data = host->mrq->data;
340         struct scatterlist *sg = data->sg;
341         struct dma_async_tx_descriptor *desc = NULL;
342         struct dma_chan *chan = host->chan_tx;
343         struct device *dev = sh_mmcif_host_to_dev(host);
344         dma_cookie_t cookie = -EINVAL;
345         int ret;
346
347         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348                          DMA_TO_DEVICE);
349         if (ret > 0) {
350                 host->dma_active = true;
351                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353         }
354
355         if (desc) {
356                 desc->callback = sh_mmcif_dma_complete;
357                 desc->callback_param = host;
358                 cookie = dmaengine_submit(desc);
359                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360                 dma_async_issue_pending(chan);
361         }
362         dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363                 __func__, data->sg_len, ret, cookie);
364
365         if (!desc) {
366                 /* DMA failed, fall back to PIO */
367                 if (ret >= 0)
368                         ret = -EIO;
369                 host->chan_tx = NULL;
370                 host->dma_active = false;
371                 dma_release_channel(chan);
372                 /* Free the Rx channel too */
373                 chan = host->chan_rx;
374                 if (chan) {
375                         host->chan_rx = NULL;
376                         dma_release_channel(chan);
377                 }
378                 dev_warn(dev,
379                          "DMA failed: %d, falling back to PIO\n", ret);
380                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381         }
382
383         dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384                 desc, cookie);
385 }
386
387 static struct dma_chan *
388 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389 {
390         dma_cap_mask_t mask;
391
392         dma_cap_zero(mask);
393         dma_cap_set(DMA_SLAVE, mask);
394         if (slave_id <= 0)
395                 return NULL;
396
397         return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398 }
399
400 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401                                      struct dma_chan *chan,
402                                      enum dma_transfer_direction direction)
403 {
404         struct resource *res;
405         struct dma_slave_config cfg = { 0, };
406
407         res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408         cfg.direction = direction;
409
410         if (direction == DMA_DEV_TO_MEM) {
411                 cfg.src_addr = res->start + MMCIF_CE_DATA;
412                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413         } else {
414                 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416         }
417
418         return dmaengine_slave_config(chan, &cfg);
419 }
420
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422 {
423         struct device *dev = sh_mmcif_host_to_dev(host);
424         host->dma_active = false;
425
426         /* We can only either use DMA for both Tx and Rx or not use it at all */
427         if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428                 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430                 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431                                                         pdata->slave_id_tx);
432                 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433                                                         pdata->slave_id_rx);
434         } else {
435                 host->chan_tx = dma_request_chan(dev, "tx");
436                 if (IS_ERR(host->chan_tx))
437                         host->chan_tx = NULL;
438                 host->chan_rx = dma_request_chan(dev, "rx");
439                 if (IS_ERR(host->chan_rx))
440                         host->chan_rx = NULL;
441         }
442         dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443                 host->chan_rx);
444
445         if (!host->chan_tx || !host->chan_rx ||
446             sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447             sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448                 goto error;
449
450         return;
451
452 error:
453         if (host->chan_tx)
454                 dma_release_channel(host->chan_tx);
455         if (host->chan_rx)
456                 dma_release_channel(host->chan_rx);
457         host->chan_tx = host->chan_rx = NULL;
458 }
459
460 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461 {
462         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463         /* Descriptors are freed automatically */
464         if (host->chan_tx) {
465                 struct dma_chan *chan = host->chan_tx;
466                 host->chan_tx = NULL;
467                 dma_release_channel(chan);
468         }
469         if (host->chan_rx) {
470                 struct dma_chan *chan = host->chan_rx;
471                 host->chan_rx = NULL;
472                 dma_release_channel(chan);
473         }
474
475         host->dma_active = false;
476 }
477
478 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479 {
480         struct device *dev = sh_mmcif_host_to_dev(host);
481         struct sh_mmcif_plat_data *p = dev->platform_data;
482         bool sup_pclk = p ? p->sup_pclk : false;
483         unsigned int current_clk = clk_get_rate(host->clk);
484         unsigned int clkdiv;
485
486         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489         if (!clk)
490                 return;
491
492         if (host->clkdiv_map) {
493                 unsigned int freq, best_freq, myclk, div, diff_min, diff;
494                 int i;
495
496                 clkdiv = 0;
497                 diff_min = ~0;
498                 best_freq = 0;
499                 for (i = 31; i >= 0; i--) {
500                         if (!((1 << i) & host->clkdiv_map))
501                                 continue;
502
503                         /*
504                          * clk = parent_freq / div
