Merge branch 'kvm-ppc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[linux-2.6-microblaze.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131
132 /*
133  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
134  * types are passed around to enqueue and dequeue routines.  Note that
135  * often the functions passed are simply wrappers around memcpy
136  * itself.
137  *
138  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139  * there's an unused last parameter for the hosted side.  In
140  * ESX, that parameter holds a buffer type.
141  */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143                                       u64 queue_offset, const void *src,
144                                       size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146                                         const struct vmci_queue *queue,
147                                         u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151         struct mutex __mutex;   /* Protects the queue. */
152         struct mutex *mutex;    /* Shared by producer and consumer queues. */
153         size_t num_pages;       /* Number of pages incl. header. */
154         bool host;              /* Host or guest? */
155         union {
156                 struct {
157                         dma_addr_t *pas;
158                         void **vas;
159                 } g;            /* Used by the guest. */
160                 struct {
161                         struct page **page;
162                         struct page **header_page;
163                 } h;            /* Used by the host. */
164         } u;
165 };
166
167 /*
168  * This structure is opaque to the clients.
169  */
170 struct vmci_qp {
171         struct vmci_handle handle;
172         struct vmci_queue *produce_q;
173         struct vmci_queue *consume_q;
174         u64 produce_q_size;
175         u64 consume_q_size;
176         u32 peer;
177         u32 flags;
178         u32 priv_flags;
179         bool guest_endpoint;
180         unsigned int blocked;
181         unsigned int generation;
182         wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186         VMCIQPB_NEW,
187         VMCIQPB_CREATED_NO_MEM,
188         VMCIQPB_CREATED_MEM,
189         VMCIQPB_ATTACHED_NO_MEM,
190         VMCIQPB_ATTACHED_MEM,
191         VMCIQPB_SHUTDOWN_NO_MEM,
192         VMCIQPB_SHUTDOWN_MEM,
193         VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197                                      _qpb->state == VMCIQPB_ATTACHED_MEM || \
198                                      _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201  * In the queue pair broker, we always use the guest point of view for
202  * the produce and consume queue values and references, e.g., the
203  * produce queue size stored is the guests produce queue size. The
204  * host endpoint will need to swap these around. The only exception is
205  * the local queue pairs on the host, in which case the host endpoint
206  * that creates the queue pair will have the right orientation, and
207  * the attaching host endpoint will need to swap.
208  */
209 struct qp_entry {
210         struct list_head list_item;
211         struct vmci_handle handle;
212         u32 peer;
213         u32 flags;
214         u64 produce_size;
215         u64 consume_size;
216         u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220         struct vmci_resource resource;
221         struct qp_entry qp;
222         u32 create_id;
223         u32 attach_id;
224         enum qp_broker_state state;
225         bool require_trusted_attach;
226         bool created_by_trusted;
227         bool vmci_page_files;   /* Created by VMX using VMCI page files */
228         struct vmci_queue *produce_q;
229         struct vmci_queue *consume_q;
230         struct vmci_queue_header saved_produce_q;
231         struct vmci_queue_header saved_consume_q;
232         vmci_event_release_cb wakeup_cb;
233         void *client_data;
234         void *local_mem;        /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238         struct vmci_resource resource;
239         struct qp_entry qp;
240         u64 num_ppns;
241         void *produce_q;
242         void *consume_q;
243         struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247         struct list_head head;
248         struct mutex mutex;     /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252         .head = LIST_HEAD_INIT(qp_broker_list.head),
253         .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257         .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258         .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID  0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263                              (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264                               DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268  * Frees kernel VA space for a given queue and its queue header, and
269  * frees physical data pages.
270  */
271 static void qp_free_queue(void *q, u64 size)
272 {
273         struct vmci_queue *queue = q;
274
275         if (queue) {
276                 u64 i;
277
278                 /* Given size does not include header, so add in a page here. */
279                 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280                         dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281                                           queue->kernel_if->u.g.vas[i],
282                                           queue->kernel_if->u.g.pas[i]);
283                 }
284
285                 vfree(queue);
286         }
287 }
288
289 /*
290  * Allocates kernel queue pages of specified size with IOMMU mappings,
291  * plus space for the queue structure/kernel interface and the queue
292  * header.
293  */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296         u64 i;
297         struct vmci_queue *queue;
298         size_t pas_size;
299         size_t vas_size;
300         size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
301         u64 num_pages;
302
303         if (size > SIZE_MAX - PAGE_SIZE)
304                 return NULL;
305         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
306         if (num_pages >
307                  (SIZE_MAX - queue_size) /
308                  (sizeof(*queue->kernel_if->u.g.pas) +
309                   sizeof(*queue->kernel_if->u.g.vas)))
310                 return NULL;
311
312         pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
313         vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
314         queue_size += pas_size + vas_size;
315
316         queue = vmalloc(queue_size);
317         if (!queue)
318                 return NULL;
319
320         queue->q_header = NULL;
321         queue->saved_header = NULL;
322         queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
323         queue->kernel_if->mutex = NULL;
324         queue->kernel_if->num_pages = num_pages;
325         queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
326         queue->kernel_if->u.g.vas =
327                 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
328         queue->kernel_if->host = false;
329
330         for (i = 0; i < num_pages; i++) {
331                 queue->kernel_if->u.g.vas[i] =
332                         dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
333                                            &queue->kernel_if->u.g.pas[i],
334                                            GFP_KERNEL);
335                 if (!queue->kernel_if->u.g.vas[i]) {
336                         /* Size excl. the header. */
337                         qp_free_queue(queue, i * PAGE_SIZE);
338                         return NULL;
339                 }
340         }
341
342         /* Queue header is the first page. */
343         queue->q_header = queue->kernel_if->u.g.vas[0];
344
345         return queue;
346 }
347
348 /*
349  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
350  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
351  * by traversing the offset -> page translation structure for the queue.
352  * Assumes that offset + size does not wrap around in the queue.
353  */
354 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
355                                 u64 queue_offset,
356                                 const void *src,
357                                 size_t size,
358                                 bool is_iovec)
359 {
360         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
361         size_t bytes_copied = 0;
362
363         while (bytes_copied < size) {
364                 const u64 page_index =
365                         (queue_offset + bytes_copied) / PAGE_SIZE;
366                 const size_t page_offset =
367                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
368                 void *va;
369                 size_t to_copy;
370
371                 if (kernel_if->host)
372                         va = kmap(kernel_if->u.h.page[page_index]);
373                 else
374                         va = kernel_if->u.g.vas[page_index + 1];
375                         /* Skip header. */
376
377                 if (size - bytes_copied > PAGE_SIZE - page_offset)
378                         /* Enough payload to fill up from this page. */
379                         to_copy = PAGE_SIZE - page_offset;
380                 else
381                         to_copy = size - bytes_copied;
382
383                 if (is_iovec) {
384                         struct msghdr *msg = (struct msghdr *)src;
385                         int err;
386
387                         /* The iovec will track bytes_copied internally. */
388                         err = memcpy_from_msg((u8 *)va + page_offset,
389                                               msg, to_copy);
390                         if (err != 0) {
391                                 if (kernel_if->host)
392                                         kunmap(kernel_if->u.h.page[page_index]);
393                                 return VMCI_ERROR_INVALID_ARGS;
394                         }
395                 } else {
396                         memcpy((u8 *)va + page_offset,
397                                (u8 *)src + bytes_copied, to_copy);
398                 }
399
400                 bytes_copied += to_copy;
401                 if (kernel_if->host)
402                         kunmap(kernel_if->u.h.page[page_index]);
403         }
404
405         return VMCI_SUCCESS;
406 }
407
408 /*
409  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
410  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
411  * by traversing the offset -> page translation structure for the queue.
412  * Assumes that offset + size does not wrap around in the queue.
413  */
414 static int __qp_memcpy_from_queue(void *dest,
415                                   const struct vmci_queue *queue,
416                                   u64 queue_offset,
417                                   size_t size,
418                                   bool is_iovec)
419 {
420         struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
421         size_t bytes_copied = 0;
422
423         while (bytes_copied < size) {
424                 const u64 page_index =
425                         (queue_offset + bytes_copied) / PAGE_SIZE;
426                 const size_t page_offset =
427                     (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
428                 void *va;
429                 size_t to_copy;
430
431                 if (kernel_if->host)
432                         va = kmap(kernel_if->u.h.page[page_index]);
433                 else
434                         va = kernel_if->u.g.vas[page_index + 1];
435                         /* Skip header. */
436
437                 if (size - bytes_copied > PAGE_SIZE - page_offset)
438                         /* Enough payload to fill up this page. */
439                         to_copy = PAGE_SIZE - page_offset;
440                 else
441                         to_copy = size - bytes_copied;
442
443                 if (is_iovec) {
444                         struct msghdr *msg = dest;
445                         int err;
446
447                         /* The iovec will track bytes_copied internally. */
448                         err = memcpy_to_msg(msg, (u8 *)va + page_offset,
449                                              to_copy);
450                         if (err != 0) {
451                                 if (kernel_if->host)
452                                         kunmap(kernel_if->u.h.page[page_index]);
453                                 return VMCI_ERROR_INVALID_ARGS;
454                         }
455                 } else {
456                         memcpy((u8 *)dest + bytes_copied,
457                                (u8 *)va + page_offset, to_copy);
458                 }
459
460                 bytes_copied += to_copy;
461                 if (kernel_if->host)
462                         kunmap(kernel_if->u.h.page[page_index]);
463         }
464
465         return VMCI_SUCCESS;
466 }
467
468 /*
469  * Allocates two list of PPNs --- one for the pages in the produce queue,
470  * and the other for the pages in the consume queue. Intializes the list
471  * of PPNs with the page frame numbers of the KVA for the two queues (and
472  * the queue headers).
473  */
474 static int qp_alloc_ppn_set(void *prod_q,
475                             u64 num_produce_pages,
476                             void *cons_q,
477                             u64 num_consume_pages, struct ppn_set *ppn_set)
478 {
479         u32 *produce_ppns;
480         u32 *consume_ppns;
481         struct vmci_queue *produce_q = prod_q;
482         struct vmci_queue *consume_q = cons_q;
483         u64 i;
484
485         if (!produce_q || !num_produce_pages || !consume_q ||
486             !num_consume_pages || !ppn_set)
487                 return VMCI_ERROR_INVALID_ARGS;
488
489         if (ppn_set->initialized)
490                 return VMCI_ERROR_ALREADY_EXISTS;
491
492         produce_ppns =
493             kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
494         if (!produce_ppns)
495                 return VMCI_ERROR_NO_MEM;
496
497         consume_ppns =
498             kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
499         if (!consume_ppns) {
500                 kfree(produce_ppns);
501                 return VMCI_ERROR_NO_MEM;
502         }
503
504         for (i = 0; i < num_produce_pages; i++) {
505                 unsigned long pfn;
506
507                 produce_ppns[i] =
508                         produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
509                 pfn = produce_ppns[i];
510
511                 /* Fail allocation if PFN isn't supported by hypervisor. */
512                 if (sizeof(pfn) > sizeof(*produce_ppns)
513                     && pfn != produce_ppns[i])
514                         goto ppn_error;
515         }
516
517         for (i = 0; i < num_consume_pages; i++) {
518                 unsigned long pfn;
519
520                 consume_ppns[i] =
521                         consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
522                 pfn = consume_ppns[i];
523
524                 /* Fail allocation if PFN isn't supported by hypervisor. */
525                 if (sizeof(pfn) > sizeof(*consume_ppns)
526                     && pfn != consume_ppns[i])
527                         goto ppn_error;
528         }
529
530         ppn_set->num_produce_pages = num_produce_pages;
531         ppn_set->num_consume_pages = num_consume_pages;
532         ppn_set->produce_ppns = produce_ppns;
533         ppn_set->consume_ppns = consume_ppns;
534         ppn_set->initialized = true;
535         return VMCI_SUCCESS;
536
537  ppn_error:
538         kfree(produce_ppns);
539         kfree(consume_ppns);
540         return VMCI_ERROR_INVALID_ARGS;
541 }
542
543 /*
544  * Frees the two list of PPNs for a queue pair.
545  */
546 static void qp_free_ppn_set(struct ppn_set *ppn_set)
547 {
548         if (ppn_set->initialized) {
549                 /* Do not call these functions on NULL inputs. */
550                 kfree(ppn_set->produce_ppns);
551                 kfree(ppn_set->consume_ppns);
552         }
553         memset(ppn_set, 0, sizeof(*ppn_set));
554 }
555
556 /*
557  * Populates the list of PPNs in the hypercall structure with the PPNS
558  * of the produce queue and the consume queue.
