Merge tag 'ata-6.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[linux-2.6-microblaze.git] / drivers / misc / vmw_vmci / vmci_guest.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/moduleparam.h>
11 #include <linux/interrupt.h>
12 #include <linux/highmem.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/processor.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/vmalloc.h>
24
25 #include "vmci_datagram.h"
26 #include "vmci_doorbell.h"
27 #include "vmci_context.h"
28 #include "vmci_driver.h"
29 #include "vmci_event.h"
30
31 #define PCI_DEVICE_ID_VMWARE_VMCI       0x0740
32
33 #define VMCI_UTIL_NUM_RESOURCES 1
34
35 /*
36  * Datagram buffers for DMA send/receive must accommodate at least
37  * a maximum sized datagram and the header.
38  */
39 #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
40
41 static bool vmci_disable_msi;
42 module_param_named(disable_msi, vmci_disable_msi, bool, 0);
43 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
44
45 static bool vmci_disable_msix;
46 module_param_named(disable_msix, vmci_disable_msix, bool, 0);
47 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
48
49 static u32 ctx_update_sub_id = VMCI_INVALID_ID;
50 static u32 vm_context_id = VMCI_INVALID_ID;
51
52 struct vmci_guest_device {
53         struct device *dev;     /* PCI device we are attached to */
54         void __iomem *iobase;
55         void __iomem *mmio_base;
56
57         bool exclusive_vectors;
58
59         struct wait_queue_head inout_wq;
60
61         void *data_buffer;
62         dma_addr_t data_buffer_base;
63         void *tx_buffer;
64         dma_addr_t tx_buffer_base;
65         void *notification_bitmap;
66         dma_addr_t notification_base;
67 };
68
69 static bool use_ppn64;
70
71 bool vmci_use_ppn64(void)
72 {
73         return use_ppn64;
74 }
75
76 /* vmci_dev singleton device and supporting data*/
77 struct pci_dev *vmci_pdev;
78 static struct vmci_guest_device *vmci_dev_g;
79 static DEFINE_SPINLOCK(vmci_dev_spinlock);
80
81 static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
82
83 bool vmci_guest_code_active(void)
84 {
85         return atomic_read(&vmci_num_guest_devices) != 0;
86 }
87
88 u32 vmci_get_vm_context_id(void)
89 {
90         if (vm_context_id == VMCI_INVALID_ID) {
91                 struct vmci_datagram get_cid_msg;
92                 get_cid_msg.dst =
93                     vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
94                                      VMCI_GET_CONTEXT_ID);
95                 get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
96                 get_cid_msg.payload_size = 0;
97                 vm_context_id = vmci_send_datagram(&get_cid_msg);
98         }
99         return vm_context_id;
100 }
101
102 static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
103 {
104         if (dev->mmio_base != NULL)
105                 return readl(dev->mmio_base + reg);
106         return ioread32(dev->iobase + reg);
107 }
108
109 static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
110 {
111         if (dev->mmio_base != NULL)
112                 writel(val, dev->mmio_base + reg);
113         else
114                 iowrite32(val, dev->iobase + reg);
115 }
116
117 static void vmci_read_data(struct vmci_guest_device *vmci_dev,
118                            void *dest, size_t size)
119 {
120         if (vmci_dev->mmio_base == NULL)
121                 ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
122                             dest, size);
123         else {
124                 /*
125                  * For DMA datagrams, the data_buffer will contain the header on the
126                  * first page, followed by the incoming datagram(s) on the following
127                  * pages. The header uses an S/G element immediately following the
128                  * header on the first page to point to the data area.
