Merge tag 'mmc-v5.10-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / drivers / misc / habanalabs / common / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22         ptr += val;
23         ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24         return ptr;
25 }
26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28         return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33         int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35         if (delta >= 0)
36                 return (queue_len - delta);
37         else
38                 return (abs(delta) - queue_len);
39 }
40
41 void hl_int_hw_queue_update_ci(struct hl_cs *cs)
42 {
43         struct hl_device *hdev = cs->ctx->hdev;
44         struct hl_hw_queue *q;
45         int i;
46
47         if (hdev->disabled)
48                 return;
49
50         q = &hdev->kernel_queues[0];
51         for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
52                 if (q->queue_type == QUEUE_TYPE_INT)
53                         atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
54         }
55 }
56
57 /*
58  * ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
59  *                                H/W queue.
60  * @hdev: pointer to habanalabs device structure
61  * @q: pointer to habanalabs queue structure
62  * @ctl: BD's control word
63  * @len: BD's length
64  * @ptr: BD's pointer
65  *
66  * This function assumes there is enough space on the queue to submit a new
67  * BD to it. It initializes the next BD and calls the device specific
68  * function to set the pi (and doorbell)
69  *
70  * This function must be called when the scheduler mutex is taken
71  *
72  */
73 static void ext_and_hw_queue_submit_bd(struct hl_device *hdev,
74                         struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr)
75 {
76         struct hl_bd *bd;
77
78         bd = q->kernel_address;
79         bd += hl_pi_2_offset(q->pi);
80         bd->ctl = cpu_to_le32(ctl);
81         bd->len = cpu_to_le32(len);
82         bd->ptr = cpu_to_le64(ptr);
83
84         q->pi = hl_queue_inc_ptr(q->pi);
85         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
86 }
87
88 /*
89  * ext_queue_sanity_checks - perform some sanity checks on external queue
90  *
91  * @hdev              : pointer to hl_device structure
92  * @q                 : pointer to hl_hw_queue structure
93  * @num_of_entries    : how many entries to check for space
94  * @reserve_cq_entry  : whether to reserve an entry in the cq
95  *
96  * H/W queues spinlock should be taken before calling this function
97  *
98  * Perform the following:
99  * - Make sure we have enough space in the h/w queue
100  * - Make sure we have enough space in the completion queue
101  * - Reserve space in the completion queue (needs to be reversed if there
102  *   is a failure down the road before the actual submission of work). Only
103  *   do this action if reserve_cq_entry is true
104  *
105  */
106 static int ext_queue_sanity_checks(struct hl_device *hdev,
107                                 struct hl_hw_queue *q, int num_of_entries,
108                                 bool reserve_cq_entry)
109 {
110         atomic_t *free_slots =
111                         &hdev->completion_queue[q->cq_id].free_slots_cnt;
112         int free_slots_cnt;
113
114         /* Check we have enough space in the queue */
115         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
116
117         if (free_slots_cnt < num_of_entries) {
118                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
119                         q->hw_queue_id, num_of_entries);
120                 return -EAGAIN;
121         }
122
123         if (reserve_cq_entry) {
124                 /*
125                  * Check we have enough space in the completion queue
126                  * Add -1 to counter (decrement) unless counter was already 0
127                  * In that case, CQ is full so we can't submit a new CB because
128                  * we won't get ack on its completion
129                  * atomic_add_unless will return 0 if counter was already 0
130                  */
131                 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
132                         dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
133                                 num_of_entries, q->hw_queue_id);
134                         atomic_add(num_of_entries, free_slots);
135                         return -EAGAIN;
136                 }
137         }
138
139         return 0;
140 }
141
142 /*
143  * int_queue_sanity_checks - perform some sanity checks on internal queue
144  *
145  * @hdev              : pointer to hl_device structure
146  * @q                 : pointer to hl_hw_queue structure
147  * @num_of_entries    : how many entries to check for space
148  *
149  * H/W queues spinlock should be taken before calling this function
150  *
151  * Perform the following:
152  * - Make sure we have enough space in the h/w queue
153  *
154  */
155 static int int_queue_sanity_checks(struct hl_device *hdev,
156                                         struct hl_hw_queue *q,
157                                         int num_of_entries)
158 {
159         int free_slots_cnt;
160
161         if (num_of_entries > q->int_queue_len) {
162                 dev_err(hdev->dev,
163                         "Cannot populate queue %u with %u jobs\n",
164                         q->hw_queue_id, num_of_entries);
165                 return -ENOMEM;
166         }
167
168         /* Check we have enough space in the queue */
169         free_slots_cnt = queue_free_slots(q, q->int_queue_len);
170
171         if (free_slots_cnt < num_of_entries) {
172                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
173                         q->hw_queue_id, num_of_entries);
174                 return -EAGAIN;
175         }
176
177         return 0;
178 }
179
180 /*
181  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
182  * @hdev: Pointer to hl_device structure.