559  */
560 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
561 {
562         memcpy(call_buf, ppn_set->produce_ppns,
563                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
564         memcpy(call_buf +
565                ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
566                ppn_set->consume_ppns,
567                ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
568
569         return VMCI_SUCCESS;
570 }
571
572 static int qp_memcpy_to_queue(struct vmci_queue *queue,
573                               u64 queue_offset,
574                               const void *src, size_t src_offset, size_t size)
575 {
576         return __qp_memcpy_to_queue(queue, queue_offset,
577                                     (u8 *)src + src_offset, size, false);
578 }
579
580 static int qp_memcpy_from_queue(void *dest,
581                                 size_t dest_offset,
582                                 const struct vmci_queue *queue,
583                                 u64 queue_offset, size_t size)
584 {
585         return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
586                                       queue, queue_offset, size, false);
587 }
588
589 /*
590  * Copies from a given iovec from a VMCI Queue.
591  */
592 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
593                                   u64 queue_offset,
594                                   const void *msg,
595                                   size_t src_offset, size_t size)
596 {
597
598         /*
599          * We ignore src_offset because src is really a struct iovec * and will
600          * maintain offset internally.
601          */
602         return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
603 }
604
605 /*
606  * Copies to a given iovec from a VMCI Queue.
607  */
608 static int qp_memcpy_from_queue_iov(void *dest,
609                                     size_t dest_offset,
610                                     const struct vmci_queue *queue,
611                                     u64 queue_offset, size_t size)
612 {
613         /*
614          * We ignore dest_offset because dest is really a struct iovec * and
615          * will maintain offset internally.
616          */
617         return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
618 }
619
620 /*
621  * Allocates kernel VA space of specified size plus space for the queue
622  * and kernel interface.  This is different from the guest queue allocator,
623  * because we do not allocate our own queue header/data pages here but
624  * share those of the guest.
625  */
626 static struct vmci_queue *qp_host_alloc_queue(u64 size)
627 {
628         struct vmci_queue *queue;
629         size_t queue_page_size;
630         u64 num_pages;
631         const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
632
633         if (size > SIZE_MAX - PAGE_SIZE)
634                 return NULL;
635         num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
636         if (num_pages > (SIZE_MAX - queue_size) /
637                  sizeof(*queue->kernel_if->u.h.page))
638                 return NULL;
639
640         queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
641
642         queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
643         if (queue) {
644                 queue->q_header = NULL;
645                 queue->saved_header = NULL;
646                 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
647                 queue->kernel_if->host = true;
648                 queue->kernel_if->mutex = NULL;
649                 queue->kernel_if->num_pages = num_pages;
650                 queue->kernel_if->u.h.header_page =
651                     (struct page **)((u8 *)queue + queue_size);
652                 queue->kernel_if->u.h.page =
653                         &queue->kernel_if->u.h.header_page[1];
654         }
655
656         return queue;
657 }
658
659 /*
660  * Frees kernel memory for a given queue (header plus translation
661  * structure).
662  */
663 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
664 {
665         kfree(queue);
666 }
667
668 /*
669  * Initialize the mutex for the pair of queues.  This mutex is used to
670  * protect the q_header and the buffer from changing out from under any
671  * users of either queue.  Of course, it's only any good if the mutexes
672  * are actually acquired.  Queue structure must lie on non-paged memory
673  * or we cannot guarantee access to the mutex.
674  */
675 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
676                                 struct vmci_queue *consume_q)
677 {
678         /*
679          * Only the host queue has shared state - the guest queues do not
680          * need to synchronize access using a queue mutex.
681          */
682
683         if (produce_q->kernel_if->host) {
684                 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
685                 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
686                 mutex_init(produce_q->kernel_if->mutex);
687         }
688 }
689
690 /*
691  * Cleans up the mutex for the pair of queues.
692  */
693 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
694                                    struct vmci_queue *consume_q)
695 {
696         if (produce_q->kernel_if->host) {
697                 produce_q->kernel_if->mutex = NULL;
698                 consume_q->kernel_if->mutex = NULL;
699         }
700 }
701
702 /*
703  * Acquire the mutex for the queue.  Note that the produce_q and
704  * the consume_q share a mutex.  So, only one of the two need to
705  * be passed in to this routine.  Either will work just fine.
706  */
707 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
708 {
709         if (queue->kernel_if->host)
710                 mutex_lock(queue->kernel_if->mutex);
711 }
712
713 /*
714  * Release the mutex for the queue.  Note that the produce_q and
715  * the consume_q share a mutex.  So, only one of the two need to
716  * be passed in to this routine.  Either will work just fine.
717  */
718 static void qp_release_queue_mutex(struct vmci_queue *queue)
719 {
720         if (queue->kernel_if->host)
721                 mutex_unlock(queue->kernel_if->mutex);
722 }
723
724 /*
725  * Helper function to release pages in the PageStoreAttachInfo
726  * previously obtained using get_user_pages.
727  */
728 static void qp_release_pages(struct page **pages,
729                              u64 num_pages, bool dirty)
730 {
731         int i;
732
733         for (i = 0; i < num_pages; i++) {
734                 if (dirty)
735                         set_page_dirty(pages[i]);
736
737                 put_page(pages[i]);
738                 pages[i] = NULL;
739         }
740 }
741
742 /*
743  * Lock the user pages referenced by the {produce,consume}Buffer
744  * struct into memory and populate the {produce,consume}Pages
745  * arrays in the attach structure with them.
746  */
747 static int qp_host_get_user_memory(u64 produce_uva,
748                                    u64 consume_uva,
749                                    struct vmci_queue *produce_q,
750                                    struct vmci_queue *consume_q)
751 {
752         int retval;
753         int err = VMCI_SUCCESS;
754
755         retval = get_user_pages_fast((uintptr_t) produce_uva,
756                                      produce_q->kernel_if->num_pages, 1,
757                                      produce_q->kernel_if->u.h.header_page);
758         if (retval < produce_q->kernel_if->num_pages) {
759                 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
760                         retval);
761                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
762                                  retval, false);
763                 err = VMCI_ERROR_NO_MEM;
764                 goto out;
765         }
766
767         retval = get_user_pages_fast((uintptr_t) consume_uva,
768                                      consume_q->kernel_if->num_pages, 1,
769                                      consume_q->kernel_if->u.h.header_page);
770         if (retval < consume_q->kernel_if->num_pages) {
771                 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
772                         retval);
773                 qp_release_pages(consume_q->kernel_if->u.h.header_page,
774                                  retval, false);
775                 qp_release_pages(produce_q->kernel_if->u.h.header_page,
776                                  produce_q->kernel_if->num_pages, false);
777                 err = VMCI_ERROR_NO_MEM;
778         }
779
780  out:
781         return err;
782 }
783
784 /*
785  * Registers the specification of the user pages used for backing a queue
786  * pair. Enough information to map in pages is stored in the OS specific
787  * part of the struct vmci_queue structure.
788  */
789 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
790                                         struct vmci_queue *produce_q,
791                                         struct vmci_queue *consume_q)
792 {
793         u64 produce_uva;
794         u64 consume_uva;
795
796         /*
797          * The new style and the old style mapping only differs in
798          * that we either get a single or two UVAs, so we split the
799          * single UVA range at the appropriate spot.
800          */
801         produce_uva = page_store->pages;
802         consume_uva = page_store->pages +
803             produce_q->kernel_if->num_pages * PAGE_SIZE;
804         return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
805                                        consume_q);
806 }
807
808 /*
809  * Releases and removes the references to user pages stored in the attach
810  * struct.  Pages are released from the page cache and may become
811  * swappable again.
812  */
813 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
814                                            struct vmci_queue *consume_q)
815 {
816         qp_release_pages(produce_q->kernel_if->u.h.header_page,
817                          produce_q->kernel_if->num_pages, true);
818         memset(produce_q->kernel_if->u.h.header_page, 0,
819                sizeof(*produce_q->kernel_if->u.h.header_page) *
820                produce_q->kernel_if->num_pages);
821         qp_release_pages(consume_q->kernel_if->u.h.header_page,
822                          consume_q->kernel_if->num_pages, true);
823         memset(consume_q->kernel_if->u.h.header_page, 0,
824                sizeof(*consume_q->kernel_if->u.h.header_page) *
825                consume_q->kernel_if->num_pages);
826 }
827
828 /*
829  * Once qp_host_register_user_memory has been performed on a
830  * queue, the queue pair headers can be mapped into the
831  * kernel. Once mapped, they must be unmapped with
832  * qp_host_unmap_queues prior to calling
833  * qp_host_unregister_user_memory.
834  * Pages are pinned.
835  */
836 static int qp_host_map_queues(struct vmci_queue *produce_q,
837                               struct vmci_queue *consume_q)
838 {
839         int result;
840
841         if (!produce_q->q_header || !consume_q->q_header) {
842                 struct page *headers[2];
843
844                 if (produce_q->q_header != consume_q->q_header)
845                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
846
847                 if (produce_q->kernel_if->u.h.header_page == NULL ||
848                     *produce_q->kernel_if->u.h.header_page == NULL)
849                         return VMCI_ERROR_UNAVAILABLE;
850
851                 headers[0] = *produce_q->kernel_if->u.h.header_page;
852                 headers[1] = *consume_q->kernel_if->u.h.header_page;
853
854                 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
855                 if (produce_q->q_header != NULL) {
856                         consume_q->q_header =
857                             (struct vmci_queue_header *)((u8 *)
858                                                          produce_q->q_header +
859                                                          PAGE_SIZE);
860                         result = VMCI_SUCCESS;
861                 } else {
862                         pr_warn("vmap failed\n");
863                         result = VMCI_ERROR_NO_MEM;
864                 }
865         } else {
866                 result = VMCI_SUCCESS;
867         }
868
869         return result;
870 }
871
872 /*
873  * Unmaps previously mapped queue pair headers from the kernel.
874  * Pages are unpinned.
875  */
876 static int qp_host_unmap_queues(u32 gid,
877                                 struct vmci_queue *produce_q,
878                                 struct vmci_queue *consume_q)
879 {
880         if (produce_q->q_header) {
881                 if (produce_q->q_header < consume_q->q_header)
882                         vunmap(produce_q->q_header);
883                 else
884                         vunmap(consume_q->q_header);
885
886                 produce_q->q_header = NULL;
887                 consume_q->q_header = NULL;
888         }
889
890         return VMCI_SUCCESS;
891 }
892
893 /*
894  * Finds the entry in the list corresponding to a given handle. Assumes
895  * that the list is locked.
896  */
897 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
898                                      struct vmci_handle handle)
899 {
900         struct qp_entry *entry;
901
902         if (vmci_handle_is_invalid(handle))
903                 return NULL;
904
905         list_for_each_entry(entry, &qp_list->head, list_item) {
906                 if (vmci_handle_is_equal(entry->handle, handle))
907                         return entry;
908         }
909
910         return NULL;
911 }
912
913 /*
914  * Finds the entry in the list corresponding to a given handle.
915  */
916 static struct qp_guest_endpoint *
917 qp_guest_handle_to_entry(struct vmci_handle handle)
918 {
919         struct qp_guest_endpoint *entry;
920         struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
921
922         entry = qp ? container_of(
923                 qp, struct qp_guest_endpoint, qp) : NULL;
924         return entry;
925 }
926
927 /*
928  * Finds the entry in the list corresponding to a given handle.
929  */
930 static struct qp_broker_entry *
931 qp_broker_handle_to_entry(struct vmci_handle handle)
932 {
933         struct qp_broker_entry *entry;
934         struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
935
936         entry = qp ? container_of(
937                 qp, struct qp_broker_entry, qp) : NULL;
938         return entry;
939 }
940
941 /*
942  * Dispatches a queue pair event message directly into the local event
943  * queue.
944  */
945 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
946 {
947         u32 context_id = vmci_get_context_id();
948         struct vmci_event_qp ev;
949
950         ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
951         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
952                                           VMCI_CONTEXT_RESOURCE_ID);
953         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
954         ev.msg.event_data.event =
955             attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
956         ev.payload.peer_id = context_id;
957         ev.payload.handle = handle;
958
959         return vmci_event_dispatch(&ev.msg.hdr);
960 }
961
962 /*
963  * Allocates and initializes a qp_guest_endpoint structure.
964  * Allocates a queue_pair rid (and handle) iff the given entry has
965  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
966  * are reserved handles.  Assumes that the QP list mutex is held
967  * by the caller.
968  */
969 static struct qp_guest_endpoint *
970 qp_guest_endpoint_create(struct vmci_handle handle,
971                          u32 peer,
972                          u32 flags,
973                          u64 produce_size,
974                          u64 consume_size,
975                          void *produce_q,
976                          void *consume_q)
977 {
978         int result;
979         struct qp_guest_endpoint *entry;
980         /* One page each for the queue headers. */
981         const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
982             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
983
984         if (vmci_handle_is_invalid(handle)) {
985                 u32 context_id = vmci_get_context_id();
986
987                 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
988         }
989
990         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
991         if (entry) {
992                 entry->qp.peer = peer;
993                 entry->qp.flags = flags;
994                 entry->qp.produce_size = produce_size;
995                 entry->qp.consume_size = consume_size;
996                 entry->qp.ref_count = 0;
997                 entry->num_ppns = num_ppns;
998                 entry->produce_q = produce_q;
999                 entry->consume_q = consume_q;
1000                 INIT_LIST_HEAD(&entry->qp.list_item);
1001
1002                 /* Add resource obj */
1003                 result = vmci_resource_add(&entry->resource,
1004                                            VMCI_RESOURCE_TYPE_QPAIR_GUEST,
1005                                            handle);
1006                 entry->qp.handle = vmci_resource_handle(&entry->resource);
1007                 if ((result != VMCI_SUCCESS) ||
1008                     qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1009                         pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1010                                 handle.context, handle.resource, result);
1011                         kfree(entry);
1012                         entry = NULL;
1013                 }
1014         }
1015         return entry;
1016 }
1017
1018 /*
1019  * Frees a qp_guest_endpoint structure.
