Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / mmc / host / sdhci-msm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20
21 #include "sdhci-pltfm.h"
22 #include "cqhci.h"
23
24 #define CORE_MCI_VERSION                0x50
25 #define CORE_VERSION_MAJOR_SHIFT        28
26 #define CORE_VERSION_MAJOR_MASK         (0xf << CORE_VERSION_MAJOR_SHIFT)
27 #define CORE_VERSION_MINOR_MASK         0xff
28
29 #define CORE_MCI_GENERICS               0x70
30 #define SWITCHABLE_SIGNALING_VOLTAGE    BIT(29)
31
32 #define HC_MODE_EN              0x1
33 #define CORE_POWER              0x0
34 #define CORE_SW_RST             BIT(7)
35 #define FF_CLK_SW_RST_DIS       BIT(13)
36
37 #define CORE_PWRCTL_BUS_OFF     BIT(0)
38 #define CORE_PWRCTL_BUS_ON      BIT(1)
39 #define CORE_PWRCTL_IO_LOW      BIT(2)
40 #define CORE_PWRCTL_IO_HIGH     BIT(3)
41 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
42 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
43 #define CORE_PWRCTL_IO_SUCCESS  BIT(2)
44 #define CORE_PWRCTL_IO_FAIL     BIT(3)
45 #define REQ_BUS_OFF             BIT(0)
46 #define REQ_BUS_ON              BIT(1)
47 #define REQ_IO_LOW              BIT(2)
48 #define REQ_IO_HIGH             BIT(3)
49 #define INT_MASK                0xf
50 #define MAX_PHASES              16
51 #define CORE_DLL_LOCK           BIT(7)
52 #define CORE_DDR_DLL_LOCK       BIT(11)
53 #define CORE_DLL_EN             BIT(16)
54 #define CORE_CDR_EN             BIT(17)
55 #define CORE_CK_OUT_EN          BIT(18)
56 #define CORE_CDR_EXT_EN         BIT(19)
57 #define CORE_DLL_PDN            BIT(29)
58 #define CORE_DLL_RST            BIT(30)
59 #define CORE_CMD_DAT_TRACK_SEL  BIT(0)
60
61 #define CORE_DDR_CAL_EN         BIT(0)
62 #define CORE_FLL_CYCLE_CNT      BIT(18)
63 #define CORE_DLL_CLOCK_DISABLE  BIT(21)
64
65 #define DLL_USR_CTL_POR_VAL     0x10800
66 #define ENABLE_DLL_LOCK_STATUS  BIT(26)
67 #define FINE_TUNE_MODE_EN       BIT(27)
68 #define BIAS_OK_SIGNAL          BIT(29)
69
70 #define DLL_CONFIG_3_LOW_FREQ_VAL       0x08
71 #define DLL_CONFIG_3_HIGH_FREQ_VAL      0x10
72
73 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
74 #define CORE_CLK_PWRSAVE        BIT(1)
75 #define CORE_HC_MCLK_SEL_DFLT   (2 << 8)
76 #define CORE_HC_MCLK_SEL_HS400  (3 << 8)
77 #define CORE_HC_MCLK_SEL_MASK   (3 << 8)
78 #define CORE_IO_PAD_PWR_SWITCH_EN       BIT(15)
79 #define CORE_IO_PAD_PWR_SWITCH  BIT(16)
80 #define CORE_HC_SELECT_IN_EN    BIT(18)
81 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
82 #define CORE_HC_SELECT_IN_MASK  (7 << 19)
83
84 #define CORE_3_0V_SUPPORT       BIT(25)
85 #define CORE_1_8V_SUPPORT       BIT(26)
86 #define CORE_VOLT_SUPPORT       (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
87
88 #define CORE_CSR_CDC_CTLR_CFG0          0x130
89 #define CORE_SW_TRIG_FULL_CALIB         BIT(16)
90 #define CORE_HW_AUTOCAL_ENA             BIT(17)
91
92 #define CORE_CSR_CDC_CTLR_CFG1          0x134
93 #define CORE_CSR_CDC_CAL_TIMER_CFG0     0x138
94 #define CORE_TIMER_ENA                  BIT(16)
95
96 #define CORE_CSR_CDC_CAL_TIMER_CFG1     0x13C
97 #define CORE_CSR_CDC_REFCOUNT_CFG       0x140
98 #define CORE_CSR_CDC_COARSE_CAL_CFG     0x144
99 #define CORE_CDC_OFFSET_CFG             0x14C
100 #define CORE_CSR_CDC_DELAY_CFG          0x150
101 #define CORE_CDC_SLAVE_DDA_CFG          0x160
102 #define CORE_CSR_CDC_STATUS0            0x164
103 #define CORE_CALIBRATION_DONE           BIT(0)
104
105 #define CORE_CDC_ERROR_CODE_MASK        0x7000000
106
107 #define CORE_CSR_CDC_GEN_CFG            0x178
108 #define CORE_CDC_SWITCH_BYPASS_OFF      BIT(0)
109 #define CORE_CDC_SWITCH_RC_EN           BIT(1)
110
111 #define CORE_CDC_T4_DLY_SEL             BIT(0)
112 #define CORE_CMDIN_RCLK_EN              BIT(1)
113 #define CORE_START_CDC_TRAFFIC          BIT(6)
114
115 #define CORE_PWRSAVE_DLL        BIT(3)
116
117 #define DDR_CONFIG_POR_VAL      0x80040873
118
119
120 #define INVALID_TUNING_PHASE    -1
121 #define SDHCI_MSM_MIN_CLOCK     400000
122 #define CORE_FREQ_100MHZ        (100 * 1000 * 1000)
123
124 #define CDR_SELEXT_SHIFT        20
125 #define CDR_SELEXT_MASK         (0xf << CDR_SELEXT_SHIFT)
126 #define CMUX_SHIFT_PHASE_SHIFT  24
127 #define CMUX_SHIFT_PHASE_MASK   (7 << CMUX_SHIFT_PHASE_SHIFT)
128
129 #define MSM_MMC_AUTOSUSPEND_DELAY_MS    50
130
131 /* Timeout value to avoid infinite waiting for pwr_irq */
132 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
133
134 /* Max load for eMMC Vdd-io supply */
135 #define MMC_VQMMC_MAX_LOAD_UA   325000
136
137 #define msm_host_readl(msm_host, host, offset) \
138         msm_host->var_ops->msm_readl_relaxed(host, offset)
139
140 #define msm_host_writel(msm_host, val, host, offset) \
141         msm_host->var_ops->msm_writel_relaxed(val, host, offset)
142
143 /* CQHCI vendor specific registers */
144 #define CQHCI_VENDOR_CFG1       0xA00
145 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN   (0x3 << 13)
146
147 struct sdhci_msm_offset {
148         u32 core_hc_mode;
149         u32 core_mci_data_cnt;
150         u32 core_mci_status;
151         u32 core_mci_fifo_cnt;
152         u32 core_mci_version;
153         u32 core_generics;
154         u32 core_testbus_config;
155         u32 core_testbus_sel2_bit;
156         u32 core_testbus_ena;
157         u32 core_testbus_sel2;
158         u32 core_pwrctl_status;
159         u32 core_pwrctl_mask;
160         u32 core_pwrctl_clear;
161         u32 core_pwrctl_ctl;
162         u32 core_sdcc_debug_reg;
163         u32 core_dll_config;
164         u32 core_dll_status;
165         u32 core_vendor_spec;
166         u32 core_vendor_spec_adma_err_addr0;
167         u32 core_vendor_spec_adma_err_addr1;
168         u32 core_vendor_spec_func2;
169         u32 core_vendor_spec_capabilities0;
170         u32 core_ddr_200_cfg;
171         u32 core_vendor_spec3;
172         u32 core_dll_config_2;
173         u32 core_dll_config_3;
174         u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
175         u32 core_ddr_config;
176         u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
177 };
178
179 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
180         .core_mci_data_cnt = 0x35c,
181         .core_mci_status = 0x324,
182         .core_mci_fifo_cnt = 0x308,
183         .core_mci_version = 0x318,
184         .core_generics = 0x320,
185         .core_testbus_config = 0x32c,
186         .core_testbus_sel2_bit = 3,
187         .core_testbus_ena = (1 << 31),
188         .core_testbus_sel2 = (1 << 3),
189         .core_pwrctl_status = 0x240,
190         .core_pwrctl_mask = 0x244,
191         .core_pwrctl_clear = 0x248,
192         .core_pwrctl_ctl = 0x24c,
193         .core_sdcc_debug_reg = 0x358,
194         .core_dll_config = 0x200,
195         .core_dll_status = 0x208,
196         .core_vendor_spec = 0x20c,
197         .core_vendor_spec_adma_err_addr0 = 0x214,
198         .core_vendor_spec_adma_err_addr1 = 0x218,
199         .core_vendor_spec_func2 = 0x210,
200         .core_vendor_spec_capabilities0 = 0x21c,
201         .core_ddr_200_cfg = 0x224,
202         .core_vendor_spec3 = 0x250,
203         .core_dll_config_2 = 0x254,
204         .core_dll_config_3 = 0x258,
205         .core_ddr_config = 0x25c,
206         .core_dll_usr_ctl = 0x388,
207 };
208
209 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
210         .core_hc_mode = 0x78,
211         .core_mci_data_cnt = 0x30,
212         .core_mci_status = 0x34,
213         .core_mci_fifo_cnt = 0x44,
214         .core_mci_version = 0x050,
215         .core_generics = 0x70,
216         .core_testbus_config = 0x0cc,
217         .core_testbus_sel2_bit = 4,
218         .core_testbus_ena = (1 << 3),
219         .core_testbus_sel2 = (1 << 4),
220         .core_pwrctl_status = 0xdc,
221         .core_pwrctl_mask = 0xe0,
222         .core_pwrctl_clear = 0xe4,
223         .core_pwrctl_ctl = 0xe8,
224         .core_sdcc_debug_reg = 0x124,
225         .core_dll_config = 0x100,
226         .core_dll_status = 0x108,
227         .core_vendor_spec = 0x10c,
228         .core_vendor_spec_adma_err_addr0 = 0x114,
229         .core_vendor_spec_adma_err_addr1 = 0x118,
230         .core_vendor_spec_func2 = 0x110,
231         .core_vendor_spec_capabilities0 = 0x11c,
232         .core_ddr_200_cfg = 0x184,
233         .core_vendor_spec3 = 0x1b0,
234         .core_dll_config_2 = 0x1b4,
235         .core_ddr_config_old = 0x1b8,
236         .core_ddr_config = 0x1bc,
237 };
238
239 struct sdhci_msm_variant_ops {
240         u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
241         void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
242                         u32 offset);
243 };
244
245 /*
246  * From V5, register spaces have changed. Wrap this info in a structure
247  * and choose the data_structure based on version info mentioned in DT.
