Merge tag 'mmc-v5.10-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / memory.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/genalloc.h>
15
16 #define HL_MMU_DEBUG    0
17
18 /*
19  * The va ranges in context object contain a list with the available chunks of
20  * device virtual memory.
21  * There is one range for host allocations and one for DRAM allocations.
22  *
23  * On initialization each range contains one chunk of all of its available
24  * virtual range which is a half of the total device virtual range.
25  *
26  * On each mapping of physical pages, a suitable virtual range chunk (with a
27  * minimum size) is selected from the list. If the chunk size equals the
28  * requested size, the chunk is returned. Otherwise, the chunk is split into
29  * two chunks - one to return as result and a remainder to stay in the list.
30  *
31  * On each Unmapping of a virtual address, the relevant virtual chunk is
32  * returned to the list. The chunk is added to the list and if its edges match
33  * the edges of the adjacent chunks (means a contiguous chunk can be created),
34  * the chunks are merged.
35  *
36  * On finish, the list is checked to have only one chunk of all the relevant
37  * virtual range (which is a half of the device total virtual range).
38  * If not (means not all mappings were unmapped), a warning is printed.
39  */
40
41 /*
42  * alloc_device_memory - allocate device memory
43  *
44  * @ctx                 : current context
45  * @args                : host parameters containing the requested size
46  * @ret_handle          : result handle
47  *
48  * This function does the following:
49  * - Allocate the requested size rounded up to 2MB pages
50  * - Return unique handle
51  */
52 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
53                                 u32 *ret_handle)
54 {
55         struct hl_device *hdev = ctx->hdev;
56         struct hl_vm *vm = &hdev->vm;
57         struct hl_vm_phys_pg_pack *phys_pg_pack;
58         u64 paddr = 0, total_size, num_pgs, i;
59         u32 num_curr_pgs, page_size, page_shift;
60         int handle, rc;
61         bool contiguous;
62
63         num_curr_pgs = 0;
64         page_size = hdev->asic_prop.dram_page_size;
65         page_shift = __ffs(page_size);
66         num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
67         total_size = num_pgs << page_shift;
68
69         if (!total_size) {
70                 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
71                 return -EINVAL;
72         }
73
74         contiguous = args->flags & HL_MEM_CONTIGUOUS;
75
76         if (contiguous) {
77                 paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
78                 if (!paddr) {
79                         dev_err(hdev->dev,
80                                 "failed to allocate %llu contiguous pages with total size of %llu\n",
81                                 num_pgs, total_size);
82                         return -ENOMEM;
83                 }
84         }
85
86         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
87         if (!phys_pg_pack) {
88                 rc = -ENOMEM;
89                 goto pages_pack_err;
90         }
91
92         phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
93         phys_pg_pack->asid = ctx->asid;
94         phys_pg_pack->npages = num_pgs;
95         phys_pg_pack->page_size = page_size;
96         phys_pg_pack->total_size = total_size;
97         phys_pg_pack->flags = args->flags;
98         phys_pg_pack->contiguous = contiguous;
99
100         phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
101         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
102                 rc = -ENOMEM;
103                 goto pages_arr_err;
104         }
105
106         if (phys_pg_pack->contiguous) {
107                 for (i = 0 ; i < num_pgs ; i++)
108                         phys_pg_pack->pages[i] = paddr + i * page_size;
109         } else {
110                 for (i = 0 ; i < num_pgs ; i++) {
111                         phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
112                                                         vm->dram_pg_pool,
113                                                         page_size);
114                         if (!phys_pg_pack->pages[i]) {
115                                 dev_err(hdev->dev,
116                                         "Failed to allocate device memory (out of memory)\n");
117                                 rc = -ENOMEM;
118                                 goto page_err;
119                         }
120
121                         num_curr_pgs++;
122                 }
123         }
124
125         spin_lock(&vm->idr_lock);
126         handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
127                                 GFP_ATOMIC);
128         spin_unlock(&vm->idr_lock);
129
130         if (handle < 0) {
131                 dev_err(hdev->dev, "Failed to get handle for page\n");
132                 rc = -EFAULT;
133                 goto idr_err;
134         }
135
136         for (i = 0 ; i < num_pgs ; i++)
137                 kref_get(&vm->dram_pg_pool_refcount);
138
139         phys_pg_pack->handle = handle;
140
141         atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
142         atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
143
144         *ret_handle = handle;
145
146         return 0;
147
148 idr_err:
149 page_err:
150         if (!phys_pg_pack->contiguous)
151                 for (i = 0 ; i < num_curr_pgs ; i++)
152                         gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
153                                         page_size);
154
155         kvfree(phys_pg_pack->pages);
156 pages_arr_err:
157         kfree(phys_pg_pack);
158 pages_pack_err:
159         if (contiguous)
160                 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
161
162         return rc;
163 }
164
165 /*
166  * dma_map_host_va - DMA mapping of the given host virtual address.
167  * @hdev: habanalabs device structure
168  * @addr: the host virtual address of the memory area
169  * @size: the size of the memory area
170  * @p_userptr: pointer to result userptr structure
171  *
172  * This function does the following:
173  * - Allocate userptr structure
174  * - Pin the given host memory using the userptr structure
175  * - Perform DMA mapping to have the DMA addresses of the pages
176  */
177 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
178                                 struct hl_userptr **p_userptr)
179 {
180         struct hl_userptr *userptr;
181         int rc;
182
183         userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
184         if (!userptr) {
185                 rc = -ENOMEM;
186                 goto userptr_err;
187         }
188
189         rc = hl_pin_host_memory(hdev, addr, size, userptr);
190         if (rc) {
191                 dev_err(hdev->dev, "Failed to pin host memory\n");
192                 goto pin_err;
193         }
194
195         rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
196                                         userptr->sgt->nents, DMA_BIDIRECTIONAL);
197         if (rc) {
198                 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
199                 goto dma_map_err;
200         }
201
202         userptr->dma_mapped = true;
203         userptr->dir = DMA_BIDIRECTIONAL;
204         userptr->vm_type = VM_TYPE_USERPTR;
205
206         *p_userptr = userptr;
207
208         return 0;
209
210 dma_map_err:
211         hl_unpin_host_memory(hdev, userptr);
212 pin_err:
213         kfree(userptr);
214 userptr_err:
215
216         return rc;
217 }
218
219 /*
220  * dma_unmap_host_va - DMA unmapping of the given host virtual address.