183  * @q: Pointer to hl_hw_queue structure.
184  * @num_of_entries: How many entries to check for space.
185  *
186  * Notice: We do not reserve queue entries so this function mustn't be called
187  *         more than once per CS for the same queue
188  *
189  */
190 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
191                                         int num_of_entries)
192 {
193         int free_slots_cnt;
194
195         /* Check we have enough space in the queue */
196         free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
197
198         if (free_slots_cnt < num_of_entries) {
199                 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
200                         q->hw_queue_id, num_of_entries);
201                 return -EAGAIN;
202         }
203
204         return 0;
205 }
206
207 /*
208  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
209  *
210  * @hdev: pointer to hl_device structure
211  * @hw_queue_id: Queue's type
212  * @cb_size: size of CB
213  * @cb_ptr: pointer to CB location
214  *
215  * This function sends a single CB, that must NOT generate a completion entry
216  *
217  */
218 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
219                                 u32 cb_size, u64 cb_ptr)
220 {
221         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
222         int rc = 0;
223
224         /*
225          * The CPU queue is a synchronous queue with an effective depth of
226          * a single entry (although it is allocated with room for multiple
227          * entries). Therefore, there is a different lock, called
228          * send_cpu_message_lock, that serializes accesses to the CPU queue.
229          * As a result, we don't need to lock the access to the entire H/W
230          * queues module when submitting a JOB to the CPU queue
231          */
232         if (q->queue_type != QUEUE_TYPE_CPU)
233                 hdev->asic_funcs->hw_queues_lock(hdev);
234
235         if (hdev->disabled) {
236                 rc = -EPERM;
237                 goto out;
238         }
239
240         /*
241          * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
242          * type only on init phase, when the queues are empty and being tested,
243          * so there is no need for sanity checks.
244          */
245         if (q->queue_type != QUEUE_TYPE_HW) {
246                 rc = ext_queue_sanity_checks(hdev, q, 1, false);
247                 if (rc)
248                         goto out;
249         }
250
251         ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
252
253 out:
254         if (q->queue_type != QUEUE_TYPE_CPU)
255                 hdev->asic_funcs->hw_queues_unlock(hdev);
256
257         return rc;
258 }
259
260 /*
261  * ext_queue_schedule_job - submit a JOB to an external queue
262  *
263  * @job: pointer to the job that needs to be submitted to the queue
264  *
265  * This function must be called when the scheduler mutex is taken
266  *
267  */
268 static void ext_queue_schedule_job(struct hl_cs_job *job)
269 {
270         struct hl_device *hdev = job->cs->ctx->hdev;
271         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
272         struct hl_cq_entry cq_pkt;
273         struct hl_cq *cq;
274         u64 cq_addr;
275         struct hl_cb *cb;
276         u32 ctl;
277         u32 len;
278         u64 ptr;
279
280         /*
281          * Update the JOB ID inside the BD CTL so the device would know what
282          * to write in the completion queue
283          */
284         ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
285
286         cb = job->patched_cb;
287         len = job->job_cb_size;
288         ptr = cb->bus_address;
289
290         cq_pkt.data = cpu_to_le32(
291                         ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
292                                 & CQ_ENTRY_SHADOW_INDEX_MASK) |
293                         FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
294                         FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
295
296         /*
297          * No need to protect pi_offset because scheduling to the
298          * H/W queues is done under the scheduler mutex
299          *
300          * No need to check if CQ is full because it was already
301          * checked in ext_queue_sanity_checks
302          */
303         cq = &hdev->completion_queue[q->cq_id];
304         cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
305
306         hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
307                                                 cq_addr,
308                                                 le32_to_cpu(cq_pkt.data),