505                          * -> parent_freq = clk x div
506                          */
507
508                         div = 1 << (i + 1);
509                         freq = clk_round_rate(host->clk, clk * div);
510                         myclk = freq / div;
511                         diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513                         if (diff <= diff_min) {
514                                 best_freq = freq;
515                                 clkdiv = i;
516                                 diff_min = diff;
517                         }
518                 }
519
520                 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521                         (best_freq / (1 << (clkdiv + 1))), clk,
522                         best_freq, clkdiv);
523
524                 clk_set_rate(host->clk, best_freq);
525                 clkdiv = clkdiv << 16;
526         } else if (sup_pclk && clk == current_clk) {
527                 clkdiv = CLK_SUP_PCLK;
528         } else {
529                 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530         }
531
532         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534 }
535
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537 {
538         u32 tmp;
539
540         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541
542         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544         if (host->ccs_enable)
545                 tmp |= SCCSTO_29;
546         if (host->clk_ctrl2_enable)
547                 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550         /* byte swap on */
551         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552 }
553
554 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555 {
556         struct device *dev = sh_mmcif_host_to_dev(host);
557         u32 state1, state2;
558         int ret, timeout;
559
560         host->sd_error = false;
561
562         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564         dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565         dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566
567         if (state1 & STS1_CMDSEQ) {
568                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570                 for (timeout = 10000; timeout; timeout--) {
571                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572                               & STS1_CMDSEQ))
573                                 break;
574                         mdelay(1);
575                 }
576                 if (!timeout) {
577                         dev_err(dev,
578                                 "Forced end of command sequence timeout err\n");
579                         return -EIO;
580                 }
581                 sh_mmcif_sync_reset(host);
582                 dev_dbg(dev, "Forced end of command sequence\n");
583                 return -EIO;
584         }
585
586         if (state2 & STS2_CRC_ERR) {
587                 dev_err(dev, " CRC error: state %u, wait %u\n",
588                         host->state, host->wait_for);
589                 ret = -EIO;
590         } else if (state2 & STS2_TIMEOUT_ERR) {
591                 dev_err(dev, " Timeout: state %u, wait %u\n",
592                         host->state, host->wait_for);
593                 ret = -ETIMEDOUT;
594         } else {
595                 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596                         host->state, host->wait_for);
597                 ret = -EIO;
598         }
599         return ret;
600 }
601
602 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
603 {
604         struct mmc_data *data = host->mrq->data;
605
606         host->sg_blkidx += host->blocksize;
607
608         /* data->sg->length must be a multiple of host->blocksize? */
609         BUG_ON(host->sg_blkidx > data->sg->length);
610
611         if (host->sg_blkidx == data->sg->length) {
612                 host->sg_blkidx = 0;
613                 if (++host->sg_idx < data->sg_len)
614                         host->pio_ptr = sg_virt(++data->sg);
615         } else {
616                 host->pio_ptr = p;
617         }
618
619         return host->sg_idx != data->sg_len;
620 }
621
622 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
623                                  struct mmc_request *mrq)
624 {
625         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626                            BLOCK_SIZE_MASK) + 3;
627
628         host->wait_for = MMCIF_WAIT_FOR_READ;
629
630         /* buf read enable */
631         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632 }
633
634 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
635 {
636         struct device *dev = sh_mmcif_host_to_dev(host);
637         struct mmc_data *data = host->mrq->data;
638         u32 *p = sg_virt(data->sg);
639         int i;
640
641         if (host->sd_error) {
642                 data->error = sh_mmcif_error_manage(host);
643                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
644                 return false;
645         }
646
647         for (i = 0; i < host->blocksize / 4; i++)
648                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
649
650         /* buffer read end */
651         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
652         host->wait_for = MMCIF_WAIT_FOR_READ_END;
653
654         return true;
655 }
656
657 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
658                                 struct mmc_request *mrq)
659 {
660         struct mmc_data *data = mrq->data;
661
662         if (!data->sg_len || !data->sg->length)
663                 return;
664
665         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
666                 BLOCK_SIZE_MASK;
667
668         host->wait_for = MMCIF_WAIT_FOR_MREAD;
669         host->sg_idx = 0;
670         host->sg_blkidx = 0;
671         host->pio_ptr = sg_virt(data->sg);
672
673         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
674 }
675
676 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
677 {
678         struct device *dev = sh_mmcif_host_to_dev(host);
679         struct mmc_data *data = host->mrq->data;
680         u32 *p = host->pio_ptr;
681         int i;