129                  */
130                 struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
131                 struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
132                 size_t buffer_offset = dest - vmci_dev->data_buffer;
133
134                 buffer_header->opcode = 1;
135                 buffer_header->size = 1;
136                 buffer_header->busy = 0;
137                 sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
138                 sg_array[0].size = size;
139
140                 vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
141                                VMCI_DATA_IN_LOW_ADDR);
142
143                 wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
144         }
145 }
146
147 static int vmci_write_data(struct vmci_guest_device *dev,
148                            struct vmci_datagram *dg)
149 {
150         int result;
151
152         if (dev->mmio_base != NULL) {
153                 struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
154                 u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
155
156                 if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
157                         return VMCI_ERROR_INVALID_ARGS;
158
159                 /*
160                  * Initialize send buffer with outgoing datagram
161                  * and set up header for inline data. Device will
162                  * not access buffer asynchronously - only after
163                  * the write to VMCI_DATA_OUT_LOW_ADDR.
164                  */
165                 memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
166                 buffer_header->opcode = 0;
167                 buffer_header->size = VMCI_DG_SIZE(dg);
168                 buffer_header->busy = 1;
169
170                 vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
171                                VMCI_DATA_OUT_LOW_ADDR);
172
173                 /* Caller holds a spinlock, so cannot block. */
174                 spin_until_cond(buffer_header->busy == 0);
175
176                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
177                 if (result == VMCI_SUCCESS)
178                         result = (int)buffer_header->result;
179         } else {
180                 iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
181                              dg, VMCI_DG_SIZE(dg));
182                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
183         }
184
185         return result;
186 }
187
188 /*
189  * VM to hypervisor call mechanism. We use the standard VMware naming
190  * convention since shared code is calling this function as well.
191  */
192 int vmci_send_datagram(struct vmci_datagram *dg)
193 {
194         unsigned long flags;
195         int result;
196
197         /* Check args. */
198         if (dg == NULL)
199                 return VMCI_ERROR_INVALID_ARGS;
200
201         /*
202          * Need to acquire spinlock on the device because the datagram
203          * data may be spread over multiple pages and the monitor may
204          * interleave device user rpc calls from multiple
205          * VCPUs. Acquiring the spinlock precludes that
206          * possibility. Disabling interrupts to avoid incoming
207          * datagrams during a "rep out" and possibly landing up in
208          * this function.
209          */
210         spin_lock_irqsave(&vmci_dev_spinlock, flags);
211
212         if (vmci_dev_g) {
213                 vmci_write_data(vmci_dev_g, dg);
214                 result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
215         } else {
216                 result = VMCI_ERROR_UNAVAILABLE;
217         }
218
219         spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
220
221         return result;
222 }
223 EXPORT_SYMBOL_GPL(vmci_send_datagram);
224
225 /*
226  * Gets called with the new context id if updated or resumed.
227  * Context id.
228  */
229 static void vmci_guest_cid_update(u32 sub_id,
230                                   const struct vmci_event_data *event_data,
231                                   void *client_data)
232 {
233         const struct vmci_event_payld_ctx *ev_payload =
234                                 vmci_event_data_const_payload(event_data);
235
236         if (sub_id != ctx_update_sub_id) {
237                 pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
238                 return;
239         }
240
241         if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
242                 pr_devel("Invalid event data\n");
243                 return;
244         }
245
246         pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
247                  vm_context_id, ev_payload->context_id, event_data->event);
248
249         vm_context_id = ev_payload->context_id;
250 }
251
252 /*
253  * Verify that the host supports the hypercalls we need. If it does not,
254  * try to find fallback hypercalls and use those instead.  Returns 0 if
255  * required hypercalls (or fallback hypercalls) are supported by the host,
256  * an error code otherwise.
