2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
64 #define MODULE_PARAM_PREFIX "mmcblk."
66 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
67 #define MMC_SANITIZE_REQ_TIMEOUT 240000
68 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
70 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
71 (rq_data_dir(req) == WRITE))
72 static DEFINE_MUTEX(block_mutex);
75 * The defaults come from config options but can be overriden by module
78 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
81 * We've only got one major, so number of mmcblk devices is
82 * limited to (1 << 20) / number of minors per device. It is also
83 * limited by the MAX_DEVICES below.
85 static int max_devices;
87 #define MAX_DEVICES 256
89 static DEFINE_IDA(mmc_blk_ida);
90 static DEFINE_IDA(mmc_rpmb_ida);
93 * There is one mmc_blk_data per slot.
97 struct device *parent;
99 struct mmc_queue queue;
100 struct list_head part;
101 struct list_head rpmbs;
104 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
105 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
108 unsigned int read_only;
109 unsigned int part_type;
110 unsigned int reset_done;
111 #define MMC_BLK_READ BIT(0)
112 #define MMC_BLK_WRITE BIT(1)
113 #define MMC_BLK_DISCARD BIT(2)
114 #define MMC_BLK_SECDISCARD BIT(3)
117 * Only set in main mmc_blk_data associated
118 * with mmc_card with dev_set_drvdata, and keeps
119 * track of the current selected device partition.
121 unsigned int part_curr;
122 struct device_attribute force_ro;
123 struct device_attribute power_ro_lock;
127 /* Device type for RPMB character devices */
128 static dev_t mmc_rpmb_devt;
130 /* Bus type for RPMB character devices */
131 static struct bus_type mmc_rpmb_bus_type = {
136 * struct mmc_rpmb_data - special RPMB device type for these areas
137 * @dev: the device for the RPMB area
138 * @chrdev: character device for the RPMB area
139 * @id: unique device ID number
140 * @part_index: partition index (0 on first)
141 * @md: parent MMC block device
142 * @node: list item, so we can put this device on a list
144 struct mmc_rpmb_data {
148 unsigned int part_index;
149 struct mmc_blk_data *md;
150 struct list_head node;
153 static DEFINE_MUTEX(open_lock);
155 module_param(perdev_minors, int, 0444);
156 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
158 static inline int mmc_blk_part_switch(struct mmc_card *card,
159 unsigned int part_type);
161 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
163 struct mmc_blk_data *md;
165 mutex_lock(&open_lock);
166 md = disk->private_data;
167 if (md && md->usage == 0)
171 mutex_unlock(&open_lock);
176 static inline int mmc_get_devidx(struct gendisk *disk)
178 int devidx = disk->first_minor / perdev_minors;
182 static void mmc_blk_put(struct mmc_blk_data *md)
184 mutex_lock(&open_lock);
186 if (md->usage == 0) {
187 int devidx = mmc_get_devidx(md->disk);
188 blk_cleanup_queue(md->queue.queue);
189 ida_simple_remove(&mmc_blk_ida, devidx);
193 mutex_unlock(&open_lock);
196 static ssize_t power_ro_lock_show(struct device *dev,
197 struct device_attribute *attr, char *buf)
200 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
201 struct mmc_card *card = md->queue.card;
204 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
206 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
209 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
216 static ssize_t power_ro_lock_store(struct device *dev,
217 struct device_attribute *attr, const char *buf, size_t count)
220 struct mmc_blk_data *md, *part_md;
221 struct mmc_queue *mq;
225 if (kstrtoul(buf, 0, &set))
231 md = mmc_blk_get(dev_to_disk(dev));
234 /* Dispatch locking to the block layer */
235 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
236 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
237 blk_execute_rq(mq->queue, NULL, req, 0);
238 ret = req_to_mmc_queue_req(req)->drv_op_result;
241 pr_info("%s: Locking boot partition ro until next power on\n",
242 md->disk->disk_name);
243 set_disk_ro(md->disk, 1);
245 list_for_each_entry(part_md, &md->part, part)
246 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
247 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
248 set_disk_ro(part_md->disk, 1);
256 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
260 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
262 ret = snprintf(buf, PAGE_SIZE, "%d\n",
263 get_disk_ro(dev_to_disk(dev)) ^
269 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
270 const char *buf, size_t count)
274 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
275 unsigned long set = simple_strtoul(buf, &end, 0);
281 set_disk_ro(dev_to_disk(dev), set || md->read_only);
288 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
290 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
293 mutex_lock(&block_mutex);
296 check_disk_change(bdev);
299 if ((mode & FMODE_WRITE) && md->read_only) {
304 mutex_unlock(&block_mutex);
309 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
311 struct mmc_blk_data *md = disk->private_data;
313 mutex_lock(&block_mutex);
315 mutex_unlock(&block_mutex);
319 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
321 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
327 struct mmc_blk_ioc_data {
328 struct mmc_ioc_cmd ic;
331 struct mmc_rpmb_data *rpmb;
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
337 struct mmc_blk_ioc_data *idata;
340 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
357 if (!idata->buf_bytes) {
362 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
368 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
369 idata->ic.data_ptr, idata->buf_bytes)) {
384 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
385 struct mmc_blk_ioc_data *idata)
387 struct mmc_ioc_cmd *ic = &idata->ic;
389 if (copy_to_user(&(ic_ptr->response), ic->response,
390 sizeof(ic->response)))
393 if (!idata->ic.write_flag) {
394 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
395 idata->buf, idata->buf_bytes))
402 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
408 if (!status || !retries_max)
412 err = __mmc_send_status(card, status, 5);
416 if (!R1_STATUS(*status) &&
417 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
418 break; /* RPMB programming operation complete */
421 * Rechedule to give the MMC device a chance to continue
422 * processing the previous command without being polled too
425 usleep_range(1000, 5000);
426 } while (++retry_count < retries_max);
428 if (retry_count == retries_max)
434 static int ioctl_do_sanitize(struct mmc_card *card)
438 if (!mmc_can_sanitize(card)) {
439 pr_warn("%s: %s - SANITIZE is not supported\n",
440 mmc_hostname(card->host), __func__);
445 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
446 mmc_hostname(card->host), __func__);
448 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
449 EXT_CSD_SANITIZE_START, 1,
450 MMC_SANITIZE_REQ_TIMEOUT);
453 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
454 mmc_hostname(card->host), __func__, err);
456 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
462 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
463 struct mmc_blk_ioc_data *idata)
465 struct mmc_command cmd = {};
466 struct mmc_data data = {};
467 struct mmc_request mrq = {};
468 struct scatterlist sg;
470 unsigned int target_part;
473 if (!card || !md || !idata)
477 * The RPMB accesses comes in from the character device, so we
478 * need to target these explicitly. Else we just target the
479 * partition type for the block device the ioctl() was issued
483 /* Support multiple RPMB partitions */
484 target_part = idata->rpmb->part_index;
485 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
487 target_part = md->part_type;
490 cmd.opcode = idata->ic.opcode;
491 cmd.arg = idata->ic.arg;
492 cmd.flags = idata->ic.flags;
494 if (idata->buf_bytes) {
497 data.blksz = idata->ic.blksz;
498 data.blocks = idata->ic.blocks;
500 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
502 if (idata->ic.write_flag)
503 data.flags = MMC_DATA_WRITE;
505 data.flags = MMC_DATA_READ;
507 /* data.flags must already be set before doing this. */
508 mmc_set_data_timeout(&data, card);
510 /* Allow overriding the timeout_ns for empirical tuning. */
511 if (idata->ic.data_timeout_ns)
512 data.timeout_ns = idata->ic.data_timeout_ns;
514 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
516 * Pretend this is a data transfer and rely on the
517 * host driver to compute timeout. When all host
518 * drivers support cmd.cmd_timeout for R1B, this
522 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
524 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
532 err = mmc_blk_part_switch(card, target_part);
536 if (idata->ic.is_acmd) {
537 err = mmc_app_cmd(card->host, card);
543 err = mmc_set_blockcount(card, data.blocks,
544 idata->ic.write_flag & (1 << 31));
549 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
550 (cmd.opcode == MMC_SWITCH)) {
551 err = ioctl_do_sanitize(card);
554 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
560 mmc_wait_for_req(card->host, &mrq);
563 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
564 __func__, cmd.error);
568 dev_err(mmc_dev(card->host), "%s: data error %d\n",
569 __func__, data.error);
574 * According to the SD specs, some commands require a delay after
575 * issuing the command.