682
683         if (host->sd_error) {
684                 data->error = sh_mmcif_error_manage(host);
685                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
686                 return false;
687         }
688
689         BUG_ON(!data->sg->length);
690
691         for (i = 0; i < host->blocksize / 4; i++)
692                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
693
694         if (!sh_mmcif_next_block(host, p))
695                 return false;
696
697         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
698
699         return true;
700 }
701
702 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
703                                         struct mmc_request *mrq)
704 {
705         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706                            BLOCK_SIZE_MASK) + 3;
707
708         host->wait_for = MMCIF_WAIT_FOR_WRITE;
709
710         /* buf write enable */
711         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
712 }
713
714 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
715 {
716         struct device *dev = sh_mmcif_host_to_dev(host);
717         struct mmc_data *data = host->mrq->data;
718         u32 *p = sg_virt(data->sg);
719         int i;
720
721         if (host->sd_error) {
722                 data->error = sh_mmcif_error_manage(host);
723                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
724                 return false;
725         }
726
727         for (i = 0; i < host->blocksize / 4; i++)
728                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730         /* buffer write end */
731         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
732         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
733
734         return true;
735 }
736
737 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
738                                 struct mmc_request *mrq)
739 {
740         struct mmc_data *data = mrq->data;
741
742         if (!data->sg_len || !data->sg->length)
743                 return;
744
745         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
746                 BLOCK_SIZE_MASK;
747
748         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
749         host->sg_idx = 0;
750         host->sg_blkidx = 0;
751         host->pio_ptr = sg_virt(data->sg);
752
753         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
754 }
755
756 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
757 {
758         struct device *dev = sh_mmcif_host_to_dev(host);
759         struct mmc_data *data = host->mrq->data;
760         u32 *p = host->pio_ptr;
761         int i;
762
763         if (host->sd_error) {
764                 data->error = sh_mmcif_error_manage(host);
765                 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
766                 return false;
767         }
768
769         BUG_ON(!data->sg->length);
770
771         for (i = 0; i < host->blocksize / 4; i++)
772                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
773
774         if (!sh_mmcif_next_block(host, p))
775                 return false;
776
777         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
778
779         return true;
780 }
781
782 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
783                                                 struct mmc_command *cmd)
784 {
785         if (cmd->flags & MMC_RSP_136) {
786                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
787                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
788                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
789                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
790         } else
791                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
792 }
793
794 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
795                                                 struct mmc_command *cmd)
796 {
797         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
798 }
799
800 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
801                             struct mmc_request *mrq)
802 {
803         struct device *dev = sh_mmcif_host_to_dev(host);
804         struct mmc_data *data = mrq->data;
805         struct mmc_command *cmd = mrq->cmd;
806         u32 opc = cmd->opcode;
807         u32 tmp = 0;
808
809         /* Response Type check */
810         switch (mmc_resp_type(cmd)) {
811         case MMC_RSP_NONE:
812                 tmp |= CMD_SET_RTYP_NO;
813                 break;
814         case MMC_RSP_R1:
815         case MMC_RSP_R3:
816                 tmp |= CMD_SET_RTYP_6B;
817                 break;
818         case MMC_RSP_R1B:
819                 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
820                 break;
821         case MMC_RSP_R2:
822                 tmp |= CMD_SET_RTYP_17B;
823                 break;
824         default:
825                 dev_err(dev, "Unsupported response type.\n");
826                 break;
827         }
828
829         /* WDAT / DATW */
830         if (data) {
831                 tmp |= CMD_SET_WDAT;
832                 switch (host->bus_width) {
833                 case MMC_BUS_WIDTH_1:
834                         tmp |= CMD_SET_DATW_1;
835                         break;
836                 case MMC_BUS_WIDTH_4:
837                         tmp |= CMD_SET_DATW_4;
838                         break;
839                 case MMC_BUS_WIDTH_8:
840                         tmp |= CMD_SET_DATW_8;
841                         break;
842                 default:
843                         dev_err(dev, "Unsupported bus width.\n");
844                         break;
845                 }
846                 switch (host->timing) {
847                 case MMC_TIMING_MMC_DDR52:
848                         /*
849                          * MMC core will only set this timing, if the host
850                          * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
851                          * capability. MMCIF implementations with this
852                          * capability, e.g. sh73a0, will have to set it
853                          * in their platform data.