221  * @hdev: habanalabs device structure
222  * @userptr: userptr to free
223  *
224  * This function does the following:
225  * - Unpins the physical pages
226  * - Frees the userptr structure
227  */
228 static void dma_unmap_host_va(struct hl_device *hdev,
229                                 struct hl_userptr *userptr)
230 {
231         hl_unpin_host_memory(hdev, userptr);
232         kfree(userptr);
233 }
234
235 /*
236  * dram_pg_pool_do_release - free DRAM pages pool
237  *
238  * @ref                 : pointer to reference object
239  *
240  * This function does the following:
241  * - Frees the idr structure of physical pages handles
242  * - Frees the generic pool of DRAM physical pages
243  */
244 static void dram_pg_pool_do_release(struct kref *ref)
245 {
246         struct hl_vm *vm = container_of(ref, struct hl_vm,
247                         dram_pg_pool_refcount);
248
249         /*
250          * free the idr here as only here we know for sure that there are no
251          * allocated physical pages and hence there are no handles in use
252          */
253         idr_destroy(&vm->phys_pg_pack_handles);
254         gen_pool_destroy(vm->dram_pg_pool);
255 }
256
257 /*
258  * free_phys_pg_pack - free physical page pack
259  * @hdev: habanalabs device structure
260  * @phys_pg_pack: physical page pack to free
261  *
262  * This function does the following:
263  * - For DRAM memory only, iterate over the pack and free each physical block
264  *   structure by returning it to the general pool
265  * - Free the hl_vm_phys_pg_pack structure
266  */
267 static void free_phys_pg_pack(struct hl_device *hdev,
268                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
269 {
270         struct hl_vm *vm = &hdev->vm;
271         u64 i;
272
273         if (!phys_pg_pack->created_from_userptr) {
274                 if (phys_pg_pack->contiguous) {
275                         gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
276                                         phys_pg_pack->total_size);
277
278                         for (i = 0; i < phys_pg_pack->npages ; i++)
279                                 kref_put(&vm->dram_pg_pool_refcount,
280                                         dram_pg_pool_do_release);
281                 } else {
282                         for (i = 0 ; i < phys_pg_pack->npages ; i++) {
283                                 gen_pool_free(vm->dram_pg_pool,
284                                                 phys_pg_pack->pages[i],
285                                                 phys_pg_pack->page_size);
286                                 kref_put(&vm->dram_pg_pool_refcount,
287                                         dram_pg_pool_do_release);
288                         }
289                 }
290         }
291
292         kvfree(phys_pg_pack->pages);
293         kfree(phys_pg_pack);
294 }
295
296 /*
297  * free_device_memory - free device memory
298  *
299  * @ctx                  : current context
300  * @handle              : handle of the memory chunk to free
301  *
302  * This function does the following:
303  * - Free the device memory related to the given handle
304  */
305 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
306 {
307         struct hl_device *hdev = ctx->hdev;
308         struct hl_vm *vm = &hdev->vm;
309         struct hl_vm_phys_pg_pack *phys_pg_pack;
310
311         spin_lock(&vm->idr_lock);
312         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
313         if (phys_pg_pack) {
314                 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
315                         dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
316                                 handle);
317                         spin_unlock(&vm->idr_lock);
318                         return -EINVAL;
319                 }
320
321                 /*
322                  * must remove from idr before the freeing of the physical
323                  * pages as the refcount of the pool is also the trigger of the
324                  * idr destroy
325                  */
326                 idr_remove(&vm->phys_pg_pack_handles, handle);
327                 spin_unlock(&vm->idr_lock);
328
329                 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
330                 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
331
332                 free_phys_pg_pack(hdev, phys_pg_pack);
333         } else {
334                 spin_unlock(&vm->idr_lock);
335                 dev_err(hdev->dev,
336                         "free device memory failed, no match for handle %u\n",
337                         handle);
338                 return -EINVAL;
339         }
340
341         return 0;
342 }
343
344 /*
345  * clear_va_list_locked - free virtual addresses list
346  *
347  * @hdev                : habanalabs device structure
348  * @va_list             : list of virtual addresses to free
349  *
350  * This function does the following:
351  * - Iterate over the list and free each virtual addresses block
352  *
353  * This function should be called only when va_list lock is taken
354  */
355 static void clear_va_list_locked(struct hl_device *hdev,
356                 struct list_head *va_list)
357 {
358         struct hl_vm_va_block *va_block, *tmp;
359
360         list_for_each_entry_safe(va_block, tmp, va_list, node) {
361                 list_del(&va_block->node);
362                 kfree(va_block);
363         }
364 }
365
366 /*
367  * print_va_list_locked    - print virtual addresses list
368  *
369  * @hdev                : habanalabs device structure
370  * @va_list             : list of virtual addresses to print
371  *
372  * This function does the following:
373  * - Iterate over the list and print each virtual addresses block
374  *
375  * This function should be called only when va_list lock is taken
376  */
377 static void print_va_list_locked(struct hl_device *hdev,
378                 struct list_head *va_list)
379 {
380 #if HL_MMU_DEBUG
381         struct hl_vm_va_block *va_block;
382
383         dev_dbg(hdev->dev, "print va list:\n");
384
385         list_for_each_entry(va_block, va_list, node)
386                 dev_dbg(hdev->dev,
387                         "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
388                         va_block->start, va_block->end, va_block->size);
389 #endif
390 }
391
392 /*
393  * merge_va_blocks_locked - merge a virtual block if possible
394  *
395  * @hdev                : pointer to the habanalabs device structure
396  * @va_list             : pointer to the virtual addresses block list
397  * @va_block            : virtual block to merge with adjacent blocks
398  *
399  * This function does the following:
400  * - Merge the given blocks with the adjacent blocks if their virtual ranges
401  *   create a contiguous virtual range
402  *
403  * This Function should be called only when va_list lock is taken
404  */
405 static void merge_va_blocks_locked(struct hl_device *hdev,
406                 struct list_head *va_list, struct hl_vm_va_block *va_block)
407 {
408         struct hl_vm_va_block *prev, *next;
409
410         prev = list_prev_entry(va_block, node);
411         if (&prev->node != va_list && prev->end + 1 == va_block->start) {
412                 prev->end = va_block->end;
413                 prev->size = prev->end - prev->start;
414                 list_del(&va_block->node);
415                 kfree(va_block);
416                 va_block = prev;
417         }
418
419         next = list_next_entry(va_block, node);
420         if (&next->node != va_list && va_block->end + 1 == next->start) {
421                 next->start = va_block->start;
422                 next->size = next->end - next->start;
423                 list_del(&va_block->node);
424                 kfree(va_block);
425         }
426 }
427
428 /*
429  * add_va_block_locked - add a virtual block to the virtual addresses list
430  *
431  * @hdev                : pointer to the habanalabs device structure
432  * @va_list             : pointer to the virtual addresses block list
433  * @start               : start virtual address
434  * @end                 : end virtual address
435  *
436  * This function does the following:
437  * - Add the given block to the virtual blocks list and merge with other
438  * blocks if a contiguous virtual block can be created
439  *
440  * This Function should be called only when va_list lock is taken
441  */
442 static int add_va_block_locked(struct hl_device *hdev,
443                 struct list_head *va_list, u64 start, u64 end)
444 {
445         struct hl_vm_va_block *va_block, *res = NULL;
446         u64 size = end - start;
447
448         print_va_list_locked(hdev, va_list);
449
450         list_for_each_entry(va_block, va_list, node) {
451                 /* TODO: remove upon matureness */
452                 if (hl_mem_area_crosses_range(start, size, va_block->start,
453                                 va_block->end)) {
454                         dev_err(hdev->dev,
455                                 "block crossing ranges at start 0x%llx, end 0x%llx\n",
456                                 va_block->start, va_block->end);
457                         return -EINVAL;
458                 }
459
460                 if (va_block->end < start)
461                         res = va_block;
462         }
463
464         va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
465         if (!va_block)
466                 return -ENOMEM;
467
468         va_block->start = start;
469         va_block->end = end;
470         va_block->size = size;
471
472         if (!res)
473                 list_add(&va_block->node, va_list);
474         else
475                 list_add(&va_block->node, &res->node);
476
477         merge_va_blocks_locked(hdev, va_list, va_block);
478
479         print_va_list_locked(hdev, va_list);
480
481         return 0;
482 }
483
484 /*
485  * add_va_block - wrapper for add_va_block_locked
486  *
487  * @hdev                : pointer to the habanalabs device structure
488  * @va_list             : pointer to the virtual addresses block list
489  * @start               : start virtual address
490  * @end                 : end virtual address
491  *
492  * This function does the following:
493  * - Takes the list lock and calls add_va_block_locked
494  */
495 static inline int add_va_block(struct hl_device *hdev,
496                 struct hl_va_range *va_range, u64 start, u64 end)
497 {
498         int rc;
499
500         mutex_lock(&va_range->lock);
501         rc = add_va_block_locked(hdev, &va_range->list, start, end);
502         mutex_unlock(&va_range->lock);
503
504         return rc;
505 }
506
507 /*
508  * get_va_block() - get a virtual block for the given size and alignment.