577 if (idata->ic.postsleep_min_us)
578 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
580 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
584 * Ensure RPMB command has completed by polling CMD13
587 err = ioctl_rpmb_card_status_poll(card, &status, 5);
589 dev_err(mmc_dev(card->host),
590 "%s: Card Status=0x%08X, error %d\n",
591 __func__, status, err);
597 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
598 struct mmc_ioc_cmd __user *ic_ptr,
599 struct mmc_rpmb_data *rpmb)
601 struct mmc_blk_ioc_data *idata;
602 struct mmc_blk_ioc_data *idatas[1];
603 struct mmc_queue *mq;
604 struct mmc_card *card;
605 int err = 0, ioc_err = 0;
608 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
610 return PTR_ERR(idata);
611 /* This will be NULL on non-RPMB ioctl():s */
614 card = md->queue.card;
621 * Dispatch the ioctl() into the block request queue.
624 req = blk_get_request(mq->queue,
625 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
628 req_to_mmc_queue_req(req)->drv_op =
629 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
630 req_to_mmc_queue_req(req)->drv_op_data = idatas;
631 req_to_mmc_queue_req(req)->ioc_count = 1;
632 blk_execute_rq(mq->queue, NULL, req, 0);
633 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
634 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
635 blk_put_request(req);
640 return ioc_err ? ioc_err : err;
643 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
644 struct mmc_ioc_multi_cmd __user *user,
645 struct mmc_rpmb_data *rpmb)
647 struct mmc_blk_ioc_data **idata = NULL;
648 struct mmc_ioc_cmd __user *cmds = user->cmds;
649 struct mmc_card *card;
650 struct mmc_queue *mq;
651 int i, err = 0, ioc_err = 0;
655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 sizeof(num_of_cmds)))
662 if (num_of_cmds > MMC_IOC_MAX_CMDS)
665 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
669 for (i = 0; i < num_of_cmds; i++) {
670 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
671 if (IS_ERR(idata[i])) {
672 err = PTR_ERR(idata[i]);
676 /* This will be NULL on non-RPMB ioctl():s */
677 idata[i]->rpmb = rpmb;
680 card = md->queue.card;
688 * Dispatch the ioctl()s into the block request queue.
691 req = blk_get_request(mq->queue,
692 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
694 req_to_mmc_queue_req(req)->drv_op =
695 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
696 req_to_mmc_queue_req(req)->drv_op_data = idata;
697 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
698 blk_execute_rq(mq->queue, NULL, req, 0);
699 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
701 /* copy to user if data and response */
702 for (i = 0; i < num_of_cmds && !err; i++)
703 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
705 blk_put_request(req);
708 for (i = 0; i < num_of_cmds; i++) {
709 kfree(idata[i]->buf);
713 return ioc_err ? ioc_err : err;
716 static int mmc_blk_check_blkdev(struct block_device *bdev)
719 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
720 * whole block device, not on a partition. This prevents overspray
721 * between sibling partitions.
723 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
728 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
729 unsigned int cmd, unsigned long arg)
731 struct mmc_blk_data *md;
736 ret = mmc_blk_check_blkdev(bdev);
739 md = mmc_blk_get(bdev->bd_disk);
742 ret = mmc_blk_ioctl_cmd(md,
743 (struct mmc_ioc_cmd __user *)arg,
747 case MMC_IOC_MULTI_CMD:
748 ret = mmc_blk_check_blkdev(bdev);
751 md = mmc_blk_get(bdev->bd_disk);
754 ret = mmc_blk_ioctl_multi_cmd(md,
755 (struct mmc_ioc_multi_cmd __user *)arg,
765 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
766 unsigned int cmd, unsigned long arg)
768 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
772 static const struct block_device_operations mmc_bdops = {
773 .open = mmc_blk_open,
774 .release = mmc_blk_release,
775 .getgeo = mmc_blk_getgeo,
776 .owner = THIS_MODULE,
777 .ioctl = mmc_blk_ioctl,
779 .compat_ioctl = mmc_blk_compat_ioctl,
783 static int mmc_blk_part_switch_pre(struct mmc_card *card,
784 unsigned int part_type)
788 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
789 if (card->ext_csd.cmdq_en) {
790 ret = mmc_cmdq_disable(card);
794 mmc_retune_pause(card->host);
800 static int mmc_blk_part_switch_post(struct mmc_card *card,
801 unsigned int part_type)
805 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
806 mmc_retune_unpause(card->host);
807 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
808 ret = mmc_cmdq_enable(card);
814 static inline int mmc_blk_part_switch(struct mmc_card *card,
815 unsigned int part_type)
818 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
820 if (main_md->part_curr == part_type)
823 if (mmc_card_mmc(card)) {
824 u8 part_config = card->ext_csd.part_config;
826 ret = mmc_blk_part_switch_pre(card, part_type);
830 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
831 part_config |= part_type;
833 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
834 EXT_CSD_PART_CONFIG, part_config,
835 card->ext_csd.part_time);
837 mmc_blk_part_switch_post(card, part_type);
841 card->ext_csd.part_config = part_config;
843 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
846 main_md->part_curr = part_type;
850 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
856 struct mmc_request mrq = {};
857 struct mmc_command cmd = {};
858 struct mmc_data data = {};
860 struct scatterlist sg;
862 cmd.opcode = MMC_APP_CMD;
863 cmd.arg = card->rca << 16;
864 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
866 err = mmc_wait_for_cmd(card->host, &cmd, 0);
869 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
872 memset(&cmd, 0, sizeof(struct mmc_command));
874 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
876 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
880 data.flags = MMC_DATA_READ;
883 mmc_set_data_timeout(&data, card);
888 blocks = kmalloc(4, GFP_KERNEL);
892 sg_init_one(&sg, blocks, 4);
894 mmc_wait_for_req(card->host, &mrq);
896 result = ntohl(*blocks);
899 if (cmd.error || data.error)
902 *written_blocks = result;
907 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
908 bool hw_busy_detect, struct request *req, bool *gen_err)
910 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
915 err = __mmc_send_status(card, &status, 5);
917 pr_err("%s: error %d requesting status\n",
918 req->rq_disk->disk_name, err);
922 if (status & R1_ERROR) {
923 pr_err("%s: %s: error sending status cmd, status %#x\n",
924 req->rq_disk->disk_name, __func__, status);
928 /* We may rely on the host hw to handle busy detection.*/
929 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
934 * Timeout if the device never becomes ready for data and never
935 * leaves the program state.