1020  */
1021 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1022 {
1023         qp_free_ppn_set(&entry->ppn_set);
1024         qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1025         qp_free_queue(entry->produce_q, entry->qp.produce_size);
1026         qp_free_queue(entry->consume_q, entry->qp.consume_size);
1027         /* Unlink from resource hash table and free callback */
1028         vmci_resource_remove(&entry->resource);
1029
1030         kfree(entry);
1031 }
1032
1033 /*
1034  * Helper to make a queue_pairAlloc hypercall when the driver is
1035  * supporting a guest device.
1036  */
1037 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1038 {
1039         struct vmci_qp_alloc_msg *alloc_msg;
1040         size_t msg_size;
1041         int result;
1042
1043         if (!entry || entry->num_ppns <= 2)
1044                 return VMCI_ERROR_INVALID_ARGS;
1045
1046         msg_size = sizeof(*alloc_msg) +
1047             (size_t) entry->num_ppns * sizeof(u32);
1048         alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1049         if (!alloc_msg)
1050                 return VMCI_ERROR_NO_MEM;
1051
1052         alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1053                                               VMCI_QUEUEPAIR_ALLOC);
1054         alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1055         alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1056         alloc_msg->handle = entry->qp.handle;
1057         alloc_msg->peer = entry->qp.peer;
1058         alloc_msg->flags = entry->qp.flags;
1059         alloc_msg->produce_size = entry->qp.produce_size;
1060         alloc_msg->consume_size = entry->qp.consume_size;
1061         alloc_msg->num_ppns = entry->num_ppns;
1062
1063         result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1064                                      &entry->ppn_set);
1065         if (result == VMCI_SUCCESS)
1066                 result = vmci_send_datagram(&alloc_msg->hdr);
1067
1068         kfree(alloc_msg);
1069
1070         return result;
1071 }
1072
1073 /*
1074  * Helper to make a queue_pairDetach hypercall when the driver is
1075  * supporting a guest device.
1076  */
1077 static int qp_detatch_hypercall(struct vmci_handle handle)
1078 {
1079         struct vmci_qp_detach_msg detach_msg;
1080
1081         detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1082                                               VMCI_QUEUEPAIR_DETACH);
1083         detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1084         detach_msg.hdr.payload_size = sizeof(handle);
1085         detach_msg.handle = handle;
1086
1087         return vmci_send_datagram(&detach_msg.hdr);
1088 }
1089
1090 /*
1091  * Adds the given entry to the list. Assumes that the list is locked.
1092  */
1093 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1094 {
1095         if (entry)
1096                 list_add(&entry->list_item, &qp_list->head);
1097 }
1098
1099 /*
1100  * Removes the given entry from the list. Assumes that the list is locked.
1101  */
1102 static void qp_list_remove_entry(struct qp_list *qp_list,
1103                                  struct qp_entry *entry)
1104 {
1105         if (entry)
1106                 list_del(&entry->list_item);
1107 }
1108
1109 /*
1110  * Helper for VMCI queue_pair detach interface. Frees the physical
1111  * pages for the queue pair.
1112  */
1113 static int qp_detatch_guest_work(struct vmci_handle handle)
1114 {
1115         int result;
1116         struct qp_guest_endpoint *entry;
1117         u32 ref_count = ~0;     /* To avoid compiler warning below */
1118
1119         mutex_lock(&qp_guest_endpoints.mutex);
1120
1121         entry = qp_guest_handle_to_entry(handle);
1122         if (!entry) {
1123                 mutex_unlock(&qp_guest_endpoints.mutex);
1124                 return VMCI_ERROR_NOT_FOUND;
1125         }
1126
1127         if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1128                 result = VMCI_SUCCESS;
1129
1130                 if (entry->qp.ref_count > 1) {
1131                         result = qp_notify_peer_local(false, handle);
1132                         /*
1133                          * We can fail to notify a local queuepair
1134                          * because we can't allocate.  We still want
1135                          * to release the entry if that happens, so
1136                          * don't bail out yet.
1137                          */
1138                 }
1139         } else {
1140                 result = qp_detatch_hypercall(handle);
1141                 if (result < VMCI_SUCCESS) {
1142                         /*
1143                          * We failed to notify a non-local queuepair.
1144                          * That other queuepair might still be
1145                          * accessing the shared memory, so don't
1146                          * release the entry yet.  It will get cleaned
1147                          * up by VMCIqueue_pair_Exit() if necessary
1148                          * (assuming we are going away, otherwise why
1149                          * did this fail?).
1150                          */
1151
1152                         mutex_unlock(&qp_guest_endpoints.mutex);
1153                         return result;
1154                 }
1155         }
1156
1157         /*
1158          * If we get here then we either failed to notify a local queuepair, or
1159          * we succeeded in all cases.  Release the entry if required.
1160          */
1161
1162         entry->qp.ref_count--;
1163         if (entry->qp.ref_count == 0)
1164                 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1165
1166         /* If we didn't remove the entry, this could change once we unlock. */
1167         if (entry)
1168                 ref_count = entry->qp.ref_count;
1169
1170         mutex_unlock(&qp_guest_endpoints.mutex);
1171
1172         if (ref_count == 0)
1173                 qp_guest_endpoint_destroy(entry);
1174
1175         return result;
1176 }
1177
1178 /*
1179  * This functions handles the actual allocation of a VMCI queue
1180  * pair guest endpoint. Allocates physical pages for the queue
1181  * pair. It makes OS dependent calls through generic wrappers.
1182  */
1183 static int qp_alloc_guest_work(struct vmci_handle *handle,
1184                                struct vmci_queue **produce_q,
1185                                u64 produce_size,
1186                                struct vmci_queue **consume_q,
1187                                u64 consume_size,
1188                                u32 peer,
1189                                u32 flags,
1190                                u32 priv_flags)
1191 {
1192         const u64 num_produce_pages =
1193             DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1194         const u64 num_consume_pages =
1195             DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1196         void *my_produce_q = NULL;
1197         void *my_consume_q = NULL;
1198         int result;
1199         struct qp_guest_endpoint *queue_pair_entry = NULL;
1200
1201         if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1202                 return VMCI_ERROR_NO_ACCESS;
1203
1204         mutex_lock(&qp_guest_endpoints.mutex);
1205
1206         queue_pair_entry = qp_guest_handle_to_entry(*handle);
1207         if (queue_pair_entry) {
1208                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1209                         /* Local attach case. */
1210                         if (queue_pair_entry->qp.ref_count > 1) {
1211                                 pr_devel("Error attempting to attach more than once\n");
1212                                 result = VMCI_ERROR_UNAVAILABLE;
1213                                 goto error_keep_entry;
1214                         }
1215
1216                         if (queue_pair_entry->qp.produce_size != consume_size ||
1217                             queue_pair_entry->qp.consume_size !=
1218                             produce_size ||
1219                             queue_pair_entry->qp.flags !=
1220                             (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1221                                 pr_devel("Error mismatched queue pair in local attach\n");
1222                                 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1223                                 goto error_keep_entry;
1224                         }
1225
1226                         /*
1227                          * Do a local attach.  We swap the consume and
1228                          * produce queues for the attacher and deliver
1229                          * an attach event.
1230                          */
1231                         result = qp_notify_peer_local(true, *handle);
1232                         if (result < VMCI_SUCCESS)
1233                                 goto error_keep_entry;
1234
1235                         my_produce_q = queue_pair_entry->consume_q;
1236                         my_consume_q = queue_pair_entry->produce_q;
1237                         goto out;
1238                 }
1239
1240                 result = VMCI_ERROR_ALREADY_EXISTS;
1241                 goto error_keep_entry;
1242         }
1243
1244         my_produce_q = qp_alloc_queue(produce_size, flags);
1245         if (!my_produce_q) {
1246                 pr_warn("Error allocating pages for produce queue\n");
1247                 result = VMCI_ERROR_NO_MEM;
1248                 goto error;
1249         }
1250
1251         my_consume_q = qp_alloc_queue(consume_size, flags);
1252         if (!my_consume_q) {
1253                 pr_warn("Error allocating pages for consume queue\n");
1254                 result = VMCI_ERROR_NO_MEM;
1255                 goto error;
1256         }
1257
1258         queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1259                                                     produce_size, consume_size,
1260                                                     my_produce_q, my_consume_q);
1261         if (!queue_pair_entry) {
1262                 pr_warn("Error allocating memory in %s\n", __func__);
1263                 result = VMCI_ERROR_NO_MEM;
1264                 goto error;
1265         }
1266
1267         result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1268                                   num_consume_pages,
1269                                   &queue_pair_entry->ppn_set);
1270         if (result < VMCI_SUCCESS) {
1271                 pr_warn("qp_alloc_ppn_set failed\n");
1272                 goto error;
1273         }
1274
1275         /*
1276          * It's only necessary to notify the host if this queue pair will be
1277          * attached to from another context.
1278          */
1279         if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1280                 /* Local create case. */
1281                 u32 context_id = vmci_get_context_id();
1282
1283                 /*
1284                  * Enforce similar checks on local queue pairs as we
1285                  * do for regular ones.  The handle's context must
1286                  * match the creator or attacher context id (here they
1287                  * are both the current context id) and the
1288                  * attach-only flag cannot exist during create.  We
1289                  * also ensure specified peer is this context or an
1290                  * invalid one.
1291                  */
1292                 if (queue_pair_entry->qp.handle.context != context_id ||
1293                     (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1294                      queue_pair_entry->qp.peer != context_id)) {
1295                         result = VMCI_ERROR_NO_ACCESS;
1296                         goto error;
1297                 }
1298
1299                 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1300                         result = VMCI_ERROR_NOT_FOUND;
1301                         goto error;
1302                 }
1303         } else {
1304                 result = qp_alloc_hypercall(queue_pair_entry);
1305                 if (result < VMCI_SUCCESS) {
1306                         pr_warn("qp_alloc_hypercall result = %d\n", result);
1307                         goto error;
1308                 }
1309         }
1310
1311         qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1312                             (struct vmci_queue *)my_consume_q);
1313
1314         qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1315
1316  out:
1317         queue_pair_entry->qp.ref_count++;
1318         *handle = queue_pair_entry->qp.handle;
1319         *produce_q = (struct vmci_queue *)my_produce_q;
1320         *consume_q = (struct vmci_queue *)my_consume_q;
1321
1322         /*
1323          * We should initialize the queue pair header pages on a local
1324          * queue pair create.  For non-local queue pairs, the
1325          * hypervisor initializes the header pages in the create step.
1326          */
1327         if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1328             queue_pair_entry->qp.ref_count == 1) {
1329                 vmci_q_header_init((*produce_q)->q_header, *handle);
1330                 vmci_q_header_init((*consume_q)->q_header, *handle);
1331         }
1332
1333         mutex_unlock(&qp_guest_endpoints.mutex);
1334
1335         return VMCI_SUCCESS;
1336
1337  error:
1338         mutex_unlock(&qp_guest_endpoints.mutex);
1339         if (queue_pair_entry) {
1340                 /* The queues will be freed inside the destroy routine. */
1341                 qp_guest_endpoint_destroy(queue_pair_entry);
1342         } else {
1343                 qp_free_queue(my_produce_q, produce_size);
1344                 qp_free_queue(my_consume_q, consume_size);
1345         }
1346         return result;
1347
1348  error_keep_entry:
1349         /* This path should only be used when an existing entry was found. */
1350         mutex_unlock(&qp_guest_endpoints.mutex);
1351         return result;
1352 }
1353
1354 /*
1355  * The first endpoint issuing a queue pair allocation will create the state
1356  * of the queue pair in the queue pair broker.
1357  *
1358  * If the creator is a guest, it will associate a VMX virtual address range
1359  * with the queue pair as specified by the page_store. For compatibility with
1360  * older VMX'en, that would use a separate step to set the VMX virtual
1361  * address range, the virtual address range can be registered later using
1362  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1363  * used.
1364  *
1365  * If the creator is the host, a page_store of NULL should be used as well,
1366  * since the host is not able to supply a page store for the queue pair.
1367  *
1368  * For older VMX and host callers, the queue pair will be created in the
1369  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1370  * created in VMCOQPB_CREATED_MEM state.