854                          */
855                         tmp |= CMD_SET_DARS;
856                         break;
857                 }
858         }
859         /* DWEN */
860         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
861                 tmp |= CMD_SET_DWEN;
862         /* CMLTE/CMD12EN */
863         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
864                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
865                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
866                                 data->blocks << 16);
867         }
868         /* RIDXC[1:0] check bits */
869         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
870             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
871                 tmp |= CMD_SET_RIDXC_BITS;
872         /* RCRC7C[1:0] check bits */
873         if (opc == MMC_SEND_OP_COND)
874                 tmp |= CMD_SET_CRC7C_BITS;
875         /* RCRC7C[1:0] internal CRC7 */
876         if (opc == MMC_ALL_SEND_CID ||
877                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878                 tmp |= CMD_SET_CRC7C_INTERNAL;
879
880         return (opc << 24) | tmp;
881 }
882
883 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
884                                struct mmc_request *mrq, u32 opc)
885 {
886         struct device *dev = sh_mmcif_host_to_dev(host);
887
888         switch (opc) {
889         case MMC_READ_MULTIPLE_BLOCK:
890                 sh_mmcif_multi_read(host, mrq);
891                 return 0;
892         case MMC_WRITE_MULTIPLE_BLOCK:
893                 sh_mmcif_multi_write(host, mrq);
894                 return 0;
895         case MMC_WRITE_BLOCK:
896                 sh_mmcif_single_write(host, mrq);
897                 return 0;
898         case MMC_READ_SINGLE_BLOCK:
899         case MMC_SEND_EXT_CSD:
900                 sh_mmcif_single_read(host, mrq);
901                 return 0;
902         default:
903                 dev_err(dev, "Unsupported CMD%d\n", opc);
904                 return -EINVAL;
905         }
906 }
907
908 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
909                                struct mmc_request *mrq)
910 {
911         struct mmc_command *cmd = mrq->cmd;
912         u32 opc;
913         u32 mask = 0;
914         unsigned long flags;
915
916         if (cmd->flags & MMC_RSP_BUSY)
917                 mask = MASK_START_CMD | MASK_MRBSYE;
918         else
919                 mask = MASK_START_CMD | MASK_MCRSPE;
920
921         if (host->ccs_enable)
922                 mask |= MASK_MCCSTO;
923
924         if (mrq->data) {
925                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
926                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
927                                 mrq->data->blksz);
928         }
929         opc = sh_mmcif_set_cmd(host, mrq);
930
931         if (host->ccs_enable)
932                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
933         else
934                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
935         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
936         /* set arg */
937         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
938         /* set cmd */
939         spin_lock_irqsave(&host->lock, flags);
940         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
941
942         host->wait_for = MMCIF_WAIT_FOR_CMD;
943         schedule_delayed_work(&host->timeout_work, host->timeout);
944         spin_unlock_irqrestore(&host->lock, flags);
945 }
946
947 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
948                               struct mmc_request *mrq)
949 {
950         struct device *dev = sh_mmcif_host_to_dev(host);
951
952         switch (mrq->cmd->opcode) {
953         case MMC_READ_MULTIPLE_BLOCK:
954                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
955                 break;
956         case MMC_WRITE_MULTIPLE_BLOCK:
957                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
958                 break;
959         default:
960                 dev_err(dev, "unsupported stop cmd\n");
961                 mrq->stop->error = sh_mmcif_error_manage(host);
962                 return;
963         }
964
965         host->wait_for = MMCIF_WAIT_FOR_STOP;
966 }
967
968 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
969 {
970         struct sh_mmcif_host *host = mmc_priv(mmc);
971         struct device *dev = sh_mmcif_host_to_dev(host);
972         unsigned long flags;
973
974         spin_lock_irqsave(&host->lock, flags);
975         if (host->state != STATE_IDLE) {
976                 dev_dbg(dev, "%s() rejected, state %u\n",
977                         __func__, host->state);
978                 spin_unlock_irqrestore(&host->lock, flags);
979                 mrq->cmd->error = -EAGAIN;
980                 mmc_request_done(mmc, mrq);
981                 return;
982         }
983
984         host->state = STATE_REQUEST;
985         spin_unlock_irqrestore(&host->lock, flags);
986
987         host->mrq = mrq;
988
989         sh_mmcif_start_cmd(host, mrq);
990 }
991
992 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
993 {
994         struct device *dev = sh_mmcif_host_to_dev(host);
995
996         if (host->mmc->f_max) {
997                 unsigned int f_max, f_min = 0, f_min_old;