509  * @hdev: pointer to the habanalabs device structure.
510  * @va_range: pointer to the virtual addresses range.
511  * @size: requested block size.
512  * @hint_addr: hint for requested address by the user.
513  * @va_block_align: required alignment of the virtual block start address.
514  *
515  * This function does the following:
516  * - Iterate on the virtual block list to find a suitable virtual block for the
517  *   given size and alignment.
518  * - Reserve the requested block and update the list.
519  * - Return the start address of the virtual block.
520  */
521 static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
522                         u64 size, u64 hint_addr, u32 va_block_align)
523 {
524         struct hl_vm_va_block *va_block, *new_va_block = NULL;
525         u64 valid_start, valid_size, prev_start, prev_end, align_mask,
526                 res_valid_start = 0, res_valid_size = 0;
527         bool add_prev = false;
528
529         align_mask = ~((u64)va_block_align - 1);
530
531         /* check if hint_addr is aligned */
532         if (hint_addr & (va_block_align - 1))
533                 hint_addr = 0;
534
535         mutex_lock(&va_range->lock);
536
537         print_va_list_locked(hdev, &va_range->list);
538
539         list_for_each_entry(va_block, &va_range->list, node) {
540                 /* calc the first possible aligned addr */
541                 valid_start = va_block->start;
542
543                 if (valid_start & (va_block_align - 1)) {
544                         valid_start &= align_mask;
545                         valid_start += va_block_align;
546                         if (valid_start > va_block->end)
547                                 continue;
548                 }
549
550                 valid_size = va_block->end - valid_start;
551
552                 if (valid_size >= size &&
553                         (!new_va_block || valid_size < res_valid_size)) {
554                         new_va_block = va_block;
555                         res_valid_start = valid_start;
556                         res_valid_size = valid_size;
557                 }
558
559                 if (hint_addr && hint_addr >= valid_start &&
560                                 ((hint_addr + size) <= va_block->end)) {
561                         new_va_block = va_block;
562                         res_valid_start = hint_addr;
563                         res_valid_size = valid_size;
564                         break;
565                 }
566         }
567
568         if (!new_va_block) {
569                 dev_err(hdev->dev, "no available va block for size %llu\n",
570                                 size);
571                 goto out;
572         }
573
574         if (res_valid_start > new_va_block->start) {
575                 prev_start = new_va_block->start;
576                 prev_end = res_valid_start - 1;
577
578                 new_va_block->start = res_valid_start;
579                 new_va_block->size = res_valid_size;
580
581                 add_prev = true;
582         }
583
584         if (new_va_block->size > size) {
585                 new_va_block->start += size;
586                 new_va_block->size = new_va_block->end - new_va_block->start;
587         } else {
588                 list_del(&new_va_block->node);
589                 kfree(new_va_block);
590         }
591
592         if (add_prev)
593                 add_va_block_locked(hdev, &va_range->list, prev_start,
594                                 prev_end);
595
596         print_va_list_locked(hdev, &va_range->list);
597 out:
598         mutex_unlock(&va_range->lock);
599
600         return res_valid_start;
601 }
602
603 /*
604  * get_sg_info - get number of pages and the DMA address from SG list
605  *
606  * @sg                 : the SG list
607  * @dma_addr           : pointer to DMA address to return
608  *
609  * Calculate the number of consecutive pages described by the SG list. Take the
610  * offset of the address in the first page, add to it the length and round it up
611  * to the number of needed pages.
612  */
613 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
614 {
615         *dma_addr = sg_dma_address(sg);
616
617         return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
618                         (PAGE_SIZE - 1)) >> PAGE_SHIFT;
619 }
620
621 /*
622  * init_phys_pg_pack_from_userptr - initialize physical page pack from host
623  *                                  memory
624  * @ctx: current context
625  * @userptr: userptr to initialize from
626  * @pphys_pg_pack: result pointer
627  *
628  * This function does the following:
629  * - Pin the physical pages related to the given virtual block
630  * - Create a physical page pack from the physical pages related to the given
631  *   virtual block
632  */
633 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
634                                 struct hl_userptr *userptr,
635                                 struct hl_vm_phys_pg_pack **pphys_pg_pack)
636 {
637         struct hl_vm_phys_pg_pack *phys_pg_pack;
638         struct scatterlist *sg;
639         dma_addr_t dma_addr;
640         u64 page_mask, total_npages;
641         u32 npages, page_size = PAGE_SIZE,
642                 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
643         bool first = true, is_huge_page_opt = true;
644         int rc, i, j;
645         u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
646
647         phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
648         if (!phys_pg_pack)
649                 return -ENOMEM;
650
651         phys_pg_pack->vm_type = userptr->vm_type;
652         phys_pg_pack->created_from_userptr = true;
653         phys_pg_pack->asid = ctx->asid;
654         atomic_set(&phys_pg_pack->mapping_cnt, 1);
655
656         /* Only if all dma_addrs are aligned to 2MB and their
657          * sizes is at least 2MB, we can use huge page mapping.
658          * We limit the 2MB optimization to this condition,
659          * since later on we acquire the related VA range as one
660          * consecutive block.
661          */
662         total_npages = 0;
663         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
664                 npages = get_sg_info(sg, &dma_addr);
665
666                 total_npages += npages;
667
668                 if ((npages % pgs_in_huge_page) ||
669                                         (dma_addr & (huge_page_size - 1)))
670                         is_huge_page_opt = false;
671         }
672
673         if (is_huge_page_opt) {
674                 page_size = huge_page_size;
675                 do_div(total_npages, pgs_in_huge_page);
676         }
677
678         page_mask = ~(((u64) page_size) - 1);
679
680         phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
681                                                 GFP_KERNEL);
682         if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
683                 rc = -ENOMEM;
684                 goto page_pack_arr_mem_err;
685         }
686
687         phys_pg_pack->npages = total_npages;
688         phys_pg_pack->page_size = page_size;
689         phys_pg_pack->total_size = total_npages * page_size;
690
691         j = 0;
692         for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
693                 npages = get_sg_info(sg, &dma_addr);
694
695                 /* align down to physical page size and save the offset */
696                 if (first) {
697                         first = false;
698                         phys_pg_pack->offset = dma_addr & (page_size - 1);
699                         dma_addr &= page_mask;
700                 }
701
702                 while (npages) {
703                         phys_pg_pack->pages[j++] = dma_addr;
704                         dma_addr += page_size;
705
706                         if (is_huge_page_opt)
707                                 npages -= pgs_in_huge_page;
708                         else
709                                 npages--;
710                 }
711         }
712
713         *pphys_pg_pack = phys_pg_pack;
714
715         return 0;
716
717 page_pack_arr_mem_err:
718         kfree(phys_pg_pack);
719
720         return rc;
721 }
722
723 /*
724  * map_phys_pg_pack - maps the physical page pack.