309                                                 q->msi_vec,
310                                                 job->contains_dma_pkt);
311
312         q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
313
314         cq->pi = hl_cq_inc_ptr(cq->pi);
315
316         ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
317 }
318
319 /*
320  * int_queue_schedule_job - submit a JOB to an internal queue
321  *
322  * @job: pointer to the job that needs to be submitted to the queue
323  *
324  * This function must be called when the scheduler mutex is taken
325  *
326  */
327 static void int_queue_schedule_job(struct hl_cs_job *job)
328 {
329         struct hl_device *hdev = job->cs->ctx->hdev;
330         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
331         struct hl_bd bd;
332         __le64 *pi;
333
334         bd.ctl = 0;
335         bd.len = cpu_to_le32(job->job_cb_size);
336         bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
337
338         pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
339
340         q->pi++;
341         q->pi &= ((q->int_queue_len << 1) - 1);
342
343         hdev->asic_funcs->pqe_write(hdev, pi, &bd);
344
345         hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
346 }
347
348 /*
349  * hw_queue_schedule_job - submit a JOB to a H/W queue
350  *
351  * @job: pointer to the job that needs to be submitted to the queue
352  *
353  * This function must be called when the scheduler mutex is taken
354  *
355  */
356 static void hw_queue_schedule_job(struct hl_cs_job *job)
357 {
358         struct hl_device *hdev = job->cs->ctx->hdev;
359         struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
360         u64 ptr;
361         u32 offset, ctl, len;
362
363         /*
364          * Upon PQE completion, COMP_DATA is used as the write data to the
365          * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
366          * write address offset in the SM block (QMAN LBW message).
367          * The write address offset is calculated as "COMP_OFFSET << 2".
368          */
369         offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
370         ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
371                 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
372
373         len = job->job_cb_size;
374
375         /*
376          * A patched CB is created only if a user CB was allocated by driver and
377          * MMU is disabled. If MMU is enabled, the user CB should be used
378          * instead. If the user CB wasn't allocated by driver, assume that it
379          * holds an address.
380          */
381         if (job->patched_cb)
382                 ptr = job->patched_cb->bus_address;
383         else if (job->is_kernel_allocated_cb)
384                 ptr = job->user_cb->bus_address;
385         else
386                 ptr = (u64) (uintptr_t) job->user_cb;
387
388         ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
389 }
390
391 /*
392  * init_signal_wait_cs - initialize a signal/wait CS
393  * @cs: pointer to the signal/wait CS
394  *
395  * H/W queues spinlock should be taken before calling this function
396  */
397 static void init_signal_wait_cs(struct hl_cs *cs)
398 {
399         struct hl_ctx *ctx = cs->ctx;
400         struct hl_device *hdev = ctx->hdev;
401         struct hl_hw_queue *hw_queue;
402         struct hl_cs_compl *cs_cmpl =
403                         container_of(cs->fence, struct hl_cs_compl, base_fence);
404
405         struct hl_hw_sob *hw_sob;
406         struct hl_cs_job *job;
407         u32 q_idx;
408
409         /* There is only one job in a signal/wait CS */
410         job = list_first_entry(&cs->job_list, struct hl_cs_job,
411                                 cs_node);
412         q_idx = job->hw_queue_id;
413         hw_queue = &hdev->kernel_queues[q_idx];
414
415         if (cs->type & CS_TYPE_SIGNAL) {
416                 hw_sob = &hw_queue->hw_sob[hw_queue->curr_sob_offset];
417
418                 cs_cmpl->hw_sob = hw_sob;
419                 cs_cmpl->sob_val = hw_queue->next_sob_val++;
420
421                 dev_dbg(hdev->dev,
422                         "generate signal CB, sob_id: %d, sob val: 0x%x, q_idx: %d\n",
423                         cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx);
424
425                 hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
426                                         cs_cmpl->hw_sob->sob_id);
427
428                 kref_get(&hw_sob->kref);
429
430                 /* check for wraparound */
431                 if (hw_queue->next_sob_val == HL_MAX_SOB_VAL) {
432                         /*
433                          * Decrement as we reached the max value.