1371  */
1372 static int qp_broker_create(struct vmci_handle handle,
1373                             u32 peer,
1374                             u32 flags,
1375                             u32 priv_flags,
1376                             u64 produce_size,
1377                             u64 consume_size,
1378                             struct vmci_qp_page_store *page_store,
1379                             struct vmci_ctx *context,
1380                             vmci_event_release_cb wakeup_cb,
1381                             void *client_data, struct qp_broker_entry **ent)
1382 {
1383         struct qp_broker_entry *entry = NULL;
1384         const u32 context_id = vmci_ctx_get_id(context);
1385         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1386         int result;
1387         u64 guest_produce_size;
1388         u64 guest_consume_size;
1389
1390         /* Do not create if the caller asked not to. */
1391         if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1392                 return VMCI_ERROR_NOT_FOUND;
1393
1394         /*
1395          * Creator's context ID should match handle's context ID or the creator
1396          * must allow the context in handle's context ID as the "peer".
1397          */
1398         if (handle.context != context_id && handle.context != peer)
1399                 return VMCI_ERROR_NO_ACCESS;
1400
1401         if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1402                 return VMCI_ERROR_DST_UNREACHABLE;
1403
1404         /*
1405          * Creator's context ID for local queue pairs should match the
1406          * peer, if a peer is specified.
1407          */
1408         if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1409                 return VMCI_ERROR_NO_ACCESS;
1410
1411         entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1412         if (!entry)
1413                 return VMCI_ERROR_NO_MEM;
1414
1415         if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1416                 /*
1417                  * The queue pair broker entry stores values from the guest
1418                  * point of view, so a creating host side endpoint should swap
1419                  * produce and consume values -- unless it is a local queue
1420                  * pair, in which case no swapping is necessary, since the local
1421                  * attacher will swap queues.
1422                  */
1423
1424                 guest_produce_size = consume_size;
1425                 guest_consume_size = produce_size;
1426         } else {
1427                 guest_produce_size = produce_size;
1428                 guest_consume_size = consume_size;
1429         }
1430
1431         entry->qp.handle = handle;
1432         entry->qp.peer = peer;
1433         entry->qp.flags = flags;
1434         entry->qp.produce_size = guest_produce_size;
1435         entry->qp.consume_size = guest_consume_size;
1436         entry->qp.ref_count = 1;
1437         entry->create_id = context_id;
1438         entry->attach_id = VMCI_INVALID_ID;
1439         entry->state = VMCIQPB_NEW;
1440         entry->require_trusted_attach =
1441             !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1442         entry->created_by_trusted =
1443             !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1444         entry->vmci_page_files = false;
1445         entry->wakeup_cb = wakeup_cb;
1446         entry->client_data = client_data;
1447         entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1448         if (entry->produce_q == NULL) {
1449                 result = VMCI_ERROR_NO_MEM;
1450                 goto error;
1451         }
1452         entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1453         if (entry->consume_q == NULL) {
1454                 result = VMCI_ERROR_NO_MEM;
1455                 goto error;
1456         }
1457
1458         qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1459
1460         INIT_LIST_HEAD(&entry->qp.list_item);
1461
1462         if (is_local) {
1463                 u8 *tmp;
1464
1465                 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1466                                            PAGE_SIZE, GFP_KERNEL);
1467                 if (entry->local_mem == NULL) {
1468                         result = VMCI_ERROR_NO_MEM;
1469                         goto error;
1470                 }
1471                 entry->state = VMCIQPB_CREATED_MEM;
1472                 entry->produce_q->q_header = entry->local_mem;
1473                 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1474                     (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1475                 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1476         } else if (page_store) {
1477                 /*
1478                  * The VMX already initialized the queue pair headers, so no
1479                  * need for the kernel side to do that.
1480                  */
1481                 result = qp_host_register_user_memory(page_store,
1482                                                       entry->produce_q,
1483                                                       entry->consume_q);
1484                 if (result < VMCI_SUCCESS)
1485                         goto error;
1486
1487                 entry->state = VMCIQPB_CREATED_MEM;
1488         } else {
1489                 /*
1490                  * A create without a page_store may be either a host
1491                  * side create (in which case we are waiting for the
1492                  * guest side to supply the memory) or an old style
1493                  * queue pair create (in which case we will expect a
1494                  * set page store call as the next step).
1495                  */
1496                 entry->state = VMCIQPB_CREATED_NO_MEM;
1497         }
1498
1499         qp_list_add_entry(&qp_broker_list, &entry->qp);
1500         if (ent != NULL)
1501                 *ent = entry;
1502
1503         /* Add to resource obj */
1504         result = vmci_resource_add(&entry->resource,
1505                                    VMCI_RESOURCE_TYPE_QPAIR_HOST,
1506                                    handle);
1507         if (result != VMCI_SUCCESS) {
1508                 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1509                         handle.context, handle.resource, result);
1510                 goto error;
1511         }
1512
1513         entry->qp.handle = vmci_resource_handle(&entry->resource);
1514         if (is_local) {
1515                 vmci_q_header_init(entry->produce_q->q_header,
1516                                    entry->qp.handle);
1517                 vmci_q_header_init(entry->consume_q->q_header,
1518                                    entry->qp.handle);
1519         }
1520
1521         vmci_ctx_qp_create(context, entry->qp.handle);
1522
1523         return VMCI_SUCCESS;
1524
1525  error:
1526         if (entry != NULL) {
1527                 qp_host_free_queue(entry->produce_q, guest_produce_size);
1528                 qp_host_free_queue(entry->consume_q, guest_consume_size);
1529                 kfree(entry);
1530         }
1531
1532         return result;
1533 }
1534
1535 /*
1536  * Enqueues an event datagram to notify the peer VM attached to
1537  * the given queue pair handle about attach/detach event by the
1538  * given VM.  Returns Payload size of datagram enqueued on
1539  * success, error code otherwise.
1540  */
1541 static int qp_notify_peer(bool attach,
1542                           struct vmci_handle handle,
1543                           u32 my_id,
1544                           u32 peer_id)
1545 {
1546         int rv;
1547         struct vmci_event_qp ev;
1548
1549         if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1550             peer_id == VMCI_INVALID_ID)
1551                 return VMCI_ERROR_INVALID_ARGS;
1552
1553         /*
1554          * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1555          * number of pending events from the hypervisor to a given VM
1556          * otherwise a rogue VM could do an arbitrary number of attach
1557          * and detach operations causing memory pressure in the host
1558          * kernel.
1559          */
1560
1561         ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1562         ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1563                                           VMCI_CONTEXT_RESOURCE_ID);
1564         ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1565         ev.msg.event_data.event = attach ?
1566             VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1567         ev.payload.handle = handle;
1568         ev.payload.peer_id = my_id;
1569
1570         rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1571                                     &ev.msg.hdr, false);
1572         if (rv < VMCI_SUCCESS)
1573                 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1574                         attach ? "ATTACH" : "DETACH", peer_id);
1575
1576         return rv;
1577 }
1578
1579 /*
1580  * The second endpoint issuing a queue pair allocation will attach to
1581  * the queue pair registered with the queue pair broker.
1582  *
1583  * If the attacher is a guest, it will associate a VMX virtual address
1584  * range with the queue pair as specified by the page_store. At this
1585  * point, the already attach host endpoint may start using the queue
1586  * pair, and an attach event is sent to it. For compatibility with
1587  * older VMX'en, that used a separate step to set the VMX virtual
1588  * address range, the virtual address range can be registered later
1589  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1590  * NULL should be used, and the attach event will be generated once
1591  * the actual page store has been set.
1592  *
1593  * If the attacher is the host, a page_store of NULL should be used as
1594  * well, since the page store information is already set by the guest.
1595  *
1596  * For new VMX and host callers, the queue pair will be moved to the
1597  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1598  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1599  */
1600 static int qp_broker_attach(struct qp_broker_entry *entry,
1601                             u32 peer,
1602                             u32 flags,
1603                             u32 priv_flags,
1604                             u64 produce_size,
1605                             u64 consume_size,
1606                             struct vmci_qp_page_store *page_store,
1607                             struct vmci_ctx *context,
1608                             vmci_event_release_cb wakeup_cb,
1609                             void *client_data,
1610                             struct qp_broker_entry **ent)
1611 {
1612         const u32 context_id = vmci_ctx_get_id(context);
1613         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1614         int result;
1615
1616         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1617             entry->state != VMCIQPB_CREATED_MEM)
1618                 return VMCI_ERROR_UNAVAILABLE;
1619
1620         if (is_local) {
1621                 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1622                     context_id != entry->create_id) {
1623                         return VMCI_ERROR_INVALID_ARGS;
1624                 }
1625         } else if (context_id == entry->create_id ||
1626                    context_id == entry->attach_id) {
1627                 return VMCI_ERROR_ALREADY_EXISTS;
1628         }
1629
1630         if (VMCI_CONTEXT_IS_VM(context_id) &&
1631             VMCI_CONTEXT_IS_VM(entry->create_id))
1632                 return VMCI_ERROR_DST_UNREACHABLE;
1633
1634         /*
1635          * If we are attaching from a restricted context then the queuepair
1636          * must have been created by a trusted endpoint.
1637          */
1638         if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1639             !entry->created_by_trusted)
1640                 return VMCI_ERROR_NO_ACCESS;
1641
1642         /*
1643          * If we are attaching to a queuepair that was created by a restricted
1644          * context then we must be trusted.
1645          */
1646         if (entry->require_trusted_attach &&
1647             (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1648                 return VMCI_ERROR_NO_ACCESS;
1649
1650         /*
1651          * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1652          * control check is not performed.
1653          */
1654         if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1655                 return VMCI_ERROR_NO_ACCESS;
1656
1657         if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1658                 /*
1659                  * Do not attach if the caller doesn't support Host Queue Pairs
1660                  * and a host created this queue pair.
1661                  */
1662
1663                 if (!vmci_ctx_supports_host_qp(context))
1664                         return VMCI_ERROR_INVALID_RESOURCE;
1665
1666         } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1667                 struct vmci_ctx *create_context;
1668                 bool supports_host_qp;
1669
1670                 /*
1671                  * Do not attach a host to a user created queue pair if that
1672                  * user doesn't support host queue pair end points.
1673                  */
1674
1675                 create_context = vmci_ctx_get(entry->create_id);
1676                 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1677                 vmci_ctx_put(create_context);
1678
1679                 if (!supports_host_qp)
1680                         return VMCI_ERROR_INVALID_RESOURCE;
1681         }
1682
1683         if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1684                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1685
1686         if (context_id != VMCI_HOST_CONTEXT_ID) {
1687                 /*
1688                  * The queue pair broker entry stores values from the guest
1689                  * point of view, so an attaching guest should match the values
1690                  * stored in the entry.
1691                  */
1692
1693                 if (entry->qp.produce_size != produce_size ||
1694                     entry->qp.consume_size != consume_size) {
1695                         return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1696                 }
1697         } else if (entry->qp.produce_size != consume_size ||
1698                    entry->qp.consume_size != produce_size) {
1699                 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1700         }
1701
1702         if (context_id != VMCI_HOST_CONTEXT_ID) {
1703                 /*
1704                  * If a guest attached to a queue pair, it will supply
1705                  * the backing memory.  If this is a pre NOVMVM vmx,
1706                  * the backing memory will be supplied by calling
1707                  * vmci_qp_broker_set_page_store() following the
1708                  * return of the vmci_qp_broker_alloc() call. If it is
1709                  * a vmx of version NOVMVM or later, the page store
1710                  * must be supplied as part of the
1711                  * vmci_qp_broker_alloc call.  Under all circumstances
1712                  * must the initially created queue pair not have any
1713                  * memory associated with it already.
1714                  */
1715
1716                 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1717                         return VMCI_ERROR_INVALID_ARGS;
1718
1719                 if (page_store != NULL) {
1720                         /*
1721                          * Patch up host state to point to guest
1722                          * supplied memory. The VMX already
1723                          * initialized the queue pair headers, so no
1724                          * need for the kernel side to do that.
1725                          */
1726
1727                         result = qp_host_register_user_memory(page_store,
1728                                                               entry->produce_q,
1729                                                               entry->consume_q);
1730                         if (result < VMCI_SUCCESS)
1731                                 return result;
1732
1733                         entry->state = VMCIQPB_ATTACHED_MEM;
1734                 } else {
1735                         entry->state = VMCIQPB_ATTACHED_NO_MEM;
1736                 }
1737         } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1738                 /*
1739                  * The host side is attempting to attach to a queue
1740                  * pair that doesn't have any memory associated with
1741                  * it. This must be a pre NOVMVM vmx that hasn't set
1742                  * the page store information yet, or a quiesced VM.