257  */
258 static int vmci_check_host_caps(struct pci_dev *pdev)
259 {
260         bool result;
261         struct vmci_resource_query_msg *msg;
262         u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
263                                 VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
264         struct vmci_datagram *check_msg;
265
266         check_msg = kzalloc(msg_size, GFP_KERNEL);
267         if (!check_msg) {
268                 dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
269                 return -ENOMEM;
270         }
271
272         check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
273                                           VMCI_RESOURCES_QUERY);
274         check_msg->src = VMCI_ANON_SRC_HANDLE;
275         check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
276         msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
277
278         msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
279         msg->resources[0] = VMCI_GET_CONTEXT_ID;
280
281         /* Checks that hyper calls are supported */
282         result = vmci_send_datagram(check_msg) == 0x01;
283         kfree(check_msg);
284
285         dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
286                 __func__, result ? "PASSED" : "FAILED");
287
288         /* We need the vector. There are no fallbacks. */
289         return result ? 0 : -ENXIO;
290 }
291
292 /*
293  * Reads datagrams from the device and dispatches them. For IO port
294  * based access to the device, we always start reading datagrams into
295  * only the first page of the datagram buffer. If the datagrams don't
296  * fit into one page, we use the maximum datagram buffer size for the
297  * remainder of the invocation. This is a simple heuristic for not
298  * penalizing small datagrams. For DMA-based datagrams, we always
299  * use the maximum datagram buffer size, since there is no performance
300  * penalty for doing so.
301  *
302  * This function assumes that it has exclusive access to the data
303  * in register(s) for the duration of the call.
304  */
305 static void vmci_dispatch_dgs(struct vmci_guest_device *vmci_dev)
306 {
307         u8 *dg_in_buffer = vmci_dev->data_buffer;
308         struct vmci_datagram *dg;
309         size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
310         size_t current_dg_in_buffer_size;
311         size_t remaining_bytes;
312         bool is_io_port = vmci_dev->mmio_base == NULL;
313
314         BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
315
316         if (!is_io_port) {
317                 /* For mmio, the first page is used for the header. */
318                 dg_in_buffer += PAGE_SIZE;
319
320                 /*
321                  * For DMA-based datagram operations, there is no performance
322                  * penalty for reading the maximum buffer size.
323                  */
324                 current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
325         } else {
326                 current_dg_in_buffer_size = PAGE_SIZE;
327         }
328         vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
329         dg = (struct vmci_datagram *)dg_in_buffer;
330         remaining_bytes = current_dg_in_buffer_size;
331
332         /*
333          * Read through the buffer until an invalid datagram header is
334          * encountered. The exit condition for datagrams read through
335          * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
336          * can start on any page boundary in the buffer.
337          */
338         while (dg->dst.resource != VMCI_INVALID_ID ||
339                (is_io_port && remaining_bytes > PAGE_SIZE)) {
340                 unsigned dg_in_size;
341
342                 /*
343                  * If using VMCI_DATA_IN_ADDR, skip to the next page
344                  * as a datagram can start on any page boundary.
345                  */
346                 if (dg->dst.resource == VMCI_INVALID_ID) {
347                         dg = (struct vmci_datagram *)roundup(
348                                 (uintptr_t)dg + 1, PAGE_SIZE);
349                         remaining_bytes =
350                                 (size_t)(dg_in_buffer +
351                                          current_dg_in_buffer_size -
352                                          (u8 *)dg);
353                         continue;
354                 }
355
356                 dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
357
358                 if (dg_in_size <= dg_in_buffer_size) {
359                         int result;
360
361                         /*
362                          * If the remaining bytes in the datagram
363                          * buffer doesn't contain the complete
364                          * datagram, we first make sure we have enough
365                          * room for it and then we read the reminder
366                          * of the datagram and possibly any following
367                          * datagrams.
368                          */
369                         if (dg_in_size > remaining_bytes) {
370                                 if (remaining_bytes !=
371                                     current_dg_in_buffer_size) {
372
373                                         /*
374                                          * We move the partial
375                                          * datagram to the front and
376                                          * read the reminder of the
377                                          * datagram and possibly
378                                          * following calls into the
379                                          * following bytes.