248  */
249 struct sdhci_msm_variant_info {
250         bool mci_removed;
251         bool restore_dll_config;
252         const struct sdhci_msm_variant_ops *var_ops;
253         const struct sdhci_msm_offset *offset;
254 };
255
256 struct sdhci_msm_host {
257         struct platform_device *pdev;
258         void __iomem *core_mem; /* MSM SDCC mapped address */
259         void __iomem *ice_mem;  /* MSM ICE mapped address (if available) */
260         int pwr_irq;            /* power irq */
261         struct clk *bus_clk;    /* SDHC bus voter clock */
262         struct clk *xo_clk;     /* TCXO clk needed for FLL feature of cm_dll*/
263         /* core, iface, cal, sleep, and ice clocks */
264         struct clk_bulk_data bulk_clks[5];
265         unsigned long clk_rate;
266         struct mmc_host *mmc;
267         bool use_14lpp_dll_reset;
268         bool tuning_done;
269         bool calibration_done;
270         u8 saved_tuning_phase;
271         bool use_cdclp533;
272         u32 curr_pwr_state;
273         u32 curr_io_level;
274         wait_queue_head_t pwr_irq_wait;
275         bool pwr_irq_flag;
276         u32 caps_0;
277         bool mci_removed;
278         bool restore_dll_config;
279         const struct sdhci_msm_variant_ops *var_ops;
280         const struct sdhci_msm_offset *offset;
281         bool use_cdr;
282         u32 transfer_mode;
283         bool updated_ddr_cfg;
284         bool uses_tassadar_dll;
285         u32 dll_config;
286         u32 ddr_config;
287         bool vqmmc_enabled;
288 };
289
290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
291 {
292         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
293         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
294
295         return msm_host->offset;
296 }
297
298 /*
299  * APIs to read/write to vendor specific registers which were there in the
300  * core_mem region before MCI was removed.
301  */
302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
303                 u32 offset)
304 {
305         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
306         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
307
308         return readl_relaxed(msm_host->core_mem + offset);
309 }
310
311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
312                 u32 offset)
313 {
314         return readl_relaxed(host->ioaddr + offset);
315 }
316
317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
318                 struct sdhci_host *host, u32 offset)
319 {
320         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322
323         writel_relaxed(val, msm_host->core_mem + offset);
324 }
325
326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
327                 struct sdhci_host *host, u32 offset)
328 {
329         writel_relaxed(val, host->ioaddr + offset);
330 }
331
332 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
333 {
334         struct mmc_ios ios = host->mmc->ios;
335         /*
336          * The SDHC requires internal clock frequency to be double the
337          * actual clock that will be set for DDR mode. The controller
338          * uses the faster clock(100/400MHz) for some of its parts and
339          * send the actual required clock (50/200MHz) to the card.
340          */
341         if (ios.timing == MMC_TIMING_UHS_DDR50 ||
342             ios.timing == MMC_TIMING_MMC_DDR52 ||
343             ios.timing == MMC_TIMING_MMC_HS400 ||
344             host->flags & SDHCI_HS400_TUNING)
345                 return 2;
346         return 1;
347 }
348
349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
350                                             unsigned int clock)
351 {
352         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
353         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
354         struct mmc_ios curr_ios = host->mmc->ios;
355         struct clk *core_clk = msm_host->bulk_clks[0].clk;
356         unsigned long achieved_rate;
357         unsigned int desired_rate;
358         unsigned int mult;
359         int rc;
360
361         mult = msm_get_clock_mult_for_bus_mode(host);
362         desired_rate = clock * mult;
363         rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
364         if (rc) {
365                 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
366                        mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
367                 return;
368         }
369
370         /*
371          * Qualcomm clock drivers by default round clock _up_ if they can't
372          * make the requested rate.  This is not good for SD.  Yell if we
373          * encounter it.
374          */
375         achieved_rate = clk_get_rate(core_clk);
376         if (achieved_rate > desired_rate)
377                 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
378                         mmc_hostname(host->mmc), desired_rate, achieved_rate);
379         host->mmc->actual_clock = achieved_rate / mult;
380
381         /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
382         msm_host->clk_rate = desired_rate;
383
384         pr_debug("%s: Setting clock at rate %lu at timing %d\n",
385                  mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
386 }
387
388 /* Platform specific tuning */
389 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
390 {
391         u32 wait_cnt = 50;
392         u8 ck_out_en;
393         struct mmc_host *mmc = host->mmc;
394         const struct sdhci_msm_offset *msm_offset =
395                                         sdhci_priv_msm_offset(host);
396
397         /* Poll for CK_OUT_EN bit.  max. poll time = 50us */
398         ck_out_en = !!(readl_relaxed(host->ioaddr +
399                         msm_offset->core_dll_config) & CORE_CK_OUT_EN);
400
401         while (ck_out_en != poll) {
402                 if (--wait_cnt == 0) {
403                         dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
404                                mmc_hostname(mmc), poll);
405                         return -ETIMEDOUT;
406                 }
407                 udelay(1);
408
409                 ck_out_en = !!(readl_relaxed(host->ioaddr +
410                         msm_offset->core_dll_config) & CORE_CK_OUT_EN);
411         }
412
413         return 0;
414 }
415
416 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
417 {
418         int rc;
419         static const u8 grey_coded_phase_table[] = {
420                 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
421                 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
422         };
423         unsigned long flags;
424         u32 config;
425         struct mmc_host *mmc = host->mmc;
426         const struct sdhci_msm_offset *msm_offset =
427                                         sdhci_priv_msm_offset(host);
428
429         if (phase > 0xf)
430                 return -EINVAL;
431
432         spin_lock_irqsave(&host->lock, flags);
433
434         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
435         config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
436         config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
437         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
438
439         /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
440         rc = msm_dll_poll_ck_out_en(host, 0);
441         if (rc)
442                 goto err_out;
443
444         /*
445          * Write the selected DLL clock output phase (0 ... 15)
446          * to CDR_SELEXT bit field of DLL_CONFIG register.
447          */
448         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
449         config &= ~CDR_SELEXT_MASK;
450         config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
451         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
452
453         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454         config |= CORE_CK_OUT_EN;
455         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
456
457         /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
458         rc = msm_dll_poll_ck_out_en(host, 1);
459         if (rc)
460                 goto err_out;
461
462         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
463         config |= CORE_CDR_EN;
464         config &= ~CORE_CDR_EXT_EN;
465         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
466         goto out;
467
468 err_out:
469         dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
470                mmc_hostname(mmc), phase);
471 out:
472         spin_unlock_irqrestore(&host->lock, flags);
473         return rc;
474 }
475
476 /*
477  * Find out the greatest range of consecuitive selected
478  * DLL clock output phases that can be used as sampling
479  * setting for SD3.0 UHS-I card read operation (in SDR104
480  * timing mode) or for eMMC4.5 card read operation (in
481  * HS400/HS200 timing mode).
482  * Select the 3/4 of the range and configure the DLL with the
483  * selected DLL clock output phase.
484  */
485
486 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
487                                            u8 *phase_table, u8 total_phases)
488 {
489         int ret;
490         u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
491         u8 phases_per_row[MAX_PHASES] = { 0 };
492         int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
493         int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
494         bool phase_0_found = false, phase_15_found = false;
495         struct mmc_host *mmc = host->mmc;
496
497         if (!total_phases || (total_phases > MAX_PHASES)) {
498                 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
499                        mmc_hostname(mmc), total_phases);
500                 return -EINVAL;
501         }
502
503         for (cnt = 0; cnt < total_phases; cnt++) {
504                 ranges[row_index][col_index] = phase_table[cnt];
505                 phases_per_row[row_index] += 1;
506                 col_index++;
507
508                 if ((cnt + 1) == total_phases) {
509                         continue;
510                 /* check if next phase in phase_table is consecutive or not */
511                 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
512                         row_index++;
513                         col_index = 0;
514                 }
515         }
516
517         if (row_index >= MAX_PHASES)
518                 return -EINVAL;
519
520         /* Check if phase-0 is present in first valid window? */
521         if (!ranges[0][0]) {
522                 phase_0_found = true;
523                 phase_0_raw_index = 0;
524                 /* Check if cycle exist between 2 valid windows */
525                 for (cnt = 1; cnt <= row_index; cnt++) {
526                         if (phases_per_row[cnt]) {
527                                 for (i = 0; i < phases_per_row[cnt]; i++) {
528                                         if (ranges[cnt][i] == 15) {
529                                                 phase_15_found = true;
530                                                 phase_15_raw_index = cnt;
531                                                 break;
532                                         }
533                                 }
534                         }
535                 }
536         }
537
538         /* If 2 valid windows form cycle then merge them as single window */
539         if (phase_0_found && phase_15_found) {
540                 /* number of phases in raw where phase 0 is present */
541                 u8 phases_0 = phases_per_row[phase_0_raw_index];
542                 /* number of phases in raw where phase 15 is present */
543                 u8 phases_15 = phases_per_row[phase_15_raw_index];
544
545                 if (phases_0 + phases_15 >= MAX_PHASES)
546                         /*
547                          * If there are more than 1 phase windows then total
548                          * number of phases in both the windows should not be
549                          * more than or equal to MAX_PHASES.
550                          */
551                         return -EINVAL;
552
553                 /* Merge 2 cyclic windows */
554                 i = phases_15;
555                 for (cnt = 0; cnt < phases_0; cnt++) {
556                         ranges[phase_15_raw_index][i] =
557                             ranges[phase_0_raw_index][cnt];
558                         if (++i >= MAX_PHASES)
559                                 break;
560                 }
561
562                 phases_per_row[phase_0_raw_index] = 0;
563                 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
564         }
565
566         for (cnt = 0; cnt <= row_index; cnt++) {
567                 if (phases_per_row[cnt] > curr_max) {
568                         curr_max = phases_per_row[cnt];
569                         selected_row_index = cnt;
570                 }
571         }
572
573         i = (curr_max * 3) / 4;
574         if (i)
575                 i--;
576
577         ret = ranges[selected_row_index][i];
578
579         if (ret >= MAX_PHASES) {
580                 ret = -EINVAL;
581                 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
582                        mmc_hostname(mmc), ret);
583         }
584
585         return ret;
586 }
587
588 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
589 {
590         u32 mclk_freq = 0, config;
591         const struct sdhci_msm_offset *msm_offset =
592                                         sdhci_priv_msm_offset(host);
593
594         /* Program the MCLK value to MCLK_FREQ bit field */
595         if (host->clock <= 112000000)
596                 mclk_freq = 0;
597         else if (host->clock <= 125000000)
598                 mclk_freq = 1;
599         else if (host->clock <= 137000000)
600                 mclk_freq = 2;
601         else if (host->clock <= 150000000)
602                 mclk_freq = 3;
603         else if (host->clock <= 162000000)
604                 mclk_freq = 4;
605         else if (host->clock <= 175000000)
606                 mclk_freq = 5;
607         else if (host->clock <= 187000000)
608                 mclk_freq = 6;
609         else if (host->clock <= 200000000)
610                 mclk_freq = 7;
611
612         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
613         config &= ~CMUX_SHIFT_PHASE_MASK;
614         config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
615         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
616 }
617
618 /* Initialize the DLL (Programmable Delay Line) */
619 static int msm_init_cm_dll(struct sdhci_host *host)
620 {
621         struct mmc_host *mmc = host->mmc;
622         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
623         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
624         int wait_cnt = 50;
625         unsigned long flags, xo_clk = 0;
626         u32 config;
627         const struct sdhci_msm_offset *msm_offset =
628                                         msm_host->offset;
629
630         if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
631                 xo_clk = clk_get_rate(msm_host->xo_clk);
632
633         spin_lock_irqsave(&host->lock, flags);
634
635         /*
636          * Make sure that clock is always enabled when DLL
637          * tuning is in progress. Keeping PWRSAVE ON may
638          * turn off the clock.