937 if (time_after(jiffies, timeout)) {
938 pr_err("%s: Card stuck in programming state! %s %s\n",
939 mmc_hostname(card->host),
940 req->rq_disk->disk_name, __func__);
945 * Some cards mishandle the status bits,
946 * so make sure to check both the busy
947 * indication and the card state.
949 } while (!(status & R1_READY_FOR_DATA) ||
950 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
955 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
956 struct request *req, bool *gen_err, u32 *stop_status)
958 struct mmc_host *host = card->host;
959 struct mmc_command cmd = {};
961 bool use_r1b_resp = rq_data_dir(req) == WRITE;
964 * Normally we use R1B responses for WRITE, but in cases where the host
965 * has specified a max_busy_timeout we need to validate it. A failure
966 * means we need to prevent the host from doing hw busy detection, which
967 * is done by converting to a R1 response instead.
969 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
970 use_r1b_resp = false;
972 cmd.opcode = MMC_STOP_TRANSMISSION;
974 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
975 cmd.busy_timeout = timeout_ms;
977 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
980 err = mmc_wait_for_cmd(host, &cmd, 5);
984 *stop_status = cmd.resp[0];
986 /* No need to check card status in case of READ. */
987 if (rq_data_dir(req) == READ)
990 if (!mmc_host_is_spi(host) &&
991 (*stop_status & R1_ERROR)) {
992 pr_err("%s: %s: general error sending stop command, resp %#x\n",
993 req->rq_disk->disk_name, __func__, *stop_status);
997 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
1000 #define ERR_NOMEDIUM 3
1003 #define ERR_CONTINUE 0
1005 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
1006 bool status_valid, u32 status)
1010 /* response crc error, retry the r/w cmd */
1011 pr_err("%s: %s sending %s command, card status %#x\n",
1012 req->rq_disk->disk_name, "response CRC error",
1017 pr_err("%s: %s sending %s command, card status %#x\n",
1018 req->rq_disk->disk_name, "timed out", name, status);
1020 /* If the status cmd initially failed, retry the r/w cmd */
1021 if (!status_valid) {
1022 pr_err("%s: status not valid, retrying timeout\n",
1023 req->rq_disk->disk_name);
1028 * If it was a r/w cmd crc error, or illegal command
1029 * (eg, issued in wrong state) then retry - we should
1030 * have corrected the state problem above.
1032 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
1033 pr_err("%s: command error, retrying timeout\n",
1034 req->rq_disk->disk_name);
1038 /* Otherwise abort the command */
1042 /* We don't understand the error code the driver gave us */
1043 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
1044 req->rq_disk->disk_name, error, status);
1050 * Initial r/w and stop cmd error recovery.
1051 * We don't know whether the card received the r/w cmd or not, so try to
1052 * restore things back to a sane state. Essentially, we do this as follows:
1053 * - Obtain card status. If the first attempt to obtain card status fails,
1054 * the status word will reflect the failed status cmd, not the failed
1055 * r/w cmd. If we fail to obtain card status, it suggests we can no
1056 * longer communicate with the card.
1057 * - Check the card state. If the card received the cmd but there was a
1058 * transient problem with the response, it might still be in a data transfer
1059 * mode. Try to send it a stop command. If this fails, we can't recover.
1060 * - If the r/w cmd failed due to a response CRC error, it was probably
1061 * transient, so retry the cmd.
1062 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1063 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1064 * illegal cmd, retry.
1065 * Otherwise we don't understand what happened, so abort.
1067 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1068 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1070 bool prev_cmd_status_valid = true;
1071 u32 status, stop_status = 0;
1074 if (mmc_card_removed(card))
1075 return ERR_NOMEDIUM;
1078 * Try to get card status which indicates both the card state
1079 * and why there was no response. If the first attempt fails,
1080 * we can't be sure the returned status is for the r/w command.
1082 for (retry = 2; retry >= 0; retry--) {
1083 err = __mmc_send_status(card, &status, 0);
1087 /* Re-tune if needed */
1088 mmc_retune_recheck(card->host);
1090 prev_cmd_status_valid = false;
1091 pr_err("%s: error %d sending status command, %sing\n",
1092 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1095 /* We couldn't get a response from the card. Give up. */
1097 /* Check if the card is removed */
1098 if (mmc_detect_card_removed(card->host))
1099 return ERR_NOMEDIUM;
1103 /* Flag ECC errors */
1104 if ((status & R1_CARD_ECC_FAILED) ||
1105 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1106 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1109 /* Flag General errors */
1110 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1111 if ((status & R1_ERROR) ||
1112 (brq->stop.resp[0] & R1_ERROR)) {
1113 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1114 req->rq_disk->disk_name, __func__,
1115 brq->stop.resp[0], status);
1120 * Check the current card state. If it is in some data transfer
1121 * mode, tell it to stop (and hopefully transition back to TRAN.)
1123 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1124 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1125 err = send_stop(card,
1126 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1127 req, gen_err, &stop_status);
1129 pr_err("%s: error %d sending stop command\n",
1130 req->rq_disk->disk_name, err);
1132 * If the stop cmd also timed out, the card is probably
1133 * not present, so abort. Other errors are bad news too.
1138 if (stop_status & R1_CARD_ECC_FAILED)
1142 /* Check for set block count errors */
1144 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1145 prev_cmd_status_valid, status);
1147 /* Check for r/w command errors */
1149 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1150 prev_cmd_status_valid, status);
1153 if (!brq->stop.error)
1154 return ERR_CONTINUE;
1156 /* Now for stop errors. These aren't fatal to the transfer. */
1157 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1158 req->rq_disk->disk_name, brq->stop.error,
1159 brq->cmd.resp[0], status);
1162 * Subsitute in our own stop status as this will give the error
1163 * state which happened during the execution of the r/w command.
1166 brq->stop.resp[0] = stop_status;
1167 brq->stop.error = 0;
1169 return ERR_CONTINUE;
1172 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1177 if (md->reset_done & type)
1180 md->reset_done |= type;
1181 err = mmc_hw_reset(host);
1182 /* Ensure we switch back to the correct partition */
1183 if (err != -EOPNOTSUPP) {
1184 struct mmc_blk_data *main_md =
1185 dev_get_drvdata(&host->card->dev);
1188 main_md->part_curr = main_md->part_type;
1189 part_err = mmc_blk_part_switch(host->card, md->part_type);
1192 * We have failed to get back into the correct
1193 * partition, so we need to abort the whole request.