1743                  */
1744
1745                 return VMCI_ERROR_UNAVAILABLE;
1746         } else {
1747                 /* The host side has successfully attached to a queue pair. */
1748                 entry->state = VMCIQPB_ATTACHED_MEM;
1749         }
1750
1751         if (entry->state == VMCIQPB_ATTACHED_MEM) {
1752                 result =
1753                     qp_notify_peer(true, entry->qp.handle, context_id,
1754                                    entry->create_id);
1755                 if (result < VMCI_SUCCESS)
1756                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1757                                 entry->create_id, entry->qp.handle.context,
1758                                 entry->qp.handle.resource);
1759         }
1760
1761         entry->attach_id = context_id;
1762         entry->qp.ref_count++;
1763         if (wakeup_cb) {
1764                 entry->wakeup_cb = wakeup_cb;
1765                 entry->client_data = client_data;
1766         }
1767
1768         /*
1769          * When attaching to local queue pairs, the context already has
1770          * an entry tracking the queue pair, so don't add another one.
1771          */
1772         if (!is_local)
1773                 vmci_ctx_qp_create(context, entry->qp.handle);
1774
1775         if (ent != NULL)
1776                 *ent = entry;
1777
1778         return VMCI_SUCCESS;
1779 }
1780
1781 /*
1782  * queue_pair_Alloc for use when setting up queue pair endpoints
1783  * on the host.
1784  */
1785 static int qp_broker_alloc(struct vmci_handle handle,
1786                            u32 peer,
1787                            u32 flags,
1788                            u32 priv_flags,
1789                            u64 produce_size,
1790                            u64 consume_size,
1791                            struct vmci_qp_page_store *page_store,
1792                            struct vmci_ctx *context,
1793                            vmci_event_release_cb wakeup_cb,
1794                            void *client_data,
1795                            struct qp_broker_entry **ent,
1796                            bool *swap)
1797 {
1798         const u32 context_id = vmci_ctx_get_id(context);
1799         bool create;
1800         struct qp_broker_entry *entry = NULL;
1801         bool is_local = flags & VMCI_QPFLAG_LOCAL;
1802         int result;
1803
1804         if (vmci_handle_is_invalid(handle) ||
1805             (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1806             !(produce_size || consume_size) ||
1807             !context || context_id == VMCI_INVALID_ID ||
1808             handle.context == VMCI_INVALID_ID) {
1809                 return VMCI_ERROR_INVALID_ARGS;
1810         }
1811
1812         if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1813                 return VMCI_ERROR_INVALID_ARGS;
1814
1815         /*
1816          * In the initial argument check, we ensure that non-vmkernel hosts
1817          * are not allowed to create local queue pairs.
1818          */
1819
1820         mutex_lock(&qp_broker_list.mutex);
1821
1822         if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1823                 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1824                          context_id, handle.context, handle.resource);
1825                 mutex_unlock(&qp_broker_list.mutex);
1826                 return VMCI_ERROR_ALREADY_EXISTS;
1827         }
1828
1829         if (handle.resource != VMCI_INVALID_ID)
1830                 entry = qp_broker_handle_to_entry(handle);
1831
1832         if (!entry) {
1833                 create = true;
1834                 result =
1835                     qp_broker_create(handle, peer, flags, priv_flags,
1836                                      produce_size, consume_size, page_store,
1837                                      context, wakeup_cb, client_data, ent);
1838         } else {
1839                 create = false;
1840                 result =
1841                     qp_broker_attach(entry, peer, flags, priv_flags,
1842                                      produce_size, consume_size, page_store,
1843                                      context, wakeup_cb, client_data, ent);
1844         }
1845
1846         mutex_unlock(&qp_broker_list.mutex);
1847
1848         if (swap)
1849                 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1850                     !(create && is_local);
1851
1852         return result;
1853 }
1854
1855 /*
1856  * This function implements the kernel API for allocating a queue
1857  * pair.
1858  */
1859 static int qp_alloc_host_work(struct vmci_handle *handle,
1860                               struct vmci_queue **produce_q,
1861                               u64 produce_size,
1862                               struct vmci_queue **consume_q,
1863                               u64 consume_size,
1864                               u32 peer,
1865                               u32 flags,
1866                               u32 priv_flags,
1867                               vmci_event_release_cb wakeup_cb,
1868                               void *client_data)
1869 {
1870         struct vmci_handle new_handle;
1871         struct vmci_ctx *context;
1872         struct qp_broker_entry *entry;
1873         int result;
1874         bool swap;
1875
1876         if (vmci_handle_is_invalid(*handle)) {
1877                 new_handle = vmci_make_handle(
1878                         VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1879         } else
1880                 new_handle = *handle;
1881
1882         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1883         entry = NULL;
1884         result =
1885             qp_broker_alloc(new_handle, peer, flags, priv_flags,
1886                             produce_size, consume_size, NULL, context,
1887                             wakeup_cb, client_data, &entry, &swap);
1888         if (result == VMCI_SUCCESS) {
1889                 if (swap) {
1890                         /*
1891                          * If this is a local queue pair, the attacher
1892                          * will swap around produce and consume
1893                          * queues.
1894                          */
1895
1896                         *produce_q = entry->consume_q;
1897                         *consume_q = entry->produce_q;
1898                 } else {
1899                         *produce_q = entry->produce_q;
1900                         *consume_q = entry->consume_q;
1901                 }
1902
1903                 *handle = vmci_resource_handle(&entry->resource);
1904         } else {
1905                 *handle = VMCI_INVALID_HANDLE;
1906                 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1907                          result);
1908         }
1909         vmci_ctx_put(context);
1910         return result;
1911 }
1912
1913 /*
1914  * Allocates a VMCI queue_pair. Only checks validity of input
1915  * arguments. The real work is done in the host or guest
1916  * specific function.
1917  */
1918 int vmci_qp_alloc(struct vmci_handle *handle,
1919                   struct vmci_queue **produce_q,
1920                   u64 produce_size,
1921                   struct vmci_queue **consume_q,
1922                   u64 consume_size,
1923                   u32 peer,
1924                   u32 flags,
1925                   u32 priv_flags,
1926                   bool guest_endpoint,
1927                   vmci_event_release_cb wakeup_cb,
1928                   void *client_data)
1929 {
1930         if (!handle || !produce_q || !consume_q ||
1931             (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1932                 return VMCI_ERROR_INVALID_ARGS;
1933
1934         if (guest_endpoint) {
1935                 return qp_alloc_guest_work(handle, produce_q,
1936                                            produce_size, consume_q,
1937                                            consume_size, peer,
1938                                            flags, priv_flags);
1939         } else {
1940                 return qp_alloc_host_work(handle, produce_q,
1941                                           produce_size, consume_q,
1942                                           consume_size, peer, flags,
1943                                           priv_flags, wakeup_cb, client_data);
1944         }
1945 }
1946
1947 /*
1948  * This function implements the host kernel API for detaching from
1949  * a queue pair.
1950  */
1951 static int qp_detatch_host_work(struct vmci_handle handle)
1952 {
1953         int result;
1954         struct vmci_ctx *context;
1955
1956         context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1957
1958         result = vmci_qp_broker_detach(handle, context);
1959
1960         vmci_ctx_put(context);
1961         return result;
1962 }
1963
1964 /*
1965  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1966  * Real work is done in the host or guest specific function.
1967  */
1968 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1969 {
1970         if (vmci_handle_is_invalid(handle))
1971                 return VMCI_ERROR_INVALID_ARGS;
1972
1973         if (guest_endpoint)
1974                 return qp_detatch_guest_work(handle);
1975         else
1976                 return qp_detatch_host_work(handle);
1977 }
1978
1979 /*
1980  * Returns the entry from the head of the list. Assumes that the list is
1981  * locked.
1982  */
1983 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1984 {
1985         if (!list_empty(&qp_list->head)) {
1986                 struct qp_entry *entry =
1987                     list_first_entry(&qp_list->head, struct qp_entry,
1988                                      list_item);
1989                 return entry;
1990         }
1991
1992         return NULL;
1993 }
1994
1995 void vmci_qp_broker_exit(void)
1996 {
1997         struct qp_entry *entry;
1998         struct qp_broker_entry *be;
1999
2000         mutex_lock(&qp_broker_list.mutex);
2001
2002         while ((entry = qp_list_get_head(&qp_broker_list))) {
2003                 be = (struct qp_broker_entry *)entry;
2004
2005                 qp_list_remove_entry(&qp_broker_list, entry);
2006                 kfree(be);
2007         }
2008
2009         mutex_unlock(&qp_broker_list.mutex);
2010 }
2011
2012 /*
2013  * Requests that a queue pair be allocated with the VMCI queue
2014  * pair broker. Allocates a queue pair entry if one does not
2015  * exist. Attaches to one if it exists, and retrieves the page
2016  * files backing that queue_pair.  Assumes that the queue pair
2017  * broker lock is held.
2018  */
2019 int vmci_qp_broker_alloc(struct vmci_handle handle,
2020                          u32 peer,
2021                          u32 flags,
2022                          u32 priv_flags,
2023                          u64 produce_size,
2024                          u64 consume_size,
2025                          struct vmci_qp_page_store *page_store,
2026                          struct vmci_ctx *context)
2027 {
2028         return qp_broker_alloc(handle, peer, flags, priv_flags,
2029                                produce_size, consume_size,
2030                                page_store, context, NULL, NULL, NULL, NULL);
2031 }
2032
2033 /*
2034  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2035  * step to add the UVAs of the VMX mapping of the queue pair. This function
2036  * provides backwards compatibility with such VMX'en, and takes care of
2037  * registering the page store for a queue pair previously allocated by the
2038  * VMX during create or attach. This function will move the queue pair state
2039  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2040  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2041  * attached state with memory, the queue pair is ready to be used by the
2042  * host peer, and an attached event will be generated.
2043  *
2044  * Assumes that the queue pair broker lock is held.
2045  *
2046  * This function is only used by the hosted platform, since there is no
2047  * issue with backwards compatibility for vmkernel.
2048  */
2049 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2050                                   u64 produce_uva,
2051                                   u64 consume_uva,
2052                                   struct vmci_ctx *context)
2053 {
2054         struct qp_broker_entry *entry;
2055         int result;
2056         const u32 context_id = vmci_ctx_get_id(context);
2057
2058         if (vmci_handle_is_invalid(handle) || !context ||
2059             context_id == VMCI_INVALID_ID)
2060                 return VMCI_ERROR_INVALID_ARGS;
2061
2062         /*
2063          * We only support guest to host queue pairs, so the VMX must
2064          * supply UVAs for the mapped page files.
2065          */
2066
2067         if (produce_uva == 0 || consume_uva == 0)
2068                 return VMCI_ERROR_INVALID_ARGS;
2069
2070         mutex_lock(&qp_broker_list.mutex);
2071
2072         if (!vmci_ctx_qp_exists(context, handle)) {
2073                 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2074                         context_id, handle.context, handle.resource);
2075                 result = VMCI_ERROR_NOT_FOUND;
2076                 goto out;
2077         }
2078
2079         entry = qp_broker_handle_to_entry(handle);
2080         if (!entry) {
2081                 result = VMCI_ERROR_NOT_FOUND;
2082                 goto out;
2083         }
2084
2085         /*
2086          * If I'm the owner then I can set the page store.
2087          *
2088          * Or, if a host created the queue_pair and I'm the attached peer
2089          * then I can set the page store.
2090          */
2091         if (entry->create_id != context_id &&
2092             (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2093              entry->attach_id != context_id)) {
2094                 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2095                 goto out;
2096         }
2097
2098         if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2099             entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2100                 result = VMCI_ERROR_UNAVAILABLE;
2101                 goto out;
2102         }
2103
2104         result = qp_host_get_user_memory(produce_uva, consume_uva,
2105                                          entry->produce_q, entry->consume_q);
2106         if (result < VMCI_SUCCESS)
2107                 goto out;
2108
2109         result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2110         if (result < VMCI_SUCCESS) {
2111                 qp_host_unregister_user_memory(entry->produce_q,
2112                                                entry->consume_q);
2113                 goto out;
2114         }
2115
2116         if (entry->state == VMCIQPB_CREATED_NO_MEM)
2117                 entry->state = VMCIQPB_CREATED_MEM;
2118         else
2119                 entry->state = VMCIQPB_ATTACHED_MEM;
2120
2121         entry->vmci_page_files = true;
2122
2123         if (entry->state == VMCIQPB_ATTACHED_MEM) {
2124                 result =
2125                     qp_notify_peer(true, handle, context_id, entry->create_id);
2126                 if (result < VMCI_SUCCESS) {
2127                         pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2128                                 entry->create_id, entry->qp.handle.context,
2129                                 entry->qp.handle.resource);
2130                 }
2131         }
2132
2133         result = VMCI_SUCCESS;
2134  out:
2135         mutex_unlock(&qp_broker_list.mutex);
2136         return result;
2137 }
2138
2139 /*
2140  * Resets saved queue headers for the given QP broker
2141  * entry. Should be used when guest memory becomes available
2142  * again, or the guest detaches.
2143  */
2144 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2145 {
2146         entry->produce_q->saved_header = NULL;
2147         entry->consume_q->saved_header = NULL;
2148 }
2149
2150 /*
2151  * The main entry point for detaching from a queue pair registered with the
2152  * queue pair broker. If more than one endpoint is attached to the queue
2153  * pair, the first endpoint will mainly decrement a reference count and
2154  * generate a notification to its peer. The last endpoint will clean up
2155  * the queue pair state registered with the broker.
