usb: chipidea: host: Disable port power only if previously enabled
[linux-2.6-microblaze.git] / drivers / mfd / db8500-prcmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DB8500 PRCM Unit driver
4  *
5  * Copyright (C) STMicroelectronics 2009
6  * Copyright (C) ST-Ericsson SA 2010
7  *
8  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11  *
12  * U8500 PRCM Unit interface driver
13  */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "dbx500-prcmu-regs.h"
41
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE           0x2FC
44 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
57
58 #define PRCM_AVS_VOLTAGE                0
59 #define PRCM_AVS_VOLTAGE_MASK           0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP          6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE           7
63 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
64
65 #define PRCM_BOOT_STATUS        0xFFF
66 #define PRCM_ROMCODE_A2P        0xFFE
67 #define PRCM_ROMCODE_P2A        0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
69
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
80
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
88
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS          0
99 #define MB0H_CONFIG_WAKEUPS_EXE         1
100 #define MB0H_READ_WAKEUP_ACK            3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
102
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
113
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF    0x1
136 #define PLL_SOC0_ON     0x2
137 #define PLL_SOC1_OFF    0x4
138 #define PLL_SOC1_ON     0x8
139
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
145
146 /* Mailbox 2 headers */
147 #define MB2H_DPS        0x0
148 #define MB2H_AUTO_PWR   0x1
149
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
161
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165
166 /* Mailbox 3 headers */
167 #define MB3H_ANC        0x0
168 #define MB3H_SIDETONE   0x1
169 #define MB3H_SYSCLK     0xE
170
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
179
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT   0x0
182 #define MB4H_MEM_ST     0x1
183 #define MB4H_HOTDOG     0x12
184 #define MB4H_HOTMON     0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN   0x17
188 #define MB4H_A9WDOG_DIS  0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW                       BIT(0)
202 #define HOTMON_CONFIG_HIGH                      BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS                     0
209 #define A9WDOG_ID_MASK                          0xf
210
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN               BIT(3)
219
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230 /*
231  * Wakeups/IRQs
232  */
233
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263
264 static struct {
265         bool valid;
266         struct prcmu_fw_version version;
267 } fw_info;
268
269 static struct irq_domain *db8500_irq_domain;
270
271 /*
272  * This vector maps irq numbers to the bits in the bit field used in
273  * communication with the PRCMU firmware.
274  *
275  * The reason for having this is to keep the irq numbers contiguous even though
276  * the bits in the bit field are not. (The bits also have a tendency to move
277  * around, to further complicate matters.)
278  */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308         IRQ_ENTRY(RTC),
309         IRQ_ENTRY(RTT0),
310         IRQ_ENTRY(RTT1),
311         IRQ_ENTRY(HSI0),
312         IRQ_ENTRY(HSI1),
313         IRQ_ENTRY(CA_WAKE),
314         IRQ_ENTRY(USB),
315         IRQ_ENTRY(ABB),
316         IRQ_ENTRY(ABB_FIFO),
317         IRQ_ENTRY(CA_SLEEP),
318         IRQ_ENTRY(ARM),
319         IRQ_ENTRY(HOTMON_LOW),
320         IRQ_ENTRY(HOTMON_HIGH),
321         IRQ_ENTRY(MODEM_SW_RESET_REQ),
322         IRQ_ENTRY(GPIO0),
323         IRQ_ENTRY(GPIO1),
324         IRQ_ENTRY(GPIO2),
325         IRQ_ENTRY(GPIO3),
326         IRQ_ENTRY(GPIO4),
327         IRQ_ENTRY(GPIO5),
328         IRQ_ENTRY(GPIO6),
329         IRQ_ENTRY(GPIO7),
330         IRQ_ENTRY(GPIO8)
331 };
332
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336         WAKEUP_ENTRY(RTC),
337         WAKEUP_ENTRY(RTT0),
338         WAKEUP_ENTRY(RTT1),
339         WAKEUP_ENTRY(HSI0),
340         WAKEUP_ENTRY(HSI1),
341         WAKEUP_ENTRY(USB),
342         WAKEUP_ENTRY(ABB),
343         WAKEUP_ENTRY(ABB_FIFO),
344         WAKEUP_ENTRY(ARM)
345 };
346
347 /*
348  * mb0_transfer - state needed for mailbox 0 communication.
349  * @lock:               The transaction lock.
350  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
351  *                      the request data.
352  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
353  * @req:                Request data that need to persist between requests.
354  */
355 static struct {
356         spinlock_t lock;
357         spinlock_t dbb_irqs_lock;
358         struct work_struct mask_work;
359         struct mutex ac_wake_lock;
360         struct completion ac_wake_work;
361         struct {
362                 u32 dbb_irqs;
363                 u32 dbb_wakeups;
364                 u32 abb_events;
365         } req;
366 } mb0_transfer;
367
368 /*
369  * mb1_transfer - state needed for mailbox 1 communication.
370  * @lock:       The transaction lock.
371  * @work:       The transaction completion structure.
372  * @ape_opp:    The current APE OPP.
373  * @ack:        Reply ("acknowledge") data.
374  */
375 static struct {
376         struct mutex lock;
377         struct completion work;
378         u8 ape_opp;
379         struct {
380                 u8 header;
381                 u8 arm_opp;
382                 u8 ape_opp;
383                 u8 ape_voltage_status;
384         } ack;
385 } mb1_transfer;
386
387 /*
388  * mb2_transfer - state needed for mailbox 2 communication.
389  * @lock:            The transaction lock.
390  * @work:            The transaction completion structure.
391  * @auto_pm_lock:    The autonomous power management configuration lock.
392  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393  * @req:             Request data that need to persist between requests.
394  * @ack:             Reply ("acknowledge") data.
395  */
396 static struct {
397         struct mutex lock;
398         struct completion work;
399         spinlock_t auto_pm_lock;
400         bool auto_pm_enabled;
401         struct {
402                 u8 status;
403         } ack;
404 } mb2_transfer;
405
406 /*
407  * mb3_transfer - state needed for mailbox 3 communication.
408  * @lock:               The request lock.
409  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
410  * @sysclk_work:        Work structure used for sysclk requests.
411  */
412 static struct {
413         spinlock_t lock;
414         struct mutex sysclk_lock;
415         struct completion sysclk_work;
416 } mb3_transfer;
417
418 /*
419  * mb4_transfer - state needed for mailbox 4 communication.
420  * @lock:       The transaction lock.
421  * @work:       The transaction completion structure.