1201 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1203 md->reset_done &= ~type;
1207 * The non-block commands come back from the block layer after it queued it and
1208 * processed it with all other requests and then they get issued in this
1211 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1213 struct mmc_queue_req *mq_rq;
1214 struct mmc_card *card = mq->card;
1215 struct mmc_blk_data *md = mq->blkdata;
1216 struct mmc_blk_ioc_data **idata;
1223 mq_rq = req_to_mmc_queue_req(req);
1224 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1226 switch (mq_rq->drv_op) {
1227 case MMC_DRV_OP_IOCTL:
1228 case MMC_DRV_OP_IOCTL_RPMB:
1229 idata = mq_rq->drv_op_data;
1230 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1231 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1235 /* Always switch back to main area after RPMB access */
1237 mmc_blk_part_switch(card, 0);
1239 case MMC_DRV_OP_BOOT_WP:
1240 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1241 card->ext_csd.boot_ro_lock |
1242 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1243 card->ext_csd.part_time);
1245 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1246 md->disk->disk_name, ret);
1248 card->ext_csd.boot_ro_lock |=
1249 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1251 case MMC_DRV_OP_GET_CARD_STATUS:
1252 ret = mmc_send_status(card, &status);
1256 case MMC_DRV_OP_GET_EXT_CSD:
1257 ext_csd = mq_rq->drv_op_data;
1258 ret = mmc_get_ext_csd(card, ext_csd);
1261 pr_err("%s: unknown driver specific operation\n",
1262 md->disk->disk_name);
1266 mq_rq->drv_op_result = ret;
1267 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1270 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1272 struct mmc_blk_data *md = mq->blkdata;
1273 struct mmc_card *card = md->queue.card;
1274 unsigned int from, nr, arg;
1275 int err = 0, type = MMC_BLK_DISCARD;
1276 blk_status_t status = BLK_STS_OK;
1278 if (!mmc_can_erase(card)) {
1279 status = BLK_STS_NOTSUPP;
1283 from = blk_rq_pos(req);
1284 nr = blk_rq_sectors(req);
1286 if (mmc_can_discard(card))
1287 arg = MMC_DISCARD_ARG;
1288 else if (mmc_can_trim(card))
1291 arg = MMC_ERASE_ARG;
1294 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1295 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1296 INAND_CMD38_ARG_EXT_CSD,
1297 arg == MMC_TRIM_ARG ?
1298 INAND_CMD38_ARG_TRIM :
1299 INAND_CMD38_ARG_ERASE,
1303 err = mmc_erase(card, from, nr, arg);
1304 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1306 status = BLK_STS_IOERR;
1308 mmc_blk_reset_success(md, type);
1310 blk_end_request(req, status, blk_rq_bytes(req));
1313 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1314 struct request *req)
1316 struct mmc_blk_data *md = mq->blkdata;
1317 struct mmc_card *card = md->queue.card;
1318 unsigned int from, nr, arg;
1319 int err = 0, type = MMC_BLK_SECDISCARD;
1320 blk_status_t status = BLK_STS_OK;
1322 if (!(mmc_can_secure_erase_trim(card))) {
1323 status = BLK_STS_NOTSUPP;
1327 from = blk_rq_pos(req);
1328 nr = blk_rq_sectors(req);
1330 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1331 arg = MMC_SECURE_TRIM1_ARG;
1333 arg = MMC_SECURE_ERASE_ARG;
1336 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1337 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1338 INAND_CMD38_ARG_EXT_CSD,
1339 arg == MMC_SECURE_TRIM1_ARG ?
1340 INAND_CMD38_ARG_SECTRIM1 :
1341 INAND_CMD38_ARG_SECERASE,
1347 err = mmc_erase(card, from, nr, arg);
1351 status = BLK_STS_IOERR;
1355 if (arg == MMC_SECURE_TRIM1_ARG) {
1356 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1357 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1358 INAND_CMD38_ARG_EXT_CSD,
1359 INAND_CMD38_ARG_SECTRIM2,
1365 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1369 status = BLK_STS_IOERR;
1375 if (err && !mmc_blk_reset(md, card->host, type))
1378 mmc_blk_reset_success(md, type);
1380 blk_end_request(req, status, blk_rq_bytes(req));
1383 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1385 struct mmc_blk_data *md = mq->blkdata;
1386 struct mmc_card *card = md->queue.card;
1389 ret = mmc_flush_cache(card);
1390 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1394 * Reformat current write as a reliable write, supporting
1395 * both legacy and the enhanced reliable write MMC cards.
1396 * In each transfer we'll handle only as much as a single
1397 * reliable write can handle, thus finish the request in
1398 * partial completions.
1400 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1401 struct mmc_card *card,
1402 struct request *req)
1404 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1405 /* Legacy mode imposes restrictions on transfers. */
1406 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1407 brq->data.blocks = 1;
1409 if (brq->data.blocks > card->ext_csd.rel_sectors)
1410 brq->data.blocks = card->ext_csd.rel_sectors;
1411 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1412 brq->data.blocks = 1;
1416 #define CMD_ERRORS \
1417 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1418 R1_ADDRESS_ERROR | /* Misaligned address */ \
1419 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1420 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1421 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1422 R1_CC_ERROR | /* Card controller error */ \
1423 R1_ERROR) /* General/unknown error */
1425 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1430 * Per the SD specification(physical layer version 4.10)[1],
1431 * section 4.3.3, it explicitly states that "When the last
1432 * block of user area is read using CMD18, the host should
1433 * ignore OUT_OF_RANGE error that may occur even the sequence
1434 * is correct". And JESD84-B51 for eMMC also has a similar
1435 * statement on section 6.8.3.
1437 * Multiple block read/write could be done by either predefined
1438 * method, namely CMD23, or open-ending mode. For open-ending mode,
1439 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1441 * However the spec[1] doesn't tell us whether we should also
1442 * ignore that for predefined method. But per the spec[1], section
1443 * 4.15 Set Block Count Command, it says"If illegal block count
1444 * is set, out of range error will be indicated during read/write
1445 * operation (For example, data transfer is stopped at user area
1446 * boundary)." In another word, we could expect a out of range error
1447 * in the response for the following CMD18/25. And if argument of
1448 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1449 * we could also expect to get a -ETIMEDOUT or any error number from
1450 * the host drivers due to missing data response(for write)/data(for
1451 * read), as the cards will stop the data transfer by itself per the
1452 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1455 if (!brq->stop.error) {
1456 bool oor_with_open_end;
1457 /* If there is no error yet, check R1 response */
1459 val = brq->stop.resp[0] & CMD_ERRORS;
1460 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1462 if (val && !oor_with_open_end)
1463 brq->stop.error = -EIO;
1467 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1468 struct mmc_async_req *areq)
1470 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1472 struct mmc_blk_request *brq = &mq_mrq->brq;
1473 struct request *req = mmc_queue_req_to_req(mq_mrq);
1474 int need_retune = card->host->need_retune;
1475 bool ecc_err = false;
1476 bool gen_err = false;
1479 * sbc.error indicates a problem with the set block count
1480 * command. No data will have been transferred.
1482 * cmd.error indicates a problem with the r/w command. No
1483 * data will have been transferred.
1485 * stop.error indicates a problem with the stop command. Data
1486 * may have been transferred, or may still be transferring.
1489 mmc_blk_eval_resp_error(brq);
1491 if (brq->sbc.error || brq->cmd.error ||
1492 brq->stop.error || brq->data.error) {
1493 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1495 return MMC_BLK_RETRY;
1497 return MMC_BLK_ABORT;
1499 return MMC_BLK_NOMEDIUM;
1506 * Check for errors relating to the execution of the
1507 * initial command - such as address errors. No data
1508 * has been transferred.
1510 if (brq->cmd.resp[0] & CMD_ERRORS) {
1511 pr_err("%s: r/w command failed, status = %#x\n",
1512 req->rq_disk->disk_name, brq->cmd.resp[0]);
1513 return MMC_BLK_ABORT;
1517 * Everything else is either success, or a data error of some
1518 * kind. If it was a write, we may have transitioned to
1519 * program mode, which we have to wait for it to complete.