2156  *
2157  * When a guest endpoint detaches, it will unmap and unregister the guest
2158  * memory backing the queue pair. If the host is still attached, it will
2159  * no longer be able to access the queue pair content.
2160  *
2161  * If the queue pair is already in a state where there is no memory
2162  * registered for the queue pair (any *_NO_MEM state), it will transition to
2163  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2164  * endpoint is the first of two endpoints to detach. If the host endpoint is
2165  * the first out of two to detach, the queue pair will move to the
2166  * VMCIQPB_SHUTDOWN_MEM state.
2167  */
2168 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2169 {
2170         struct qp_broker_entry *entry;
2171         const u32 context_id = vmci_ctx_get_id(context);
2172         u32 peer_id;
2173         bool is_local = false;
2174         int result;
2175
2176         if (vmci_handle_is_invalid(handle) || !context ||
2177             context_id == VMCI_INVALID_ID) {
2178                 return VMCI_ERROR_INVALID_ARGS;
2179         }
2180
2181         mutex_lock(&qp_broker_list.mutex);
2182
2183         if (!vmci_ctx_qp_exists(context, handle)) {
2184                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2185                          context_id, handle.context, handle.resource);
2186                 result = VMCI_ERROR_NOT_FOUND;
2187                 goto out;
2188         }
2189
2190         entry = qp_broker_handle_to_entry(handle);
2191         if (!entry) {
2192                 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2193                          context_id, handle.context, handle.resource);
2194                 result = VMCI_ERROR_NOT_FOUND;
2195                 goto out;
2196         }
2197
2198         if (context_id != entry->create_id && context_id != entry->attach_id) {
2199                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2200                 goto out;
2201         }
2202
2203         if (context_id == entry->create_id) {
2204                 peer_id = entry->attach_id;
2205                 entry->create_id = VMCI_INVALID_ID;
2206         } else {
2207                 peer_id = entry->create_id;
2208                 entry->attach_id = VMCI_INVALID_ID;
2209         }
2210         entry->qp.ref_count--;
2211
2212         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2213
2214         if (context_id != VMCI_HOST_CONTEXT_ID) {
2215                 bool headers_mapped;
2216
2217                 /*
2218                  * Pre NOVMVM vmx'en may detach from a queue pair
2219                  * before setting the page store, and in that case
2220                  * there is no user memory to detach from. Also, more
2221                  * recent VMX'en may detach from a queue pair in the
2222                  * quiesced state.
2223                  */
2224
2225                 qp_acquire_queue_mutex(entry->produce_q);
2226                 headers_mapped = entry->produce_q->q_header ||
2227                     entry->consume_q->q_header;
2228                 if (QPBROKERSTATE_HAS_MEM(entry)) {
2229                         result =
2230                             qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2231                                                  entry->produce_q,
2232                                                  entry->consume_q);
2233                         if (result < VMCI_SUCCESS)
2234                                 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2235                                         handle.context, handle.resource,
2236                                         result);
2237
2238                         qp_host_unregister_user_memory(entry->produce_q,
2239                                                        entry->consume_q);
2240
2241                 }
2242
2243                 if (!headers_mapped)
2244                         qp_reset_saved_headers(entry);
2245
2246                 qp_release_queue_mutex(entry->produce_q);
2247
2248                 if (!headers_mapped && entry->wakeup_cb)
2249                         entry->wakeup_cb(entry->client_data);
2250
2251         } else {
2252                 if (entry->wakeup_cb) {
2253                         entry->wakeup_cb = NULL;
2254                         entry->client_data = NULL;
2255                 }
2256         }
2257
2258         if (entry->qp.ref_count == 0) {
2259                 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2260
2261                 if (is_local)
2262                         kfree(entry->local_mem);
2263
2264                 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2265                 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2266                 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2267                 /* Unlink from resource hash table and free callback */
2268                 vmci_resource_remove(&entry->resource);
2269
2270                 kfree(entry);
2271
2272                 vmci_ctx_qp_destroy(context, handle);
2273         } else {
2274                 qp_notify_peer(false, handle, context_id, peer_id);
2275                 if (context_id == VMCI_HOST_CONTEXT_ID &&
2276                     QPBROKERSTATE_HAS_MEM(entry)) {
2277                         entry->state = VMCIQPB_SHUTDOWN_MEM;
2278                 } else {
2279                         entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2280                 }
2281
2282                 if (!is_local)
2283                         vmci_ctx_qp_destroy(context, handle);
2284
2285         }
2286         result = VMCI_SUCCESS;
2287  out:
2288         mutex_unlock(&qp_broker_list.mutex);
2289         return result;
2290 }
2291
2292 /*
2293  * Establishes the necessary mappings for a queue pair given a
2294  * reference to the queue pair guest memory. This is usually
2295  * called when a guest is unquiesced and the VMX is allowed to
2296  * map guest memory once again.
2297  */
2298 int vmci_qp_broker_map(struct vmci_handle handle,
2299                        struct vmci_ctx *context,
2300                        u64 guest_mem)
2301 {
2302         struct qp_broker_entry *entry;
2303         const u32 context_id = vmci_ctx_get_id(context);
2304         bool is_local = false;
2305         int result;
2306
2307         if (vmci_handle_is_invalid(handle) || !context ||
2308             context_id == VMCI_INVALID_ID)
2309                 return VMCI_ERROR_INVALID_ARGS;
2310
2311         mutex_lock(&qp_broker_list.mutex);
2312
2313         if (!vmci_ctx_qp_exists(context, handle)) {
2314                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2315                          context_id, handle.context, handle.resource);
2316                 result = VMCI_ERROR_NOT_FOUND;
2317                 goto out;
2318         }
2319
2320         entry = qp_broker_handle_to_entry(handle);
2321         if (!entry) {
2322                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2323                          context_id, handle.context, handle.resource);
2324                 result = VMCI_ERROR_NOT_FOUND;
2325                 goto out;
2326         }
2327
2328         if (context_id != entry->create_id && context_id != entry->attach_id) {
2329                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2330                 goto out;
2331         }
2332
2333         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2334         result = VMCI_SUCCESS;
2335
2336         if (context_id != VMCI_HOST_CONTEXT_ID) {
2337                 struct vmci_qp_page_store page_store;
2338
2339                 page_store.pages = guest_mem;
2340                 page_store.len = QPE_NUM_PAGES(entry->qp);
2341
2342                 qp_acquire_queue_mutex(entry->produce_q);
2343                 qp_reset_saved_headers(entry);
2344                 result =
2345                     qp_host_register_user_memory(&page_store,
2346                                                  entry->produce_q,
2347                                                  entry->consume_q);
2348                 qp_release_queue_mutex(entry->produce_q);
2349                 if (result == VMCI_SUCCESS) {
2350                         /* Move state from *_NO_MEM to *_MEM */
2351
2352                         entry->state++;
2353
2354                         if (entry->wakeup_cb)
2355                                 entry->wakeup_cb(entry->client_data);
2356                 }
2357         }
2358
2359  out:
2360         mutex_unlock(&qp_broker_list.mutex);
2361         return result;
2362 }
2363
2364 /*
2365  * Saves a snapshot of the queue headers for the given QP broker
2366  * entry. Should be used when guest memory is unmapped.
2367  * Results:
2368  * VMCI_SUCCESS on success, appropriate error code if guest memory
2369  * can't be accessed..
2370  */
2371 static int qp_save_headers(struct qp_broker_entry *entry)
2372 {
2373         int result;
2374
2375         if (entry->produce_q->saved_header != NULL &&
2376             entry->consume_q->saved_header != NULL) {
2377                 /*
2378                  *  If the headers have already been saved, we don't need to do
2379                  *  it again, and we don't want to map in the headers
2380                  *  unnecessarily.
2381                  */
2382
2383                 return VMCI_SUCCESS;
2384         }
2385
2386         if (NULL == entry->produce_q->q_header ||
2387             NULL == entry->consume_q->q_header) {
2388                 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2389                 if (result < VMCI_SUCCESS)
2390                         return result;
2391         }
2392
2393         memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2394                sizeof(entry->saved_produce_q));
2395         entry->produce_q->saved_header = &entry->saved_produce_q;
2396         memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2397                sizeof(entry->saved_consume_q));
2398         entry->consume_q->saved_header = &entry->saved_consume_q;
2399
2400         return VMCI_SUCCESS;
2401 }
2402
2403 /*
2404  * Removes all references to the guest memory of a given queue pair, and
2405  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2406  * called when a VM is being quiesced where access to guest memory should
2407  * avoided.
2408  */
2409 int vmci_qp_broker_unmap(struct vmci_handle handle,
2410                          struct vmci_ctx *context,
2411                          u32 gid)
2412 {
2413         struct qp_broker_entry *entry;
2414         const u32 context_id = vmci_ctx_get_id(context);
2415         bool is_local = false;
2416         int result;
2417
2418         if (vmci_handle_is_invalid(handle) || !context ||
2419             context_id == VMCI_INVALID_ID)
2420                 return VMCI_ERROR_INVALID_ARGS;
2421
2422         mutex_lock(&qp_broker_list.mutex);
2423
2424         if (!vmci_ctx_qp_exists(context, handle)) {
2425                 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2426                          context_id, handle.context, handle.resource);
2427                 result = VMCI_ERROR_NOT_FOUND;
2428                 goto out;
2429         }
2430
2431         entry = qp_broker_handle_to_entry(handle);
2432         if (!entry) {
2433                 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2434                          context_id, handle.context, handle.resource);
2435                 result = VMCI_ERROR_NOT_FOUND;
2436                 goto out;
2437         }
2438
2439         if (context_id != entry->create_id && context_id != entry->attach_id) {
2440                 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2441                 goto out;
2442         }
2443
2444         is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2445
2446         if (context_id != VMCI_HOST_CONTEXT_ID) {
2447                 qp_acquire_queue_mutex(entry->produce_q);
2448                 result = qp_save_headers(entry);
2449                 if (result < VMCI_SUCCESS)
2450                         pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2451                                 handle.context, handle.resource, result);
2452
2453                 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2454
2455                 /*
2456                  * On hosted, when we unmap queue pairs, the VMX will also
2457                  * unmap the guest memory, so we invalidate the previously
2458                  * registered memory. If the queue pair is mapped again at a
2459                  * later point in time, we will need to reregister the user
2460                  * memory with a possibly new user VA.
2461                  */
2462                 qp_host_unregister_user_memory(entry->produce_q,
2463                                                entry->consume_q);
2464
2465                 /*
2466                  * Move state from *_MEM to *_NO_MEM.
2467                  */
2468                 entry->state--;
2469
2470                 qp_release_queue_mutex(entry->produce_q);
2471         }
2472
2473         result = VMCI_SUCCESS;
2474
2475  out:
2476         mutex_unlock(&qp_broker_list.mutex);
2477         return result;
2478 }
2479
2480 /*
2481  * Destroys all guest queue pair endpoints. If active guest queue
2482  * pairs still exist, hypercalls to attempt detach from these
2483  * queue pairs will be made. Any failure to detach is silently
2484  * ignored.
2485  */
2486 void vmci_qp_guest_endpoints_exit(void)
2487 {
2488         struct qp_entry *entry;
2489         struct qp_guest_endpoint *ep;
2490
2491         mutex_lock(&qp_guest_endpoints.mutex);
2492
2493         while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2494                 ep = (struct qp_guest_endpoint *)entry;
2495
2496                 /* Don't make a hypercall for local queue_pairs. */
2497                 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2498                         qp_detatch_hypercall(entry->handle);
2499
2500                 /* We cannot fail the exit, so let's reset ref_count. */
2501                 entry->ref_count = 0;
2502                 qp_list_remove_entry(&qp_guest_endpoints, entry);
2503
2504                 qp_guest_endpoint_destroy(ep);
2505         }
2506
2507         mutex_unlock(&qp_guest_endpoints.mutex);
2508 }
2509
2510 /*
2511  * Helper routine that will lock the queue pair before subsequent
2512  * operations.
2513  * Note: Non-blocking on the host side is currently only implemented in ESX.
2514  * Since non-blocking isn't yet implemented on the host personality we
2515  * have no reason to acquire a spin lock.  So to avoid the use of an
2516  * unnecessary lock only acquire the mutex if we can block.
2517  */
2518 static void qp_lock(const struct vmci_qp *qpair)
2519 {
2520         qp_acquire_queue_mutex(qpair->produce_q);
2521 }
2522
2523 /*
2524  * Helper routine that unlocks the queue pair after calling
2525  * qp_lock.
2526  */
2527 static void qp_unlock(const struct vmci_qp *qpair)
2528 {
2529         qp_release_queue_mutex(qpair->produce_q);
2530 }
2531
2532 /*
2533  * The queue headers may not be mapped at all times. If a queue is
2534  * currently not mapped, it will be attempted to do so.