380                                          */
381                                         memmove(dg_in_buffer, dg_in_buffer +
382                                                 current_dg_in_buffer_size -
383                                                 remaining_bytes,
384                                                 remaining_bytes);
385                                         dg = (struct vmci_datagram *)
386                                             dg_in_buffer;
387                                 }
388
389                                 if (current_dg_in_buffer_size !=
390                                     dg_in_buffer_size)
391                                         current_dg_in_buffer_size =
392                                             dg_in_buffer_size;
393
394                                 vmci_read_data(vmci_dev,
395                                                dg_in_buffer +
396                                                 remaining_bytes,
397                                                current_dg_in_buffer_size -
398                                                 remaining_bytes);
399                         }
400
401                         /*
402                          * We special case event datagrams from the
403                          * hypervisor.
404                          */
405                         if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
406                             dg->dst.resource == VMCI_EVENT_HANDLER) {
407                                 result = vmci_event_dispatch(dg);
408                         } else {
409                                 result = vmci_datagram_invoke_guest_handler(dg);
410                         }
411                         if (result < VMCI_SUCCESS)
412                                 dev_dbg(vmci_dev->dev,
413                                         "Datagram with resource (ID=0x%x) failed (err=%d)\n",
414                                          dg->dst.resource, result);
415
416                         /* On to the next datagram. */
417                         dg = (struct vmci_datagram *)((u8 *)dg +
418                                                       dg_in_size);
419                 } else {
420                         size_t bytes_to_skip;
421
422                         /*
423                          * Datagram doesn't fit in datagram buffer of maximal
424                          * size. We drop it.
425                          */
426                         dev_dbg(vmci_dev->dev,
427                                 "Failed to receive datagram (size=%u bytes)\n",
428                                  dg_in_size);
429
430                         bytes_to_skip = dg_in_size - remaining_bytes;
431                         if (current_dg_in_buffer_size != dg_in_buffer_size)
432                                 current_dg_in_buffer_size = dg_in_buffer_size;
433
434                         for (;;) {
435                                 vmci_read_data(vmci_dev, dg_in_buffer,
436                                                current_dg_in_buffer_size);
437                                 if (bytes_to_skip <= current_dg_in_buffer_size)
438                                         break;
439
440                                 bytes_to_skip -= current_dg_in_buffer_size;
441                         }
442                         dg = (struct vmci_datagram *)(dg_in_buffer +
443                                                       bytes_to_skip);
444                 }
445
446                 remaining_bytes =
447                     (size_t) (dg_in_buffer + current_dg_in_buffer_size -
448                               (u8 *)dg);
449
450                 if (remaining_bytes < VMCI_DG_HEADERSIZE) {
451                         /* Get the next batch of datagrams. */
452
453                         vmci_read_data(vmci_dev, dg_in_buffer,
454                                     current_dg_in_buffer_size);
455                         dg = (struct vmci_datagram *)dg_in_buffer;
456                         remaining_bytes = current_dg_in_buffer_size;
457                 }
458         }
459 }
460
461 /*
462  * Scans the notification bitmap for raised flags, clears them
463  * and handles the notifications.
464  */
465 static void vmci_process_bitmap(struct vmci_guest_device *dev)
466 {
467         if (!dev->notification_bitmap) {
468                 dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
469                 return;
470         }
471
472         vmci_dbell_scan_notification_entries(dev->notification_bitmap);
473 }
474
475 /*
476  * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
477  * interrupt (vector VMCI_INTR_DATAGRAM).
478  */
479 static irqreturn_t vmci_interrupt(int irq, void *_dev)
480 {
481         struct vmci_guest_device *dev = _dev;
482
483         /*
484          * If we are using MSI-X with exclusive vectors then we simply call
485          * vmci_dispatch_dgs(), since we know the interrupt was meant for us.
486          * Otherwise we must read the ICR to determine what to do.