725  * @ctx: current context
726  * @vaddr: start address of the virtual area to map from
727  * @phys_pg_pack: the pack of physical pages to map to
728  *
729  * This function does the following:
730  * - Maps each chunk of virtual memory to matching physical chunk
731  * - Stores number of successful mappings in the given argument
732  * - Returns 0 on success, error code otherwise
733  */
734 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
735                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
736 {
737         struct hl_device *hdev = ctx->hdev;
738         u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
739         u32 page_size = phys_pg_pack->page_size;
740         int rc = 0;
741
742         for (i = 0 ; i < phys_pg_pack->npages ; i++) {
743                 paddr = phys_pg_pack->pages[i];
744
745                 rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size,
746                                 (i + 1) == phys_pg_pack->npages);
747                 if (rc) {
748                         dev_err(hdev->dev,
749                                 "map failed for handle %u, npages: %llu, mapped: %llu",
750                                 phys_pg_pack->handle, phys_pg_pack->npages,
751                                 mapped_pg_cnt);
752                         goto err;
753                 }
754
755                 mapped_pg_cnt++;
756                 next_vaddr += page_size;
757         }
758
759         return 0;
760
761 err:
762         next_vaddr = vaddr;
763         for (i = 0 ; i < mapped_pg_cnt ; i++) {
764                 if (hl_mmu_unmap(ctx, next_vaddr, page_size,
765                                         (i + 1) == mapped_pg_cnt))
766                         dev_warn_ratelimited(hdev->dev,
767                                 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
768                                         phys_pg_pack->handle, next_vaddr,
769                                         phys_pg_pack->pages[i], page_size);
770
771                 next_vaddr += page_size;
772         }
773
774         return rc;
775 }
776
777 /*
778  * unmap_phys_pg_pack - unmaps the physical page pack
779  * @ctx: current context
780  * @vaddr: start address of the virtual area to unmap
781  * @phys_pg_pack: the pack of physical pages to unmap
782  */
783 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
784                                 struct hl_vm_phys_pg_pack *phys_pg_pack)
785 {
786         struct hl_device *hdev = ctx->hdev;
787         u64 next_vaddr, i;
788         u32 page_size;
789
790         page_size = phys_pg_pack->page_size;
791         next_vaddr = vaddr;
792
793         for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
794                 if (hl_mmu_unmap(ctx, next_vaddr, page_size,
795                                        (i + 1) == phys_pg_pack->npages))
796                         dev_warn_ratelimited(hdev->dev,
797                         "unmap failed for vaddr: 0x%llx\n", next_vaddr);
798
799                 /*
800                  * unmapping on Palladium can be really long, so avoid a CPU
801                  * soft lockup bug by sleeping a little between unmapping pages
802                  */
803                 if (hdev->pldm)
804                         usleep_range(500, 1000);
805         }
806 }
807
808 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
809                                 u64 *paddr)
810 {
811         struct hl_device *hdev = ctx->hdev;
812         struct hl_vm *vm = &hdev->vm;
813         struct hl_vm_phys_pg_pack *phys_pg_pack;
814         u32 handle;
815
816         handle = lower_32_bits(args->map_device.handle);
817         spin_lock(&vm->idr_lock);
818         phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
819         if (!phys_pg_pack) {
820                 spin_unlock(&vm->idr_lock);
821                 dev_err(hdev->dev, "no match for handle %u\n", handle);
822                 return -EINVAL;
823         }
824
825         *paddr = phys_pg_pack->pages[0];
826
827         spin_unlock(&vm->idr_lock);
828
829         return 0;
830 }
831
832 /*
833  * map_device_va - map the given memory
834  *
835  * @ctx          : current context
836  * @args         : host parameters with handle/host virtual address
837  * @device_addr  : pointer to result device virtual address
838  *
839  * This function does the following:
840  * - If given a physical device memory handle, map to a device virtual block
841  *   and return the start address of this block
842  * - If given a host virtual address and size, find the related physical pages,
843  *   map a device virtual block to this pages and return the start address of
844  *   this block
845  */
846 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
847                 u64 *device_addr)
848 {
849         struct hl_device *hdev = ctx->hdev;
850         struct hl_vm *vm = &hdev->vm;
851         struct hl_vm_phys_pg_pack *phys_pg_pack;
852         struct hl_userptr *userptr = NULL;
853         struct hl_vm_hash_node *hnode;
854         struct hl_va_range *va_range;
855         enum vm_type_t *vm_type;
856         u64 ret_vaddr, hint_addr;
857         u32 handle = 0, va_block_align;
858         int rc;
859         bool is_userptr = args->flags & HL_MEM_USERPTR;
860
861         /* Assume failure */
862         *device_addr = 0;
863
864         if (is_userptr) {
865                 u64 addr = args->map_host.host_virt_addr,
866                         size = args->map_host.mem_size;
867                 u32 page_size = hdev->asic_prop.pmmu.page_size,
868                         huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
869
870                 rc = dma_map_host_va(hdev, addr, size, &userptr);
871                 if (rc) {
872                         dev_err(hdev->dev, "failed to get userptr from va\n");
873                         return rc;
874                 }
875
876                 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
877                                 &phys_pg_pack);
878                 if (rc) {
879                         dev_err(hdev->dev,
880                                 "unable to init page pack for vaddr 0x%llx\n",
881                                 addr);
882                         goto init_page_pack_err;
883                 }
884
885                 vm_type = (enum vm_type_t *) userptr;
886                 hint_addr = args->map_host.hint_addr;
887                 handle = phys_pg_pack->handle;
888
889                 /* get required alignment */
890                 if (phys_pg_pack->page_size == page_size) {
891                         va_range = ctx->host_va_range;
892
893                         /*
894                          * huge page alignment may be needed in case of regular
895                          * page mapping, depending on the host VA alignment
896                          */
897                         if (addr & (huge_page_size - 1))
898                                 va_block_align = page_size;
899                         else
900                                 va_block_align = huge_page_size;
901                 } else {
902                         /*
903                          * huge page alignment is needed in case of huge page
904                          * mapping
905                          */
906                         va_range = ctx->host_huge_va_range;
907                         va_block_align = huge_page_size;
908                 }
909         } else {
910                 handle = lower_32_bits(args->map_device.handle);
911
912                 spin_lock(&vm->idr_lock);
913                 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
914                 if (!phys_pg_pack) {
915                         spin_unlock(&vm->idr_lock);
916                         dev_err(hdev->dev,
917                                 "no match for handle %u\n", handle);
918                         return -EINVAL;
919                 }
920
921                 /* increment now to avoid freeing device memory while mapping */
922                 atomic_inc(&phys_pg_pack->mapping_cnt);
923
924                 spin_unlock(&vm->idr_lock);
925
926                 vm_type = (enum vm_type_t *) phys_pg_pack;
927
928                 hint_addr = args->map_device.hint_addr;
929
930                 /* DRAM VA alignment is the same as the DRAM page size */
931                 va_range = ctx->dram_va_range;
932                 va_block_align = hdev->asic_prop.dmmu.page_size;
933         }
934
935         /*
936          * relevant for mapping device physical memory only, as host memory is
937          * implicitly shared
938          */
939         if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
940                         phys_pg_pack->asid != ctx->asid) {
941                 dev_err(hdev->dev,
942                         "Failed to map memory, handle %u is not shared\n",
943                         handle);
944                 rc = -EPERM;
945                 goto shared_err;
946         }
947
948         hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
949         if (!hnode) {
950                 rc = -ENOMEM;
951                 goto hnode_err;
952         }
953
954         ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
955                                         hint_addr, va_block_align);
956         if (!ret_vaddr) {
957                 dev_err(hdev->dev, "no available va block for handle %u\n",
958                                 handle);
959                 rc = -ENOMEM;
960                 goto va_block_err;
961         }
962
963         mutex_lock(&ctx->mmu_lock);
964
965         rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
966         if (rc) {
967                 mutex_unlock(&ctx->mmu_lock);
968                 dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
969                                 handle);
970                 goto map_err;
971         }
972
973         rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
974
975         mutex_unlock(&ctx->mmu_lock);
976
977         if (rc) {
978                 dev_err(hdev->dev,
979                         "mapping handle %u failed due to MMU cache invalidation\n",
980                         handle);
981                 goto map_err;
982         }
983
984         ret_vaddr += phys_pg_pack->offset;
985
986         hnode->ptr = vm_type;
987         hnode->vaddr = ret_vaddr;
988
989         mutex_lock(&ctx->mem_hash_lock);
990         hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
991         mutex_unlock(&ctx->mem_hash_lock);
992
993         *device_addr = ret_vaddr;
994
995         if (is_userptr)
996                 free_phys_pg_pack(hdev, phys_pg_pack);
997
998         return 0;
999
1000 map_err:
1001         if (add_va_block(hdev, va_range, ret_vaddr,
1002                                 ret_vaddr + phys_pg_pack->total_size - 1))
1003                 dev_warn(hdev->dev,
1004                         "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1005                                 handle, ret_vaddr);
1006
1007 va_block_err:
1008         kfree(hnode);
1009 hnode_err:
1010 shared_err:
1011         atomic_dec(&phys_pg_pack->mapping_cnt);
1012         if (is_userptr)
1013                 free_phys_pg_pack(hdev, phys_pg_pack);
1014 init_page_pack_err:
1015         if (is_userptr)
1016                 dma_unmap_host_va(hdev, userptr);
1017
1018         return rc;
1019 }
1020
1021 /*
1022  * unmap_device_va      - unmap the given device virtual address
1023  *
1024  * @ctx                 : current context
1025  * @vaddr               : device virtual address to unmap
1026  * @ctx_free            : true if in context free flow, false otherwise.