434                          * The release function won't be called here as we've
435                          * just incremented the refcount.
436                          */
437                         kref_put(&hw_sob->kref, hl_sob_reset_error);
438                         hw_queue->next_sob_val = 1;
439                         /* only two SOBs are currently in use */
440                         hw_queue->curr_sob_offset =
441                                         (hw_queue->curr_sob_offset + 1) %
442                                                 HL_RSVD_SOBS_IN_USE;
443
444                         dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
445                                         hw_queue->curr_sob_offset, q_idx);
446                 }
447         } else if (cs->type & CS_TYPE_WAIT) {
448                 struct hl_cs_compl *signal_cs_cmpl;
449
450                 signal_cs_cmpl = container_of(cs->signal_fence,
451                                                 struct hl_cs_compl,
452                                                 base_fence);
453
454                 /* copy the the SOB id and value of the signal CS */
455                 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
456                 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
457
458                 dev_dbg(hdev->dev,
459                         "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d\n",
460                         cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
461                         hw_queue->base_mon_id, q_idx);
462
463                 hdev->asic_funcs->gen_wait_cb(hdev, job->patched_cb,
464                                                 cs_cmpl->hw_sob->sob_id,
465                                                 cs_cmpl->sob_val,
466                                                 hw_queue->base_mon_id,
467                                                 q_idx);
468
469                 kref_get(&cs_cmpl->hw_sob->kref);
470                 /*
471                  * Must put the signal fence after the SOB refcnt increment so
472                  * the SOB refcnt won't turn 0 and reset the SOB before the
473                  * wait CS was submitted.
474                  */
475                 mb();
476                 hl_fence_put(cs->signal_fence);
477                 cs->signal_fence = NULL;
478         }
479 }
480
481 /*
482  * hl_hw_queue_schedule_cs - schedule a command submission
483  * @cs: pointer to the CS
484  */
485 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
486 {
487         struct hl_ctx *ctx = cs->ctx;
488         struct hl_device *hdev = ctx->hdev;
489         struct hl_cs_job *job, *tmp;
490         struct hl_hw_queue *q;
491         u32 max_queues;
492         int rc = 0, i, cq_cnt;
493
494         hdev->asic_funcs->hw_queues_lock(hdev);
495
496         if (hl_device_disabled_or_in_reset(hdev)) {
497                 ctx->cs_counters.device_in_reset_drop_cnt++;
498                 dev_err(hdev->dev,
499                         "device is disabled or in reset, CS rejected!\n");
500                 rc = -EPERM;
501                 goto out;
502         }
503
504         max_queues = hdev->asic_prop.max_queues;
505
506         q = &hdev->kernel_queues[0];
507         for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
508                 if (cs->jobs_in_queue_cnt[i]) {
509                         switch (q->queue_type) {
510                         case QUEUE_TYPE_EXT:
511                                 rc = ext_queue_sanity_checks(hdev, q,
512                                                 cs->jobs_in_queue_cnt[i], true);
513                                 break;
514                         case QUEUE_TYPE_INT:
515                                 rc = int_queue_sanity_checks(hdev, q,
516                                                 cs->jobs_in_queue_cnt[i]);
517                                 break;
518                         case QUEUE_TYPE_HW:
519                                 rc = hw_queue_sanity_checks(hdev, q,
520                                                 cs->jobs_in_queue_cnt[i]);
521                                 break;
522                         default:
523                                 dev_err(hdev->dev, "Queue type %d is invalid\n",
524                                         q->queue_type);
525                                 rc = -EINVAL;
526                                 break;
527                         }
528
529                         if (rc) {
530                                 ctx->cs_counters.queue_full_drop_cnt++;
531                                 goto unroll_cq_resv;
532                         }
533
534                         if (q->queue_type == QUEUE_TYPE_EXT)
535                                 cq_cnt++;
536                 }
537         }
538
539         if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT))
