Merge series "spi: spi-sun6i: One fix and some improvements" from Marc Kleine-Budde...
[linux-2.6-microblaze.git] / drivers / misc / lkdtm / heap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9
10 static struct kmem_cache *double_free_cache;
11 static struct kmem_cache *a_cache;
12 static struct kmem_cache *b_cache;
13
14 /*
15  * This tries to stay within the next largest power-of-2 kmalloc cache
16  * to avoid actually overwriting anything important if it's not detected
17  * correctly.
18  */
19 void lkdtm_OVERWRITE_ALLOCATION(void)
20 {
21         size_t len = 1020;
22         u32 *data = kmalloc(len, GFP_KERNEL);
23         if (!data)
24                 return;
25
26         data[1024 / sizeof(u32)] = 0x12345678;
27         kfree(data);
28 }
29
30 void lkdtm_WRITE_AFTER_FREE(void)
31 {
32         int *base, *again;
33         size_t len = 1024;
34         /*
35          * The slub allocator uses the first word to store the free
36          * pointer in some configurations. Use the middle of the
37          * allocation to avoid running into the freelist
38          */
39         size_t offset = (len / sizeof(*base)) / 2;
40
41         base = kmalloc(len, GFP_KERNEL);
42         if (!base)
43                 return;
44         pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
45         pr_info("Attempting bad write to freed memory at %p\n",
46                 &base[offset]);
47         kfree(base);
48         base[offset] = 0x0abcdef0;
49         /* Attempt to notice the overwrite. */
50         again = kmalloc(len, GFP_KERNEL);
51         kfree(again);
52         if (again != base)
53                 pr_info("Hmm, didn't get the same memory range.\n");
54 }
55
56 void lkdtm_READ_AFTER_FREE(void)
57 {
58         int *base, *val, saw;
59         size_t len = 1024;
60         /*
61          * The slub allocator uses the first word to store the free
62          * pointer in some configurations. Use the middle of the
63          * allocation to avoid running into the freelist
64          */
65         size_t offset = (len / sizeof(*base)) / 2;
66
67         base = kmalloc(len, GFP_KERNEL);
68         if (!base) {
69                 pr_info("Unable to allocate base memory.\n");
70                 return;
71         }
72
73         val = kmalloc(len, GFP_KERNEL);
74         if (!val) {
75                 pr_info("Unable to allocate val memory.\n");
76                 kfree(base);
77                 return;
78         }
79
80         *val = 0x12345678;
81         base[offset] = *val;
82         pr_info("Value in memory before free: %x\n", base[offset]);
83
84         kfree(base);
85
86         pr_info("Attempting bad read from freed memory\n");
87         saw = base[offset];
88         if (saw != *val) {
89                 /* Good! Poisoning happened, so declare a win. */
90                 pr_info("Memory correctly poisoned (%x)\n", saw);
91                 BUG();
92         }
93         pr_info("Memory was not poisoned\n");
94
95         kfree(val);
96 }
97
98 void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
99 {
100         unsigned long p = __get_free_page(GFP_KERNEL);
101         if (!p) {
102                 pr_info("Unable to allocate free page\n");
103                 return;
104         }
105
106         pr_info("Writing to the buddy page before free\n");
107         memset((void *)p, 0x3, PAGE_SIZE);
108         free_page(p);
109         schedule();
110         pr_info("Attempting bad write to the buddy page after free\n");
111         memset((void *)p, 0x78, PAGE_SIZE);
112         /* Attempt to notice the overwrite. */
113         p = __get_free_page(GFP_KERNEL);
114         free_page(p);
115         schedule();
116 }
117
118 void lkdtm_READ_BUDDY_AFTER_FREE(void)
119 {
120         unsigned long p = __get_free_page(GFP_KERNEL);
121         int saw, *val;
122         int *base;
123
124         if (!p) {
125                 pr_info("Unable to allocate free page\n");
126                 return;
127         }
128
129         val = kmalloc(1024, GFP_KERNEL);
130         if (!val) {
131                 pr_info("Unable to allocate val memory.\n");
132                 free_page(p);
133                 return;
134         }
135
136         base = (int *)p;
137
138         *val = 0x12345678;
139         base[0] = *val;
140         pr_info("Value in memory before free: %x\n", base[0]);
141         free_page(p);
142         pr_info("Attempting to read from freed memory\n");
143         saw = base[0];
144         if (saw != *val) {
145                 /* Good! Poisoning happened, so declare a win. */
146                 pr_info("Memory correctly poisoned (%x)\n", saw);
147                 BUG();
148         }
149         pr_info("Buddy page was not poisoned\n");
150
151         kfree(val);
152 }
153
154 void lkdtm_SLAB_FREE_DOUBLE(void)
155 {
156         int *val;
157
158         val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
159         if (!val) {
160                 pr_info("Unable to allocate double_free_cache memory.\n");
161                 return;
162         }
163
164         /* Just make sure we got real memory. */
165         *val = 0x12345678;
166         pr_info("Attempting double slab free ...\n");
167         kmem_cache_free(double_free_cache, val);
168         kmem_cache_free(double_free_cache, val);
169 }
170
171 void lkdtm_SLAB_FREE_CROSS(void)
172 {
173         int *val;
174
175         val = kmem_cache_alloc(a_cache, GFP_KERNEL);
176         if (!val) {
177                 pr_info("Unable to allocate a_cache memory.\n");
178                 return;
179         }
180
181         /* Just make sure we got real memory. */
182         *val = 0x12345679;
183         pr_info("Attempting cross-cache slab free ...\n");
184         kmem_cache_free(b_cache, val);
185 }
186
187 void lkdtm_SLAB_FREE_PAGE(void)
188 {
189         unsigned long p = __get_free_page(GFP_KERNEL);
190
191         pr_info("Attempting non-Slab slab free ...\n");
192         kmem_cache_free(NULL, (void *)p);
193         free_page(p);
194 }
195
196 /*
197  * We have constructors to keep the caches distinctly separated without
198  * needing to boot with "slab_nomerge".
199  */
200 static void ctor_double_free(void *region)
201 { }
202 static void ctor_a(void *region)
203 { }
204 static void ctor_b(void *region)
205 { }
206
207 void __init lkdtm_heap_init(void)
208 {
209         double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
210                                               64, 0, 0, ctor_double_free);
211         a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
212         b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
213 }
214
215 void __exit lkdtm_heap_exit(void)
216 {
217         kmem_cache_destroy(double_free_cache);
218         kmem_cache_destroy(a_cache);
219         kmem_cache_destroy(b_cache);
220 }