422  */
423 static struct {
424         struct mutex lock;
425         struct completion work;
426 } mb4_transfer;
427
428 /*
429  * mb5_transfer - state needed for mailbox 5 communication.
430  * @lock:       The transaction lock.
431  * @work:       The transaction completion structure.
432  * @ack:        Reply ("acknowledge") data.
433  */
434 static struct {
435         struct mutex lock;
436         struct completion work;
437         struct {
438                 u8 status;
439                 u8 value;
440         } ack;
441 } mb5_transfer;
442
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452
453 struct clk_mgt {
454         u32 offset;
455         u32 pllsw;
456         int branch;
457         bool clk38div;
458 };
459
460 enum {
461         PLL_RAW,
462         PLL_FIX,
463         PLL_DIV
464 };
465
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501
502 struct dsiclk {
503         u32 divsel_mask;
504         u32 divsel_shift;
505         u32 divsel;
506 };
507
508 static struct dsiclk dsiclk[2] = {
509         {
510                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513         },
514         {
515                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518         }
519 };
520
521 struct dsiescclk {
522         u32 en;
523         u32 div_mask;
524         u32 div_shift;
525 };
526
527 static struct dsiescclk dsiescclk[3] = {
528         {
529                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532         },
533         {
534                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537         },
538         {
539                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542         }
543 };
544
545
546 /*
547 * Used by MCDE to setup all necessary PRCMU registers
548 */
549 #define PRCMU_RESET_DSIPLL              0x00004000
550 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
551
552 #define PRCMU_CLK_PLL_DIV_SHIFT         0
553 #define PRCMU_CLK_PLL_SW_SHIFT          5
554 #define PRCMU_CLK_38                    (1 << 9)
555 #define PRCMU_CLK_38_SRC                (1 << 10)
556 #define PRCMU_CLK_38_DIV                (1 << 11)
557
558 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
559 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
560
561 /* DPI 50000000 Hz */
562 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
563                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
564 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
565
566 /* D=101, N=1, R=4, SELDIV2=0 */
567 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
568
569 #define PRCMU_ENABLE_PLLDSI             0x00000001
570 #define PRCMU_DISABLE_PLLDSI            0x00000000
571 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
572 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
573 /* ESC clk, div0=1, div1=1, div2=3 */
574 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
575 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
576 #define PRCMU_DSI_RESET_SW              0x00000007
577
578 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
579
580 int db8500_prcmu_enable_dsipll(void)
581 {
582         int i;
583
584         /* Clear DSIPLL_RESETN */
585         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
586         /* Unclamp DSIPLL in/out */
587         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
588
589         /* Set DSI PLL FREQ */
590         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
591         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
592         /* Enable Escape clocks */
593         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594
595         /* Start DSI PLL */
596         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
597         /* Reset DSI PLL */
598         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
599         for (i = 0; i < 10; i++) {
600                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
601                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
602                         break;
603                 udelay(100);
604         }
605         /* Set DSIPLL_RESETN */
606         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
607         return 0;
608 }
609
610 int db8500_prcmu_disable_dsipll(void)
611 {
612         /* Disable dsi pll */
613         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
614         /* Disable  escapeclock */
615         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
616         return 0;
617 }
618
619 int db8500_prcmu_set_display_clocks(void)
620 {
621         unsigned long flags;
622
623         spin_lock_irqsave(&clk_mgt_lock, flags);
624
625         /* Grab the HW semaphore. */
626         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
627                 cpu_relax();
628
629         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
630         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
631         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
632
633         /* Release the HW semaphore. */
634         writel(0, PRCM_SEM);
635
636         spin_unlock_irqrestore(&clk_mgt_lock, flags);
637
638         return 0;
639 }
640
641 u32 db8500_prcmu_read(unsigned int reg)
642 {
643         return readl(prcmu_base + reg);
644 }
645
646 void db8500_prcmu_write(unsigned int reg, u32 value)
647 {
648         unsigned long flags;
649
650         spin_lock_irqsave(&prcmu_lock, flags);
651         writel(value, (prcmu_base + reg));
652         spin_unlock_irqrestore(&prcmu_lock, flags);
653 }
654
655 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
656 {
657         u32 val;
658         unsigned long flags;
659
660         spin_lock_irqsave(&prcmu_lock, flags);
661         val = readl(prcmu_base + reg);
662         val = ((val & ~mask) | (value & mask));
663         writel(val, (prcmu_base + reg));
664         spin_unlock_irqrestore(&prcmu_lock, flags);
665 }
666
667 struct prcmu_fw_version *prcmu_get_fw_version(void)
668 {
669         return fw_info.valid ? &fw_info.version : NULL;
670 }
671
672 static bool prcmu_is_ulppll_disabled(void)
673 {
674         struct prcmu_fw_version *ver;
675
676         ver = prcmu_get_fw_version();
677         return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
678 }
679
680 bool prcmu_has_arm_maxopp(void)
681 {
682         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
683                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
684 }
685
686 /**
687  * prcmu_set_rc_a2p - This function is used to run few power state sequences
688  * @val: Value to be set, i.e. transition requested
689  * Returns: 0 on success, -EINVAL on invalid argument
690  *
691  * This function is used to run the following power state sequences -
692  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693  */
694 int prcmu_set_rc_a2p(enum romcode_write val)
695 {
696         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697                 return -EINVAL;
698         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699         return 0;
700 }
701
702 /**
703  * prcmu_get_rc_p2a - This function is used to get power state sequences
704  * Returns: the power transition that has last happened
705  *
706  * This function can return the following transitions-
707  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708  */
709 enum romcode_read prcmu_get_rc_p2a(void)
710 {
711         return readb(tcdm_base + PRCM_ROMCODE_P2A);
712 }
713
714 /**
715  * prcmu_get_current_mode - Return the current XP70 power mode
716  * Returns: Returns the current AP(ARM) power mode: init,
717  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718  */
719 enum ap_pwrst prcmu_get_xp70_current_state(void)
720 {
721         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722 }
723
724 /**
725  * prcmu_config_clkout - Configure one of the programmable clock outputs.
726  * @clkout:     The CLKOUT number (0 or 1).
727  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
728  * @div:        The divider to be applied.
729  *
730  * Configures one of the programmable clock outputs (CLKOUTs).
731  * @div should be in the range [1,63] to request a configuration, or 0 to
732  * inform that the configuration is no longer requested.