540                 init_signal_wait_cs(cs);
541
542         spin_lock(&hdev->hw_queues_mirror_lock);
543         list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
544
545         /* Queue TDR if the CS is the first entry and if timeout is wanted */
546         if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
547                         (list_first_entry(&hdev->hw_queues_mirror_list,
548                                         struct hl_cs, mirror_node) == cs)) {
549                 cs->tdr_active = true;
550                 schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
551                 spin_unlock(&hdev->hw_queues_mirror_lock);
552         } else {
553                 spin_unlock(&hdev->hw_queues_mirror_lock);
554         }
555
556         if (!hdev->cs_active_cnt++) {
557                 struct hl_device_idle_busy_ts *ts;
558
559                 ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx];
560                 ts->busy_to_idle_ts = ktime_set(0, 0);
561                 ts->idle_to_busy_ts = ktime_get();
562         }
563
564         list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
565                 switch (job->queue_type) {
566                 case QUEUE_TYPE_EXT:
567                         ext_queue_schedule_job(job);
568                         break;
569                 case QUEUE_TYPE_INT:
570                         int_queue_schedule_job(job);
571                         break;
572                 case QUEUE_TYPE_HW:
573                         hw_queue_schedule_job(job);
574                         break;
575                 default:
576                         break;
577                 }
578
579         cs->submitted = true;
580
581         goto out;
582
583 unroll_cq_resv:
584         q = &hdev->kernel_queues[0];
585         for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
586                 if ((q->queue_type == QUEUE_TYPE_EXT) &&
587                                                 (cs->jobs_in_queue_cnt[i])) {
588                         atomic_t *free_slots =
589                                 &hdev->completion_queue[i].free_slots_cnt;
590                         atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
591                         cq_cnt--;
592                 }
593         }
594
595 out:
596         hdev->asic_funcs->hw_queues_unlock(hdev);
597
598         return rc;
599 }
600
601 /*
602  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
603  *
604  * @hdev: pointer to hl_device structure
605  * @hw_queue_id: which queue to increment its ci
606  */
607 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
608 {
609         struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
610
611         atomic_inc(&q->ci);
612 }
613
614 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
615                                         bool is_cpu_queue)
616 {
617         void *p;
618         int rc;
619
620         if (is_cpu_queue)
621                 p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
622                                                         HL_QUEUE_SIZE_IN_BYTES,
623                                                         &q->bus_address);
624         else
625                 p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
626                                                 HL_QUEUE_SIZE_IN_BYTES,
627                                                 &q->bus_address,
628                                                 GFP_KERNEL | __GFP_ZERO);
629         if (!p)
630                 return -ENOMEM;
631
632         q->kernel_address = p;
633
634         q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
635                                         sizeof(*q->shadow_queue),
636                                         GFP_KERNEL);
637         if (!q->shadow_queue) {
638                 dev_err(hdev->dev,
639                         "Failed to allocate shadow queue for H/W queue %d\n",
640                         q->hw_queue_id);
641                 rc = -ENOMEM;
642                 goto free_queue;
643         }
644
645         /* Make sure read/write pointers are initialized to start of queue */
646         atomic_set(&q->ci, 0);
647         q->pi = 0;
648
649         return 0;
650
651 free_queue:
652         if (is_cpu_queue)
653                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
654                                         HL_QUEUE_SIZE_IN_BYTES,
655                                         q->kernel_address);
656         else
657                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
658                                         HL_QUEUE_SIZE_IN_BYTES,
659                                         q->kernel_address,
660                                         q->bus_address);
661
662         return rc;
663 }
664
665 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