1521 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1524 /* Check stop command response */
1525 if (brq->stop.resp[0] & R1_ERROR) {
1526 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1527 req->rq_disk->disk_name, __func__,
1532 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1535 return MMC_BLK_CMD_ERR;
1538 /* if general error occurs, retry the write operation. */
1540 pr_warn("%s: retrying write for general error\n",
1541 req->rq_disk->disk_name);
1542 return MMC_BLK_RETRY;
1545 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1546 if (brq->data.error || brq->stop.error) {
1547 if (need_retune && !brq->retune_retry_done) {
1548 pr_debug("%s: retrying because a re-tune was needed\n",
1549 req->rq_disk->disk_name);
1550 brq->retune_retry_done = 1;
1551 return MMC_BLK_RETRY;
1553 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1554 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1555 (unsigned)blk_rq_pos(req),
1556 (unsigned)blk_rq_sectors(req),
1557 brq->cmd.resp[0], brq->stop.resp[0]);
1559 if (rq_data_dir(req) == READ) {
1561 return MMC_BLK_ECC_ERR;
1562 return MMC_BLK_DATA_ERR;
1564 return MMC_BLK_CMD_ERR;
1568 if (!brq->data.bytes_xfered)
1569 return MMC_BLK_RETRY;
1571 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1572 return MMC_BLK_PARTIAL;
1574 return MMC_BLK_SUCCESS;
1577 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1578 int disable_multi, bool *do_rel_wr_p,
1579 bool *do_data_tag_p)
1581 struct mmc_blk_data *md = mq->blkdata;
1582 struct mmc_card *card = md->queue.card;
1583 struct mmc_blk_request *brq = &mqrq->brq;
1584 struct request *req = mmc_queue_req_to_req(mqrq);
1585 bool do_rel_wr, do_data_tag;
1588 * Reliable writes are used to implement Forced Unit Access and
1589 * are supported only on MMCs.
1591 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1592 rq_data_dir(req) == WRITE &&
1593 (md->flags & MMC_BLK_REL_WR);
1595 memset(brq, 0, sizeof(struct mmc_blk_request));
1597 brq->mrq.data = &brq->data;
1598 brq->mrq.tag = req->tag;
1600 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1603 if (rq_data_dir(req) == READ) {
1604 brq->data.flags = MMC_DATA_READ;
1605 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1607 brq->data.flags = MMC_DATA_WRITE;
1608 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1611 brq->data.blksz = 512;
1612 brq->data.blocks = blk_rq_sectors(req);
1613 brq->data.blk_addr = blk_rq_pos(req);
1616 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1617 * The eMMC will give "high" priority tasks priority over "simple"
1618 * priority tasks. Here we always set "simple" priority by not setting
1623 * The block layer doesn't support all sector count
1624 * restrictions, so we need to be prepared for too big
1627 if (brq->data.blocks > card->host->max_blk_count)
1628 brq->data.blocks = card->host->max_blk_count;
1630 if (brq->data.blocks > 1) {
1632 * After a read error, we redo the request one sector
1633 * at a time in order to accurately determine which
1634 * sectors can be read successfully.
1637 brq->data.blocks = 1;
1640 * Some controllers have HW issues while operating
1641 * in multiple I/O mode
1643 if (card->host->ops->multi_io_quirk)
1644 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1645 (rq_data_dir(req) == READ) ?
1646 MMC_DATA_READ : MMC_DATA_WRITE,
1651 mmc_apply_rel_rw(brq, card, req);
1652 brq->data.flags |= MMC_DATA_REL_WR;
1656 * Data tag is used only during writing meta data to speed
1657 * up write and any subsequent read of this meta data
1659 do_data_tag = card->ext_csd.data_tag_unit_size &&
1660 (req->cmd_flags & REQ_META) &&
1661 (rq_data_dir(req) == WRITE) &&
1662 ((brq->data.blocks * brq->data.blksz) >=
1663 card->ext_csd.data_tag_unit_size);
1666 brq->data.flags |= MMC_DATA_DAT_TAG;
1668 mmc_set_data_timeout(&brq->data, card);
1670 brq->data.sg = mqrq->sg;
1671 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1674 * Adjust the sg list so it is the same size as the
1677 if (brq->data.blocks != blk_rq_sectors(req)) {
1678 int i, data_size = brq->data.blocks << 9;
1679 struct scatterlist *sg;
1681 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1682 data_size -= sg->length;
1683 if (data_size <= 0) {
1684 sg->length += data_size;
1689 brq->data.sg_len = i;
1692 mqrq->areq.mrq = &brq->mrq;
1695 *do_rel_wr_p = do_rel_wr;
1698 *do_data_tag_p = do_data_tag;
1701 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1702 struct mmc_card *card,
1704 struct mmc_queue *mq)
1706 u32 readcmd, writecmd;
1707 struct mmc_blk_request *brq = &mqrq->brq;
1708 struct request *req = mmc_queue_req_to_req(mqrq);
1709 struct mmc_blk_data *md = mq->blkdata;
1710 bool do_rel_wr, do_data_tag;
1712 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1714 brq->mrq.cmd = &brq->cmd;
1716 brq->cmd.arg = blk_rq_pos(req);
1717 if (!mmc_card_blockaddr(card))
1719 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1721 if (brq->data.blocks > 1 || do_rel_wr) {
1722 /* SPI multiblock writes terminate using a special
1723 * token, not a STOP_TRANSMISSION request.
1725 if (!mmc_host_is_spi(card->host) ||
1726 rq_data_dir(req) == READ)
1727 brq->mrq.stop = &brq->stop;
1728 readcmd = MMC_READ_MULTIPLE_BLOCK;
1729 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1731 brq->mrq.stop = NULL;
1732 readcmd = MMC_READ_SINGLE_BLOCK;
1733 writecmd = MMC_WRITE_BLOCK;
1735 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1738 * Pre-defined multi-block transfers are preferable to
1739 * open ended-ones (and necessary for reliable writes).
1740 * However, it is not sufficient to just send CMD23,
1741 * and avoid the final CMD12, as on an error condition
1742 * CMD12 (stop) needs to be sent anyway. This, coupled
1743 * with Auto-CMD23 enhancements provided by some
1744 * hosts, means that the complexity of dealing
1745 * with this is best left to the host. If CMD23 is
1746 * supported by card and host, we'll fill sbc in and let
1747 * the host deal with handling it correctly. This means
1748 * that for hosts that don't expose MMC_CAP_CMD23, no
1749 * change of behavior will be observed.
1751 * N.B: Some MMC cards experience perf degradation.
1752 * We'll avoid using CMD23-bounded multiblock writes for
1753 * these, while retaining features like reliable writes.
1755 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1756 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1758 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1759 brq->sbc.arg = brq->data.blocks |
1760 (do_rel_wr ? (1 << 31) : 0) |
1761 (do_data_tag ? (1 << 29) : 0);
1762 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1763 brq->mrq.sbc = &brq->sbc;
1766 mqrq->areq.err_check = mmc_blk_err_check;
1769 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1770 struct mmc_blk_request *brq, struct request *req,
1771 bool old_req_pending)
1776 * If this is an SD card and we're writing, we can first
1777 * mark the known good sectors as ok.
1779 * If the card is not SD, we can still ok written sectors
1780 * as reported by the controller (which might be less than
1781 * the real number of written sectors, but never more).
1783 if (mmc_card_sd(card)) {
1787 err = mmc_sd_num_wr_blocks(card, &blocks);
1789 req_pending = old_req_pending;
1791 req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9);
1793 req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered);
1798 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1799 struct request *req,
1800 struct mmc_queue_req *mqrq)
1802 if (mmc_card_removed(card))
1803 req->rq_flags |= RQF_QUIET;
1804 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1809 * mmc_blk_rw_try_restart() - tries to restart the current async request
1810 * @mq: the queue with the card and host to restart
1811 * @req: a new request that want to be started after the current one
1813 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1814 struct mmc_queue_req *mqrq)
1820 * If the card was removed, just cancel everything and return.