733  */
734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735 {
736         static int requests[2];
737         int r = 0;
738         unsigned long flags;
739         u32 val;
740         u32 bits;
741         u32 mask;
742         u32 div_mask;
743
744         BUG_ON(clkout > 1);
745         BUG_ON(div > 63);
746         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747
748         if (!div && !requests[clkout])
749                 return -EINVAL;
750
751         if (clkout == 0) {
752                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756         } else {
757                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
758                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
759                         PRCM_CLKOCR_CLK1TYPE);
760                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
761                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
762         }
763         bits &= mask;
764
765         spin_lock_irqsave(&clkout_lock, flags);
766
767         val = readl(PRCM_CLKOCR);
768         if (val & div_mask) {
769                 if (div) {
770                         if ((val & mask) != bits) {
771                                 r = -EBUSY;
772                                 goto unlock_and_return;
773                         }
774                 } else {
775                         if ((val & mask & ~div_mask) != bits) {
776                                 r = -EINVAL;
777                                 goto unlock_and_return;
778                         }
779                 }
780         }
781         writel((bits | (val & ~mask)), PRCM_CLKOCR);
782         requests[clkout] += (div ? 1 : -1);
783
784 unlock_and_return:
785         spin_unlock_irqrestore(&clkout_lock, flags);
786
787         return r;
788 }
789
790 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
791 {
792         unsigned long flags;
793
794         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
795
796         spin_lock_irqsave(&mb0_transfer.lock, flags);
797
798         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
799                 cpu_relax();
800
801         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
802         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
803         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
804         writeb((keep_ulp_clk ? 1 : 0),
805                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
806         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
807         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
808
809         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
810
811         return 0;
812 }
813
814 u8 db8500_prcmu_get_power_state_result(void)
815 {
816         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
817 }
818
819 /* This function should only be called while mb0_transfer.lock is held. */
820 static void config_wakeups(void)
821 {
822         const u8 header[2] = {
823                 MB0H_CONFIG_WAKEUPS_EXE,
824                 MB0H_CONFIG_WAKEUPS_SLEEP
825         };
826         static u32 last_dbb_events;
827         static u32 last_abb_events;
828         u32 dbb_events;
829         u32 abb_events;
830         unsigned int i;
831
832         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
833         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
834
835         abb_events = mb0_transfer.req.abb_events;
836
837         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
838                 return;
839
840         for (i = 0; i < 2; i++) {
841                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
842                         cpu_relax();
843                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
844                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
845                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
846                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
847         }
848         last_dbb_events = dbb_events;
849         last_abb_events = abb_events;
850 }
851
852 void db8500_prcmu_enable_wakeups(u32 wakeups)
853 {
854         unsigned long flags;
855         u32 bits;
856         int i;
857
858         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
859
860         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
861                 if (wakeups & BIT(i))
862                         bits |= prcmu_wakeup_bit[i];
863         }
864
865         spin_lock_irqsave(&mb0_transfer.lock, flags);
866
867         mb0_transfer.req.dbb_wakeups = bits;
868         config_wakeups();
869
870         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
871 }
872
873 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
874 {
875         unsigned long flags;
876
877         spin_lock_irqsave(&mb0_transfer.lock, flags);
878
879         mb0_transfer.req.abb_events = abb_events;
880         config_wakeups();
881
882         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
883 }
884
885 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
886 {
887         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
888                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
889         else
890                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
891 }
892
893 /**
894  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
895  * @opp: The new ARM operating point to which transition is to be made
896  * Returns: 0 on success, non-zero on failure
897  *
898  * This function sets the the operating point of the ARM.
899  */
900 int db8500_prcmu_set_arm_opp(u8 opp)
901 {
902         int r;
903
904         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
905                 return -EINVAL;
906
907         r = 0;
908
909         mutex_lock(&mb1_transfer.lock);
910
911         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
912                 cpu_relax();
913
914         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
915         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
916         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
917
918         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
919         wait_for_completion(&mb1_transfer.work);
920
921         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
922                 (mb1_transfer.ack.arm_opp != opp))
923                 r = -EIO;
924
925         mutex_unlock(&mb1_transfer.lock);
926
927         return r;
928 }
929
930 /**
931  * db8500_prcmu_get_arm_opp - get the current ARM OPP
932  *
933  * Returns: the current ARM OPP
934  */
935 int db8500_prcmu_get_arm_opp(void)
936 {
937         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
938 }
939
940 /**
941  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
942  *
943  * Returns: the current DDR OPP
944  */
945 int db8500_prcmu_get_ddr_opp(void)
946 {
947         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
948 }
949
950 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
951 static void request_even_slower_clocks(bool enable)
952 {
953         u32 clock_reg[] = {
954                 PRCM_ACLK_MGT,
955                 PRCM_DMACLK_MGT
956         };
957         unsigned long flags;
958         unsigned int i;
959
960         spin_lock_irqsave(&clk_mgt_lock, flags);
961
962         /* Grab the HW semaphore. */
963         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
964                 cpu_relax();
965
966         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
967                 u32 val;
968                 u32 div;
969
970                 val = readl(prcmu_base + clock_reg[i]);
971                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
972                 if (enable) {
973                         if ((div <= 1) || (div > 15)) {
974                                 pr_err("prcmu: Bad clock divider %d in %s\n",
975                                         div, __func__);
976                                 goto unlock_and_return;
977                         }
978                         div <<= 1;
979                 } else {
980                         if (div <= 2)
981                                 goto unlock_and_return;
982                         div >>= 1;
983                 }
984                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
985                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
986                 writel(val, prcmu_base + clock_reg[i]);
987         }
988
989 unlock_and_return:
990         /* Release the HW semaphore. */
991         writel(0, PRCM_SEM);
992
993         spin_unlock_irqrestore(&clk_mgt_lock, flags);
994 }
995
996 /**
997  * db8500_set_ape_opp - set the appropriate APE OPP
998  * @opp: The new APE operating point to which transition is to be made
999  * Returns: 0 on success, non-zero on failure
1000  *
1001  * This function sets the operating point of the APE.