2535  */
2536 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2537                                 struct vmci_queue *consume_q)
2538 {
2539         int result;
2540
2541         if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2542                 result = qp_host_map_queues(produce_q, consume_q);
2543                 if (result < VMCI_SUCCESS)
2544                         return (produce_q->saved_header &&
2545                                 consume_q->saved_header) ?
2546                             VMCI_ERROR_QUEUEPAIR_NOT_READY :
2547                             VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2548         }
2549
2550         return VMCI_SUCCESS;
2551 }
2552
2553 /*
2554  * Helper routine that will retrieve the produce and consume
2555  * headers of a given queue pair. If the guest memory of the
2556  * queue pair is currently not available, the saved queue headers
2557  * will be returned, if these are available.
2558  */
2559 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2560                                 struct vmci_queue_header **produce_q_header,
2561                                 struct vmci_queue_header **consume_q_header)
2562 {
2563         int result;
2564
2565         result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2566         if (result == VMCI_SUCCESS) {
2567                 *produce_q_header = qpair->produce_q->q_header;
2568                 *consume_q_header = qpair->consume_q->q_header;
2569         } else if (qpair->produce_q->saved_header &&
2570                    qpair->consume_q->saved_header) {
2571                 *produce_q_header = qpair->produce_q->saved_header;
2572                 *consume_q_header = qpair->consume_q->saved_header;
2573                 result = VMCI_SUCCESS;
2574         }
2575
2576         return result;
2577 }
2578
2579 /*
2580  * Callback from VMCI queue pair broker indicating that a queue
2581  * pair that was previously not ready, now either is ready or
2582  * gone forever.
2583  */
2584 static int qp_wakeup_cb(void *client_data)
2585 {
2586         struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2587
2588         qp_lock(qpair);
2589         while (qpair->blocked > 0) {
2590                 qpair->blocked--;
2591                 qpair->generation++;
2592                 wake_up(&qpair->event);
2593         }
2594         qp_unlock(qpair);
2595
2596         return VMCI_SUCCESS;
2597 }
2598
2599 /*
2600  * Makes the calling thread wait for the queue pair to become
2601  * ready for host side access.  Returns true when thread is
2602  * woken up after queue pair state change, false otherwise.
2603  */
2604 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2605 {
2606         unsigned int generation;
2607
2608         qpair->blocked++;
2609         generation = qpair->generation;
2610         qp_unlock(qpair);
2611         wait_event(qpair->event, generation != qpair->generation);
2612         qp_lock(qpair);
2613
2614         return true;
2615 }
2616
2617 /*
2618  * Enqueues a given buffer to the produce queue using the provided
2619  * function. As many bytes as possible (space available in the queue)
2620  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2621  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2622  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2623  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2624  * an error occured when accessing the buffer,
2625  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2626  * available.  Otherwise, the number of bytes written to the queue is
2627  * returned.  Updates the tail pointer of the produce queue.
2628  */
2629 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2630                                  struct vmci_queue *consume_q,
2631                                  const u64 produce_q_size,
2632                                  const void *buf,
2633                                  size_t buf_size,
2634                                  vmci_memcpy_to_queue_func memcpy_to_queue)
2635 {
2636         s64 free_space;
2637         u64 tail;
2638         size_t written;
2639         ssize_t result;
2640
2641         result = qp_map_queue_headers(produce_q, consume_q);
2642         if (unlikely(result != VMCI_SUCCESS))
2643                 return result;
2644
2645         free_space = vmci_q_header_free_space(produce_q->q_header,
2646                                               consume_q->q_header,
2647                                               produce_q_size);
2648         if (free_space == 0)
2649                 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2650
2651         if (free_space < VMCI_SUCCESS)
2652                 return (ssize_t) free_space;
2653
2654         written = (size_t) (free_space > buf_size ? buf_size : free_space);
2655         tail = vmci_q_header_producer_tail(produce_q->q_header);
2656         if (likely(tail + written < produce_q_size)) {
2657                 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2658         } else {
2659                 /* Tail pointer wraps around. */
2660
2661                 const size_t tmp = (size_t) (produce_q_size - tail);
2662
2663                 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2664                 if (result >= VMCI_SUCCESS)
2665                         result = memcpy_to_queue(produce_q, 0, buf, tmp,
2666                                                  written - tmp);
2667         }
2668
2669         if (result < VMCI_SUCCESS)
2670                 return result;
2671
2672         vmci_q_header_add_producer_tail(produce_q->q_header, written,
2673                                         produce_q_size);
2674         return written;
2675 }
2676
2677 /*
2678  * Dequeues data (if available) from the given consume queue. Writes data
2679  * to the user provided buffer using the provided function.
2680  * Assumes the queue->mutex has been acquired.
2681  * Results:
2682  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2683  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2684  * (as defined by the queue size).
2685  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2686  * Otherwise the number of bytes dequeued is returned.
2687  * Side effects:
2688  * Updates the head pointer of the consume queue.
2689  */
2690 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2691                                  struct vmci_queue *consume_q,
2692                                  const u64 consume_q_size,
2693                                  void *buf,
2694                                  size_t buf_size,
2695                                  vmci_memcpy_from_queue_func memcpy_from_queue,
2696                                  bool update_consumer)
2697 {
2698         s64 buf_ready;
2699         u64 head;
2700         size_t read;
2701         ssize_t result;
2702
2703         result = qp_map_queue_headers(produce_q, consume_q);
2704         if (unlikely(result != VMCI_SUCCESS))
2705                 return result;
2706
2707         buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2708                                             produce_q->q_header,
2709                                             consume_q_size);
2710         if (buf_ready == 0)
2711                 return VMCI_ERROR_QUEUEPAIR_NODATA;
2712
2713         if (buf_ready < VMCI_SUCCESS)
2714                 return (ssize_t) buf_ready;
2715
2716         read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2717         head = vmci_q_header_consumer_head(produce_q->q_header);
2718         if (likely(head + read < consume_q_size)) {
2719                 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2720         } else {
2721                 /* Head pointer wraps around. */
2722
2723                 const size_t tmp = (size_t) (consume_q_size - head);
2724
2725                 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2726                 if (result >= VMCI_SUCCESS)
2727                         result = memcpy_from_queue(buf, tmp, consume_q, 0,
2728                                                    read - tmp);
2729
2730         }
2731
2732         if (result < VMCI_SUCCESS)
2733                 return result;
2734
2735         if (update_consumer)
2736                 vmci_q_header_add_consumer_head(produce_q->q_header,
2737                                                 read, consume_q_size);
2738
2739         return read;
2740 }
2741
2742 /*
2743  * vmci_qpair_alloc() - Allocates a queue pair.
2744  * @qpair:      Pointer for the new vmci_qp struct.
2745  * @handle:     Handle to track the resource.
2746  * @produce_qsize:      Desired size of the producer queue.
2747  * @consume_qsize:      Desired size of the consumer queue.
2748  * @peer:       ContextID of the peer.
2749  * @flags:      VMCI flags.
2750  * @priv_flags: VMCI priviledge flags.
2751  *
2752  * This is the client interface for allocating the memory for a
2753  * vmci_qp structure and then attaching to the underlying
2754  * queue.  If an error occurs allocating the memory for the
2755  * vmci_qp structure no attempt is made to attach.  If an
2756  * error occurs attaching, then the structure is freed.
2757  */
2758 int vmci_qpair_alloc(struct vmci_qp **qpair,
2759                      struct vmci_handle *handle,
2760                      u64 produce_qsize,
2761                      u64 consume_qsize,
2762                      u32 peer,
2763                      u32 flags,
2764                      u32 priv_flags)
2765 {
2766         struct vmci_qp *my_qpair;
2767         int retval;
2768         struct vmci_handle src = VMCI_INVALID_HANDLE;
2769         struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2770         enum vmci_route route;
2771         vmci_event_release_cb wakeup_cb;
2772         void *client_data;
2773
2774         /*
2775          * Restrict the size of a queuepair.  The device already
2776          * enforces a limit on the total amount of memory that can be
2777          * allocated to queuepairs for a guest.  However, we try to
2778          * allocate this memory before we make the queuepair
2779          * allocation hypercall.  On Linux, we allocate each page
2780          * separately, which means rather than fail, the guest will
2781          * thrash while it tries to allocate, and will become
2782          * increasingly unresponsive to the point where it appears to
2783          * be hung.  So we place a limit on the size of an individual
2784          * queuepair here, and leave the device to enforce the
2785          * restriction on total queuepair memory.  (Note that this
2786          * doesn't prevent all cases; a user with only this much
2787          * physical memory could still get into trouble.)  The error
2788          * used by the device is NO_RESOURCES, so use that here too.
2789          */
2790
2791         if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2792             produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2793                 return VMCI_ERROR_NO_RESOURCES;
2794
2795         retval = vmci_route(&src, &dst, false, &route);
2796         if (retval < VMCI_SUCCESS)
2797                 route = vmci_guest_code_active() ?
2798                     VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2799
2800         if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2801                 pr_devel("NONBLOCK OR PINNED set");
2802                 return VMCI_ERROR_INVALID_ARGS;
2803         }
2804
2805         my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2806         if (!my_qpair)
2807                 return VMCI_ERROR_NO_MEM;
2808
2809         my_qpair->produce_q_size = produce_qsize;
2810         my_qpair->consume_q_size = consume_qsize;
2811         my_qpair->peer = peer;
2812         my_qpair->flags = flags;
2813         my_qpair->priv_flags = priv_flags;
2814
2815         wakeup_cb = NULL;
2816         client_data = NULL;
2817
2818         if (VMCI_ROUTE_AS_HOST == route) {
2819                 my_qpair->guest_endpoint = false;
2820                 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2821                         my_qpair->blocked = 0;
2822                         my_qpair->generation = 0;
2823                         init_waitqueue_head(&my_qpair->event);
2824                         wakeup_cb = qp_wakeup_cb;
2825                         client_data = (void *)my_qpair;
2826                 }
2827         } else {
2828                 my_qpair->guest_endpoint = true;
2829         }
2830
2831         retval = vmci_qp_alloc(handle,
2832                                &my_qpair->produce_q,
2833                                my_qpair->produce_q_size,
2834                                &my_qpair->consume_q,
2835                                my_qpair->consume_q_size,
2836                                my_qpair->peer,
2837                                my_qpair->flags,
2838                                my_qpair->priv_flags,
2839                                my_qpair->guest_endpoint,
2840                                wakeup_cb, client_data);
2841
2842         if (retval < VMCI_SUCCESS) {
2843                 kfree(my_qpair);
2844                 return retval;
2845         }
2846
2847         *qpair = my_qpair;
2848         my_qpair->handle = *handle;
2849
2850         return retval;
2851 }
2852 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2853
2854 /*
2855  * vmci_qpair_detach() - Detatches the client from a queue pair.
2856  * @qpair:      Reference of a pointer to the qpair struct.
2857  *
2858  * This is the client interface for detaching from a VMCIQPair.
2859  * Note that this routine will free the memory allocated for the
2860  * vmci_qp structure too.
2861  */
2862 int vmci_qpair_detach(struct vmci_qp **qpair)
2863 {
2864         int result;
2865         struct vmci_qp *old_qpair;
2866
2867         if (!qpair || !(*qpair))
2868                 return VMCI_ERROR_INVALID_ARGS;
2869
2870         old_qpair = *qpair;
2871         result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2872
2873         /*
2874          * The guest can fail to detach for a number of reasons, and
2875          * if it does so, it will cleanup the entry (if there is one).
2876          * The host can fail too, but it won't cleanup the entry
2877          * immediately, it will do that later when the context is
2878          * freed.  Either way, we need to release the qpair struct
2879          * here; there isn't much the caller can do, and we don't want
2880          * to leak.
2881          */
2882
2883         memset(old_qpair, 0, sizeof(*old_qpair));
2884         old_qpair->handle = VMCI_INVALID_HANDLE;
2885         old_qpair->peer = VMCI_INVALID_ID;
2886         kfree(old_qpair);
2887         *qpair = NULL;
2888
2889         return result;
2890 }
2891 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2892
2893 /*
2894  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2895  * @qpair:      Pointer to the queue pair struct.
2896  * @producer_tail:      Reference used for storing producer tail index.
2897  * @consumer_head:      Reference used for storing the consumer head index.
2898  *
2899  * This is the client interface for getting the current indexes of the
2900  * QPair from the point of the view of the caller as the producer.
2901  */
2902 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2903                                    u64 *producer_tail,
2904                                    u64 *consumer_head)
2905 {
2906         struct vmci_queue_header *produce_q_header;
2907         struct vmci_queue_header *consume_q_header;
2908         int result;
2909
2910         if (!qpair)
2911                 return VMCI_ERROR_INVALID_ARGS;
2912
2913         qp_lock(qpair);
2914         result =
2915             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2916         if (result == VMCI_SUCCESS)
2917                 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2918                                            producer_tail, consumer_head);
2919         qp_unlock(qpair);
2920
2921         if (result == VMCI_SUCCESS &&
2922             ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2923              (consumer_head && *consumer_head >= qpair->produce_q_size)))
2924                 return VMCI_ERROR_INVALID_SIZE;
2925
2926         return result;
2927 }
2928 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2929
2930 /*
2931  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2932  * @qpair:      Pointer to the queue pair struct.