639          */
640         config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
641         config &= ~CORE_CLK_PWRSAVE;
642         writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
643
644         if (msm_host->dll_config)
645                 writel_relaxed(msm_host->dll_config,
646                                 host->ioaddr + msm_offset->core_dll_config);
647
648         if (msm_host->use_14lpp_dll_reset) {
649                 config = readl_relaxed(host->ioaddr +
650                                 msm_offset->core_dll_config);
651                 config &= ~CORE_CK_OUT_EN;
652                 writel_relaxed(config, host->ioaddr +
653                                 msm_offset->core_dll_config);
654
655                 config = readl_relaxed(host->ioaddr +
656                                 msm_offset->core_dll_config_2);
657                 config |= CORE_DLL_CLOCK_DISABLE;
658                 writel_relaxed(config, host->ioaddr +
659                                 msm_offset->core_dll_config_2);
660         }
661
662         config = readl_relaxed(host->ioaddr +
663                         msm_offset->core_dll_config);
664         config |= CORE_DLL_RST;
665         writel_relaxed(config, host->ioaddr +
666                         msm_offset->core_dll_config);
667
668         config = readl_relaxed(host->ioaddr +
669                         msm_offset->core_dll_config);
670         config |= CORE_DLL_PDN;
671         writel_relaxed(config, host->ioaddr +
672                         msm_offset->core_dll_config);
673
674         if (!msm_host->dll_config)
675                 msm_cm_dll_set_freq(host);
676
677         if (msm_host->use_14lpp_dll_reset &&
678             !IS_ERR_OR_NULL(msm_host->xo_clk)) {
679                 u32 mclk_freq = 0;
680
681                 config = readl_relaxed(host->ioaddr +
682                                 msm_offset->core_dll_config_2);
683                 config &= CORE_FLL_CYCLE_CNT;
684                 if (config)
685                         mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
686                                         xo_clk);
687                 else
688                         mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
689                                         xo_clk);
690
691                 config = readl_relaxed(host->ioaddr +
692                                 msm_offset->core_dll_config_2);
693                 config &= ~(0xFF << 10);
694                 config |= mclk_freq << 10;
695
696                 writel_relaxed(config, host->ioaddr +
697                                 msm_offset->core_dll_config_2);
698                 /* wait for 5us before enabling DLL clock */
699                 udelay(5);
700         }
701
702         config = readl_relaxed(host->ioaddr +
703                         msm_offset->core_dll_config);
704         config &= ~CORE_DLL_RST;
705         writel_relaxed(config, host->ioaddr +
706                         msm_offset->core_dll_config);
707
708         config = readl_relaxed(host->ioaddr +
709                         msm_offset->core_dll_config);
710         config &= ~CORE_DLL_PDN;
711         writel_relaxed(config, host->ioaddr +
712                         msm_offset->core_dll_config);
713
714         if (msm_host->use_14lpp_dll_reset) {
715                 if (!msm_host->dll_config)
716                         msm_cm_dll_set_freq(host);
717                 config = readl_relaxed(host->ioaddr +
718                                 msm_offset->core_dll_config_2);
719                 config &= ~CORE_DLL_CLOCK_DISABLE;
720                 writel_relaxed(config, host->ioaddr +
721                                 msm_offset->core_dll_config_2);
722         }
723
724         /*
725          * Configure DLL user control register to enable DLL status.
726          * This setting is applicable to SDCC v5.1 onwards only.
727          */
728         if (msm_host->uses_tassadar_dll) {
729                 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
730                         ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
731                 writel_relaxed(config, host->ioaddr +
732                                 msm_offset->core_dll_usr_ctl);
733
734                 config = readl_relaxed(host->ioaddr +
735                                 msm_offset->core_dll_config_3);
736                 config &= ~0xFF;
737                 if (msm_host->clk_rate < 150000000)
738                         config |= DLL_CONFIG_3_LOW_FREQ_VAL;
739                 else
740                         config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
741                 writel_relaxed(config, host->ioaddr +
742                         msm_offset->core_dll_config_3);
743         }
744
745         config = readl_relaxed(host->ioaddr +
746                         msm_offset->core_dll_config);
747         config |= CORE_DLL_EN;
748         writel_relaxed(config, host->ioaddr +
749                         msm_offset->core_dll_config);
750
751         config = readl_relaxed(host->ioaddr +
752                         msm_offset->core_dll_config);
753         config |= CORE_CK_OUT_EN;
754         writel_relaxed(config, host->ioaddr +
755                         msm_offset->core_dll_config);
756
757         /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
758         while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
759                  CORE_DLL_LOCK)) {
760                 /* max. wait for 50us sec for LOCK bit to be set */
761                 if (--wait_cnt == 0) {
762                         dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
763                                mmc_hostname(mmc));
764                         spin_unlock_irqrestore(&host->lock, flags);
765                         return -ETIMEDOUT;
766                 }
767                 udelay(1);
768         }
769
770         spin_unlock_irqrestore(&host->lock, flags);
771         return 0;
772 }
773
774 static void msm_hc_select_default(struct sdhci_host *host)
775 {
776         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
777         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
778         u32 config;
779         const struct sdhci_msm_offset *msm_offset =
780                                         msm_host->offset;
781
782         if (!msm_host->use_cdclp533) {
783                 config = readl_relaxed(host->ioaddr +
784                                 msm_offset->core_vendor_spec3);
785                 config &= ~CORE_PWRSAVE_DLL;
786                 writel_relaxed(config, host->ioaddr +
787                                 msm_offset->core_vendor_spec3);
788         }
789
790         config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
791         config &= ~CORE_HC_MCLK_SEL_MASK;
792         config |= CORE_HC_MCLK_SEL_DFLT;
793         writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
794
795         /*
796          * Disable HC_SELECT_IN to be able to use the UHS mode select
797          * configuration from Host Control2 register for all other
798          * modes.
799          * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
800          * in VENDOR_SPEC_FUNC
801          */
802         config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
803         config &= ~CORE_HC_SELECT_IN_EN;
804         config &= ~CORE_HC_SELECT_IN_MASK;
805         writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
806
807         /*
808          * Make sure above writes impacting free running MCLK are completed
809          * before changing the clk_rate at GCC.
810          */
811         wmb();
812 }
813
814 static void msm_hc_select_hs400(struct sdhci_host *host)
815 {
816         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
817         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
818         struct mmc_ios ios = host->mmc->ios;
819         u32 config, dll_lock;
820         int rc;
821         const struct sdhci_msm_offset *msm_offset =
822                                         msm_host->offset;
823
824         /* Select the divided clock (free running MCLK/2) */
825         config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
826         config &= ~CORE_HC_MCLK_SEL_MASK;
827         config |= CORE_HC_MCLK_SEL_HS400;
828
829         writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
830         /*
831          * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
832          * register
833          */
834         if ((msm_host->tuning_done || ios.enhanced_strobe) &&
835             !msm_host->calibration_done) {
836                 config = readl_relaxed(host->ioaddr +
837                                 msm_offset->core_vendor_spec);
838                 config |= CORE_HC_SELECT_IN_HS400;
839                 config |= CORE_HC_SELECT_IN_EN;
840                 writel_relaxed(config, host->ioaddr +
841                                 msm_offset->core_vendor_spec);
842         }
843         if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
844                 /*
845                  * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
846                  * core_dll_status to be set. This should get set
847                  * within 15 us at 200 MHz.
848                  */
849                 rc = readl_relaxed_poll_timeout(host->ioaddr +
850                                                 msm_offset->core_dll_status,
851                                                 dll_lock,
852                                                 (dll_lock &
853                                                 (CORE_DLL_LOCK |
854                                                 CORE_DDR_DLL_LOCK)), 10,
855                                                 1000);
856                 if (rc == -ETIMEDOUT)
857                         pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
858                                mmc_hostname(host->mmc), dll_lock);
859         }
860         /*
861          * Make sure above writes impacting free running MCLK are completed
862          * before changing the clk_rate at GCC.
863          */
864         wmb();
865 }
866
867 /*
868  * sdhci_msm_hc_select_mode :- In general all timing modes are
869  * controlled via UHS mode select in Host Control2 register.
870  * eMMC specific HS200/HS400 doesn't have their respective modes
871  * defined here, hence we use these values.
872  *
873  * HS200 - SDR104 (Since they both are equivalent in functionality)
874  * HS400 - This involves multiple configurations
875  *              Initially SDR104 - when tuning is required as HS200
876  *              Then when switching to DDR @ 400MHz (HS400) we use
877  *              the vendor specific HC_SELECT_IN to control the mode.
878  *
879  * In addition to controlling the modes we also need to select the
880  * correct input clock for DLL depending on the mode.
881  *
882  * HS400 - divided clock (free running MCLK/2)
883  * All other modes - default (free running MCLK)
884  */
885 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
886 {
887         struct mmc_ios ios = host->mmc->ios;
888
889         if (ios.timing == MMC_TIMING_MMC_HS400 ||
890             host->flags & SDHCI_HS400_TUNING)
891                 msm_hc_select_hs400(host);
892         else
893                 msm_hc_select_default(host);
894 }
895
896 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
897 {
898         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
899         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
900         u32 config, calib_done;
901         int ret;
902         const struct sdhci_msm_offset *msm_offset =
903                                         msm_host->offset;
904
905         pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
906
907         /*
908          * Retuning in HS400 (DDR mode) will fail, just reset the
909          * tuning block and restore the saved tuning phase.
910          */
911         ret = msm_init_cm_dll(host);
912         if (ret)
913                 goto out;
914
915         /* Set the selected phase in delay line hw block */
916         ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
917         if (ret)
918                 goto out;
919
920         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
921         config |= CORE_CMD_DAT_TRACK_SEL;
922         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
923
924         config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
925         config &= ~CORE_CDC_T4_DLY_SEL;
926         writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
927
928         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
929         config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
930         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931
932         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933         config |= CORE_CDC_SWITCH_RC_EN;
934         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935
936         config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
937         config &= ~CORE_START_CDC_TRAFFIC;
938         writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
939
940         /* Perform CDC Register Initialization Sequence */
941
942         writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
943         writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
944         writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
945         writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
946         writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
947         writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
948         writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
949         writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
950         writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
951
952         /* CDC HW Calibration */
953
954         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
955         config |= CORE_SW_TRIG_FULL_CALIB;
956         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957
958         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959         config &= ~CORE_SW_TRIG_FULL_CALIB;
960         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961
962         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963         config |= CORE_HW_AUTOCAL_ENA;
964         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965
966         config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
967         config |= CORE_TIMER_ENA;
968         writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969
970         ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
971                                          calib_done,
972                                          (calib_done & CORE_CALIBRATION_DONE),
973                                          1, 50);
974
975         if (ret == -ETIMEDOUT) {
976                 pr_err("%s: %s: CDC calibration was not completed\n",
977                        mmc_hostname(host->mmc), __func__);
978                 goto out;
979         }
980
981         ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
982                         & CORE_CDC_ERROR_CODE_MASK;
983         if (ret) {
984                 pr_err("%s: %s: CDC error code %d\n",
985                        mmc_hostname(host->mmc), __func__, ret);
986                 ret = -EINVAL;
987                 goto out;
988         }
989
990         config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
991         config |= CORE_START_CDC_TRAFFIC;
992         writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
993 out:
994         pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
995                  __func__, ret);
996         return ret;
997 }
998
999 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1000 {
1001         struct mmc_host *mmc = host->mmc;
1002         u32 dll_status, config, ddr_cfg_offset;
1003         int ret;
1004         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1005         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1006         const struct sdhci_msm_offset *msm_offset =
1007                                         sdhci_priv_msm_offset(host);
1008
1009         pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1010
1011         /*
1012          * Currently the core_ddr_config register defaults to desired
1013          * configuration on reset. Currently reprogramming the power on
1014          * reset (POR) value in case it might have been modified by
1015          * bootloaders. In the future, if this changes, then the desired
1016          * values will need to be programmed appropriately.