1002  */
1003 int db8500_prcmu_set_ape_opp(u8 opp)
1004 {
1005         int r = 0;
1006
1007         if (opp == mb1_transfer.ape_opp)
1008                 return 0;
1009
1010         mutex_lock(&mb1_transfer.lock);
1011
1012         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1013                 request_even_slower_clocks(false);
1014
1015         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1016                 goto skip_message;
1017
1018         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1019                 cpu_relax();
1020
1021         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1022         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1023         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1024                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1025
1026         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1027         wait_for_completion(&mb1_transfer.work);
1028
1029         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1030                 (mb1_transfer.ack.ape_opp != opp))
1031                 r = -EIO;
1032
1033 skip_message:
1034         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1035                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1036                 request_even_slower_clocks(true);
1037         if (!r)
1038                 mb1_transfer.ape_opp = opp;
1039
1040         mutex_unlock(&mb1_transfer.lock);
1041
1042         return r;
1043 }
1044
1045 /**
1046  * db8500_prcmu_get_ape_opp - get the current APE OPP
1047  *
1048  * Returns: the current APE OPP
1049  */
1050 int db8500_prcmu_get_ape_opp(void)
1051 {
1052         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1053 }
1054
1055 /**
1056  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1057  * @enable: true to request the higher voltage, false to drop a request.
1058  *
1059  * Calls to this function to enable and disable requests must be balanced.
1060  */
1061 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1062 {
1063         int r = 0;
1064         u8 header;
1065         static unsigned int requests;
1066
1067         mutex_lock(&mb1_transfer.lock);
1068
1069         if (enable) {
1070                 if (0 != requests++)
1071                         goto unlock_and_return;
1072                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1073         } else {
1074                 if (requests == 0) {
1075                         r = -EIO;
1076                         goto unlock_and_return;
1077                 } else if (1 != requests--) {
1078                         goto unlock_and_return;
1079                 }
1080                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1081         }
1082
1083         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1084                 cpu_relax();
1085
1086         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1087
1088         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1089         wait_for_completion(&mb1_transfer.work);
1090
1091         if ((mb1_transfer.ack.header != header) ||
1092                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1093                 r = -EIO;
1094
1095 unlock_and_return:
1096         mutex_unlock(&mb1_transfer.lock);
1097
1098         return r;
1099 }
1100
1101 /**
1102  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1103  *
1104  * This function releases the power state requirements of a USB wakeup.
1105  */
1106 int prcmu_release_usb_wakeup_state(void)
1107 {
1108         int r = 0;
1109
1110         mutex_lock(&mb1_transfer.lock);
1111
1112         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1113                 cpu_relax();
1114
1115         writeb(MB1H_RELEASE_USB_WAKEUP,
1116                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1117
1118         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1119         wait_for_completion(&mb1_transfer.work);
1120
1121         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1122                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1123                 r = -EIO;
1124
1125         mutex_unlock(&mb1_transfer.lock);
1126
1127         return r;
1128 }
1129
1130 static int request_pll(u8 clock, bool enable)
1131 {
1132         int r = 0;
1133
1134         if (clock == PRCMU_PLLSOC0)
1135                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1136         else if (clock == PRCMU_PLLSOC1)
1137                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1138         else
1139                 return -EINVAL;
1140
1141         mutex_lock(&mb1_transfer.lock);
1142
1143         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1144                 cpu_relax();
1145
1146         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1147         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1148
1149         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1150         wait_for_completion(&mb1_transfer.work);
1151
1152         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1153                 r = -EIO;
1154
1155         mutex_unlock(&mb1_transfer.lock);
1156
1157         return r;
1158 }
1159
1160 /**
1161  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1162  * @epod_id: The EPOD to set
1163  * @epod_state: The new EPOD state
1164  *
1165  * This function sets the state of a EPOD (power domain). It may not be called
1166  * from interrupt context.
1167  */
1168 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1169 {
1170         int r = 0;
1171         bool ram_retention = false;
1172         int i;
1173
1174         /* check argument */
1175         BUG_ON(epod_id >= NUM_EPOD_ID);
1176
1177         /* set flag if retention is possible */
1178         switch (epod_id) {
1179         case EPOD_ID_SVAMMDSP:
1180         case EPOD_ID_SIAMMDSP:
1181         case EPOD_ID_ESRAM12:
1182         case EPOD_ID_ESRAM34:
1183                 ram_retention = true;
1184                 break;
1185         }
1186
1187         /* check argument */
1188         BUG_ON(epod_state > EPOD_STATE_ON);
1189         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1190
1191         /* get lock */
1192         mutex_lock(&mb2_transfer.lock);
1193
1194         /* wait for mailbox */
1195         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1196                 cpu_relax();
1197
1198         /* fill in mailbox */
1199         for (i = 0; i < NUM_EPOD_ID; i++)
1200                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1201         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1202
1203         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1204
1205         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1206
1207         /*
1208          * The current firmware version does not handle errors correctly,
1209          * and we cannot recover if there is an error.
1210          * This is expected to change when the firmware is updated.
1211          */
1212         if (!wait_for_completion_timeout(&mb2_transfer.work,
1213                         msecs_to_jiffies(20000))) {
1214                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1215                         __func__);
1216                 r = -EIO;
1217                 goto unlock_and_return;
1218         }
1219
1220         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1221                 r = -EIO;
1222
1223 unlock_and_return:
1224         mutex_unlock(&mb2_transfer.lock);
1225         return r;
1226 }
1227
1228 /**
1229  * prcmu_configure_auto_pm - Configure autonomous power management.
1230  * @sleep: Configuration for ApSleep.
1231  * @idle:  Configuration for ApIdle.
1232  */
1233 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1234         struct prcmu_auto_pm_config *idle)
1235 {
1236         u32 sleep_cfg;
1237         u32 idle_cfg;
1238         unsigned long flags;
1239
1240         BUG_ON((sleep == NULL) || (idle == NULL));
1241
1242         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1243         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1244         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1245         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1246         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1247         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1248
1249         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1250         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1251         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1252         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1253         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1254         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1255
1256         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1257
1258         /*
1259          * The autonomous power management configuration is done through
1260          * fields in mailbox 2, but these fields are only used as shared
1261          * variables - i.e. there is no need to send a message.
1262          */
1263         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1264         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1265
1266         mb2_transfer.auto_pm_enabled =
1267                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1268                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1269                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1270                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1271
1272         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1273 }
1274 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1275
1276 bool prcmu_is_auto_pm_enabled(void)
1277 {
1278         return mb2_transfer.auto_pm_enabled;
1279 }
1280
1281 static int request_sysclk(bool enable)
1282 {
1283         int r;
1284         unsigned long flags;
1285
1286         r = 0;
1287
1288         mutex_lock(&mb3_transfer.sysclk_lock);
1289
1290         spin_lock_irqsave(&mb3_transfer.lock, flags);
1291
1292         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1293                 cpu_relax();
1294
1295         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1296
1297         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1298         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1299
1300         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1301
1302         /*
1303          * The firmware only sends an ACK if we want to enable the
1304          * SysClk, and it succeeds.