998
999                 f_max = host->mmc->f_max;
1000                 for (f_min_old = f_max; f_min_old > 2;) {
1001                         f_min = clk_round_rate(host->clk, f_min_old / 2);
1002                         if (f_min == f_min_old)
1003                                 break;
1004                         f_min_old = f_min;
1005                 }
1006
1007                 /*
1008                  * This driver assumes this SoC is R-Car Gen2 or later
1009                  */
1010                 host->clkdiv_map = 0x3ff;
1011
1012                 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013                 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014         } else {
1015                 unsigned int clk = clk_get_rate(host->clk);
1016
1017                 host->mmc->f_max = clk / 2;
1018                 host->mmc->f_min = clk / 512;
1019         }
1020
1021         dev_dbg(dev, "clk max/min = %d/%d\n",
1022                 host->mmc->f_max, host->mmc->f_min);
1023 }
1024
1025 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026 {
1027         struct sh_mmcif_host *host = mmc_priv(mmc);
1028         struct device *dev = sh_mmcif_host_to_dev(host);
1029         unsigned long flags;
1030
1031         spin_lock_irqsave(&host->lock, flags);
1032         if (host->state != STATE_IDLE) {
1033                 dev_dbg(dev, "%s() rejected, state %u\n",
1034                         __func__, host->state);
1035                 spin_unlock_irqrestore(&host->lock, flags);
1036                 return;
1037         }
1038
1039         host->state = STATE_IOS;
1040         spin_unlock_irqrestore(&host->lock, flags);
1041
1042         switch (ios->power_mode) {
1043         case MMC_POWER_UP:
1044                 if (!IS_ERR(mmc->supply.vmmc))
1045                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046                 if (!host->power) {
1047                         clk_prepare_enable(host->clk);
1048                         pm_runtime_get_sync(dev);
1049                         sh_mmcif_sync_reset(host);
1050                         sh_mmcif_request_dma(host);
1051                         host->power = true;
1052                 }
1053                 break;
1054         case MMC_POWER_OFF:
1055                 if (!IS_ERR(mmc->supply.vmmc))
1056                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057                 if (host->power) {
1058                         sh_mmcif_clock_control(host, 0);
1059                         sh_mmcif_release_dma(host);
1060                         pm_runtime_put(dev);
1061                         clk_disable_unprepare(host->clk);
1062                         host->power = false;
1063                 }
1064                 break;
1065         case MMC_POWER_ON:
1066                 sh_mmcif_clock_control(host, ios->clock);
1067                 break;
1068         }
1069
1070         host->timing = ios->timing;
1071         host->bus_width = ios->bus_width;
1072         host->state = STATE_IDLE;
1073 }
1074
1075 static const struct mmc_host_ops sh_mmcif_ops = {
1076         .request        = sh_mmcif_request,
1077         .set_ios        = sh_mmcif_set_ios,
1078         .get_cd         = mmc_gpio_get_cd,
1079 };
1080
1081 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082 {
1083         struct mmc_command *cmd = host->mrq->cmd;
1084         struct mmc_data *data = host->mrq->data;
1085         struct device *dev = sh_mmcif_host_to_dev(host);
1086         long time;
1087
1088         if (host->sd_error) {
1089                 switch (cmd->opcode) {
1090                 case MMC_ALL_SEND_CID:
1091                 case MMC_SELECT_CARD:
1092                 case MMC_APP_CMD:
1093                         cmd->error = -ETIMEDOUT;
1094                         break;
1095                 default:
1096                         cmd->error = sh_mmcif_error_manage(host);
1097                         break;
1098                 }
1099                 dev_dbg(dev, "CMD%d error %d\n",
1100                         cmd->opcode, cmd->error);
1101                 host->sd_error = false;
1102                 return false;
1103         }
1104         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105                 cmd->error = 0;
1106                 return false;
1107         }
1108
1109         sh_mmcif_get_response(host, cmd);
1110
1111         if (!data)
1112                 return false;
1113
1114         /*
1115          * Completion can be signalled from DMA callback and error, so, have to
1116          * reset here, before setting .dma_active
1117          */
1118         init_completion(&host->dma_complete);
1119
1120         if (data->flags & MMC_DATA_READ) {
1121                 if (host->chan_rx)
1122                         sh_mmcif_start_dma_rx(host);
1123         } else {
1124                 if (host->chan_tx)
1125                         sh_mmcif_start_dma_tx(host);
1126         }
1127
1128         if (!host->dma_active) {
1129                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130                 return !data->error;
1131         }
1132
1133         /* Running in the IRQ thread, can sleep */
1134         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135                                                          host->timeout);
1136
1137         if (data->flags & MMC_DATA_READ)