1027  *
1028  * This function does the following:
1029  * - Unmap the physical pages related to the given virtual address
1030  * - return the device virtual block to the virtual block list
1031  */
1032 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
1033 {
1034         struct hl_device *hdev = ctx->hdev;
1035         struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1036         struct hl_vm_hash_node *hnode = NULL;
1037         struct hl_userptr *userptr = NULL;
1038         struct hl_va_range *va_range;
1039         enum vm_type_t *vm_type;
1040         bool is_userptr;
1041         int rc = 0;
1042
1043         /* protect from double entrance */
1044         mutex_lock(&ctx->mem_hash_lock);
1045         hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1046                 if (vaddr == hnode->vaddr)
1047                         break;
1048
1049         if (!hnode) {
1050                 mutex_unlock(&ctx->mem_hash_lock);
1051                 dev_err(hdev->dev,
1052                         "unmap failed, no mem hnode for vaddr 0x%llx\n",
1053                         vaddr);
1054                 return -EINVAL;
1055         }
1056
1057         hash_del(&hnode->node);
1058         mutex_unlock(&ctx->mem_hash_lock);
1059
1060         vm_type = hnode->ptr;
1061
1062         if (*vm_type == VM_TYPE_USERPTR) {
1063                 is_userptr = true;
1064                 userptr = hnode->ptr;
1065                 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1066                                                         &phys_pg_pack);
1067                 if (rc) {
1068                         dev_err(hdev->dev,
1069                                 "unable to init page pack for vaddr 0x%llx\n",
1070                                 vaddr);
1071                         goto vm_type_err;
1072                 }
1073
1074                 if (phys_pg_pack->page_size ==
1075                                         hdev->asic_prop.pmmu.page_size)
1076                         va_range = ctx->host_va_range;
1077                 else
1078                         va_range = ctx->host_huge_va_range;
1079         } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1080                 is_userptr = false;
1081                 va_range = ctx->dram_va_range;
1082                 phys_pg_pack = hnode->ptr;
1083         } else {
1084                 dev_warn(hdev->dev,
1085                         "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1086                                 vaddr);
1087                 rc = -EFAULT;
1088                 goto vm_type_err;
1089         }
1090
1091         if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1092                 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1093                 rc = -EINVAL;
1094                 goto mapping_cnt_err;
1095         }
1096
1097         vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1098
1099         mutex_lock(&ctx->mmu_lock);
1100
1101         unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1102
1103         /*
1104          * During context free this function is called in a loop to clean all
1105          * the context mappings. Hence the cache invalidation can be called once
1106          * at the loop end rather than for each iteration
1107          */
1108         if (!ctx_free)
1109                 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
1110                                                                 *vm_type);
1111
1112         mutex_unlock(&ctx->mmu_lock);
1113
1114         /*
1115          * If the context is closing we don't need to check for the MMU cache
1116          * invalidation return code and update the VA free list as in this flow
1117          * we invalidate the MMU cache outside of this unmap function and the VA
1118          * free list will be freed anyway.
1119          */
1120         if (!ctx_free) {
1121                 int tmp_rc;
1122
1123                 if (rc)
1124                         dev_err(hdev->dev,
1125                                 "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
1126                                 vaddr);
1127
1128                 tmp_rc = add_va_block(hdev, va_range, vaddr,
1129                                         vaddr + phys_pg_pack->total_size - 1);
1130                 if (tmp_rc) {
1131                         dev_warn(hdev->dev,
1132                                         "add va block failed for vaddr: 0x%llx\n",
1133                                         vaddr);
1134                         if (!rc)
1135                                 rc = tmp_rc;
1136                 }
1137         }
1138
1139         atomic_dec(&phys_pg_pack->mapping_cnt);
1140         kfree(hnode);
1141
1142         if (is_userptr) {
1143                 free_phys_pg_pack(hdev, phys_pg_pack);
1144                 dma_unmap_host_va(hdev, userptr);
1145         }
1146
1147         return rc;
1148
1149 mapping_cnt_err:
1150         if (is_userptr)
1151                 free_phys_pg_pack(hdev, phys_pg_pack);
1152 vm_type_err:
1153         mutex_lock(&ctx->mem_hash_lock);
1154         hash_add(ctx->mem_hash, &hnode->node, vaddr);
1155         mutex_unlock(&ctx->mem_hash_lock);
1156
1157         return rc;
1158 }
1159
1160 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1161 {
1162         struct hl_device *hdev = hpriv->hdev;
1163         struct hl_ctx *ctx = hpriv->ctx;
1164         u64 device_addr = 0;
1165         u32 handle = 0;
1166         int rc;
1167
1168         switch (args->in.op) {
1169         case HL_MEM_OP_ALLOC:
1170                 if (args->in.alloc.mem_size == 0) {
1171                         dev_err(hdev->dev,
1172                                 "alloc size must be larger than 0\n");
1173                         rc = -EINVAL;
1174                         goto out;
1175                 }
1176
1177                 /* Force contiguous as there are no real MMU
1178                  * translations to overcome physical memory gaps
1179                  */
1180                 args->in.flags |= HL_MEM_CONTIGUOUS;
1181                 rc = alloc_device_memory(ctx, &args->in, &handle);
1182
1183                 memset(args, 0, sizeof(*args));
1184                 args->out.handle = (__u64) handle;
1185                 break;
1186
1187         case HL_MEM_OP_FREE:
1188                 rc = free_device_memory(ctx, args->in.free.handle);
1189                 break;
1190
1191         case HL_MEM_OP_MAP:
1192                 if (args->in.flags & HL_MEM_USERPTR) {
1193                         device_addr = args->in.map_host.host_virt_addr;
1194                         rc = 0;
1195                 } else {
1196                         rc = get_paddr_from_handle(ctx, &args->in,
1197                                         &device_addr);
1198                 }
1199
1200                 memset(args, 0, sizeof(*args));
1201                 args->out.device_virt_addr = device_addr;
1202                 break;
1203
1204         case HL_MEM_OP_UNMAP:
1205                 rc = 0;
1206                 break;
1207