1017          */
1018         if (msm_host->updated_ddr_cfg)
1019                 ddr_cfg_offset = msm_offset->core_ddr_config;
1020         else
1021                 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1022         writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1023
1024         if (mmc->ios.enhanced_strobe) {
1025                 config = readl_relaxed(host->ioaddr +
1026                                 msm_offset->core_ddr_200_cfg);
1027                 config |= CORE_CMDIN_RCLK_EN;
1028                 writel_relaxed(config, host->ioaddr +
1029                                 msm_offset->core_ddr_200_cfg);
1030         }
1031
1032         config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1033         config |= CORE_DDR_CAL_EN;
1034         writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1035
1036         ret = readl_relaxed_poll_timeout(host->ioaddr +
1037                                         msm_offset->core_dll_status,
1038                                         dll_status,
1039                                         (dll_status & CORE_DDR_DLL_LOCK),
1040                                         10, 1000);
1041
1042         if (ret == -ETIMEDOUT) {
1043                 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1044                        mmc_hostname(host->mmc), __func__);
1045                 goto out;
1046         }
1047
1048         /*
1049          * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1050          * When MCLK is gated OFF, it is not gated for less than 0.5us
1051          * and MCLK must be switched on for at-least 1us before DATA
1052          * starts coming. Controllers with 14lpp and later tech DLL cannot
1053          * guarantee above requirement. So PWRSAVE_DLL should not be
1054          * turned on for host controllers using this DLL.
1055          */
1056         if (!msm_host->use_14lpp_dll_reset) {
1057                 config = readl_relaxed(host->ioaddr +
1058                                 msm_offset->core_vendor_spec3);
1059                 config |= CORE_PWRSAVE_DLL;
1060                 writel_relaxed(config, host->ioaddr +
1061                                 msm_offset->core_vendor_spec3);
1062         }
1063
1064         /*
1065          * Drain writebuffer to ensure above DLL calibration
1066          * and PWRSAVE DLL is enabled.
1067          */
1068         wmb();
1069 out:
1070         pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1071                  __func__, ret);
1072         return ret;
1073 }
1074
1075 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1076 {
1077         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1078         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1079         struct mmc_host *mmc = host->mmc;
1080         int ret;
1081         u32 config;
1082         const struct sdhci_msm_offset *msm_offset =
1083                                         msm_host->offset;
1084
1085         pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1086
1087         /*
1088          * Retuning in HS400 (DDR mode) will fail, just reset the
1089          * tuning block and restore the saved tuning phase.
1090          */
1091         ret = msm_init_cm_dll(host);
1092         if (ret)
1093                 goto out;
1094
1095         if (!mmc->ios.enhanced_strobe) {
1096                 /* Set the selected phase in delay line hw block */
1097                 ret = msm_config_cm_dll_phase(host,
1098                                               msm_host->saved_tuning_phase);
1099                 if (ret)
1100                         goto out;
1101                 config = readl_relaxed(host->ioaddr +
1102                                 msm_offset->core_dll_config);
1103                 config |= CORE_CMD_DAT_TRACK_SEL;
1104                 writel_relaxed(config, host->ioaddr +
1105                                 msm_offset->core_dll_config);
1106         }
1107
1108         if (msm_host->use_cdclp533)
1109                 ret = sdhci_msm_cdclp533_calibration(host);
1110         else
1111                 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1112 out:
1113         pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1114                  __func__, ret);
1115         return ret;
1116 }
1117
1118 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1119 {
1120         struct mmc_ios *ios = &host->mmc->ios;
1121
1122         /*
1123          * Tuning is required for SDR104, HS200 and HS400 cards and
1124          * if clock frequency is greater than 100MHz in these modes.
1125          */
1126         if (host->clock <= CORE_FREQ_100MHZ ||
1127             !(ios->timing == MMC_TIMING_MMC_HS400 ||
1128             ios->timing == MMC_TIMING_MMC_HS200 ||
1129             ios->timing == MMC_TIMING_UHS_SDR104) ||
1130             ios->enhanced_strobe)
1131                 return false;
1132
1133         return true;
1134 }
1135
1136 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1137 {
1138         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1139         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1140         int ret;
1141
1142         /*
1143          * SDR DLL comes into picture only for timing modes which needs
1144          * tuning.
1145          */
1146         if (!sdhci_msm_is_tuning_needed(host))
1147                 return 0;
1148
1149         /* Reset the tuning block */
1150         ret = msm_init_cm_dll(host);
1151         if (ret)
1152                 return ret;
1153
1154         /* Restore the tuning block */
1155         ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1156
1157         return ret;
1158 }
1159
1160 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1161 {
1162         const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1163         u32 config, oldconfig = readl_relaxed(host->ioaddr +
1164                                               msm_offset->core_dll_config);
1165
1166         config = oldconfig;
1167         if (enable) {
1168                 config |= CORE_CDR_EN;
1169                 config &= ~CORE_CDR_EXT_EN;
1170         } else {
1171                 config &= ~CORE_CDR_EN;
1172                 config |= CORE_CDR_EXT_EN;
1173         }
1174
1175         if (config != oldconfig) {
1176                 writel_relaxed(config, host->ioaddr +
1177                                msm_offset->core_dll_config);
1178         }
1179 }
1180
1181 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1182 {
1183         struct sdhci_host *host = mmc_priv(mmc);
1184         int tuning_seq_cnt = 10;
1185         u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1186         int rc;
1187         struct mmc_ios ios = host->mmc->ios;
1188         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1189         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1190
1191         if (!sdhci_msm_is_tuning_needed(host)) {
1192                 msm_host->use_cdr = false;
1193                 sdhci_msm_set_cdr(host, false);
1194                 return 0;
1195         }
1196
1197         /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1198         msm_host->use_cdr = true;
1199
1200         /*
1201          * Clear tuning_done flag before tuning to ensure proper
1202          * HS400 settings.
1203          */
1204         msm_host->tuning_done = 0;
1205
1206         /*
1207          * For HS400 tuning in HS200 timing requires:
1208          * - select MCLK/2 in VENDOR_SPEC
1209          * - program MCLK to 400MHz (or nearest supported) in GCC
1210          */
1211         if (host->flags & SDHCI_HS400_TUNING) {
1212                 sdhci_msm_hc_select_mode(host);
1213                 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1214                 host->flags &= ~SDHCI_HS400_TUNING;
1215         }
1216
1217 retry:
1218         /* First of all reset the tuning block */
1219         rc = msm_init_cm_dll(host);
1220         if (rc)
1221                 return rc;
1222
1223         phase = 0;
1224         do {
1225                 /* Set the phase in delay line hw block */
1226                 rc = msm_config_cm_dll_phase(host, phase);
1227                 if (rc)
1228                         return rc;
1229
1230                 rc = mmc_send_tuning(mmc, opcode, NULL);
1231                 if (!rc) {
1232                         /* Tuning is successful at this tuning point */
1233                         tuned_phases[tuned_phase_cnt++] = phase;
1234                         dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1235                                  mmc_hostname(mmc), phase);
1236                 }
1237         } while (++phase < ARRAY_SIZE(tuned_phases));
1238
1239         if (tuned_phase_cnt) {
1240                 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1241                         /*
1242                          * All phases valid is _almost_ as bad as no phases
1243                          * valid.  Probably all phases are not really reliable
1244                          * but we didn't detect where the unreliable place is.
1245                          * That means we'll essentially be guessing and hoping
1246                          * we get a good phase.  Better to try a few times.
1247                          */
1248                         dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1249                                 mmc_hostname(mmc));
1250                         if (--tuning_seq_cnt) {
1251                                 tuned_phase_cnt = 0;
1252                                 goto retry;
1253                         }
1254                 }
1255
1256                 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1257                                                      tuned_phase_cnt);
1258                 if (rc < 0)
1259                         return rc;
1260                 else
1261                         phase = rc;
1262
1263                 /*
1264                  * Finally set the selected phase in delay
1265                  * line hw block.
1266                  */
1267                 rc = msm_config_cm_dll_phase(host, phase);
1268                 if (rc)
1269                         return rc;
1270                 msm_host->saved_tuning_phase = phase;
1271                 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1272                          mmc_hostname(mmc), phase);
1273         } else {
1274                 if (--tuning_seq_cnt)
1275                         goto retry;
1276                 /* Tuning failed */
1277                 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1278                        mmc_hostname(mmc));
1279                 rc = -EIO;
1280         }
1281
1282         if (!rc)
1283                 msm_host->tuning_done = true;
1284         return rc;
1285 }
1286
1287 /*
1288  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1289  * This needs to be done for both tuning and enhanced_strobe mode.
1290  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1291  * fixed feedback clock is used.