1305          */
1306         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1307                         msecs_to_jiffies(20000))) {
1308                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1309                         __func__);
1310                 r = -EIO;
1311         }
1312
1313         mutex_unlock(&mb3_transfer.sysclk_lock);
1314
1315         return r;
1316 }
1317
1318 static int request_timclk(bool enable)
1319 {
1320         u32 val;
1321
1322         /*
1323          * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1324          * PLL is disabled so we cannot use doze mode, this will
1325          * stop the clock on this firmware.
1326          */
1327         if (prcmu_is_ulppll_disabled())
1328                 val = 0;
1329         else
1330                 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1331
1332         if (!enable)
1333                 val |= PRCM_TCR_STOP_TIMERS |
1334                         PRCM_TCR_DOZE_MODE |
1335                         PRCM_TCR_TENSEL_MASK;
1336
1337         writel(val, PRCM_TCR);
1338
1339         return 0;
1340 }
1341
1342 static int request_clock(u8 clock, bool enable)
1343 {
1344         u32 val;
1345         unsigned long flags;
1346
1347         spin_lock_irqsave(&clk_mgt_lock, flags);
1348
1349         /* Grab the HW semaphore. */
1350         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1351                 cpu_relax();
1352
1353         val = readl(prcmu_base + clk_mgt[clock].offset);
1354         if (enable) {
1355                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356         } else {
1357                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1359         }
1360         writel(val, prcmu_base + clk_mgt[clock].offset);
1361
1362         /* Release the HW semaphore. */
1363         writel(0, PRCM_SEM);
1364
1365         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1366
1367         return 0;
1368 }
1369
1370 static int request_sga_clock(u8 clock, bool enable)
1371 {
1372         u32 val;
1373         int ret;
1374
1375         if (enable) {
1376                 val = readl(PRCM_CGATING_BYPASS);
1377                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1378         }
1379
1380         ret = request_clock(clock, enable);
1381
1382         if (!ret && !enable) {
1383                 val = readl(PRCM_CGATING_BYPASS);
1384                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385         }
1386
1387         return ret;
1388 }
1389
1390 static inline bool plldsi_locked(void)
1391 {
1392         return (readl(PRCM_PLLDSI_LOCKP) &
1393                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1397 }
1398
1399 static int request_plldsi(bool enable)
1400 {
1401         int r = 0;
1402         u32 val;
1403
1404         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1407
1408         val = readl(PRCM_PLLDSI_ENABLE);
1409         if (enable)
1410                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411         else
1412                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413         writel(val, PRCM_PLLDSI_ENABLE);
1414
1415         if (enable) {
1416                 unsigned int i;
1417                 bool locked = plldsi_locked();
1418
1419                 for (i = 10; !locked && (i > 0); --i) {
1420                         udelay(100);
1421                         locked = plldsi_locked();
1422                 }
1423                 if (locked) {
1424                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425                                 PRCM_APE_RESETN_SET);
1426                 } else {
1427                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429                                 PRCM_MMIP_LS_CLAMP_SET);
1430                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431                         writel(val, PRCM_PLLDSI_ENABLE);
1432                         r = -EAGAIN;
1433                 }
1434         } else {
1435                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1436         }
1437         return r;
1438 }
1439
1440 static int request_dsiclk(u8 n, bool enable)
1441 {
1442         u32 val;
1443
1444         val = readl(PRCM_DSI_PLLOUT_SEL);
1445         val &= ~dsiclk[n].divsel_mask;
1446         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447                 dsiclk[n].divsel_shift);
1448         writel(val, PRCM_DSI_PLLOUT_SEL);
1449         return 0;
1450 }
1451
1452 static int request_dsiescclk(u8 n, bool enable)
1453 {
1454         u32 val;
1455
1456         val = readl(PRCM_DSITVCLK_DIV);
1457         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458         writel(val, PRCM_DSITVCLK_DIV);
1459         return 0;
1460 }
1461
1462 /**
1463  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464  * @clock:      The clock for which the request is made.
1465  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1466  *
1467  * This function should only be used by the clock implementation.
1468  * Do not use it from any other place!
1469  */
1470 int db8500_prcmu_request_clock(u8 clock, bool enable)
1471 {
1472         if (clock == PRCMU_SGACLK)
1473                 return request_sga_clock(clock, enable);
1474         else if (clock < PRCMU_NUM_REG_CLOCKS)
1475                 return request_clock(clock, enable);
1476         else if (clock == PRCMU_TIMCLK)
1477                 return request_timclk(enable);
1478         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482         else if (clock == PRCMU_PLLDSI)
1483                 return request_plldsi(enable);
1484         else if (clock == PRCMU_SYSCLK)
1485                 return request_sysclk(enable);
1486         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1487                 return request_pll(clock, enable);
1488         else
1489                 return -EINVAL;
1490 }
1491
1492 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493         int branch)
1494 {
1495         u64 rate;
1496         u32 val;
1497         u32 d;
1498         u32 div = 1;
1499
1500         val = readl(reg);
1501
1502         rate = src_rate;
1503         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1504
1505         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506         if (d > 1)
1507                 div *= d;
1508
1509         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510         if (d > 1)
1511                 div *= d;
1512
1513         if (val & PRCM_PLL_FREQ_SELDIV2)
1514                 div *= 2;
1515
1516         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1518                 ((reg == PRCM_PLLSOC0_FREQ) ||
1519                  (reg == PRCM_PLLARM_FREQ) ||
1520                  (reg == PRCM_PLLDDR_FREQ))))
1521                 div *= 2;
1522
1523         (void)do_div(rate, div);
1524
1525         return (unsigned long)rate;
1526 }
1527
1528 #define ROOT_CLOCK_RATE 38400000
1529
1530 static unsigned long clock_rate(u8 clock)
1531 {
1532         u32 val;
1533         u32 pllsw;
1534         unsigned long rate = ROOT_CLOCK_RATE;
1535
1536         val = readl(prcmu_base + clk_mgt[clock].offset);
1537
1538         if (val & PRCM_CLK_MGT_CLK38) {
1539                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540                         rate /= 2;
1541                 return rate;
1542         }
1543
1544         val |= clk_mgt[clock].pllsw;
1545         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1546
1547         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553         else
1554                 return 0;
1555
1556         if ((clock == PRCMU_SGACLK) &&
1557                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558                 u64 r = (rate * 10);
1559
1560                 (void)do_div(r, 25);
1561                 return (unsigned long)r;
1562         }
1563         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564         if (val)
1565                 return rate / val;
1566         else
1567                 return 0;
1568 }
1569
1570 static unsigned long armss_rate(void)
1571 {
1572         u32 r;
1573         unsigned long rate;
1574
1575         r = readl(PRCM_ARM_CHGCLKREQ);
1576
1577         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578                 /* External ARMCLKFIX clock */
1579
1580                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1581
1582                 /* Check PRCM_ARM_CHGCLKREQ divider */
1583                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584                         rate /= 2;
1585
1586                 /* Check PRCM_ARMCLKFIX_MGT divider */
1587                 r = readl(PRCM_ARMCLKFIX_MGT);
1588                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589                 rate /= r;
1590
1591         } else {/* ARM PLL */
1592                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1593         }
1594
1595         return rate;
1596 }
1597
1598 static unsigned long dsiclk_rate(u8 n)
1599 {
1600         u32 divsel;
1601         u32 div = 1;
1602
1603         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1605
1606         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607                 divsel = dsiclk[n].divsel;
1608         else
1609                 dsiclk[n].divsel = divsel;
1610
1611         switch (divsel) {
1612         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613                 div *= 2;
1614                 /* Fall through */
1615         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1616                 div *= 2;
1617                 /* Fall through */
1618         case PRCM_DSI_PLLOUT_SEL_PHI:
1619                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1620                         PLL_RAW) / div;
1621         default:
1622                 return 0;
1623         }
1624 }
1625
1626 static unsigned long dsiescclk_rate(u8 n)
1627 {
1628         u32 div;
1629
1630         div = readl(PRCM_DSITVCLK_DIV);
1631         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1632         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1633 }
1634
1635 unsigned long prcmu_clock_rate(u8 clock)
1636 {
1637         if (clock < PRCMU_NUM_REG_CLOCKS)
1638                 return clock_rate(clock);
1639         else if (clock == PRCMU_TIMCLK)
1640                 return prcmu_is_ulppll_disabled() ?