487          */
488
489         if (dev->exclusive_vectors) {
490                 vmci_dispatch_dgs(dev);
491         } else {
492                 unsigned int icr;
493
494                 /* Acknowledge interrupt and determine what needs doing. */
495                 icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
496                 if (icr == 0 || icr == ~0)
497                         return IRQ_NONE;
498
499                 if (icr & VMCI_ICR_DATAGRAM) {
500                         vmci_dispatch_dgs(dev);
501                         icr &= ~VMCI_ICR_DATAGRAM;
502                 }
503
504                 if (icr & VMCI_ICR_NOTIFICATION) {
505                         vmci_process_bitmap(dev);
506                         icr &= ~VMCI_ICR_NOTIFICATION;
507                 }
508
509
510                 if (icr & VMCI_ICR_DMA_DATAGRAM) {
511                         wake_up_all(&dev->inout_wq);
512                         icr &= ~VMCI_ICR_DMA_DATAGRAM;
513                 }
514
515                 if (icr != 0)
516                         dev_warn(dev->dev,
517                                  "Ignoring unknown interrupt cause (%d)\n",
518                                  icr);
519         }
520
521         return IRQ_HANDLED;
522 }
523
524 /*
525  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
526  * which is for the notification bitmap.  Will only get called if we are
527  * using MSI-X with exclusive vectors.
528  */
529 static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
530 {
531         struct vmci_guest_device *dev = _dev;
532
533         /* For MSI-X we can just assume it was meant for us. */
534         vmci_process_bitmap(dev);
535
536         return IRQ_HANDLED;
537 }
538
539 /*
540  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
541  * which is for the completion of a DMA datagram send or receive operation.
542  * Will only get called if we are using MSI-X with exclusive vectors.
543  */
544 static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
545 {
546         struct vmci_guest_device *dev = _dev;
547
548         wake_up_all(&dev->inout_wq);
549
550         return IRQ_HANDLED;
551 }
552
553 static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
554 {
555         if (vmci_dev->mmio_base != NULL) {
556                 if (vmci_dev->tx_buffer != NULL)
557                         dma_free_coherent(vmci_dev->dev,
558                                           VMCI_DMA_DG_BUFFER_SIZE,
559                                           vmci_dev->tx_buffer,
560                                           vmci_dev->tx_buffer_base);
561                 if (vmci_dev->data_buffer != NULL)
562                         dma_free_coherent(vmci_dev->dev,
563                                           VMCI_DMA_DG_BUFFER_SIZE,
564                                           vmci_dev->data_buffer,
565                                           vmci_dev->data_buffer_base);
566         } else {
567                 vfree(vmci_dev->data_buffer);
568         }
569 }
570
571 /*
572  * Most of the initialization at module load time is done here.
573  */
574 static int vmci_guest_probe_device(struct pci_dev *pdev,
575                                    const struct pci_device_id *id)
576 {
577         struct vmci_guest_device *vmci_dev;
578         void __iomem *iobase = NULL;
579         void __iomem *mmio_base = NULL;
580         unsigned int num_irq_vectors;
581         unsigned int capabilities;
582         unsigned int caps_in_use;
583         unsigned long cmd;
584         int vmci_err;
585         int error;
586
587         dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
588
589         error = pcim_enable_device(pdev);
590         if (error) {
591                 dev_err(&pdev->dev,
592                         "Failed to enable VMCI device: %d\n", error);
593                 return error;
594         }
595
596         /*
597          * The VMCI device with mmio access to registers requests 256KB
598          * for BAR1. If present, driver will use new VMCI device
599          * functionality for register access and datagram send/recv.