1292  */
1293 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1294 {
1295         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1296         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1297         int ret;
1298
1299         if (host->clock > CORE_FREQ_100MHZ &&
1300             (msm_host->tuning_done || ios->enhanced_strobe) &&
1301             !msm_host->calibration_done) {
1302                 ret = sdhci_msm_hs400_dll_calibration(host);
1303                 if (!ret)
1304                         msm_host->calibration_done = true;
1305                 else
1306                         pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1307                                mmc_hostname(host->mmc), ret);
1308         }
1309 }
1310
1311 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1312                                         unsigned int uhs)
1313 {
1314         struct mmc_host *mmc = host->mmc;
1315         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1316         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1317         u16 ctrl_2;
1318         u32 config;
1319         const struct sdhci_msm_offset *msm_offset =
1320                                         msm_host->offset;
1321
1322         ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1323         /* Select Bus Speed Mode for host */
1324         ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1325         switch (uhs) {
1326         case MMC_TIMING_UHS_SDR12:
1327                 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1328                 break;
1329         case MMC_TIMING_UHS_SDR25:
1330                 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1331                 break;
1332         case MMC_TIMING_UHS_SDR50:
1333                 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1334                 break;
1335         case MMC_TIMING_MMC_HS400:
1336         case MMC_TIMING_MMC_HS200:
1337         case MMC_TIMING_UHS_SDR104:
1338                 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1339                 break;
1340         case MMC_TIMING_UHS_DDR50:
1341         case MMC_TIMING_MMC_DDR52:
1342                 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1343                 break;
1344         }
1345
1346         /*
1347          * When clock frequency is less than 100MHz, the feedback clock must be
1348          * provided and DLL must not be used so that tuning can be skipped. To
1349          * provide feedback clock, the mode selection can be any value less
1350          * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1351          */
1352         if (host->clock <= CORE_FREQ_100MHZ) {
1353                 if (uhs == MMC_TIMING_MMC_HS400 ||
1354                     uhs == MMC_TIMING_MMC_HS200 ||
1355                     uhs == MMC_TIMING_UHS_SDR104)
1356                         ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1357                 /*
1358                  * DLL is not required for clock <= 100MHz
1359                  * Thus, make sure DLL it is disabled when not required
1360                  */
1361                 config = readl_relaxed(host->ioaddr +
1362                                 msm_offset->core_dll_config);
1363                 config |= CORE_DLL_RST;
1364                 writel_relaxed(config, host->ioaddr +
1365                                 msm_offset->core_dll_config);
1366
1367                 config = readl_relaxed(host->ioaddr +
1368                                 msm_offset->core_dll_config);
1369                 config |= CORE_DLL_PDN;
1370                 writel_relaxed(config, host->ioaddr +
1371                                 msm_offset->core_dll_config);
1372
1373                 /*
1374                  * The DLL needs to be restored and CDCLP533 recalibrated
1375                  * when the clock frequency is set back to 400MHz.
1376                  */
1377                 msm_host->calibration_done = false;
1378         }
1379
1380         dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1381                 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1382         sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1383
1384         if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1385                 sdhci_msm_hs400(host, &mmc->ios);
1386 }
1387
1388 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1389 {
1390         struct platform_device *pdev = msm_host->pdev;
1391         int ret;
1392
1393         if (level)
1394                 ret = pinctrl_pm_select_default_state(&pdev->dev);
1395         else
1396                 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1397
1398         return ret;
1399 }
1400
1401 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1402 {
1403         if (IS_ERR(mmc->supply.vmmc))
1404                 return 0;
1405
1406         return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1407 }
1408
1409 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1410                               struct mmc_host *mmc, bool level)
1411 {
1412         int ret;
1413         struct mmc_ios ios;
1414
1415         if (msm_host->vqmmc_enabled == level)
1416                 return 0;
1417
1418         if (level) {
1419                 /* Set the IO voltage regulator to default voltage level */
1420                 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1421                         ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1422                 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1423                         ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1424
1425                 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1426                         ret = mmc_regulator_set_vqmmc(mmc, &ios);
1427                         if (ret < 0) {
1428                                 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1429                                         mmc_hostname(mmc), ret);
1430                                 goto out;
1431                         }
1432                 }
1433                 ret = regulator_enable(mmc->supply.vqmmc);
1434         } else {
1435                 ret = regulator_disable(mmc->supply.vqmmc);
1436         }
1437
1438         if (ret)
1439                 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1440                         mmc_hostname(mmc), level ? "en":"dis", ret);
1441         else
1442                 msm_host->vqmmc_enabled = level;
1443 out:
1444         return ret;
1445 }
1446
1447 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1448                               struct mmc_host *mmc, bool hpm)
1449 {
1450         int load, ret;
1451
1452         load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1453         ret = regulator_set_load(mmc->supply.vqmmc, load);
1454         if (ret)
1455                 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1456                         mmc_hostname(mmc), ret);
1457         return ret;
1458 }
1459
1460 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1461                               struct mmc_host *mmc, bool level)
1462 {
1463         int ret;
1464         bool always_on;
1465
1466         if (IS_ERR(mmc->supply.vqmmc) ||
1467                         (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1468                 return 0;
1469         /*
1470          * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1471          * and HPM modes by setting the corresponding load.
1472          *
1473          * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1474          * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1475          * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1476          * Vqmmc should remain ON, So just set the load instead of turning it
1477          * off/on.
1478          */
1479         always_on = !mmc_card_is_removable(mmc) &&
1480                         mmc->card && mmc_card_mmc(mmc->card);
1481
1482         if (always_on)
1483                 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1484         else
1485                 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1486
1487         return ret;
1488 }
1489
1490 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1491 {
1492         init_waitqueue_head(&msm_host->pwr_irq_wait);
1493 }
1494
1495 static inline void sdhci_msm_complete_pwr_irq_wait(
1496                 struct sdhci_msm_host *msm_host)
1497 {
1498         wake_up(&msm_host->pwr_irq_wait);
1499 }
1500
1501 /*
1502  * sdhci_msm_check_power_status API should be called when registers writes
1503  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1504  * To what state the register writes will change the IO lines should be passed
1505  * as the argument req_type. This API will check whether the IO line's state
1506  * is already the expected state and will wait for power irq only if
1507  * power irq is expected to be triggered based on the current IO line state
1508  * and expected IO line state.
1509  */
1510 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1511 {
1512         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514         bool done = false;
1515         u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1516         const struct sdhci_msm_offset *msm_offset =
1517                                         msm_host->offset;
1518
1519         pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1520                         mmc_hostname(host->mmc), __func__, req_type,
1521                         msm_host->curr_pwr_state, msm_host->curr_io_level);
1522
1523         /*
1524          * The power interrupt will not be generated for signal voltage
1525          * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1526          * Since sdhci-msm-v5, this bit has been removed and SW must consider
1527          * it as always set.
1528          */
1529         if (!msm_host->mci_removed)
1530                 val = msm_host_readl(msm_host, host,
1531                                 msm_offset->core_generics);
1532         if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1533             !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1534                 return;
1535         }
1536
1537         /*
1538          * The IRQ for request type IO High/LOW will be generated when -
1539          * there is a state change in 1.8V enable bit (bit 3) of
1540          * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1541          * which indicates 3.3V IO voltage. So, when MMC core layer tries
1542          * to set it to 3.3V before card detection happens, the
1543          * IRQ doesn't get triggered as there is no state change in this bit.
1544          * The driver already handles this case by changing the IO voltage
1545          * level to high as part of controller power up sequence. Hence, check
1546          * for host->pwr to handle a case where IO voltage high request is
1547          * issued even before controller power up.
1548          */
1549         if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1550                 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1551                                 mmc_hostname(host->mmc), req_type);
1552                 return;
1553         }
1554         if ((req_type & msm_host->curr_pwr_state) ||
1555                         (req_type & msm_host->curr_io_level))
1556                 done = true;
1557         /*
1558          * This is needed here to handle cases where register writes will
1559          * not change the current bus state or io level of the controller.
1560          * In this case, no power irq will be triggerred and we should
1561          * not wait.
1562          */
1563         if (!done) {
1564                 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1565                                 msm_host->pwr_irq_flag,
1566                                 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1567                         dev_warn(&msm_host->pdev->dev,
1568                                  "%s: pwr_irq for req: (%d) timed out\n",
1569                                  mmc_hostname(host->mmc), req_type);
1570         }
1571         pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1572                         __func__, req_type);
1573 }
1574
1575 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1576 {
1577         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1578         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1579         const struct sdhci_msm_offset *msm_offset =
1580                                         msm_host->offset;
1581
1582         pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1583                 mmc_hostname(host->mmc),
1584                 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1585                 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1586                 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1587 }
1588
1589 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1590 {
1591         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1592         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1593         struct mmc_host *mmc = host->mmc;
1594         u32 irq_status, irq_ack = 0;
1595         int retry = 10, ret;
1596         u32 pwr_state = 0, io_level = 0;
1597         u32 config;
1598         const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1599
1600         irq_status = msm_host_readl(msm_host, host,
1601                         msm_offset->core_pwrctl_status);
1602         irq_status &= INT_MASK;
1603
1604         msm_host_writel(msm_host, irq_status, host,
1605                         msm_offset->core_pwrctl_clear);
1606
1607         /*
1608          * There is a rare HW scenario where the first clear pulse could be
1609          * lost when actual reset and clear/read of status register is
1610          * happening at a time. Hence, retry for at least 10 times to make
1611          * sure status register is cleared. Otherwise, this will result in
1612          * a spurious power IRQ resulting in system instability.
1613          */
1614         while (irq_status & msm_host_readl(msm_host, host,
1615                                 msm_offset->core_pwrctl_status)) {
1616                 if (retry == 0) {
1617                         pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1618                                         mmc_hostname(host->mmc), irq_status);
1619                         sdhci_msm_dump_pwr_ctrl_regs(host);
1620                         WARN_ON(1);
1621                         break;
1622                 }
1623                 msm_host_writel(msm_host, irq_status, host,
1624                         msm_offset->core_pwrctl_clear);
1625                 retry--;
1626                 udelay(10);
1627         }
1628
1629         /* Handle BUS ON/OFF*/
1630         if (irq_status & CORE_PWRCTL_BUS_ON) {
1631                 pwr_state = REQ_BUS_ON;
1632                 io_level = REQ_IO_HIGH;
1633         }
1634         if (irq_status & CORE_PWRCTL_BUS_OFF) {
1635                 pwr_state = REQ_BUS_OFF;
1636                 io_level = REQ_IO_LOW;
1637         }
1638
1639         if (pwr_state) {
1640                 ret = sdhci_msm_set_vmmc(mmc);
1641                 if (!ret)
1642                         ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1643                                         pwr_state & REQ_BUS_ON);
1644                 if (!ret)
1645                         ret = sdhci_msm_set_pincfg(msm_host,
1646                                         pwr_state & REQ_BUS_ON);
1647                 if (!ret)
1648                         irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1649                 else
1650                         irq_ack |= CORE_PWRCTL_BUS_FAIL;
1651         }
1652
1653         /* Handle IO LOW/HIGH */
1654         if (irq_status & CORE_PWRCTL_IO_LOW)
1655                 io_level = REQ_IO_LOW;
1656
1657         if (irq_status & CORE_PWRCTL_IO_HIGH)
1658                 io_level = REQ_IO_HIGH;
1659
1660         if (io_level)
1661                 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1662
1663         if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1664                 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1665                 if (ret < 0) {
1666                         dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1667                                         mmc_hostname(mmc), ret,
1668                                         mmc->ios.signal_voltage, mmc->ios.vdd,
1669                                         irq_status);
1670                         irq_ack |= CORE_PWRCTL_IO_FAIL;
1671                 }
1672         }
1673
1674         /*
1675          * The driver has to acknowledge the interrupt, switch voltages and
1676          * report back if it succeded or not to this register. The voltage
1677          * switches are handled by the sdhci core, so just report success.
1678          */
1679         msm_host_writel(msm_host, irq_ack, host,
1680                         msm_offset->core_pwrctl_ctl);
1681
1682         /*
1683          * If we don't have info regarding the voltage levels supported by
1684          * regulators, don't change the IO PAD PWR SWITCH.
1685          */
1686         if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1687                 u32 new_config;
1688                 /*
1689                  * We should unset IO PAD PWR switch only if the register write
1690                  * can set IO lines high and the regulator also switches to 3 V.
1691                  * Else, we should keep the IO PAD PWR switch set.