1822 if (mmc_card_removed(mq->card)) {
1823 req->rq_flags |= RQF_QUIET;
1824 blk_end_request_all(req, BLK_STS_IOERR);
1825 mq->qcnt--; /* FIXME: just set to 0? */
1828 /* Else proceed and try to restart the current async request */
1829 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1830 mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1833 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1835 struct mmc_blk_data *md = mq->blkdata;
1836 struct mmc_card *card = md->queue.card;
1837 struct mmc_blk_request *brq;
1838 int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1839 enum mmc_blk_status status;
1840 struct mmc_queue_req *mqrq_cur = NULL;
1841 struct mmc_queue_req *mq_rq;
1842 struct request *old_req;
1843 struct mmc_async_req *new_areq;
1844 struct mmc_async_req *old_areq;
1845 bool req_pending = true;
1848 mqrq_cur = req_to_mmc_queue_req(new_req);
1858 * When 4KB native sector is enabled, only 8 blocks
1859 * multiple read or write is allowed
1861 if (mmc_large_sector(card) &&
1862 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1863 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1864 new_req->rq_disk->disk_name);
1865 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1869 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1870 new_areq = &mqrq_cur->areq;
1874 old_areq = mmc_start_areq(card->host, new_areq, &status);
1877 * We have just put the first request into the pipeline
1878 * and there is nothing more to do until it is
1885 * An asynchronous request has been completed and we proceed
1886 * to handle the result of it.
1888 mq_rq = container_of(old_areq, struct mmc_queue_req, areq);
1890 old_req = mmc_queue_req_to_req(mq_rq);
1891 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1894 case MMC_BLK_SUCCESS:
1895 case MMC_BLK_PARTIAL:
1897 * A block was successfully transferred.
1899 mmc_blk_reset_success(md, type);
1901 req_pending = blk_end_request(old_req, BLK_STS_OK,
1902 brq->data.bytes_xfered);
1904 * If the blk_end_request function returns non-zero even
1905 * though all data has been transferred and no errors
1906 * were returned by the host controller, it's a bug.
1908 if (status == MMC_BLK_SUCCESS && req_pending) {
1909 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1910 __func__, blk_rq_bytes(old_req),
1911 brq->data.bytes_xfered);
1912 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1916 case MMC_BLK_CMD_ERR:
1917 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1918 if (mmc_blk_reset(md, card->host, type)) {
1920 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1923 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1928 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1933 retune_retry_done = brq->retune_retry_done;
1938 if (!mmc_blk_reset(md, card->host, type))
1940 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1941 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1943 case MMC_BLK_DATA_ERR: {
1946 err = mmc_blk_reset(md, card->host, type);
1949 if (err == -ENODEV) {
1950 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1951 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1956 case MMC_BLK_ECC_ERR:
1957 if (brq->data.blocks > 1) {
1958 /* Redo read one sector at a time */
1959 pr_warn("%s: retrying using single block read\n",
1960 old_req->rq_disk->disk_name);
1965 * After an error, we redo I/O one sector at a
1966 * time, so we only reach here after trying to
1967 * read a single sector.
1969 req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1973 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1977 case MMC_BLK_NOMEDIUM:
1978 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1979 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1982 pr_err("%s: Unhandled return value (%d)",
1983 old_req->rq_disk->disk_name, status);
1984 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1985 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1991 * In case of a incomplete request
1992 * prepare it again and resend.
1994 mmc_blk_rw_rq_prep(mq_rq, card,
1996 mmc_start_areq(card->host,
1997 &mq_rq->areq, NULL);
1998 mq_rq->brq.retune_retry_done = retune_retry_done;
2000 } while (req_pending);
2005 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2008 struct mmc_blk_data *md = mq->blkdata;
2009 struct mmc_card *card = md->queue.card;
2011 if (req && !mq->qcnt)
2012 /* claim host only for the first request */
2013 mmc_get_card(card, NULL);
2015 ret = mmc_blk_part_switch(card, md->part_type);
2018 blk_end_request_all(req, BLK_STS_IOERR);
2024 switch (req_op(req)) {
2026 case REQ_OP_DRV_OUT:
2028 * Complete ongoing async transfer before issuing
2032 mmc_blk_issue_rw_rq(mq, NULL);
2033 mmc_blk_issue_drv_op(mq, req);
2035 case REQ_OP_DISCARD:
2037 * Complete ongoing async transfer before issuing
2041 mmc_blk_issue_rw_rq(mq, NULL);
2042 mmc_blk_issue_discard_rq(mq, req);
2044 case REQ_OP_SECURE_ERASE:
2046 * Complete ongoing async transfer before issuing
2050 mmc_blk_issue_rw_rq(mq, NULL);
2051 mmc_blk_issue_secdiscard_rq(mq, req);
2055 * Complete ongoing async transfer before issuing
2059 mmc_blk_issue_rw_rq(mq, NULL);
2060 mmc_blk_issue_flush(mq, req);
2063 /* Normal request, just issue it */
2064 mmc_blk_issue_rw_rq(mq, req);
2065 card->host->context_info.is_waiting_last_req = false;
2069 /* No request, flushing the pipeline with NULL */
2070 mmc_blk_issue_rw_rq(mq, NULL);
2071 card->host->context_info.is_waiting_last_req = false;
2076 mmc_put_card(card, NULL);
2079 static inline int mmc_blk_readonly(struct mmc_card *card)
2081 return mmc_card_readonly(card) ||
2082 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2085 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2086 struct device *parent,
2089 const char *subname,
2092 struct mmc_blk_data *md;
2095 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2098 * We get -ENOSPC because there are no more any available
2099 * devidx. The reason may be that, either userspace haven't yet
2100 * unmounted the partitions, which postpones mmc_blk_release()
2101 * from being called, or the device has more partitions than
2104 if (devidx == -ENOSPC)
2105 dev_err(mmc_dev(card->host),
2106 "no more device IDs available\n");
2108 return ERR_PTR(devidx);
2111 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2117 md->area_type = area_type;
2120 * Set the read-only status based on the supported commands
2121 * and the write protect switch.
2123 md->read_only = mmc_blk_readonly(card);
2125 md->disk = alloc_disk(perdev_minors);
2126 if (md->disk == NULL) {
2131 spin_lock_init(&md->lock);
2132 INIT_LIST_HEAD(&md->part);
2133 INIT_LIST_HEAD(&md->rpmbs);
2136 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2140 md->queue.blkdata = md;
2142 md->disk->major = MMC_BLOCK_MAJOR;
2143 md->disk->first_minor = devidx * perdev_minors;
2144 md->disk->fops = &mmc_bdops;
2145 md->disk->private_data = md;
2146 md->disk->queue = md->queue.queue;
2147 md->parent = parent;
2148 set_disk_ro(md->disk, md->read_only || default_ro);
2149 md->disk->flags = GENHD_FL_EXT_DEVT;
2150 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2151 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2154 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2156 * - be set for removable media with permanent block devices
2157 * - be unset for removable block devices with permanent media
2159 * Since MMC block devices clearly fall under the second
2160 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2161 * should use the block device creation/destruction hotplug
2162 * messages to tell when the card is present.