1138                 dma_unmap_sg(host->chan_rx->device->dev,
1139                              data->sg, data->sg_len,
1140                              DMA_FROM_DEVICE);
1141         else
1142                 dma_unmap_sg(host->chan_tx->device->dev,
1143                              data->sg, data->sg_len,
1144                              DMA_TO_DEVICE);
1145
1146         if (host->sd_error) {
1147                 dev_err(host->mmc->parent,
1148                         "Error IRQ while waiting for DMA completion!\n");
1149                 /* Woken up by an error IRQ: abort DMA */
1150                 data->error = sh_mmcif_error_manage(host);
1151         } else if (!time) {
1152                 dev_err(host->mmc->parent, "DMA timeout!\n");
1153                 data->error = -ETIMEDOUT;
1154         } else if (time < 0) {
1155                 dev_err(host->mmc->parent,
1156                         "wait_for_completion_...() error %ld!\n", time);
1157                 data->error = time;
1158         }
1159         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161         host->dma_active = false;
1162
1163         if (data->error) {
1164                 data->bytes_xfered = 0;
1165                 /* Abort DMA */
1166                 if (data->flags & MMC_DATA_READ)
1167                         dmaengine_terminate_sync(host->chan_rx);
1168                 else
1169                         dmaengine_terminate_sync(host->chan_tx);
1170         }
1171
1172         return false;
1173 }
1174
1175 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176 {
1177         struct sh_mmcif_host *host = dev_id;
1178         struct mmc_request *mrq;
1179         struct device *dev = sh_mmcif_host_to_dev(host);
1180         bool wait = false;
1181         unsigned long flags;
1182         int wait_work;
1183
1184         spin_lock_irqsave(&host->lock, flags);
1185         wait_work = host->wait_for;
1186         spin_unlock_irqrestore(&host->lock, flags);
1187
1188         cancel_delayed_work_sync(&host->timeout_work);
1189
1190         mutex_lock(&host->thread_lock);
1191
1192         mrq = host->mrq;
1193         if (!mrq) {
1194                 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195                         host->state, host->wait_for);
1196                 mutex_unlock(&host->thread_lock);
1197                 return IRQ_HANDLED;
1198         }
1199
1200         /*
1201          * All handlers return true, if processing continues, and false, if the
1202          * request has to be completed - successfully or not
1203          */
1204         switch (wait_work) {
1205         case MMCIF_WAIT_FOR_REQUEST:
1206                 /* We're too late, the timeout has already kicked in */
1207                 mutex_unlock(&host->thread_lock);
1208                 return IRQ_HANDLED;
1209         case MMCIF_WAIT_FOR_CMD:
1210                 /* Wait for data? */
1211                 wait = sh_mmcif_end_cmd(host);
1212                 break;
1213         case MMCIF_WAIT_FOR_MREAD:
1214                 /* Wait for more data? */
1215                 wait = sh_mmcif_mread_block(host);
1216                 break;
1217         case MMCIF_WAIT_FOR_READ:
1218                 /* Wait for data end? */
1219                 wait = sh_mmcif_read_block(host);
1220                 break;
1221         case MMCIF_WAIT_FOR_MWRITE:
1222                 /* Wait data to write? */
1223                 wait = sh_mmcif_mwrite_block(host);
1224                 break;
1225         case MMCIF_WAIT_FOR_WRITE:
1226                 /* Wait for data end? */
1227                 wait = sh_mmcif_write_block(host);
1228                 break;
1229         case MMCIF_WAIT_FOR_STOP:
1230                 if (host->sd_error) {
1231                         mrq->stop->error = sh_mmcif_error_manage(host);
1232                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233                         break;
1234                 }
1235                 sh_mmcif_get_cmd12response(host, mrq->stop);
1236                 mrq->stop->error = 0;
1237                 break;
1238         case MMCIF_WAIT_FOR_READ_END:
1239         case MMCIF_WAIT_FOR_WRITE_END:
1240                 if (host->sd_error) {
1241                         mrq->data->error = sh_mmcif_error_manage(host);
1242                         dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243                 }
1244                 break;
1245         default:
1246                 BUG();
1247         }
1248
1249         if (wait) {
1250                 schedule_delayed_work(&host->timeout_work, host->timeout);
1251                 /* Wait for more data */
1252                 mutex_unlock(&host->thread_lock);
1253                 return IRQ_HANDLED;
1254         }
1255
1256         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257                 struct mmc_data *data = mrq->data;
1258                 if (!mrq->cmd->error && data && !data->error)
1259                         data->bytes_xfered =
1260                                 data->blocks * data->blksz;
1261
1262                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263                         sh_mmcif_stop_cmd(host, mrq);
1264                         if (!mrq->stop->error) {
1265                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1266                                 mutex_unlock(&host->thread_lock);