1692                  * This is applicable to certain targets where eMMC vccq supply
1693                  * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1694                  * IO PAD PWR switch must be kept set to reflect actual
1695                  * regulator voltage. This way, during initialization of
1696                  * controllers with only 1.8V, we will set the IO PAD bit
1697                  * without waiting for a REQ_IO_LOW.
1698                  */
1699                 config = readl_relaxed(host->ioaddr +
1700                                 msm_offset->core_vendor_spec);
1701                 new_config = config;
1702
1703                 if ((io_level & REQ_IO_HIGH) &&
1704                                 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1705                         new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1706                 else if ((io_level & REQ_IO_LOW) ||
1707                                 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1708                         new_config |= CORE_IO_PAD_PWR_SWITCH;
1709
1710                 if (config ^ new_config)
1711                         writel_relaxed(new_config, host->ioaddr +
1712                                         msm_offset->core_vendor_spec);
1713         }
1714
1715         if (pwr_state)
1716                 msm_host->curr_pwr_state = pwr_state;
1717         if (io_level)
1718                 msm_host->curr_io_level = io_level;
1719
1720         dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1721                 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1722                 irq_ack);
1723 }
1724
1725 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1726 {
1727         struct sdhci_host *host = (struct sdhci_host *)data;
1728         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1729         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1730
1731         sdhci_msm_handle_pwr_irq(host, irq);
1732         msm_host->pwr_irq_flag = 1;
1733         sdhci_msm_complete_pwr_irq_wait(msm_host);
1734
1735
1736         return IRQ_HANDLED;
1737 }
1738
1739 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1740 {
1741         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1742         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1743         struct clk *core_clk = msm_host->bulk_clks[0].clk;
1744
1745         return clk_round_rate(core_clk, ULONG_MAX);
1746 }
1747
1748 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1749 {
1750         return SDHCI_MSM_MIN_CLOCK;
1751 }
1752
1753 /*
1754  * __sdhci_msm_set_clock - sdhci_msm clock control.
1755  *
1756  * Description:
1757  * MSM controller does not use internal divider and
1758  * instead directly control the GCC clock as per
1759  * HW recommendation.
1760  **/
1761 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1762 {
1763         u16 clk;
1764
1765         sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1766
1767         if (clock == 0)
1768                 return;
1769
1770         /*
1771          * MSM controller do not use clock divider.
1772          * Thus read SDHCI_CLOCK_CONTROL and only enable
1773          * clock with no divider value programmed.
1774          */
1775         clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1776         sdhci_enable_clk(host, clk);
1777 }
1778
1779 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1780 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1781 {
1782         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784
1785         if (!clock) {
1786                 host->mmc->actual_clock = msm_host->clk_rate = 0;
1787                 goto out;
1788         }
1789
1790         sdhci_msm_hc_select_mode(host);
1791
1792         msm_set_clock_rate_for_bus_mode(host, clock);
1793 out:
1794         __sdhci_msm_set_clock(host, clock);
1795 }
1796
1797 /*****************************************************************************\
1798  *                                                                           *
1799  * Inline Crypto Engine (ICE) support                                        *
1800  *                                                                           *
1801 \*****************************************************************************/
1802
1803 #ifdef CONFIG_MMC_CRYPTO
1804
1805 #define AES_256_XTS_KEY_SIZE                    64
1806
1807 /* QCOM ICE registers */
1808
1809 #define QCOM_ICE_REG_VERSION                    0x0008
1810
1811 #define QCOM_ICE_REG_FUSE_SETTING               0x0010
1812 #define QCOM_ICE_FUSE_SETTING_MASK              0x1
1813 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK     0x2
1814 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK     0x4
1815
1816 #define QCOM_ICE_REG_BIST_STATUS                0x0070
1817 #define QCOM_ICE_BIST_STATUS_MASK               0xF0000000
1818
1819 #define QCOM_ICE_REG_ADVANCED_CONTROL           0x1000
1820
1821 #define sdhci_msm_ice_writel(host, val, reg)    \
1822         writel((val), (host)->ice_mem + (reg))
1823 #define sdhci_msm_ice_readl(host, reg)  \
1824         readl((host)->ice_mem + (reg))
1825
1826 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1827 {
1828         struct device *dev = mmc_dev(msm_host->mmc);
1829         u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1830         int major = regval >> 24;
1831         int minor = (regval >> 16) & 0xFF;
1832         int step = regval & 0xFFFF;
1833
1834         /* For now this driver only supports ICE version 3. */
1835         if (major != 3) {
1836                 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1837                          major, minor, step);
1838                 return false;
1839         }
1840
1841         dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1842                  major, minor, step);
1843
1844         /* If fuses are blown, ICE might not work in the standard way. */
1845         regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1846         if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1847                       QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1848                       QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1849                 dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1850                 return false;
1851         }
1852         return true;
1853 }
1854
1855 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1856 {
1857         return devm_clk_get(dev, "ice");
1858 }
1859
1860 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1861                               struct cqhci_host *cq_host)
1862 {
1863         struct mmc_host *mmc = msm_host->mmc;
1864         struct device *dev = mmc_dev(mmc);
1865         struct resource *res;
1866
1867         if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1868                 return 0;
1869
1870         res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1871                                            "ice");
1872         if (!res) {
1873                 dev_warn(dev, "ICE registers not found\n");
1874                 goto disable;
1875         }
1876
1877         if (!qcom_scm_ice_available()) {
1878                 dev_warn(dev, "ICE SCM interface not found\n");
1879                 goto disable;
1880         }
1881
1882         msm_host->ice_mem = devm_ioremap_resource(dev, res);
1883         if (IS_ERR(msm_host->ice_mem))
1884                 return PTR_ERR(msm_host->ice_mem);
1885
1886         if (!sdhci_msm_ice_supported(msm_host))
1887                 goto disable;
1888
1889         mmc->caps2 |= MMC_CAP2_CRYPTO;
1890         return 0;
1891
1892 disable:
1893         dev_warn(dev, "Disabling inline encryption support\n");
1894         return 0;
1895 }
1896
1897 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1898 {
1899         u32 regval;
1900
1901         regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1902         /*
1903          * Enable low power mode sequence
1904          * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1905          */
1906         regval |= 0x7000;
1907         sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1908 }
1909
1910 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1911 {
1912         u32 regval;
1913
1914         /* ICE Optimizations Enable Sequence */
1915         regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1916         regval |= 0xD807100;
1917         /* ICE HPG requires delay before writing */
1918         udelay(5);
1919         sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1920         udelay(5);
1921 }
1922
1923 /*
1924  * Wait until the ICE BIST (built-in self-test) has completed.
1925  *
1926  * This may be necessary before ICE can be used.
1927  *
1928  * Note that we don't really care whether the BIST passed or failed; we really
1929  * just want to make sure that it isn't still running.  This is because (a) the
1930  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1931  * documented to reject crypto requests if the BIST fails, so we needn't do it
1932  * in software too, and (c) properly testing storage encryption requires testing
1933  * the full storage stack anyway, and not relying on hardware-level self-tests.
1934  */
1935 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1936 {
1937         u32 regval;
1938         int err;
1939
1940         err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1941                                  regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1942                                  50, 5000);
1943         if (err)
1944                 dev_err(mmc_dev(msm_host->mmc),
1945                         "Timed out waiting for ICE self-test to complete\n");
1946         return err;
1947 }
1948
1949 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1950 {
1951         if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1952                 return;
1953         sdhci_msm_ice_low_power_mode_enable(msm_host);
1954         sdhci_msm_ice_optimization_enable(msm_host);
1955         sdhci_msm_ice_wait_bist_status(msm_host);
1956 }
1957
1958 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1959 {
1960         if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1961                 return 0;
1962         return sdhci_msm_ice_wait_bist_status(msm_host);
1963 }
1964
1965 /*
1966  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1967  * vendor-specific SCM calls for this; it doesn't support the standard way.
1968  */
1969 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1970                                  const union cqhci_crypto_cfg_entry *cfg,
1971                                  int slot)
1972 {
1973         struct device *dev = mmc_dev(cq_host->mmc);
1974         union cqhci_crypto_cap_entry cap;
1975         union {
1976                 u8 bytes[AES_256_XTS_KEY_SIZE];
1977                 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1978         } key;
1979         int i;
1980         int err;
1981
1982         if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1983                 return qcom_scm_ice_invalidate_key(slot);
1984
1985         /* Only AES-256-XTS has been tested so far. */
1986         cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1987         if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1988             cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1989                 dev_err_ratelimited(dev,
1990                                     "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1991                                     cap.algorithm_id, cap.key_size);
1992                 return -EINVAL;
1993         }
1994
1995         memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1996
1997         /*
1998          * The SCM call byte-swaps the 32-bit words of the key.  So we have to
1999          * do the same, in order for the final key be correct.
2000          */
2001         for (i = 0; i < ARRAY_SIZE(key.words); i++)
2002                 __cpu_to_be32s(&key.words[i]);
2003
2004         err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2005                                    QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2006                                    cfg->data_unit_size);
2007         memzero_explicit(&key, sizeof(key));
2008         return err;
2009 }
2010 #else /* CONFIG_MMC_CRYPTO */
2011 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2012 {
2013         return NULL;
2014 }
2015
2016 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2017                                      struct cqhci_host *cq_host)
2018 {
2019         return 0;
2020 }
2021
2022 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2023 {
2024 }
2025
2026 static inline int __maybe_unused
2027 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2028 {
2029         return 0;
2030 }
2031 #endif /* !CONFIG_MMC_CRYPTO */
2032
2033 /*****************************************************************************\
2034  *                                                                           *
2035  * MSM Command Queue Engine (CQE)                                            *
2036  *                                                                           *
2037 \*****************************************************************************/
2038
2039 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2040 {
2041         int cmd_error = 0;
2042         int data_error = 0;
2043
2044         if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2045                 return intmask;
2046
2047         cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2048         return 0;
2049 }
2050
2051 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2052 {
2053         struct sdhci_host *host = mmc_priv(mmc);
2054         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2055         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2056
2057         sdhci_cqe_enable(mmc);
2058         sdhci_msm_ice_enable(msm_host);
2059 }
2060
2061 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2062 {
2063         struct sdhci_host *host = mmc_priv(mmc);
2064         unsigned long flags;
2065         u32 ctrl;
2066
2067         /*
2068          * When CQE is halted, the legacy SDHCI path operates only
2069          * on 16-byte descriptors in 64bit mode.
2070          */
2071         if (host->flags & SDHCI_USE_64_BIT_DMA)
2072                 host->desc_sz = 16;
2073
2074         spin_lock_irqsave(&host->lock, flags);
2075
2076         /*
2077          * During CQE command transfers, command complete bit gets latched.
2078          * So s/w should clear command complete interrupt status when CQE is
2079          * either halted or disabled. Otherwise unexpected SDCHI legacy
2080          * interrupt gets triggered when CQE is halted/disabled.