1641                         32768 : ROOT_CLOCK_RATE / 16;
1642         else if (clock == PRCMU_SYSCLK)
1643                 return ROOT_CLOCK_RATE;
1644         else if (clock == PRCMU_PLLSOC0)
1645                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1646         else if (clock == PRCMU_PLLSOC1)
1647                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1648         else if (clock == PRCMU_ARMSS)
1649                 return armss_rate();
1650         else if (clock == PRCMU_PLLDDR)
1651                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652         else if (clock == PRCMU_PLLDSI)
1653                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1654                         PLL_RAW);
1655         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1656                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1657         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1658                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1659         else
1660                 return 0;
1661 }
1662
1663 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1664 {
1665         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1666                 return ROOT_CLOCK_RATE;
1667         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1668         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1669                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1670         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1671                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1672         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1673                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1674         else
1675                 return 0;
1676 }
1677
1678 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1679 {
1680         u32 div;
1681
1682         div = (src_rate / rate);
1683         if (div == 0)
1684                 return 1;
1685         if (rate < (src_rate / div))
1686                 div++;
1687         return div;
1688 }
1689
1690 static long round_clock_rate(u8 clock, unsigned long rate)
1691 {
1692         u32 val;
1693         u32 div;
1694         unsigned long src_rate;
1695         long rounded_rate;
1696
1697         val = readl(prcmu_base + clk_mgt[clock].offset);
1698         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1699                 clk_mgt[clock].branch);
1700         div = clock_divider(src_rate, rate);
1701         if (val & PRCM_CLK_MGT_CLK38) {
1702                 if (clk_mgt[clock].clk38div) {
1703                         if (div > 2)
1704                                 div = 2;
1705                 } else {
1706                         div = 1;
1707                 }
1708         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1709                 u64 r = (src_rate * 10);
1710
1711                 (void)do_div(r, 25);
1712                 if (r <= rate)
1713                         return (unsigned long)r;
1714         }
1715         rounded_rate = (src_rate / min(div, (u32)31));
1716
1717         return rounded_rate;
1718 }
1719
1720 static const unsigned long db8500_armss_freqs[] = {
1721         200000000,
1722         400000000,
1723         800000000,
1724         998400000
1725 };
1726
1727 /* The DB8520 has slightly higher ARMSS max frequency */
1728 static const unsigned long db8520_armss_freqs[] = {
1729         200000000,
1730         400000000,
1731         800000000,
1732         1152000000
1733 };
1734
1735
1736
1737 static long round_armss_rate(unsigned long rate)
1738 {
1739         unsigned long freq = 0;
1740         const unsigned long *freqs;
1741         int nfreqs;
1742         int i;
1743
1744         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1745                 freqs = db8520_armss_freqs;
1746                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1747         } else {
1748                 freqs = db8500_armss_freqs;
1749                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1750         }
1751
1752         /* Find the corresponding arm opp from the cpufreq table. */
1753         for (i = 0; i < nfreqs; i++) {
1754                 freq = freqs[i];
1755                 if (rate <= freq)
1756                         break;
1757         }
1758
1759         /* Return the last valid value, even if a match was not found. */
1760         return freq;
1761 }
1762
1763 #define MIN_PLL_VCO_RATE 600000000ULL
1764 #define MAX_PLL_VCO_RATE 1680640000ULL
1765
1766 static long round_plldsi_rate(unsigned long rate)
1767 {
1768         long rounded_rate = 0;
1769         unsigned long src_rate;
1770         unsigned long rem;
1771         u32 r;
1772
1773         src_rate = clock_rate(PRCMU_HDMICLK);
1774         rem = rate;
1775
1776         for (r = 7; (rem > 0) && (r > 0); r--) {
1777                 u64 d;
1778
1779                 d = (r * rate);
1780                 (void)do_div(d, src_rate);
1781                 if (d < 6)
1782                         d = 6;
1783                 else if (d > 255)
1784                         d = 255;
1785                 d *= src_rate;
1786                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1787                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1788                         continue;
1789                 (void)do_div(d, r);
1790                 if (rate < d) {
1791                         if (rounded_rate == 0)
1792                                 rounded_rate = (long)d;
1793                         break;
1794                 }
1795                 if ((rate - d) < rem) {
1796                         rem = (rate - d);
1797                         rounded_rate = (long)d;
1798                 }
1799         }
1800         return rounded_rate;
1801 }
1802
1803 static long round_dsiclk_rate(unsigned long rate)
1804 {
1805         u32 div;
1806         unsigned long src_rate;
1807         long rounded_rate;
1808
1809         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1810                 PLL_RAW);
1811         div = clock_divider(src_rate, rate);
1812         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1813
1814         return rounded_rate;
1815 }
1816
1817 static long round_dsiescclk_rate(unsigned long rate)
1818 {
1819         u32 div;
1820         unsigned long src_rate;
1821         long rounded_rate;
1822
1823         src_rate = clock_rate(PRCMU_TVCLK);
1824         div = clock_divider(src_rate, rate);
1825         rounded_rate = (src_rate / min(div, (u32)255));
1826
1827         return rounded_rate;
1828 }
1829
1830 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1831 {
1832         if (clock < PRCMU_NUM_REG_CLOCKS)
1833                 return round_clock_rate(clock, rate);
1834         else if (clock == PRCMU_ARMSS)
1835                 return round_armss_rate(rate);
1836         else if (clock == PRCMU_PLLDSI)
1837                 return round_plldsi_rate(rate);
1838         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1839                 return round_dsiclk_rate(rate);
1840         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1841                 return round_dsiescclk_rate(rate);
1842         else
1843                 return (long)prcmu_clock_rate(clock);
1844 }
1845
1846 static void set_clock_rate(u8 clock, unsigned long rate)
1847 {
1848         u32 val;
1849         u32 div;
1850         unsigned long src_rate;
1851         unsigned long flags;
1852
1853         spin_lock_irqsave(&clk_mgt_lock, flags);
1854
1855         /* Grab the HW semaphore. */
1856         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1857                 cpu_relax();
1858
1859         val = readl(prcmu_base + clk_mgt[clock].offset);
1860         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1861                 clk_mgt[clock].branch);
1862         div = clock_divider(src_rate, rate);
1863         if (val & PRCM_CLK_MGT_CLK38) {
1864                 if (clk_mgt[clock].clk38div) {
1865                         if (div > 1)
1866                                 val |= PRCM_CLK_MGT_CLK38DIV;
1867                         else
1868                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1869                 }