2933  * @consumer_tail:      Reference used for storing consumer tail index.
2934  * @producer_head:      Reference used for storing the producer head index.
2935  *
2936  * This is the client interface for getting the current indexes of the
2937  * QPair from the point of the view of the caller as the consumer.
2938  */
2939 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2940                                    u64 *consumer_tail,
2941                                    u64 *producer_head)
2942 {
2943         struct vmci_queue_header *produce_q_header;
2944         struct vmci_queue_header *consume_q_header;
2945         int result;
2946
2947         if (!qpair)
2948                 return VMCI_ERROR_INVALID_ARGS;
2949
2950         qp_lock(qpair);
2951         result =
2952             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2953         if (result == VMCI_SUCCESS)
2954                 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2955                                            consumer_tail, producer_head);
2956         qp_unlock(qpair);
2957
2958         if (result == VMCI_SUCCESS &&
2959             ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2960              (producer_head && *producer_head >= qpair->consume_q_size)))
2961                 return VMCI_ERROR_INVALID_SIZE;
2962
2963         return result;
2964 }
2965 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2966
2967 /*
2968  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2969  * @qpair:      Pointer to the queue pair struct.
2970  *
2971  * This is the client interface for getting the amount of free
2972  * space in the QPair from the point of the view of the caller as
2973  * the producer which is the common case.  Returns < 0 if err, else
2974  * available bytes into which data can be enqueued if > 0.
2975  */
2976 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2977 {
2978         struct vmci_queue_header *produce_q_header;
2979         struct vmci_queue_header *consume_q_header;
2980         s64 result;
2981
2982         if (!qpair)
2983                 return VMCI_ERROR_INVALID_ARGS;
2984
2985         qp_lock(qpair);
2986         result =
2987             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2988         if (result == VMCI_SUCCESS)
2989                 result = vmci_q_header_free_space(produce_q_header,
2990                                                   consume_q_header,
2991                                                   qpair->produce_q_size);
2992         else
2993                 result = 0;
2994
2995         qp_unlock(qpair);
2996
2997         return result;
2998 }
2999 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3000
3001 /*
3002  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3003  * @qpair:      Pointer to the queue pair struct.
3004  *
3005  * This is the client interface for getting the amount of free
3006  * space in the QPair from the point of the view of the caller as
3007  * the consumer which is not the common case.  Returns < 0 if err, else
3008  * available bytes into which data can be enqueued if > 0.
3009  */
3010 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3011 {
3012         struct vmci_queue_header *produce_q_header;
3013         struct vmci_queue_header *consume_q_header;
3014         s64 result;
3015
3016         if (!qpair)
3017                 return VMCI_ERROR_INVALID_ARGS;
3018
3019         qp_lock(qpair);
3020         result =
3021             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3022         if (result == VMCI_SUCCESS)
3023                 result = vmci_q_header_free_space(consume_q_header,
3024                                                   produce_q_header,
3025                                                   qpair->consume_q_size);
3026         else
3027                 result = 0;
3028
3029         qp_unlock(qpair);
3030
3031         return result;
3032 }
3033 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3034
3035 /*
3036  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3037  * producer queue.
3038  * @qpair:      Pointer to the queue pair struct.
3039  *
3040  * This is the client interface for getting the amount of
3041  * enqueued data in the QPair from the point of the view of the
3042  * caller as the producer which is not the common case.  Returns < 0 if err,
3043  * else available bytes that may be read.
3044  */
3045 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3046 {
3047         struct vmci_queue_header *produce_q_header;
3048         struct vmci_queue_header *consume_q_header;
3049         s64 result;
3050
3051         if (!qpair)
3052                 return VMCI_ERROR_INVALID_ARGS;
3053
3054         qp_lock(qpair);
3055         result =
3056             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3057         if (result == VMCI_SUCCESS)
3058                 result = vmci_q_header_buf_ready(produce_q_header,
3059                                                  consume_q_header,
3060                                                  qpair->produce_q_size);
3061         else
3062                 result = 0;
3063
3064         qp_unlock(qpair);
3065
3066         return result;
3067 }
3068 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3069
3070 /*
3071  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3072  * consumer queue.
3073  * @qpair:      Pointer to the queue pair struct.
3074  *
3075  * This is the client interface for getting the amount of
3076  * enqueued data in the QPair from the point of the view of the
3077  * caller as the consumer which is the normal case.  Returns < 0 if err,
3078  * else available bytes that may be read.
3079  */
3080 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3081 {
3082         struct vmci_queue_header *produce_q_header;
3083         struct vmci_queue_header *consume_q_header;
3084         s64 result;
3085
3086         if (!qpair)
3087                 return VMCI_ERROR_INVALID_ARGS;
3088
3089         qp_lock(qpair);
3090         result =
3091             qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3092         if (result == VMCI_SUCCESS)
3093                 result = vmci_q_header_buf_ready(consume_q_header,
3094                                                  produce_q_header,
3095                                                  qpair->consume_q_size);
3096         else
3097                 result = 0;
3098
3099         qp_unlock(qpair);
3100
3101         return result;
3102 }
3103 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3104
3105 /*
3106  * vmci_qpair_enqueue() - Throw data on the queue.
3107  * @qpair:      Pointer to the queue pair struct.
3108  * @buf:        Pointer to buffer containing data
3109  * @buf_size:   Length of buffer.
3110  * @buf_type:   Buffer type (Unused).
3111  *
3112  * This is the client interface for enqueueing data into the queue.
3113  * Returns number of bytes enqueued or < 0 on error.
3114  */
3115 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3116                            const void *buf,
3117                            size_t buf_size,
3118                            int buf_type)
3119 {
3120         ssize_t result;
3121
3122         if (!qpair || !buf)
3123                 return VMCI_ERROR_INVALID_ARGS;
3124
3125         qp_lock(qpair);
3126
3127         do {
3128                 result = qp_enqueue_locked(qpair->produce_q,
3129                                            qpair->consume_q,
3130                                            qpair->produce_q_size,
3131                                            buf, buf_size,
3132                                            qp_memcpy_to_queue);
3133
3134                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3135                     !qp_wait_for_ready_queue(qpair))
3136                         result = VMCI_ERROR_WOULD_BLOCK;
3137
3138         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3139
3140         qp_unlock(qpair);
3141
3142         return result;
3143 }
3144 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3145
3146 /*
3147  * vmci_qpair_dequeue() - Get data from the queue.
3148  * @qpair:      Pointer to the queue pair struct.
3149  * @buf:        Pointer to buffer for the data
3150  * @buf_size:   Length of buffer.
3151  * @buf_type:   Buffer type (Unused).
3152  *
3153  * This is the client interface for dequeueing data from the queue.
3154  * Returns number of bytes dequeued or < 0 on error.
3155  */
3156 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3157                            void *buf,
3158                            size_t buf_size,
3159                            int buf_type)
3160 {
3161         ssize_t result;
3162
3163         if (!qpair || !buf)
3164                 return VMCI_ERROR_INVALID_ARGS;
3165
3166         qp_lock(qpair);
3167
3168         do {
3169                 result = qp_dequeue_locked(qpair->produce_q,
3170                                            qpair->consume_q,
3171                                            qpair->consume_q_size,
3172                                            buf, buf_size,
3173                                            qp_memcpy_from_queue, true);
3174
3175                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3176                     !qp_wait_for_ready_queue(qpair))
3177                         result = VMCI_ERROR_WOULD_BLOCK;
3178
3179         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3180
3181         qp_unlock(qpair);
3182
3183         return result;
3184 }
3185 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3186
3187 /*
3188  * vmci_qpair_peek() - Peek at the data in the queue.
3189  * @qpair:      Pointer to the queue pair struct.
3190  * @buf:        Pointer to buffer for the data
3191  * @buf_size:   Length of buffer.
3192  * @buf_type:   Buffer type (Unused on Linux).
3193  *
3194  * This is the client interface for peeking into a queue.  (I.e.,
3195  * copy data from the queue without updating the head pointer.)
3196  * Returns number of bytes dequeued or < 0 on error.
3197  */
3198 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3199                         void *buf,
3200                         size_t buf_size,
3201                         int buf_type)
3202 {
3203         ssize_t result;
3204
3205         if (!qpair || !buf)
3206                 return VMCI_ERROR_INVALID_ARGS;
3207
3208         qp_lock(qpair);
3209
3210         do {
3211                 result = qp_dequeue_locked(qpair->produce_q,
3212                                            qpair->consume_q,
3213                                            qpair->consume_q_size,
3214                                            buf, buf_size,
3215                                            qp_memcpy_from_queue, false);
3216
3217                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218                     !qp_wait_for_ready_queue(qpair))
3219                         result = VMCI_ERROR_WOULD_BLOCK;
3220
3221         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222
3223         qp_unlock(qpair);
3224
3225         return result;
3226 }
3227 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3228
3229 /*
3230  * vmci_qpair_enquev() - Throw data on the queue using iov.
3231  * @qpair:      Pointer to the queue pair struct.
3232  * @iov:        Pointer to buffer containing data
3233  * @iov_size:   Length of buffer.
3234  * @buf_type:   Buffer type (Unused).
3235  *
3236  * This is the client interface for enqueueing data into the queue.
3237  * This function uses IO vectors to handle the work. Returns number
3238  * of bytes enqueued or < 0 on error.
3239  */
3240 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3241                           struct msghdr *msg,
3242                           size_t iov_size,
3243                           int buf_type)
3244 {
3245         ssize_t result;
3246
3247         if (!qpair)
3248                 return VMCI_ERROR_INVALID_ARGS;
3249
3250         qp_lock(qpair);
3251
3252         do {
3253                 result = qp_enqueue_locked(qpair->produce_q,
3254                                            qpair->consume_q,
3255                                            qpair->produce_q_size,
3256                                            msg, iov_size,
3257                                            qp_memcpy_to_queue_iov);
3258
3259                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260                     !qp_wait_for_ready_queue(qpair))
3261                         result = VMCI_ERROR_WOULD_BLOCK;
3262
3263         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264
3265         qp_unlock(qpair);
3266
3267         return result;
3268 }
3269 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3270
3271 /*
3272  * vmci_qpair_dequev() - Get data from the queue using iov.
3273  * @qpair:      Pointer to the queue pair struct.
3274  * @iov:        Pointer to buffer for the data
3275  * @iov_size:   Length of buffer.
3276  * @buf_type:   Buffer type (Unused).
3277  *
3278  * This is the client interface for dequeueing data from the queue.
3279  * This function uses IO vectors to handle the work. Returns number
3280  * of bytes dequeued or < 0 on error.
3281  */
3282 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3283                           struct msghdr *msg,
3284                           size_t iov_size,
3285                           int buf_type)
3286 {
3287         ssize_t result;
3288
3289         if (!qpair)
3290                 return VMCI_ERROR_INVALID_ARGS;
3291
3292         qp_lock(qpair);
3293
3294         do {
3295                 result = qp_dequeue_locked(qpair->produce_q,
3296                                            qpair->consume_q,
3297                                            qpair->consume_q_size,
3298                                            msg, iov_size,
3299                                            qp_memcpy_from_queue_iov,
3300                                            true);
3301
3302                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3303                     !qp_wait_for_ready_queue(qpair))
3304                         result = VMCI_ERROR_WOULD_BLOCK;
3305
3306         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3307
3308         qp_unlock(qpair);
3309
3310         return result;
3311 }
3312 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3313
3314 /*
3315  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3316  * @qpair:      Pointer to the queue pair struct.
3317  * @iov:        Pointer to buffer for the data
3318  * @iov_size:   Length of buffer.
3319  * @buf_type:   Buffer type (Unused on Linux).
3320  *
3321  * This is the client interface for peeking into a queue.  (I.e.,
3322  * copy data from the queue without updating the head pointer.)
3323  * This function uses IO vectors to handle the work. Returns number
3324  * of bytes peeked or < 0 on error.
3325  */
3326 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3327                          struct msghdr *msg,
3328                          size_t iov_size,
3329                          int buf_type)
3330 {
3331         ssize_t result;
3332
3333         if (!qpair)
3334                 return VMCI_ERROR_INVALID_ARGS;
3335
3336         qp_lock(qpair);
3337
3338         do {
3339                 result = qp_dequeue_locked(qpair->produce_q,
3340                                            qpair->consume_q,
3341                                            qpair->consume_q_size,
3342                                            msg, iov_size,
3343                                            qp_memcpy_from_queue_iov,
3344                                            false);
3345
3346                 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3347                     !qp_wait_for_ready_queue(qpair))
3348                         result = VMCI_ERROR_WOULD_BLOCK;
3349
3350         } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3351
3352         qp_unlock(qpair);
3353         return result;
3354 }
3355 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);