2081          */
2082         ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2083         ctrl |= SDHCI_INT_RESPONSE;
2084         sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2085         sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2086
2087         spin_unlock_irqrestore(&host->lock, flags);
2088
2089         sdhci_cqe_disable(mmc, recovery);
2090 }
2091
2092 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2093         .enable         = sdhci_msm_cqe_enable,
2094         .disable        = sdhci_msm_cqe_disable,
2095 #ifdef CONFIG_MMC_CRYPTO
2096         .program_key    = sdhci_msm_program_key,
2097 #endif
2098 };
2099
2100 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2101                                 struct platform_device *pdev)
2102 {
2103         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2104         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2105         struct cqhci_host *cq_host;
2106         bool dma64;
2107         u32 cqcfg;
2108         int ret;
2109
2110         /*
2111          * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2112          * So ensure ADMA table is allocated for 16byte descriptors.
2113          */
2114         if (host->caps & SDHCI_CAN_64BIT)
2115                 host->alloc_desc_sz = 16;
2116
2117         ret = sdhci_setup_host(host);
2118         if (ret)
2119                 return ret;
2120
2121         cq_host = cqhci_pltfm_init(pdev);
2122         if (IS_ERR(cq_host)) {
2123                 ret = PTR_ERR(cq_host);
2124                 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2125                 goto cleanup;
2126         }
2127
2128         msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2129         cq_host->ops = &sdhci_msm_cqhci_ops;
2130
2131         dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2132
2133         ret = sdhci_msm_ice_init(msm_host, cq_host);
2134         if (ret)
2135                 goto cleanup;
2136
2137         ret = cqhci_init(cq_host, host->mmc, dma64);
2138         if (ret) {
2139                 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2140                                 mmc_hostname(host->mmc), ret);
2141                 goto cleanup;
2142         }
2143
2144         /* Disable cqe reset due to cqe enable signal */
2145         cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2146         cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2147         cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2148
2149         /*
2150          * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2151          * So limit desc_sz to 12 so that the data commands that are sent
2152          * during card initialization (before CQE gets enabled) would
2153          * get executed without any issues.
2154          */
2155         if (host->flags & SDHCI_USE_64_BIT_DMA)
2156                 host->desc_sz = 12;
2157
2158         ret = __sdhci_add_host(host);
2159         if (ret)
2160                 goto cleanup;
2161
2162         dev_info(&pdev->dev, "%s: CQE init: success\n",
2163                         mmc_hostname(host->mmc));
2164         return ret;
2165
2166 cleanup:
2167         sdhci_cleanup_host(host);
2168         return ret;
2169 }
2170
2171 /*
2172  * Platform specific register write functions. This is so that, if any
2173  * register write needs to be followed up by platform specific actions,
2174  * they can be added here. These functions can go to sleep when writes
2175  * to certain registers are done.
2176  * These functions are relying on sdhci_set_ios not using spinlock.
2177  */
2178 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2179 {
2180         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2181         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2182         u32 req_type = 0;
2183
2184         switch (reg) {
2185         case SDHCI_HOST_CONTROL2:
2186                 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2187                         REQ_IO_HIGH;
2188                 break;
2189         case SDHCI_SOFTWARE_RESET:
2190                 if (host->pwr && (val & SDHCI_RESET_ALL))
2191                         req_type = REQ_BUS_OFF;
2192                 break;
2193         case SDHCI_POWER_CONTROL:
2194                 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2195                 break;
2196         case SDHCI_TRANSFER_MODE:
2197                 msm_host->transfer_mode = val;
2198                 break;
2199         case SDHCI_COMMAND:
2200                 if (!msm_host->use_cdr)
2201                         break;
2202                 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2203                     SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2204                     SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2205                         sdhci_msm_set_cdr(host, true);
2206                 else
2207                         sdhci_msm_set_cdr(host, false);
2208                 break;
2209         }
2210
2211         if (req_type) {
2212                 msm_host->pwr_irq_flag = 0;
2213                 /*
2214                  * Since this register write may trigger a power irq, ensure
2215                  * all previous register writes are complete by this point.
2216                  */
2217                 mb();
2218         }
2219         return req_type;
2220 }
2221
2222 /* This function may sleep*/
2223 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2224 {
2225         u32 req_type = 0;
2226
2227         req_type = __sdhci_msm_check_write(host, val, reg);
2228         writew_relaxed(val, host->ioaddr + reg);
2229
2230         if (req_type)
2231                 sdhci_msm_check_power_status(host, req_type);
2232 }
2233
2234 /* This function may sleep*/
2235 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2236 {
2237         u32 req_type = 0;
2238
2239         req_type = __sdhci_msm_check_write(host, val, reg);
2240
2241         writeb_relaxed(val, host->ioaddr + reg);
2242
2243         if (req_type)
2244                 sdhci_msm_check_power_status(host, req_type);
2245 }
2246
2247 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2248 {
2249         struct mmc_host *mmc = msm_host->mmc;
2250         struct regulator *supply = mmc->supply.vqmmc;
2251         u32 caps = 0, config;
2252         struct sdhci_host *host = mmc_priv(mmc);
2253         const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2254
2255         if (!IS_ERR(mmc->supply.vqmmc)) {
2256                 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2257                         caps |= CORE_1_8V_SUPPORT;
2258                 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2259                         caps |= CORE_3_0V_SUPPORT;
2260
2261                 if (!caps)
2262                         pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2263                                         mmc_hostname(mmc));
2264         }
2265
2266         if (caps) {
2267                 /*
2268                  * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2269                  * bit can be used as required later on.
2270                  */
2271                 u32 io_level = msm_host->curr_io_level;
2272
2273                 config = readl_relaxed(host->ioaddr +
2274                                 msm_offset->core_vendor_spec);
2275                 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2276
2277                 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2278                         config &= ~CORE_IO_PAD_PWR_SWITCH;
2279                 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2280                         config |= CORE_IO_PAD_PWR_SWITCH;
2281
2282                 writel_relaxed(config,
2283                                 host->ioaddr + msm_offset->core_vendor_spec);
2284         }
2285         msm_host->caps_0 |= caps;
2286         pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2287 }
2288
2289 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2290 {
2291         if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2292                 cqhci_deactivate(host->mmc);
2293         sdhci_reset(host, mask);
2294 }
2295
2296 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2297 {
2298         int ret;
2299
2300         ret = mmc_regulator_get_supply(msm_host->mmc);
2301         if (ret)
2302                 return ret;
2303
2304         sdhci_msm_set_regulator_caps(msm_host);
2305
2306         return 0;
2307 }
2308
2309 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2310                                       struct mmc_ios *ios)
2311 {
2312         struct sdhci_host *host = mmc_priv(mmc);
2313         u16 ctrl, status;
2314
2315         /*
2316          * Signal Voltage Switching is only applicable for Host Controllers
2317          * v3.00 and above.
2318          */
2319         if (host->version < SDHCI_SPEC_300)
2320                 return 0;
2321
2322         ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2323
2324         switch (ios->signal_voltage) {
2325         case MMC_SIGNAL_VOLTAGE_330:
2326                 if (!(host->flags & SDHCI_SIGNALING_330))
2327                         return -EINVAL;
2328
2329                 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2330                 ctrl &= ~SDHCI_CTRL_VDD_180;
2331                 break;
2332         case MMC_SIGNAL_VOLTAGE_180:
2333                 if (!(host->flags & SDHCI_SIGNALING_180))
2334                         return -EINVAL;
2335
2336                 /* Enable 1.8V Signal Enable in the Host Control2 register */
2337                 ctrl |= SDHCI_CTRL_VDD_180;
2338                 break;
2339
2340         default:
2341                 return -EINVAL;
2342         }
2343
2344         sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2345
2346         /* Wait for 5ms */
2347         usleep_range(5000, 5500);
2348
2349         /* regulator output should be stable within 5 ms */
2350         status = ctrl & SDHCI_CTRL_VDD_180;
2351         ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2352         if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2353                 return 0;
2354
2355         dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2356                 mmc_hostname(mmc));
2357
2358         return -EAGAIN;
2359 }
2360
2361 #define DRIVER_NAME "sdhci_msm"
2362 #define SDHCI_MSM_DUMP(f, x...) \
2363         pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2364
2365 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2366 {
2367         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2368         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2369         const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2370
2371         SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2372
2373         SDHCI_MSM_DUMP(
2374                         "DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2375                 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2376                 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2377                 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2378         SDHCI_MSM_DUMP(
2379                         "DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2380                 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2381                 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2382                 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2383         SDHCI_MSM_DUMP(
2384                         "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2385                 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2386                 readl_relaxed(host->ioaddr +
2387                         msm_offset->core_vendor_spec_func2),
2388                 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2389 }
2390
2391 static const struct sdhci_msm_variant_ops mci_var_ops = {
2392         .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2393         .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2394 };
2395
2396 static const struct sdhci_msm_variant_ops v5_var_ops = {
2397         .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2398         .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2399 };
2400
2401 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2402         .var_ops = &mci_var_ops,
2403         .offset = &sdhci_msm_mci_offset,
2404 };
2405
2406 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2407         .mci_removed = true,
2408         .var_ops = &v5_var_ops,
2409         .offset = &sdhci_msm_v5_offset,
2410 };
2411
2412 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2413         .mci_removed = true,
2414         .restore_dll_config = true,
2415         .var_ops = &v5_var_ops,
2416         .offset = &sdhci_msm_v5_offset,
2417 };
2418
2419 static const struct of_device_id sdhci_msm_dt_match[] = {
2420         {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2421         {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2422         {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2423         {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2424         {},
2425 };
2426
2427 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2428
2429 static const struct sdhci_ops sdhci_msm_ops = {
2430         .reset = sdhci_msm_reset,
2431         .set_clock = sdhci_msm_set_clock,
2432         .get_min_clock = sdhci_msm_get_min_clock,
2433         .get_max_clock = sdhci_msm_get_max_clock,
2434         .set_bus_width = sdhci_set_bus_width,
2435         .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2436         .write_w = sdhci_msm_writew,
2437         .write_b = sdhci_msm_writeb,
2438         .irq    = sdhci_msm_cqe_irq,
2439         .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2440         .set_power = sdhci_set_power_noreg,
2441 };
2442
2443 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2444         .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2445                   SDHCI_QUIRK_SINGLE_POWER_WRITE |
2446                   SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2447                   SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2448
2449         .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2450         .ops = &sdhci_msm_ops,
2451 };
2452
2453 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2454                 struct sdhci_host *host)
2455 {
2456         struct device_node *node = pdev->dev.of_node;
2457         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2458         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2459
2460         if (of_property_read_u32(node, "qcom,ddr-config",
2461                                 &msm_host->ddr_config))
2462                 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2463
2464         of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2465 }
2466
2467
2468 static int sdhci_msm_probe(struct platform_device *pdev)
2469 {
2470         struct sdhci_host *host;
2471         struct sdhci_pltfm_host *pltfm_host;
2472         struct sdhci_msm_host *msm_host;
2473         struct clk *clk;
2474         int ret;
2475         u16 host_version, core_minor;
2476         u32 core_version, config;
2477         u8 core_major;
2478         const struct sdhci_msm_offset *msm_offset;
2479         const struct sdhci_msm_variant_info *var_info;
2480         struct device_node *node = pdev->dev.of_node;
2481
2482         host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2483         if (IS_ERR(host))
2484                 return PTR_ERR(host);
2485
2486         host->sdma_boundary = 0;
2487         pltfm_host = sdhci_priv(host);
2488         msm_host = sdhci_pltfm_priv(pltfm_host);
2489         msm_host->mmc = host->mmc;
2490         msm_host->pdev = pdev;
2491
2492         ret = mmc_of_parse(host->mmc);
2493         if (ret)
2494                 goto pltfm_free;
2495
2496         /*
2497          * Based on the compatible string, load the required msm host info from
2498          * the data associated with the version info.