1267                                 return IRQ_HANDLED;
1268                         }
1269                 }
1270         }
1271
1272         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273         host->state = STATE_IDLE;
1274         host->mrq = NULL;
1275         mmc_request_done(host->mmc, mrq);
1276
1277         mutex_unlock(&host->thread_lock);
1278
1279         return IRQ_HANDLED;
1280 }
1281
1282 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283 {
1284         struct sh_mmcif_host *host = dev_id;
1285         struct device *dev = sh_mmcif_host_to_dev(host);
1286         u32 state, mask;
1287
1288         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289         mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290         if (host->ccs_enable)
1291                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292         else
1293                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296         if (state & ~MASK_CLEAN)
1297                 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298                         state);
1299
1300         if (state & INT_ERR_STS || state & ~INT_ALL) {
1301                 host->sd_error = true;
1302                 dev_dbg(dev, "int err state = 0x%08x\n", state);
1303         }
1304         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305                 if (!host->mrq)
1306                         dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307                 if (!host->dma_active)
1308                         return IRQ_WAKE_THREAD;
1309                 else if (host->sd_error)
1310                         sh_mmcif_dma_complete(host);
1311         } else {
1312                 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313         }
1314
1315         return IRQ_HANDLED;
1316 }
1317
1318 static void sh_mmcif_timeout_work(struct work_struct *work)
1319 {
1320         struct delayed_work *d = to_delayed_work(work);
1321         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322         struct mmc_request *mrq = host->mrq;
1323         struct device *dev = sh_mmcif_host_to_dev(host);
1324         unsigned long flags;
1325
1326         if (host->dying)
1327                 /* Don't run after mmc_remove_host() */
1328                 return;
1329
1330         spin_lock_irqsave(&host->lock, flags);
1331         if (host->state == STATE_IDLE) {
1332                 spin_unlock_irqrestore(&host->lock, flags);
1333                 return;
1334         }
1335
1336         dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337                 host->wait_for, mrq->cmd->opcode);
1338
1339         host->state = STATE_TIMEOUT;
1340         spin_unlock_irqrestore(&host->lock, flags);
1341
1342         /*
1343          * Handle races with cancel_delayed_work(), unless
1344          * cancel_delayed_work_sync() is used
1345          */
1346         switch (host->wait_for) {
1347         case MMCIF_WAIT_FOR_CMD:
1348                 mrq->cmd->error = sh_mmcif_error_manage(host);
1349                 break;
1350         case MMCIF_WAIT_FOR_STOP:
1351                 mrq->stop->error = sh_mmcif_error_manage(host);
1352                 break;
1353         case MMCIF_WAIT_FOR_MREAD:
1354         case MMCIF_WAIT_FOR_MWRITE:
1355         case MMCIF_WAIT_FOR_READ:
1356         case MMCIF_WAIT_FOR_WRITE:
1357         case MMCIF_WAIT_FOR_READ_END:
1358         case MMCIF_WAIT_FOR_WRITE_END:
1359                 mrq->data->error = sh_mmcif_error_manage(host);
1360                 break;
1361         default:
1362                 BUG();
1363         }
1364
1365         host->state = STATE_IDLE;
1366         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367         host->mrq = NULL;
1368         mmc_request_done(host->mmc, mrq);
1369 }
1370
1371 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372 {
1373         struct device *dev = sh_mmcif_host_to_dev(host);
1374         struct sh_mmcif_plat_data *pd = dev->platform_data;
1375         struct mmc_host *mmc = host->mmc;
1376
1377         mmc_regulator_get_supply(mmc);
1378
1379         if (!pd)
1380                 return;
1381
1382         if (!mmc->ocr_avail)
1383                 mmc->ocr_avail = pd->ocr;
1384         else if (pd->ocr)
1385                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386 }
1387
1388 static int sh_mmcif_probe(struct platform_device *pdev)
1389 {
1390         int ret = 0, irq[2];
1391         struct mmc_host *mmc;
1392         struct sh_mmcif_host *host;
1393         struct device *dev = &pdev->dev;
1394         struct sh_mmcif_plat_data *pd = dev->platform_data;
1395         void __iomem *reg;
1396         const char *name;
1397
1398         irq[0] = platform_get_irq(pdev, 0);
1399         irq[1] = platform_get_irq_optional(pdev, 1);
1400         if (irq[0] < 0)
1401                 return -ENXIO;
1402
1403         reg = devm_platform_ioremap_resource(pdev, 0);
1404         if (IS_ERR(reg))
1405                 return PTR_ERR(reg);
1406
1407         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408         if (!mmc)
1409                 return -ENOMEM;
1410
1411         ret = mmc_of_parse(mmc);
1412         if (ret < 0)
1413                 goto err_host;
1414
1415         host            = mmc_priv(mmc);
1416         host->mmc       = mmc;
1417         host->addr      = reg;