600          */
601
602         if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
603                 dev_info(&pdev->dev, "MMIO register access is available\n");
604                 mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
605                                             VMCI_MMIO_ACCESS_SIZE);
606                 /* If the map fails, we fall back to IOIO access. */
607                 if (!mmio_base)
608                         dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
609         }
610
611         if (!mmio_base) {
612                 if (IS_ENABLED(CONFIG_ARM64)) {
613                         dev_err(&pdev->dev, "MMIO base is invalid\n");
614                         return -ENXIO;
615                 }
616                 error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
617                 if (error) {
618                         dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
619                         return error;
620                 }
621                 iobase = pcim_iomap_table(pdev)[0];
622         }
623
624         vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
625         if (!vmci_dev) {
626                 dev_err(&pdev->dev,
627                         "Can't allocate memory for VMCI device\n");
628                 return -ENOMEM;
629         }
630
631         vmci_dev->dev = &pdev->dev;
632         vmci_dev->exclusive_vectors = false;
633         vmci_dev->iobase = iobase;
634         vmci_dev->mmio_base = mmio_base;
635
636         init_waitqueue_head(&vmci_dev->inout_wq);
637
638         if (mmio_base != NULL) {
639                 vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
640                                                          &vmci_dev->tx_buffer_base,
641                                                          GFP_KERNEL);
642                 if (!vmci_dev->tx_buffer) {
643                         dev_err(&pdev->dev,
644                                 "Can't allocate memory for datagram tx buffer\n");
645                         return -ENOMEM;
646                 }
647
648                 vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
649                                                            &vmci_dev->data_buffer_base,
650                                                            GFP_KERNEL);
651         } else {
652                 vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
653         }
654         if (!vmci_dev->data_buffer) {
655                 dev_err(&pdev->dev,
656                         "Can't allocate memory for datagram buffer\n");
657                 error = -ENOMEM;
658                 goto err_free_data_buffers;
659         }
660
661         pci_set_master(pdev);   /* To enable queue_pair functionality. */
662
663         /*
664          * Verify that the VMCI Device supports the capabilities that
665          * we need. If the device is missing capabilities that we would
666          * like to use, check for fallback capabilities and use those
667          * instead (so we can run a new VM on old hosts). Fail the load if
668          * a required capability is missing and there is no fallback.
669          *
670          * Right now, we need datagrams. There are no fallbacks.
671          */
672         capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
673         if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
674                 dev_err(&pdev->dev, "Device does not support datagrams\n");
675                 error = -ENXIO;
676                 goto err_free_data_buffers;
677         }
678         caps_in_use = VMCI_CAPS_DATAGRAM;
679
680         /*
681          * Use 64-bit PPNs if the device supports.
682          *
683          * There is no check for the return value of dma_set_mask_and_coherent
684          * since this driver can handle the default mask values if
685          * dma_set_mask_and_coherent fails.
686          */
687         if (capabilities & VMCI_CAPS_PPN64) {
688                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
689                 use_ppn64 = true;
690                 caps_in_use |= VMCI_CAPS_PPN64;
691         } else {
692                 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
693                 use_ppn64 = false;
694         }
695
696         /*
697          * If the hardware supports notifications, we will use that as
698          * well.
699          */
700         if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
701                 vmci_dev->notification_bitmap = dma_alloc_coherent(
702                         &pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
703                         GFP_KERNEL);
704                 if (!vmci_dev->notification_bitmap)
705                         dev_warn(&pdev->dev,
706                                  "Unable to allocate notification bitmap\n");
707                 else
708                         caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
709         }
710
711         if (mmio_base != NULL) {
712                 if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
713                         caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
714                 } else {
715                         dev_err(&pdev->dev,
716                                 "Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
717                         error = -ENXIO;
718                         goto err_free_notification_bitmap;
719                 }
720         }
721
722         dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
723
724         /* Let the host know which capabilities we intend to use. */
725         vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
726
727         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
728                 /* Let the device know the size for pages passed down. */
729                 vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
730
731                 /* Configure the high order parts of the data in/out buffers. */
732                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
733                                VMCI_DATA_IN_HIGH_ADDR);
734                 vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
735                                VMCI_DATA_OUT_HIGH_ADDR);
736         }
737
738         /* Set up global device so that we can start sending datagrams */
739         spin_lock_irq(&vmci_dev_spinlock);
740         vmci_dev_g = vmci_dev;
741         vmci_pdev = pdev;
742         spin_unlock_irq(&vmci_dev_spinlock);
743
744         /*
745          * Register notification bitmap with device if that capability is
746          * used.