2165 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2166 "mmcblk%u%s", card->host->index, subname ? subname : "");
2168 if (mmc_card_mmc(card))
2169 blk_queue_logical_block_size(md->queue.queue,
2170 card->ext_csd.data_sector_size);
2172 blk_queue_logical_block_size(md->queue.queue, 512);
2174 set_capacity(md->disk, size);
2176 if (mmc_host_cmd23(card->host)) {
2177 if ((mmc_card_mmc(card) &&
2178 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2179 (mmc_card_sd(card) &&
2180 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2181 md->flags |= MMC_BLK_CMD23;
2184 if (mmc_card_mmc(card) &&
2185 md->flags & MMC_BLK_CMD23 &&
2186 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2187 card->ext_csd.rel_sectors)) {
2188 md->flags |= MMC_BLK_REL_WR;
2189 blk_queue_write_cache(md->queue.queue, true, true);
2199 ida_simple_remove(&mmc_blk_ida, devidx);
2200 return ERR_PTR(ret);
2203 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2207 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2209 * The EXT_CSD sector count is in number or 512 byte
2212 size = card->ext_csd.sectors;
2215 * The CSD capacity field is in units of read_blkbits.
2216 * set_capacity takes units of 512 bytes.
2218 size = (typeof(sector_t))card->csd.capacity
2219 << (card->csd.read_blkbits - 9);
2222 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2223 MMC_BLK_DATA_AREA_MAIN);
2226 static int mmc_blk_alloc_part(struct mmc_card *card,
2227 struct mmc_blk_data *md,
2228 unsigned int part_type,
2231 const char *subname,
2235 struct mmc_blk_data *part_md;
2237 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2238 subname, area_type);
2239 if (IS_ERR(part_md))
2240 return PTR_ERR(part_md);
2241 part_md->part_type = part_type;
2242 list_add(&part_md->part, &md->part);
2244 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2245 cap_str, sizeof(cap_str));
2246 pr_info("%s: %s %s partition %u %s\n",
2247 part_md->disk->disk_name, mmc_card_id(card),
2248 mmc_card_name(card), part_md->part_type, cap_str);
2253 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2254 * @filp: the character device file
2255 * @cmd: the ioctl() command
2256 * @arg: the argument from userspace
2258 * This will essentially just redirect the ioctl()s coming in over to
2259 * the main block device spawning the RPMB character device.
2261 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2264 struct mmc_rpmb_data *rpmb = filp->private_data;
2269 ret = mmc_blk_ioctl_cmd(rpmb->md,
2270 (struct mmc_ioc_cmd __user *)arg,
2273 case MMC_IOC_MULTI_CMD:
2274 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2275 (struct mmc_ioc_multi_cmd __user *)arg,
2286 #ifdef CONFIG_COMPAT
2287 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2290 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2294 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2296 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2297 struct mmc_rpmb_data, chrdev);
2299 get_device(&rpmb->dev);
2300 filp->private_data = rpmb;
2301 mmc_blk_get(rpmb->md->disk);
2303 return nonseekable_open(inode, filp);
2306 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2308 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2309 struct mmc_rpmb_data, chrdev);
2311 put_device(&rpmb->dev);
2312 mmc_blk_put(rpmb->md);
2317 static const struct file_operations mmc_rpmb_fileops = {
2318 .release = mmc_rpmb_chrdev_release,
2319 .open = mmc_rpmb_chrdev_open,
2320 .owner = THIS_MODULE,
2321 .llseek = no_llseek,
2322 .unlocked_ioctl = mmc_rpmb_ioctl,
2323 #ifdef CONFIG_COMPAT
2324 .compat_ioctl = mmc_rpmb_ioctl_compat,
2328 static void mmc_blk_rpmb_device_release(struct device *dev)
2330 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2332 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2336 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2337 struct mmc_blk_data *md,
2338 unsigned int part_index,
2340 const char *subname)
2343 char rpmb_name[DISK_NAME_LEN];
2345 struct mmc_rpmb_data *rpmb;
2347 /* This creates the minor number for the RPMB char device */
2348 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2352 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2354 ida_simple_remove(&mmc_rpmb_ida, devidx);
2358 snprintf(rpmb_name, sizeof(rpmb_name),
2359 "mmcblk%u%s", card->host->index, subname ? subname : "");
2362 rpmb->part_index = part_index;
2363 rpmb->dev.init_name = rpmb_name;
2364 rpmb->dev.bus = &mmc_rpmb_bus_type;
2365 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2366 rpmb->dev.parent = &card->dev;
2367 rpmb->dev.release = mmc_blk_rpmb_device_release;
2368 device_initialize(&rpmb->dev);
2369 dev_set_drvdata(&rpmb->dev, rpmb);
2372 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2373 rpmb->chrdev.owner = THIS_MODULE;
2374 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2376 pr_err("%s: could not add character device\n", rpmb_name);
2377 goto out_put_device;
2380 list_add(&rpmb->node, &md->rpmbs);
2382 string_get_size((u64)size, 512, STRING_UNITS_2,
2383 cap_str, sizeof(cap_str));
2385 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2386 rpmb_name, mmc_card_id(card),
2387 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2388 MAJOR(mmc_rpmb_devt), rpmb->id);
2393 put_device(&rpmb->dev);
2397 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2400 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2401 put_device(&rpmb->dev);
2404 /* MMC Physical partitions consist of two boot partitions and
2405 * up to four general purpose partitions.
2406 * For each partition enabled in EXT_CSD a block device will be allocatedi
2407 * to provide access to the partition.
2410 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2414 if (!mmc_card_mmc(card))
2417 for (idx = 0; idx < card->nr_parts; idx++) {
2418 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2420 * RPMB partitions does not provide block access, they
2421 * are only accessed using ioctl():s. Thus create
2422 * special RPMB block devices that do not have a
2423 * backing block queue for these.
2425 ret = mmc_blk_alloc_rpmb_part(card, md,
2426 card->part[idx].part_cfg,
2427 card->part[idx].size >> 9,
2428 card->part[idx].name);
2431 } else if (card->part[idx].size) {
2432 ret = mmc_blk_alloc_part(card, md,
2433 card->part[idx].part_cfg,
2434 card->part[idx].size >> 9,
2435 card->part[idx].force_ro,
2436 card->part[idx].name,
2437 card->part[idx].area_type);
2446 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2448 struct mmc_card *card;
2452 * Flush remaining requests and free queues. It
2453 * is freeing the queue that stops new requests
2454 * from being accepted.