1418         host->timeout   = msecs_to_jiffies(10000);
1419         host->ccs_enable = true;
1420         host->clk_ctrl2_enable = false;
1421
1422         host->pd = pdev;
1423
1424         spin_lock_init(&host->lock);
1425
1426         mmc->ops = &sh_mmcif_ops;
1427         sh_mmcif_init_ocr(host);
1428
1429         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430         mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431         mmc->max_busy_timeout = 10000;
1432
1433         if (pd && pd->caps)
1434                 mmc->caps |= pd->caps;
1435         mmc->max_segs = 32;
1436         mmc->max_blk_size = 512;
1437         mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439         mmc->max_seg_size = mmc->max_req_size;
1440
1441         platform_set_drvdata(pdev, host);
1442
1443         host->clk = devm_clk_get(dev, NULL);
1444         if (IS_ERR(host->clk)) {
1445                 ret = PTR_ERR(host->clk);
1446                 dev_err(dev, "cannot get clock: %d\n", ret);
1447                 goto err_host;
1448         }
1449
1450         ret = clk_prepare_enable(host->clk);
1451         if (ret < 0)
1452                 goto err_host;
1453
1454         sh_mmcif_clk_setup(host);
1455
1456         pm_runtime_enable(dev);
1457         host->power = false;
1458
1459         ret = pm_runtime_get_sync(dev);
1460         if (ret < 0)
1461                 goto err_clk;
1462
1463         INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465         sh_mmcif_sync_reset(host);
1466         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468         name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469         ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470                                         sh_mmcif_irqt, 0, name, host);
1471         if (ret) {
1472                 dev_err(dev, "request_irq error (%s)\n", name);
1473                 goto err_clk;
1474         }
1475         if (irq[1] >= 0) {
1476                 ret = devm_request_threaded_irq(dev, irq[1],
1477                                                 sh_mmcif_intr, sh_mmcif_irqt,
1478                                                 0, "sh_mmc:int", host);
1479                 if (ret) {
1480                         dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481                         goto err_clk;
1482                 }
1483         }
1484
1485         mutex_init(&host->thread_lock);
1486
1487         ret = mmc_add_host(mmc);
1488         if (ret < 0)
1489                 goto err_clk;
1490
1491         dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493         dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494                  sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495                  clk_get_rate(host->clk) / 1000000UL);
1496
1497         pm_runtime_put(dev);
1498         clk_disable_unprepare(host->clk);
1499         return ret;
1500
1501 err_clk:
1502         clk_disable_unprepare(host->clk);
1503         pm_runtime_put_sync(dev);
1504         pm_runtime_disable(dev);
1505 err_host:
1506         mmc_free_host(mmc);
1507         return ret;
1508 }
1509
1510 static int sh_mmcif_remove(struct platform_device *pdev)
1511 {
1512         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514         host->dying = true;
1515         clk_prepare_enable(host->clk);
1516         pm_runtime_get_sync(&pdev->dev);
1517
1518         dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520         mmc_remove_host(host->mmc);
1521         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523         /*
1524          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1525          * mmc_remove_host() call above. But swapping order doesn't help either
1526          * (a query on the linux-mmc mailing list didn't bring any replies).
1527          */
1528         cancel_delayed_work_sync(&host->timeout_work);
1529
1530         clk_disable_unprepare(host->clk);
1531         mmc_free_host(host->mmc);
1532         pm_runtime_put_sync(&pdev->dev);
1533         pm_runtime_disable(&pdev->dev);
1534
1535         return 0;
1536 }
1537
1538 #ifdef CONFIG_PM_SLEEP
1539 static int sh_mmcif_suspend(struct device *dev)
1540 {
1541         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543         pm_runtime_get_sync(dev);
1544         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545         pm_runtime_put(dev);
1546
1547         return 0;
1548 }
1549
1550 static int sh_mmcif_resume(struct device *dev)
1551 {
1552         return 0;
1553 }
1554 #endif
1555
1556 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557         SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558 };
1559
1560 static struct platform_driver sh_mmcif_driver = {
1561         .probe          = sh_mmcif_probe,
1562         .remove         = sh_mmcif_remove,
1563         .driver         = {
1564                 .name   = DRIVER_NAME,
1565                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1566                 .pm     = &sh_mmcif_dev_pm_ops,
1567                 .of_match_table = sh_mmcif_of_match,
1568         },
1569 };
1570
1571 module_platform_driver(sh_mmcif_driver);
1572
1573 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1574 MODULE_LICENSE("GPL v2");
1575 MODULE_ALIAS("platform:" DRIVER_NAME);
1576 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");