1870         } else if (clock == PRCMU_SGACLK) {
1871                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1872                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1873                 if (div == 3) {
1874                         u64 r = (src_rate * 10);
1875
1876                         (void)do_div(r, 25);
1877                         if (r <= rate) {
1878                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1879                                 div = 0;
1880                         }
1881                 }
1882                 val |= min(div, (u32)31);
1883         } else {
1884                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1885                 val |= min(div, (u32)31);
1886         }
1887         writel(val, prcmu_base + clk_mgt[clock].offset);
1888
1889         /* Release the HW semaphore. */
1890         writel(0, PRCM_SEM);
1891
1892         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1893 }
1894
1895 static int set_armss_rate(unsigned long rate)
1896 {
1897         unsigned long freq;
1898         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1899         const unsigned long *freqs;
1900         int nfreqs;
1901         int i;
1902
1903         if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1904                 freqs = db8520_armss_freqs;
1905                 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1906         } else {
1907                 freqs = db8500_armss_freqs;
1908                 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1909         }
1910
1911         /* Find the corresponding arm opp from the cpufreq table. */
1912         for (i = 0; i < nfreqs; i++) {
1913                 freq = freqs[i];
1914                 if (rate == freq)
1915                         break;
1916         }
1917
1918         if (rate != freq)
1919                 return -EINVAL;
1920
1921         /* Set the new arm opp. */
1922         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1923         return db8500_prcmu_set_arm_opp(opps[i]);
1924 }
1925
1926 static int set_plldsi_rate(unsigned long rate)
1927 {
1928         unsigned long src_rate;
1929         unsigned long rem;
1930         u32 pll_freq = 0;
1931         u32 r;
1932
1933         src_rate = clock_rate(PRCMU_HDMICLK);
1934         rem = rate;
1935
1936         for (r = 7; (rem > 0) && (r > 0); r--) {
1937                 u64 d;
1938                 u64 hwrate;
1939
1940                 d = (r * rate);
1941                 (void)do_div(d, src_rate);
1942                 if (d < 6)
1943                         d = 6;
1944                 else if (d > 255)
1945                         d = 255;
1946                 hwrate = (d * src_rate);
1947                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1948                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1949                         continue;
1950                 (void)do_div(hwrate, r);
1951                 if (rate < hwrate) {
1952                         if (pll_freq == 0)
1953                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1954                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1955                         break;
1956                 }
1957                 if ((rate - hwrate) < rem) {
1958                         rem = (rate - hwrate);
1959                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1960                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1961                 }
1962         }
1963         if (pll_freq == 0)
1964                 return -EINVAL;
1965
1966         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1967         writel(pll_freq, PRCM_PLLDSI_FREQ);
1968
1969         return 0;
1970 }
1971
1972 static void set_dsiclk_rate(u8 n, unsigned long rate)
1973 {
1974         u32 val;
1975         u32 div;
1976
1977         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1978                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1979
1980         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1981                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1982                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1983
1984         val = readl(PRCM_DSI_PLLOUT_SEL);
1985         val &= ~dsiclk[n].divsel_mask;
1986         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1987         writel(val, PRCM_DSI_PLLOUT_SEL);
1988 }
1989
1990 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1991 {
1992         u32 val;
1993         u32 div;
1994
1995         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1996         val = readl(PRCM_DSITVCLK_DIV);
1997         val &= ~dsiescclk[n].div_mask;
1998         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1999         writel(val, PRCM_DSITVCLK_DIV);
2000 }
2001
2002 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2003 {
2004         if (clock < PRCMU_NUM_REG_CLOCKS)
2005                 set_clock_rate(clock, rate);
2006         else if (clock == PRCMU_ARMSS)
2007                 return set_armss_rate(rate);
2008         else if (clock == PRCMU_PLLDSI)
2009                 return set_plldsi_rate(rate);
2010         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2011                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2012         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2013                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2014         return 0;
2015 }
2016
2017 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2018 {
2019         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2020             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2021                 return -EINVAL;
2022
2023         mutex_lock(&mb4_transfer.lock);
2024
2025         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026                 cpu_relax();
2027
2028         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2029         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2030                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2031         writeb(DDR_PWR_STATE_ON,
2032                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2033         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2034
2035         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036         wait_for_completion(&mb4_transfer.work);
2037
2038         mutex_unlock(&mb4_transfer.lock);
2039
2040         return 0;
2041 }
2042
2043 int db8500_prcmu_config_hotdog(u8 threshold)
2044 {
2045         mutex_lock(&mb4_transfer.lock);
2046
2047         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048                 cpu_relax();
2049
2050         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2051         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052
2053         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2054         wait_for_completion(&mb4_transfer.work);
2055
2056         mutex_unlock(&mb4_transfer.lock);
2057
2058         return 0;
2059 }
2060
2061 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2062 {
2063         mutex_lock(&mb4_transfer.lock);
2064
2065         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066                 cpu_relax();
2067
2068         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2069         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2070         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2071                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2072         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073
2074         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075         wait_for_completion(&mb4_transfer.work);
2076
2077         mutex_unlock(&mb4_transfer.lock);
2078
2079         return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2082
2083 static int config_hot_period(u16 val)
2084 {
2085         mutex_lock(&mb4_transfer.lock);
2086
2087         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2088                 cpu_relax();
2089
2090         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2091         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2092