1208         default:
1209                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1210                 rc = -ENOTTY;
1211                 break;
1212         }
1213
1214 out:
1215         return rc;
1216 }
1217
1218 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1219 {
1220         union hl_mem_args *args = data;
1221         struct hl_device *hdev = hpriv->hdev;
1222         struct hl_ctx *ctx = hpriv->ctx;
1223         u64 device_addr = 0;
1224         u32 handle = 0;
1225         int rc;
1226
1227         if (hl_device_disabled_or_in_reset(hdev)) {
1228                 dev_warn_ratelimited(hdev->dev,
1229                         "Device is %s. Can't execute MEMORY IOCTL\n",
1230                         atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1231                 return -EBUSY;
1232         }
1233
1234         if (!hdev->mmu_enable)
1235                 return mem_ioctl_no_mmu(hpriv, args);
1236
1237         switch (args->in.op) {
1238         case HL_MEM_OP_ALLOC:
1239                 if (!hdev->dram_supports_virtual_memory) {
1240                         dev_err(hdev->dev, "DRAM alloc is not supported\n");
1241                         rc = -EINVAL;
1242                         goto out;
1243                 }
1244
1245                 if (args->in.alloc.mem_size == 0) {
1246                         dev_err(hdev->dev,
1247                                 "alloc size must be larger than 0\n");
1248                         rc = -EINVAL;
1249                         goto out;
1250                 }
1251                 rc = alloc_device_memory(ctx, &args->in, &handle);
1252
1253                 memset(args, 0, sizeof(*args));
1254                 args->out.handle = (__u64) handle;
1255                 break;
1256
1257         case HL_MEM_OP_FREE:
1258                 rc = free_device_memory(ctx, args->in.free.handle);
1259                 break;
1260
1261         case HL_MEM_OP_MAP:
1262                 rc = map_device_va(ctx, &args->in, &device_addr);
1263
1264                 memset(args, 0, sizeof(*args));
1265                 args->out.device_virt_addr = device_addr;
1266                 break;
1267
1268         case HL_MEM_OP_UNMAP:
1269                 rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
1270                                         false);
1271                 break;
1272
1273         default:
1274                 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1275                 rc = -ENOTTY;
1276                 break;
1277         }
1278
1279 out:
1280         return rc;
1281 }
1282
1283 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
1284                                 u32 npages, u64 start, u32 offset,
1285                                 struct hl_userptr *userptr)
1286 {
1287         int rc;
1288
1289         if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1290                 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1291                 return -EFAULT;
1292         }
1293
1294         userptr->vec = frame_vector_create(npages);
1295         if (!userptr->vec) {
1296                 dev_err(hdev->dev, "Failed to create frame vector\n");
1297                 return -ENOMEM;
1298         }
1299
1300         rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1301                                 userptr->vec);
1302
1303         if (rc != npages) {
1304                 dev_err(hdev->dev,
1305                         "Failed to map host memory, user ptr probably wrong\n");
1306                 if (rc < 0)
1307                         goto destroy_framevec;
1308                 rc = -EFAULT;
1309                 goto put_framevec;
1310         }
1311
1312         if (frame_vector_to_pages(userptr->vec) < 0) {
1313                 dev_err(hdev->dev,
1314                         "Failed to translate frame vector to pages\n");
1315                 rc = -EFAULT;
1316                 goto put_framevec;
1317         }
1318
1319         rc = sg_alloc_table_from_pages(userptr->sgt,
1320                                         frame_vector_pages(userptr->vec),
1321                                         npages, offset, size, GFP_ATOMIC);
1322         if (rc < 0) {
1323                 dev_err(hdev->dev, "failed to create SG table from pages\n");
1324                 goto put_framevec;
1325         }
1326
1327         return 0;
1328
1329 put_framevec:
1330         put_vaddr_frames(userptr->vec);
1331 destroy_framevec:
1332         frame_vector_destroy(userptr->vec);
1333         return rc;
1334 }
1335
1336 /*
1337  * hl_pin_host_memory - pins a chunk of host memory.
1338  * @hdev: pointer to the habanalabs device structure
1339  * @addr: the host virtual address of the memory area
1340  * @size: the size of the memory area
1341  * @userptr: pointer to hl_userptr structure
1342  *
1343  * This function does the following:
1344  * - Pins the physical pages
1345  * - Create an SG list from those pages
1346  */
1347 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1348                                         struct hl_userptr *userptr)
1349 {
1350         u64 start, end;
1351         u32 npages, offset;
1352         int rc;
1353
1354         if (!size) {
1355                 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1356                 return -EINVAL;
1357         }
1358
1359         /*
1360          * If the combination of the address and size requested for this memory
1361          * region causes an integer overflow, return error.
1362          */
1363         if (((addr + size) < addr) ||
1364                         PAGE_ALIGN(addr + size) < (addr + size)) {
1365                 dev_err(hdev->dev,
1366                         "user pointer 0x%llx + %llu causes integer overflow\n",
1367                         addr, size);
1368                 return -EINVAL;
1369         }
1370
1371         /*
1372          * This function can be called also from data path, hence use atomic
1373          * always as it is not a big allocation.
1374          */
1375         userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1376         if (!userptr->sgt)
1377                 return -ENOMEM;
1378
1379         start = addr & PAGE_MASK;
1380         offset = addr & ~PAGE_MASK;
1381         end = PAGE_ALIGN(addr + size);
1382         npages = (end - start) >> PAGE_SHIFT;
1383
1384         userptr->size = size;
1385         userptr->addr = addr;
1386         userptr->dma_mapped = false;
1387         INIT_LIST_HEAD(&userptr->job_node);
1388
1389         rc = get_user_memory(hdev, addr, size, npages, start, offset,
1390                                 userptr);
1391         if (rc) {
1392                 dev_err(hdev->dev,
1393                         "failed to get user memory for address 0x%llx\n",
1394                         addr);
1395                 goto free_sgt;
1396         }
1397
1398         hl_debugfs_add_userptr(hdev, userptr);
1399
1400         return 0;
1401
1402 free_sgt:
1403         kfree(userptr->sgt);
1404         return rc;
1405 }
1406
1407 /*
1408  * hl_unpin_host_memory - unpins a chunk of host memory.