666 {
667         void *p;
668
669         p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
670                                         &q->bus_address, &q->int_queue_len);
671         if (!p) {
672                 dev_err(hdev->dev,
673                         "Failed to get base address for internal queue %d\n",
674                         q->hw_queue_id);
675                 return -EFAULT;
676         }
677
678         q->kernel_address = p;
679         q->pi = 0;
680         atomic_set(&q->ci, 0);
681
682         return 0;
683 }
684
685 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
686 {
687         return ext_and_cpu_queue_init(hdev, q, true);
688 }
689
690 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
691 {
692         return ext_and_cpu_queue_init(hdev, q, false);
693 }
694
695 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
696 {
697         void *p;
698
699         p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
700                                                 HL_QUEUE_SIZE_IN_BYTES,
701                                                 &q->bus_address,
702                                                 GFP_KERNEL | __GFP_ZERO);
703         if (!p)
704                 return -ENOMEM;
705
706         q->kernel_address = p;
707
708         /* Make sure read/write pointers are initialized to start of queue */
709         atomic_set(&q->ci, 0);
710         q->pi = 0;
711
712         return 0;
713 }
714
715 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
716 {
717         struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
718         struct asic_fixed_properties *prop = &hdev->asic_prop;
719         struct hl_hw_sob *hw_sob;
720         int sob, queue_idx = hdev->sync_stream_queue_idx++;
721
722         hw_queue->base_sob_id =
723                 prop->sync_stream_first_sob + queue_idx * HL_RSVD_SOBS;
724         hw_queue->base_mon_id =
725                 prop->sync_stream_first_mon + queue_idx * HL_RSVD_MONS;
726         hw_queue->next_sob_val = 1;
727         hw_queue->curr_sob_offset = 0;
728
729         for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
730                 hw_sob = &hw_queue->hw_sob[sob];
731                 hw_sob->hdev = hdev;
732                 hw_sob->sob_id = hw_queue->base_sob_id + sob;
733                 hw_sob->q_idx = q_idx;
734                 kref_init(&hw_sob->kref);
735         }
736 }
737
738 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
739 {
740         struct hl_hw_queue *hw_queue = &hdev->kernel_queues[q_idx];
741
742         /*
743          * In case we got here due to a stuck CS, the refcnt might be bigger
744          * than 1 and therefore we reset it.
745          */
746         kref_init(&hw_queue->hw_sob[hw_queue->curr_sob_offset].kref);
747         hw_queue->curr_sob_offset = 0;
748         hw_queue->next_sob_val = 1;
749 }
750
751 /*
752  * queue_init - main initialization function for H/W queue object
753  *
754  * @hdev: pointer to hl_device device structure
755  * @q: pointer to hl_hw_queue queue structure
756  * @hw_queue_id: The id of the H/W queue
757  *
758  * Allocate dma-able memory for the queue and initialize fields
759  * Returns 0 on success
760  */
761 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
762                         u32 hw_queue_id)
763 {
764         int rc;
765
766         q->hw_queue_id = hw_queue_id;
767
768         switch (q->queue_type) {
769         case QUEUE_TYPE_EXT:
770                 rc = ext_queue_init(hdev, q);
771                 break;
772         case QUEUE_TYPE_INT:
773                 rc = int_queue_init(hdev, q);
774                 break;
775         case QUEUE_TYPE_CPU:
776                 rc = cpu_queue_init(hdev, q);
777                 break;
778         case QUEUE_TYPE_HW:
779                 rc = hw_queue_init(hdev, q);
780                 break;
781         case QUEUE_TYPE_NA:
782                 q->valid = 0;
783                 return 0;
784         default:
785                 dev_crit(hdev->dev, "wrong queue type %d during init\n",
786                         q->queue_type);
787                 rc = -EINVAL;
788                 break;
789         }
790
791         if (q->supports_sync_stream)
792                 sync_stream_queue_init(hdev, q->hw_queue_id);
793
794         if (rc)
795                 return rc;
796
797         q->valid = 1;
798
799         return 0;
800 }
801
802 /*
803  * hw_queue_fini - destroy queue
804  *
805  * @hdev: pointer to hl_device device structure
806  * @q: pointer to hl_hw_queue queue structure
807  *
808  * Free the queue memory
809  */
810 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
811 {
812         if (!q->valid)
813                 return;
814
815         /*
816          * If we arrived here, there are no jobs waiting on this queue
817          * so we can safely remove it.