747          */
748         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
749                 unsigned long bitmap_ppn =
750                         vmci_dev->notification_base >> PAGE_SHIFT;
751                 if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
752                         dev_warn(&pdev->dev,
753                                  "VMCI device unable to register notification bitmap with PPN 0x%lx\n",
754                                  bitmap_ppn);
755                         error = -ENXIO;
756                         goto err_remove_vmci_dev_g;
757                 }
758         }
759
760         /* Check host capabilities. */
761         error = vmci_check_host_caps(pdev);
762         if (error)
763                 goto err_remove_vmci_dev_g;
764
765         /* Enable device. */
766
767         /*
768          * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
769          * update the internal context id when needed.
770          */
771         vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
772                                         vmci_guest_cid_update, NULL,
773                                         &ctx_update_sub_id);
774         if (vmci_err < VMCI_SUCCESS)
775                 dev_warn(&pdev->dev,
776                          "Failed to subscribe to event (type=%d): %d\n",
777                          VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
778
779         /*
780          * Enable interrupts.  Try MSI-X first, then MSI, and then fallback on
781          * legacy interrupts.
782          */
783         if (vmci_dev->mmio_base != NULL)
784                 num_irq_vectors = VMCI_MAX_INTRS;
785         else
786                 num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
787         error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
788                                       PCI_IRQ_MSIX);
789         if (error < 0) {
790                 error = pci_alloc_irq_vectors(pdev, 1, 1,
791                                 PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY);
792                 if (error < 0)
793                         goto err_unsubscribe_event;
794         } else {
795                 vmci_dev->exclusive_vectors = true;
796         }
797
798         /*
799          * Request IRQ for legacy or MSI interrupts, or for first
800          * MSI-X vector.
801          */
802         error = request_threaded_irq(pci_irq_vector(pdev, 0), NULL,
803                                      vmci_interrupt, IRQF_SHARED,
804                                      KBUILD_MODNAME, vmci_dev);
805         if (error) {
806                 dev_err(&pdev->dev, "Irq %u in use: %d\n",
807                         pci_irq_vector(pdev, 0), error);
808                 goto err_disable_msi;
809         }
810
811         /*
812          * For MSI-X with exclusive vectors we need to request an
813          * interrupt for each vector so that we get a separate
814          * interrupt handler routine.  This allows us to distinguish
815          * between the vectors.
816          */
817         if (vmci_dev->exclusive_vectors) {
818                 error = request_threaded_irq(pci_irq_vector(pdev, 1), NULL,
819                                              vmci_interrupt_bm, 0,
820                                              KBUILD_MODNAME, vmci_dev);
821                 if (error) {
822                         dev_err(&pdev->dev,
823                                 "Failed to allocate irq %u: %d\n",
824                                 pci_irq_vector(pdev, 1), error);
825                         goto err_free_irq;
826                 }
827                 if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
828                         error = request_threaded_irq(pci_irq_vector(pdev, 2),
829                                                      NULL,
830                                                     vmci_interrupt_dma_datagram,
831                                                      0, KBUILD_MODNAME,
832                                                      vmci_dev);
833                         if (error) {
834                                 dev_err(&pdev->dev,
835                                         "Failed to allocate irq %u: %d\n",
836                                         pci_irq_vector(pdev, 2), error);
837                                 goto err_free_bm_irq;
838                         }
839                 }
840         }
841
842         dev_dbg(&pdev->dev, "Registered device\n");
843
844         atomic_inc(&vmci_num_guest_devices);
845
846         /* Enable specific interrupt bits. */
847         cmd = VMCI_IMR_DATAGRAM;
848         if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