1409  * @hdev: pointer to the habanalabs device structure
1410  * @userptr: pointer to hl_userptr structure
1411  *
1412  * This function does the following:
1413  * - Unpins the physical pages related to the host memory
1414  * - Free the SG list
1415  */
1416 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1417 {
1418         struct page **pages;
1419
1420         hl_debugfs_remove_userptr(hdev, userptr);
1421
1422         if (userptr->dma_mapped)
1423                 hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
1424                                                         userptr->sgt->nents,
1425                                                         userptr->dir);
1426
1427         pages = frame_vector_pages(userptr->vec);
1428         if (!IS_ERR(pages)) {
1429                 int i;
1430
1431                 for (i = 0; i < frame_vector_count(userptr->vec); i++)
1432                         set_page_dirty_lock(pages[i]);
1433         }
1434         put_vaddr_frames(userptr->vec);
1435         frame_vector_destroy(userptr->vec);
1436
1437         list_del(&userptr->job_node);
1438
1439         sg_free_table(userptr->sgt);
1440         kfree(userptr->sgt);
1441 }
1442
1443 /*
1444  * hl_userptr_delete_list - clear userptr list
1445  *
1446  * @hdev                : pointer to the habanalabs device structure
1447  * @userptr_list        : pointer to the list to clear
1448  *
1449  * This function does the following:
1450  * - Iterates over the list and unpins the host memory and frees the userptr
1451  *   structure.
1452  */
1453 void hl_userptr_delete_list(struct hl_device *hdev,
1454                                 struct list_head *userptr_list)
1455 {
1456         struct hl_userptr *userptr, *tmp;
1457
1458         list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1459                 hl_unpin_host_memory(hdev, userptr);
1460                 kfree(userptr);
1461         }
1462
1463         INIT_LIST_HEAD(userptr_list);
1464 }
1465
1466 /*
1467  * hl_userptr_is_pinned - returns whether the given userptr is pinned
1468  *
1469  * @hdev                : pointer to the habanalabs device structure
1470  * @userptr_list        : pointer to the list to clear
1471  * @userptr             : pointer to userptr to check
1472  *
1473  * This function does the following:
1474  * - Iterates over the list and checks if the given userptr is in it, means is
1475  *   pinned. If so, returns true, otherwise returns false.
1476  */
1477 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1478                                 u32 size, struct list_head *userptr_list,
1479                                 struct hl_userptr **userptr)
1480 {
1481         list_for_each_entry((*userptr), userptr_list, job_node) {
1482                 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1483                         return true;
1484         }
1485
1486         return false;
1487 }
1488
1489 /*
1490  * va_range_init - initialize virtual addresses range
1491  * @hdev: pointer to the habanalabs device structure
1492  * @va_range: pointer to the range to initialize
1493  * @start: range start address
1494  * @end: range end address
1495  *
1496  * This function does the following:
1497  * - Initializes the virtual addresses list of the given range with the given
1498  *   addresses.
1499  */
1500 static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
1501                                 u64 start, u64 end)
1502 {
1503         int rc;
1504
1505         INIT_LIST_HEAD(&va_range->list);
1506
1507         /* PAGE_SIZE alignment */
1508
1509         if (start & (PAGE_SIZE - 1)) {
1510                 start &= PAGE_MASK;
1511                 start += PAGE_SIZE;
1512         }
1513
1514         if (end & (PAGE_SIZE - 1))
1515                 end &= PAGE_MASK;
1516
1517         if (start >= end) {
1518                 dev_err(hdev->dev, "too small vm range for va list\n");
1519                 return -EFAULT;
1520         }
1521
1522         rc = add_va_block(hdev, va_range, start, end);
1523
1524         if (rc) {
1525                 dev_err(hdev->dev, "Failed to init host va list\n");
1526                 return rc;
1527         }
1528
1529         va_range->start_addr = start;
1530         va_range->end_addr = end;
1531
1532         return 0;
1533 }
1534
1535 /*
1536  * va_range_fini() - clear a virtual addresses range
1537  * @hdev: pointer to the habanalabs structure
1538  * va_range: pointer to virtual addresses range
1539  *
1540  * This function does the following:
1541  * - Frees the virtual addresses block list and its lock
1542  */
1543 static void va_range_fini(struct hl_device *hdev,
1544                 struct hl_va_range *va_range)
1545 {
1546         mutex_lock(&va_range->lock);
1547         clear_va_list_locked(hdev, &va_range->list);
1548         mutex_unlock(&va_range->lock);
1549
1550         mutex_destroy(&va_range->lock);
1551         kfree(va_range);
1552 }
1553
1554 /*
1555  * vm_ctx_init_with_ranges() - initialize virtual memory for context
1556  * @ctx: pointer to the habanalabs context structure
1557  * @host_range_start: host virtual addresses range start.
1558  * @host_range_end: host virtual addresses range end.
1559  * @host_huge_range_start: host virtual addresses range start for memory
1560  *                          allocated with huge pages.
1561  * @host_huge_range_end: host virtual addresses range end for memory allocated
1562  *                        with huge pages.
1563  * @dram_range_start: dram virtual addresses range start.
1564  * @dram_range_end: dram virtual addresses range end.
1565  *
1566  * This function initializes the following:
1567  * - MMU for context
1568  * - Virtual address to area descriptor hashtable
1569  * - Virtual block list of available virtual memory
1570  */
1571 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
1572                                         u64 host_range_start,
1573                                         u64 host_range_end,
1574                                         u64 host_huge_range_start,
1575                                         u64 host_huge_range_end,
1576                                         u64 dram_range_start,
1577                                         u64 dram_range_end)
1578 {
1579         struct hl_device *hdev = ctx->hdev;
1580         int rc;
1581
1582         ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
1583         if (!ctx->host_va_range)
1584                 return -ENOMEM;
1585
1586         ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
1587                                                 GFP_KERNEL);
1588         if (!ctx->host_huge_va_range) {
1589                 rc =  -ENOMEM;
1590                 goto host_huge_va_range_err;
1591         }
1592
1593         ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
1594         if (!ctx->dram_va_range) {
1595                 rc = -ENOMEM;
1596                 goto dram_va_range_err;
1597         }
1598
1599         rc = hl_mmu_ctx_init(ctx);
1600         if (rc) {
1601                 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1602                 goto mmu_ctx_err;
1603         }
1604
1605         mutex_init(&ctx->mem_hash_lock);
1606         hash_init(ctx->mem_hash);
1607
1608         mutex_init(&ctx->host_va_range->lock);
1609
1610         rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
1611                                 host_range_end);
1612         if (rc) {
1613                 dev_err(hdev->dev, "failed to init host vm range\n");
1614                 goto host_page_range_err;
1615         }
1616
1617         if (hdev->pmmu_huge_range) {
1618                 mutex_init(&ctx->host_huge_va_range->lock);
1619
1620                 rc = va_range_init(hdev, ctx->host_huge_va_range,
1621                                         host_huge_range_start,
1622                                         host_huge_range_end);
1623                 if (rc) {
1624                         dev_err(hdev->dev,
1625                                 "failed to init host huge vm range\n");
1626                         goto host_hpage_range_err;
1627                 }
1628         } else {
1629                 kfree(ctx->host_huge_va_range);
1630                 ctx->host_huge_va_range = ctx->host_va_range;
1631         }
1632
1633         mutex_init(&ctx->dram_va_range->lock);
1634
1635         rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
1636                         dram_range_end);
1637         if (rc) {
1638                 dev_err(hdev->dev, "failed to init dram vm range\n");
1639                 goto dram_vm_err;
1640         }
1641
1642         hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1643
1644         return 0;
1645
1646 dram_vm_err:
1647         mutex_destroy(&ctx->dram_va_range->lock);
1648
1649         if (hdev->pmmu_huge_range) {
1650                 mutex_lock(&ctx->host_huge_va_range->lock);
1651                 clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
1652                 mutex_unlock(&ctx->host_huge_va_range->lock);
1653         }
1654 host_hpage_range_err:
1655         if (hdev->pmmu_huge_range)
1656                 mutex_destroy(&ctx->host_huge_va_range->lock);
1657         mutex_lock(&ctx->host_va_range->lock);
1658         clear_va_list_locked(hdev, &ctx->host_va_range->list);
1659         mutex_unlock(&ctx->host_va_range->lock);
1660 host_page_range_err:
1661         mutex_destroy(&ctx->host_va_range->lock);
1662         mutex_destroy(&ctx->mem_hash_lock);
1663         hl_mmu_ctx_fini(ctx);
1664 mmu_ctx_err:
1665         kfree(ctx->dram_va_range);
1666 dram_va_range_err:
1667         kfree(ctx->host_huge_va_range);
1668 host_huge_va_range_err:
1669         kfree(ctx->host_va_range);
1670
1671         return rc;
1672 }
1673
1674 int hl_vm_ctx_init(struct hl_ctx *ctx)
1675 {
1676         struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1677         u64 host_range_start, host_range_end, host_huge_range_start,
1678                 host_huge_range_end, dram_range_start, dram_range_end;
1679
1680         atomic64_set(&ctx->dram_phys_mem, 0);
1681
1682         /*
1683          * - If MMU is enabled, init the ranges as usual.