2499          */
2500         var_info = of_device_get_match_data(&pdev->dev);
2501
2502         msm_host->mci_removed = var_info->mci_removed;
2503         msm_host->restore_dll_config = var_info->restore_dll_config;
2504         msm_host->var_ops = var_info->var_ops;
2505         msm_host->offset = var_info->offset;
2506
2507         msm_offset = msm_host->offset;
2508
2509         sdhci_get_of_property(pdev);
2510         sdhci_msm_get_of_property(pdev, host);
2511
2512         msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2513
2514         /* Setup SDCC bus voter clock. */
2515         msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2516         if (!IS_ERR(msm_host->bus_clk)) {
2517                 /* Vote for max. clk rate for max. performance */
2518                 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2519                 if (ret)
2520                         goto pltfm_free;
2521                 ret = clk_prepare_enable(msm_host->bus_clk);
2522                 if (ret)
2523                         goto pltfm_free;
2524         }
2525
2526         /* Setup main peripheral bus clock */
2527         clk = devm_clk_get(&pdev->dev, "iface");
2528         if (IS_ERR(clk)) {
2529                 ret = PTR_ERR(clk);
2530                 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2531                 goto bus_clk_disable;
2532         }
2533         msm_host->bulk_clks[1].clk = clk;
2534
2535         /* Setup SDC MMC clock */
2536         clk = devm_clk_get(&pdev->dev, "core");
2537         if (IS_ERR(clk)) {
2538                 ret = PTR_ERR(clk);
2539                 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2540                 goto bus_clk_disable;
2541         }
2542         msm_host->bulk_clks[0].clk = clk;
2543
2544          /* Check for optional interconnect paths */
2545         ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2546         if (ret)
2547                 goto bus_clk_disable;
2548
2549         ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2550         if (ret)
2551                 goto bus_clk_disable;
2552
2553         /* OPP table is optional */
2554         ret = devm_pm_opp_of_add_table(&pdev->dev);
2555         if (ret && ret != -ENODEV) {
2556                 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2557                 goto bus_clk_disable;
2558         }
2559
2560         /* Vote for maximum clock rate for maximum performance */
2561         ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2562         if (ret)
2563                 dev_warn(&pdev->dev, "core clock boost failed\n");
2564
2565         clk = devm_clk_get(&pdev->dev, "cal");
2566         if (IS_ERR(clk))
2567                 clk = NULL;
2568         msm_host->bulk_clks[2].clk = clk;
2569
2570         clk = devm_clk_get(&pdev->dev, "sleep");
2571         if (IS_ERR(clk))
2572                 clk = NULL;
2573         msm_host->bulk_clks[3].clk = clk;
2574
2575         clk = sdhci_msm_ice_get_clk(&pdev->dev);
2576         if (IS_ERR(clk))
2577                 clk = NULL;
2578         msm_host->bulk_clks[4].clk = clk;
2579
2580         ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2581                                       msm_host->bulk_clks);
2582         if (ret)
2583                 goto bus_clk_disable;
2584
2585         /*
2586          * xo clock is needed for FLL feature of cm_dll.
2587          * In case if xo clock is not mentioned in DT, warn and proceed.
2588          */
2589         msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2590         if (IS_ERR(msm_host->xo_clk)) {
2591                 ret = PTR_ERR(msm_host->xo_clk);
2592                 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2593         }
2594
2595         if (!msm_host->mci_removed) {
2596                 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2597                 if (IS_ERR(msm_host->core_mem)) {
2598                         ret = PTR_ERR(msm_host->core_mem);
2599                         goto clk_disable;
2600                 }
2601         }
2602
2603         /* Reset the vendor spec register to power on reset state */
2604         writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2605                         host->ioaddr + msm_offset->core_vendor_spec);
2606
2607         if (!msm_host->mci_removed) {
2608                 /* Set HC_MODE_EN bit in HC_MODE register */
2609                 msm_host_writel(msm_host, HC_MODE_EN, host,
2610                                 msm_offset->core_hc_mode);
2611                 config = msm_host_readl(msm_host, host,
2612                                 msm_offset->core_hc_mode);
2613                 config |= FF_CLK_SW_RST_DIS;
2614                 msm_host_writel(msm_host, config, host,
2615                                 msm_offset->core_hc_mode);
2616         }
2617
2618         host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2619         dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2620                 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2621                                SDHCI_VENDOR_VER_SHIFT));
2622
2623         core_version = msm_host_readl(msm_host, host,
2624                         msm_offset->core_mci_version);
2625         core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2626                       CORE_VERSION_MAJOR_SHIFT;
2627         core_minor = core_version & CORE_VERSION_MINOR_MASK;
2628         dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2629                 core_version, core_major, core_minor);
2630
2631         if (core_major == 1 && core_minor >= 0x42)
2632                 msm_host->use_14lpp_dll_reset = true;
2633
2634         /*
2635          * SDCC 5 controller with major version 1, minor version 0x34 and later
2636          * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2637          */
2638         if (core_major == 1 && core_minor < 0x34)
2639                 msm_host->use_cdclp533 = true;
2640
2641         /*
2642          * Support for some capabilities is not advertised by newer
2643          * controller versions and must be explicitly enabled.
2644          */
2645         if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2646                 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2647                 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2648                 writel_relaxed(config, host->ioaddr +
2649                                 msm_offset->core_vendor_spec_capabilities0);
2650         }
2651
2652         if (core_major == 1 && core_minor >= 0x49)
2653                 msm_host->updated_ddr_cfg = true;
2654
2655         if (core_major == 1 && core_minor >= 0x71)
2656                 msm_host->uses_tassadar_dll = true;
2657
2658         ret = sdhci_msm_register_vreg(msm_host);
2659         if (ret)
2660                 goto clk_disable;
2661
2662         /*
2663          * Power on reset state may trigger power irq if previous status of
2664          * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2665          * interrupt in GIC, any pending power irq interrupt should be
2666          * acknowledged. Otherwise power irq interrupt handler would be
2667          * fired prematurely.
2668          */
2669         sdhci_msm_handle_pwr_irq(host, 0);
2670
2671         /*
2672          * Ensure that above writes are propogated before interrupt enablement
2673          * in GIC.
2674          */
2675         mb();
2676
2677         /* Setup IRQ for handling power/voltage tasks with PMIC */
2678         msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2679         if (msm_host->pwr_irq < 0) {
2680                 ret = msm_host->pwr_irq;
2681                 goto clk_disable;
2682         }
2683
2684         sdhci_msm_init_pwr_irq_wait(msm_host);
2685         /* Enable pwr irq interrupts */
2686         msm_host_writel(msm_host, INT_MASK, host,
2687                 msm_offset->core_pwrctl_mask);
2688
2689         ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2690                                         sdhci_msm_pwr_irq, IRQF_ONESHOT,
2691                                         dev_name(&pdev->dev), host);
2692         if (ret) {
2693                 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2694                 goto clk_disable;
2695         }
2696
2697         msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2698
2699         pm_runtime_get_noresume(&pdev->dev);
2700         pm_runtime_set_active(&pdev->dev);
2701         pm_runtime_enable(&pdev->dev);
2702         pm_runtime_set_autosuspend_delay(&pdev->dev,
2703                                          MSM_MMC_AUTOSUSPEND_DELAY_MS);
2704         pm_runtime_use_autosuspend(&pdev->dev);
2705
2706         host->mmc_host_ops.start_signal_voltage_switch =
2707                 sdhci_msm_start_signal_voltage_switch;
2708         host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2709         if (of_property_read_bool(node, "supports-cqe"))
2710                 ret = sdhci_msm_cqe_add_host(host, pdev);
2711         else
2712                 ret = sdhci_add_host(host);
2713         if (ret)
2714                 goto pm_runtime_disable;
2715
2716         pm_runtime_mark_last_busy(&pdev->dev);
2717         pm_runtime_put_autosuspend(&pdev->dev);
2718
2719         return 0;
2720
2721 pm_runtime_disable:
2722         pm_runtime_disable(&pdev->dev);
2723         pm_runtime_set_suspended(&pdev->dev);
2724         pm_runtime_put_noidle(&pdev->dev);
2725 clk_disable:
2726         clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2727                                    msm_host->bulk_clks);
2728 bus_clk_disable:
2729         if (!IS_ERR(msm_host->bus_clk))
2730                 clk_disable_unprepare(msm_host->bus_clk);
2731 pltfm_free:
2732         sdhci_pltfm_free(pdev);
2733         return ret;
2734 }
2735
2736 static int sdhci_msm_remove(struct platform_device *pdev)
2737 {
2738         struct sdhci_host *host = platform_get_drvdata(pdev);
2739         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2740         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2741         int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2742                     0xffffffff);
2743
2744         sdhci_remove_host(host, dead);
2745
2746         pm_runtime_get_sync(&pdev->dev);
2747         pm_runtime_disable(&pdev->dev);
2748         pm_runtime_put_noidle(&pdev->dev);
2749
2750         clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2751                                    msm_host->bulk_clks);
2752         if (!IS_ERR(msm_host->bus_clk))
2753                 clk_disable_unprepare(msm_host->bus_clk);
2754         sdhci_pltfm_free(pdev);
2755         return 0;
2756 }
2757
2758 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2759 {
2760         struct sdhci_host *host = dev_get_drvdata(dev);
2761         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2762         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2763
2764         /* Drop the performance vote */
2765         dev_pm_opp_set_rate(dev, 0);
2766         clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2767                                    msm_host->bulk_clks);
2768
2769         return 0;
2770 }
2771
2772 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2773 {
2774         struct sdhci_host *host = dev_get_drvdata(dev);
2775         struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2776         struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2777         int ret;
2778
2779         ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2780                                        msm_host->bulk_clks);
2781         if (ret)
2782                 return ret;
2783         /*
2784          * Whenever core-clock is gated dynamically, it's needed to
2785          * restore the SDR DLL settings when the clock is ungated.
2786          */
2787         if (msm_host->restore_dll_config && msm_host->clk_rate) {
2788                 ret = sdhci_msm_restore_sdr_dll_config(host);
2789                 if (ret)
2790                         return ret;
2791         }
2792
2793         dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2794
2795         return sdhci_msm_ice_resume(msm_host);
2796 }
2797
2798 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2799         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2800                                 pm_runtime_force_resume)
2801         SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2802                            sdhci_msm_runtime_resume,
2803                            NULL)
2804 };
2805
2806 static struct platform_driver sdhci_msm_driver = {
2807         .probe = sdhci_msm_probe,
2808         .remove = sdhci_msm_remove,
2809         .driver = {
2810                    .name = "sdhci_msm",
2811                    .of_match_table = sdhci_msm_dt_match,
2812                    .pm = &sdhci_msm_pm_ops,
2813                    .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2814         },
2815 };
2816
2817 module_platform_driver(sdhci_msm_driver);
2818
2819 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2820 MODULE_LICENSE("GPL v2");