2456 card = md->queue.card;
2457 spin_lock_irq(md->queue.queue->queue_lock);
2458 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2459 spin_unlock_irq(md->queue.queue->queue_lock);
2460 blk_set_queue_dying(md->queue.queue);
2461 mmc_cleanup_queue(&md->queue);
2462 if (md->disk->flags & GENHD_FL_UP) {
2463 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2464 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2465 card->ext_csd.boot_ro_lockable)
2466 device_remove_file(disk_to_dev(md->disk),
2467 &md->power_ro_lock);
2469 del_gendisk(md->disk);
2475 static void mmc_blk_remove_parts(struct mmc_card *card,
2476 struct mmc_blk_data *md)
2478 struct list_head *pos, *q;
2479 struct mmc_blk_data *part_md;
2480 struct mmc_rpmb_data *rpmb;
2482 /* Remove RPMB partitions */
2483 list_for_each_safe(pos, q, &md->rpmbs) {
2484 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2486 mmc_blk_remove_rpmb_part(rpmb);
2488 /* Remove block partitions */
2489 list_for_each_safe(pos, q, &md->part) {
2490 part_md = list_entry(pos, struct mmc_blk_data, part);
2492 mmc_blk_remove_req(part_md);
2496 static int mmc_add_disk(struct mmc_blk_data *md)
2499 struct mmc_card *card = md->queue.card;
2501 device_add_disk(md->parent, md->disk);
2502 md->force_ro.show = force_ro_show;
2503 md->force_ro.store = force_ro_store;
2504 sysfs_attr_init(&md->force_ro.attr);
2505 md->force_ro.attr.name = "force_ro";
2506 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2507 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2511 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2512 card->ext_csd.boot_ro_lockable) {
2515 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2518 mode = S_IRUGO | S_IWUSR;
2520 md->power_ro_lock.show = power_ro_lock_show;
2521 md->power_ro_lock.store = power_ro_lock_store;
2522 sysfs_attr_init(&md->power_ro_lock.attr);
2523 md->power_ro_lock.attr.mode = mode;
2524 md->power_ro_lock.attr.name =
2525 "ro_lock_until_next_power_on";
2526 ret = device_create_file(disk_to_dev(md->disk),
2527 &md->power_ro_lock);
2529 goto power_ro_lock_fail;
2534 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2536 del_gendisk(md->disk);
2541 #ifdef CONFIG_DEBUG_FS
2543 static int mmc_dbg_card_status_get(void *data, u64 *val)
2545 struct mmc_card *card = data;
2546 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2547 struct mmc_queue *mq = &md->queue;
2548 struct request *req;
2551 /* Ask the block layer about the card status */
2552 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2553 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2554 blk_execute_rq(mq->queue, NULL, req, 0);
2555 ret = req_to_mmc_queue_req(req)->drv_op_result;
2563 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2566 /* That is two digits * 512 + 1 for newline */
2567 #define EXT_CSD_STR_LEN 1025
2569 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2571 struct mmc_card *card = inode->i_private;
2572 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2573 struct mmc_queue *mq = &md->queue;
2574 struct request *req;
2580 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2584 /* Ask the block layer for the EXT CSD */
2585 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2586 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2587 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2588 blk_execute_rq(mq->queue, NULL, req, 0);
2589 err = req_to_mmc_queue_req(req)->drv_op_result;
2591 pr_err("FAILED %d\n", err);
2595 for (i = 0; i < 512; i++)
2596 n += sprintf(buf + n, "%02x", ext_csd[i]);
2597 n += sprintf(buf + n, "\n");
2599 if (n != EXT_CSD_STR_LEN) {
2604 filp->private_data = buf;
2613 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2614 size_t cnt, loff_t *ppos)
2616 char *buf = filp->private_data;
2618 return simple_read_from_buffer(ubuf, cnt, ppos,
2619 buf, EXT_CSD_STR_LEN);
2622 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2624 kfree(file->private_data);
2628 static const struct file_operations mmc_dbg_ext_csd_fops = {
2629 .open = mmc_ext_csd_open,
2630 .read = mmc_ext_csd_read,
2631 .release = mmc_ext_csd_release,
2632 .llseek = default_llseek,
2635 static int mmc_blk_add_debugfs(struct mmc_card *card)
2637 struct dentry *root;
2639 if (!card->debugfs_root)
2642 root = card->debugfs_root;
2644 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2645 if (!debugfs_create_file("status", S_IRUSR, root, card,
2646 &mmc_dbg_card_status_fops))
2650 if (mmc_card_mmc(card)) {
2651 if (!debugfs_create_file("ext_csd", S_IRUSR, root, card,
2652 &mmc_dbg_ext_csd_fops))
2662 static int mmc_blk_add_debugfs(struct mmc_card *card)
2667 #endif /* CONFIG_DEBUG_FS */
2669 static int mmc_blk_probe(struct mmc_card *card)
2671 struct mmc_blk_data *md, *part_md;
2675 * Check that the card supports the command class(es) we need.
2677 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2680 mmc_fixup_device(card, mmc_blk_fixups);
2682 md = mmc_blk_alloc(card);
2686 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2687 cap_str, sizeof(cap_str));
2688 pr_info("%s: %s %s %s %s\n",
2689 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2690 cap_str, md->read_only ? "(ro)" : "");
2692 if (mmc_blk_alloc_parts(card, md))
2695 dev_set_drvdata(&card->dev, md);
2697 if (mmc_add_disk(md))
2700 list_for_each_entry(part_md, &md->part, part) {
2701 if (mmc_add_disk(part_md))
2705 /* Add two debugfs entries */
2706 mmc_blk_add_debugfs(card);
2708 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2709 pm_runtime_use_autosuspend(&card->dev);
2712 * Don't enable runtime PM for SD-combo cards here. Leave that
2713 * decision to be taken during the SDIO init sequence instead.
2715 if (card->type != MMC_TYPE_SD_COMBO) {
2716 pm_runtime_set_active(&card->dev);
2717 pm_runtime_enable(&card->dev);
2723 mmc_blk_remove_parts(card, md);
2724 mmc_blk_remove_req(md);
2728 static void mmc_blk_remove(struct mmc_card *card)
2730 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2732 mmc_blk_remove_parts(card, md);
2733 pm_runtime_get_sync(&card->dev);
2734 mmc_claim_host(card->host);
2735 mmc_blk_part_switch(card, md->part_type);
2736 mmc_release_host(card->host);
2737 if (card->type != MMC_TYPE_SD_COMBO)
2738 pm_runtime_disable(&card->dev);
2739 pm_runtime_put_noidle(&card->dev);
2740 mmc_blk_remove_req(md);
2741 dev_set_drvdata(&card->dev, NULL);
2744 static int _mmc_blk_suspend(struct mmc_card *card)
2746 struct mmc_blk_data *part_md;
2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2750 mmc_queue_suspend(&md->queue);
2751 list_for_each_entry(part_md, &md->part, part) {
2752 mmc_queue_suspend(&part_md->queue);
2758 static void mmc_blk_shutdown(struct mmc_card *card)
2760 _mmc_blk_suspend(card);
2763 #ifdef CONFIG_PM_SLEEP
2764 static int mmc_blk_suspend(struct device *dev)
2766 struct mmc_card *card = mmc_dev_to_card(dev);
2768 return _mmc_blk_suspend(card);
2771 static int mmc_blk_resume(struct device *dev)
2773 struct mmc_blk_data *part_md;
2774 struct mmc_blk_data *md = dev_get_drvdata(dev);
2778 * Resume involves the card going into idle state,
2779 * so current partition is always the main one.
2781 md->part_curr = md->part_type;
2782 mmc_queue_resume(&md->queue);
2783 list_for_each_entry(part_md, &md->part, part) {
2784 mmc_queue_resume(&part_md->queue);
2791 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2793 static struct mmc_driver mmc_driver = {
2796 .pm = &mmc_blk_pm_ops,
2798 .probe = mmc_blk_probe,
2799 .remove = mmc_blk_remove,
2800 .shutdown = mmc_blk_shutdown,
2803 static int __init mmc_blk_init(void)
2807 res = bus_register(&mmc_rpmb_bus_type);
2809 pr_err("mmcblk: could not register RPMB bus type\n");
2812 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
2814 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
2818 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2819 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2821 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2823 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2825 goto out_chrdev_unreg;
2827 res = mmc_register_driver(&mmc_driver);
2829 goto out_blkdev_unreg;
2834 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2836 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2838 bus_unregister(&mmc_rpmb_bus_type);
2842 static void __exit mmc_blk_exit(void)
2844 mmc_unregister_driver(&mmc_driver);
2845 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2846 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2849 module_init(mmc_blk_init);
2850 module_exit(mmc_blk_exit);
2852 MODULE_LICENSE("GPL");
2853 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");