1684          * - If MMU is disabled, in case of host mapping, the returned address
1685          *   is the given one.
1686          *   In case of DRAM mapping, the returned address is the physical
1687          *   address of the memory related to the given handle.
1688          */
1689         if (ctx->hdev->mmu_enable) {
1690                 dram_range_start = prop->dmmu.start_addr;
1691                 dram_range_end = prop->dmmu.end_addr;
1692                 host_range_start = prop->pmmu.start_addr;
1693                 host_range_end = prop->pmmu.end_addr;
1694                 host_huge_range_start = prop->pmmu_huge.start_addr;
1695                 host_huge_range_end = prop->pmmu_huge.end_addr;
1696         } else {
1697                 dram_range_start = prop->dram_user_base_address;
1698                 dram_range_end = prop->dram_end_address;
1699                 host_range_start = prop->dram_user_base_address;
1700                 host_range_end = prop->dram_end_address;
1701                 host_huge_range_start = prop->dram_user_base_address;
1702                 host_huge_range_end = prop->dram_end_address;
1703         }
1704
1705         return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1706                                         host_huge_range_start,
1707                                         host_huge_range_end,
1708                                         dram_range_start,
1709                                         dram_range_end);
1710 }
1711
1712 /*
1713  * hl_vm_ctx_fini       - virtual memory teardown of context
1714  *
1715  * @ctx                 : pointer to the habanalabs context structure
1716  *
1717  * This function perform teardown the following:
1718  * - Virtual block list of available virtual memory
1719  * - Virtual address to area descriptor hashtable
1720  * - MMU for context
1721  *
1722  * In addition this function does the following:
1723  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1724  *   hashtable should be empty as no valid mappings should exist at this
1725  *   point.
1726  * - Frees any existing physical page list from the idr which relates to the
1727  *   current context asid.
1728  * - This function checks the virtual block list for correctness. At this point
1729  *   the list should contain one element which describes the whole virtual
1730  *   memory range of the context. Otherwise, a warning is printed.
1731  */
1732 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1733 {
1734         struct hl_device *hdev = ctx->hdev;
1735         struct hl_vm *vm = &hdev->vm;
1736         struct hl_vm_phys_pg_pack *phys_pg_list;
1737         struct hl_vm_hash_node *hnode;
1738         struct hlist_node *tmp_node;
1739         int i;
1740
1741         hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1742
1743         /*
1744          * Clearly something went wrong on hard reset so no point in printing
1745          * another side effect error
1746          */
1747         if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
1748                 dev_notice(hdev->dev,
1749                         "user released device without removing its memory mappings\n");
1750
1751         hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1752                 dev_dbg(hdev->dev,
1753                         "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1754                         hnode->vaddr, ctx->asid);
1755                 unmap_device_va(ctx, hnode->vaddr, true);
1756         }
1757
1758         /* invalidate the cache once after the unmapping loop */
1759         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
1760         hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
1761
1762         spin_lock(&vm->idr_lock);
1763         idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1764                 if (phys_pg_list->asid == ctx->asid) {
1765                         dev_dbg(hdev->dev,
1766                                 "page list 0x%px of asid %d is still alive\n",
1767                                 phys_pg_list, ctx->asid);
1768                         atomic64_sub(phys_pg_list->total_size,
1769                                         &hdev->dram_used_mem);
1770                         free_phys_pg_pack(hdev, phys_pg_list);
1771                         idr_remove(&vm->phys_pg_pack_handles, i);
1772                 }
1773         spin_unlock(&vm->idr_lock);
1774
1775         va_range_fini(hdev, ctx->dram_va_range);
1776         if (hdev->pmmu_huge_range)
1777                 va_range_fini(hdev, ctx->host_huge_va_range);
1778         va_range_fini(hdev, ctx->host_va_range);
1779
1780         mutex_destroy(&ctx->mem_hash_lock);
1781         hl_mmu_ctx_fini(ctx);
1782 }
1783
1784 /*
1785  * hl_vm_init           - initialize virtual memory module
1786  *
1787  * @hdev                : pointer to the habanalabs device structure
1788  *
1789  * This function initializes the following:
1790  * - MMU module
1791  * - DRAM physical pages pool of 2MB
1792  * - Idr for device memory allocation handles
1793  */
1794 int hl_vm_init(struct hl_device *hdev)
1795 {
1796         struct asic_fixed_properties *prop = &hdev->asic_prop;
1797         struct hl_vm *vm = &hdev->vm;
1798         int rc;
1799
1800         vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1801         if (!vm->dram_pg_pool) {
1802                 dev_err(hdev->dev, "Failed to create dram page pool\n");
1803                 return -ENOMEM;
1804         }
1805
1806         kref_init(&vm->dram_pg_pool_refcount);
1807
1808         rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1809                         prop->dram_end_address - prop->dram_user_base_address,
1810                         -1);
1811
1812         if (rc) {
1813                 dev_err(hdev->dev,
1814                         "Failed to add memory to dram page pool %d\n", rc);
1815                 goto pool_add_err;
1816         }
1817
1818         spin_lock_init(&vm->idr_lock);
1819         idr_init(&vm->phys_pg_pack_handles);
1820
1821         atomic64_set(&hdev->dram_used_mem, 0);
1822
1823         vm->init_done = true;
1824
1825         return 0;
1826
1827 pool_add_err:
1828         gen_pool_destroy(vm->dram_pg_pool);
1829
1830         return rc;
1831 }
1832
1833 /*
1834  * hl_vm_fini           - virtual memory module teardown
1835  *
1836  * @hdev                : pointer to the habanalabs device structure
1837  *
1838  * This function perform teardown to the following:
1839  * - Idr for device memory allocation handles
1840  * - DRAM physical pages pool of 2MB
1841  * - MMU module
1842  */
1843 void hl_vm_fini(struct hl_device *hdev)
1844 {
1845         struct hl_vm *vm = &hdev->vm;
1846
1847         if (!vm->init_done)
1848                 return;
1849
1850         /*
1851          * At this point all the contexts should be freed and hence no DRAM
1852          * memory should be in use. Hence the DRAM pool should be freed here.
1853          */
1854         if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1855                 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1856                                 __func__);
1857
1858         vm->init_done = false;
1859 }