849                 cmd |= VMCI_IMR_NOTIFICATION;
850         if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
851                 cmd |= VMCI_IMR_DMA_DATAGRAM;
852         vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
853
854         /* Enable interrupts. */
855         vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
856
857         pci_set_drvdata(pdev, vmci_dev);
858
859         vmci_call_vsock_callback(false);
860         return 0;
861
862 err_free_bm_irq:
863         if (vmci_dev->exclusive_vectors)
864                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
865
866 err_free_irq:
867         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
868
869 err_disable_msi:
870         pci_free_irq_vectors(pdev);
871
872 err_unsubscribe_event:
873         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
874         if (vmci_err < VMCI_SUCCESS)
875                 dev_warn(&pdev->dev,
876                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
877                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
878
879 err_remove_vmci_dev_g:
880         spin_lock_irq(&vmci_dev_spinlock);
881         vmci_pdev = NULL;
882         vmci_dev_g = NULL;
883         spin_unlock_irq(&vmci_dev_spinlock);
884
885 err_free_notification_bitmap:
886         if (vmci_dev->notification_bitmap) {
887                 vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
888                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
889                                   vmci_dev->notification_bitmap,
890                                   vmci_dev->notification_base);
891         }
892
893 err_free_data_buffers:
894         vmci_free_dg_buffers(vmci_dev);
895
896         /* The rest are managed resources and will be freed by PCI core */
897         return error;
898 }
899
900 static void vmci_guest_remove_device(struct pci_dev *pdev)
901 {
902         struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
903         int vmci_err;
904
905         dev_dbg(&pdev->dev, "Removing device\n");
906
907         atomic_dec(&vmci_num_guest_devices);
908
909         vmci_qp_guest_endpoints_exit();
910
911         vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
912         if (vmci_err < VMCI_SUCCESS)
913                 dev_warn(&pdev->dev,
914                          "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
915                          VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
916
917         spin_lock_irq(&vmci_dev_spinlock);
918         vmci_dev_g = NULL;
919         vmci_pdev = NULL;
920         spin_unlock_irq(&vmci_dev_spinlock);
921
922         dev_dbg(&pdev->dev, "Resetting vmci device\n");
923         vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
924
925         /*
926          * Free IRQ and then disable MSI/MSI-X as appropriate.  For
927          * MSI-X, we might have multiple vectors, each with their own
928          * IRQ, which we must free too.
929          */
930         if (vmci_dev->exclusive_vectors) {
931                 free_irq(pci_irq_vector(pdev, 1), vmci_dev);
932                 if (vmci_dev->mmio_base != NULL)
933                         free_irq(pci_irq_vector(pdev, 2), vmci_dev);
934         }
935         free_irq(pci_irq_vector(pdev, 0), vmci_dev);
936         pci_free_irq_vectors(pdev);
937
938         if (vmci_dev->notification_bitmap) {
939                 /*
940                  * The device reset above cleared the bitmap state of the
941                  * device, so we can safely free it here.
942                  */
943
944                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
945                                   vmci_dev->notification_bitmap,
946                                   vmci_dev->notification_base);
947         }
948
949         vmci_free_dg_buffers(vmci_dev);
950
951         if (vmci_dev->mmio_base != NULL)
952                 pci_iounmap(pdev, vmci_dev->mmio_base);
953
954         /* The rest are managed resources and will be freed by PCI core */
955 }
956
957 static const struct pci_device_id vmci_ids[] = {
958         { PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
959         { 0 },
960 };
961 MODULE_DEVICE_TABLE(pci, vmci_ids);
962
963 static struct pci_driver vmci_guest_driver = {
964         .name           = KBUILD_MODNAME,
965         .id_table       = vmci_ids,
966         .probe          = vmci_guest_probe_device,
967         .remove         = vmci_guest_remove_device,
968 };
969
970 int __init vmci_guest_init(void)
971 {
972         return pci_register_driver(&vmci_guest_driver);
973 }
974
975 void __exit vmci_guest_exit(void)
976 {
977         pci_unregister_driver(&vmci_guest_driver);
978 }