818          * This is because this function can only called when:
819          * 1. Either a context is deleted, which only can occur if all its
820          *    jobs were finished
821          * 2. A context wasn't able to be created due to failure or timeout,
822          *    which means there are no jobs on the queue yet
823          *
824          * The only exception are the queues of the kernel context, but
825          * if they are being destroyed, it means that the entire module is
826          * being removed. If the module is removed, it means there is no open
827          * user context. It also means that if a job was submitted by
828          * the kernel driver (e.g. context creation), the job itself was
829          * released by the kernel driver when a timeout occurred on its
830          * Completion. Thus, we don't need to release it again.
831          */
832
833         if (q->queue_type == QUEUE_TYPE_INT)
834                 return;
835
836         kfree(q->shadow_queue);
837
838         if (q->queue_type == QUEUE_TYPE_CPU)
839                 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
840                                         HL_QUEUE_SIZE_IN_BYTES,
841                                         q->kernel_address);
842         else
843                 hdev->asic_funcs->asic_dma_free_coherent(hdev,
844                                         HL_QUEUE_SIZE_IN_BYTES,
845                                         q->kernel_address,
846                                         q->bus_address);
847 }
848
849 int hl_hw_queues_create(struct hl_device *hdev)
850 {
851         struct asic_fixed_properties *asic = &hdev->asic_prop;
852         struct hl_hw_queue *q;
853         int i, rc, q_ready_cnt;
854
855         hdev->kernel_queues = kcalloc(asic->max_queues,
856                                 sizeof(*hdev->kernel_queues), GFP_KERNEL);
857
858         if (!hdev->kernel_queues) {
859                 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
860                 return -ENOMEM;
861         }
862
863         /* Initialize the H/W queues */
864         for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
865                         i < asic->max_queues ; i++, q_ready_cnt++, q++) {
866
867                 q->queue_type = asic->hw_queues_props[i].type;
868                 q->supports_sync_stream =
869                                 asic->hw_queues_props[i].supports_sync_stream;
870                 rc = queue_init(hdev, q, i);
871                 if (rc) {
872                         dev_err(hdev->dev,
873                                 "failed to initialize queue %d\n", i);
874                         goto release_queues;
875                 }
876         }
877
878         return 0;
879
880 release_queues:
881         for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
882                 queue_fini(hdev, q);
883
884         kfree(hdev->kernel_queues);
885
886         return rc;
887 }
888
889 void hl_hw_queues_destroy(struct hl_device *hdev)
890 {
891         struct hl_hw_queue *q;
892         u32 max_queues = hdev->asic_prop.max_queues;
893         int i;
894
895         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
896                 queue_fini(hdev, q);
897
898         kfree(hdev->kernel_queues);
899 }
900
901 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
902 {
903         struct hl_hw_queue *q;
904         u32 max_queues = hdev->asic_prop.max_queues;
905         int i;
906
907         for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
908                 if ((!q->valid) ||
909                         ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
910                         continue;
911                 q->pi = 0;
912                 atomic_set(&q->ci, 0);
913
914                 if (q->supports_sync_stream)
915                         sync_stream_queue_reset(hdev, q->hw_queue_id);
916         }
917 }