2093         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2094         wait_for_completion(&mb4_transfer.work);
2095
2096         mutex_unlock(&mb4_transfer.lock);
2097
2098         return 0;
2099 }
2100
2101 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2102 {
2103         if (cycles32k == 0xFFFF)
2104                 return -EINVAL;
2105
2106         return config_hot_period(cycles32k);
2107 }
2108 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2109
2110 int db8500_prcmu_stop_temp_sense(void)
2111 {
2112         return config_hot_period(0xFFFF);
2113 }
2114 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2115
2116 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2117 {
2118
2119         mutex_lock(&mb4_transfer.lock);
2120
2121         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2122                 cpu_relax();
2123
2124         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2125         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2126         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2127         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2128
2129         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2130
2131         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2132         wait_for_completion(&mb4_transfer.work);
2133
2134         mutex_unlock(&mb4_transfer.lock);
2135
2136         return 0;
2137
2138 }
2139
2140 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2141 {
2142         BUG_ON(num == 0 || num > 0xf);
2143         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2144                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2145                             A9WDOG_AUTO_OFF_DIS);
2146 }
2147 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2148
2149 int db8500_prcmu_enable_a9wdog(u8 id)
2150 {
2151         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2152 }
2153 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2154
2155 int db8500_prcmu_disable_a9wdog(u8 id)
2156 {
2157         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2158 }
2159 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2160
2161 int db8500_prcmu_kick_a9wdog(u8 id)
2162 {
2163         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2164 }
2165 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2166
2167 /*
2168  * timeout is 28 bit, in ms.
2169  */
2170 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2171 {
2172         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2173                             (id & A9WDOG_ID_MASK) |
2174                             /*
2175                              * Put the lowest 28 bits of timeout at
2176                              * offset 4. Four first bits are used for id.
2177                              */
2178                             (u8)((timeout << 4) & 0xf0),
2179                             (u8)((timeout >> 4) & 0xff),
2180                             (u8)((timeout >> 12) & 0xff),
2181                             (u8)((timeout >> 20) & 0xff));
2182 }
2183 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2184
2185 /**
2186  * prcmu_abb_read() - Read register value(s) from the ABB.
2187  * @slave:      The I2C slave address.
2188  * @reg:        The (start) register address.
2189  * @value:      The read out value(s).
2190  * @size:       The number of registers to read.
2191  *
2192  * Reads register value(s) from the ABB.
2193  * @size has to be 1 for the current firmware version.
2194  */
2195 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2196 {
2197         int r;
2198
2199         if (size != 1)
2200                 return -EINVAL;
2201
2202         mutex_lock(&mb5_transfer.lock);
2203
2204         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2205                 cpu_relax();
2206
2207         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2208         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2209         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2210         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2211         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2212
2213         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2214
2215         if (!wait_for_completion_timeout(&mb5_transfer.work,
2216                                 msecs_to_jiffies(20000))) {
2217                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2218                         __func__);
2219                 r = -EIO;
2220         } else {
2221                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2222         }
2223
2224         if (!r)
2225                 *value = mb5_transfer.ack.value;
2226
2227         mutex_unlock(&mb5_transfer.lock);
2228
2229         return r;
2230 }
2231
2232 /**
2233  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2234  * @slave:      The I2C slave address.
2235  * @reg:        The (start) register address.
2236  * @value:      The value(s) to write.
2237  * @mask:       The mask(s) to use.
2238  * @size:       The number of registers to write.
2239  *
2240  * Writes masked register value(s) to the ABB.
2241  * For each @value, only the bits set to 1 in the corresponding @mask
2242  * will be written. The other bits are not changed.
2243  * @size has to be 1 for the current firmware version.
2244  */
2245 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2246 {
2247         int r;
2248
2249         if (size != 1)
2250                 return -EINVAL;
2251
2252         mutex_lock(&mb5_transfer.lock);
2253
2254         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2255                 cpu_relax();
2256
2257         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2258         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2259         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2260         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2261         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2262
2263         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2264
2265         if (!wait_for_completion_timeout(&mb5_transfer.work,
2266                                 msecs_to_jiffies(20000))) {
2267                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2268                         __func__);
2269                 r = -EIO;
2270         } else {
2271                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2272         }
2273
2274         mutex_unlock(&mb5_transfer.lock);
2275
2276         return r;
2277 }
2278
2279 /**
2280  * prcmu_abb_write() - Write register value(s) to the ABB.
2281  * @slave:      The I2C slave address.
2282  * @reg:        The (start) register address.
2283  * @value:      The value(s) to write.
2284  * @size:       The number of registers to write.
2285  *
2286  * Writes register value(s) to the ABB.
2287  * @size has to be 1 for the current firmware version.
2288  */
2289 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2290 {
2291         u8 mask = ~0;
2292
2293         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2294 }
2295
2296 /**
2297  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2298  */
2299 int prcmu_ac_wake_req(void)
2300 {
2301         u32 val;
2302         int ret = 0;
2303
2304         mutex_lock(&mb0_transfer.ac_wake_lock);
2305
2306         val = readl(PRCM_HOSTACCESS_REQ);
2307         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2308                 goto unlock_and_return;
2309
2310         atomic_set(&ac_wake_req_state, 1);
2311
2312         /*
2313          * Force Modem Wake-up before hostaccess_req ping-pong.
2314          * It prevents Modem to enter in Sleep while acking the hostaccess
2315          * request. The 31us delay has been calculated by HWI.
2316          */
2317         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2318         writel(val, PRCM_HOSTACCESS_REQ);
2319
2320         udelay(31);
2321
2322         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2323         writel(val, PRCM_HOSTACCESS_REQ);
2324
2325         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2326                         msecs_to_jiffies(5000))) {
2327                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2328                         __func__);
2329                 ret = -EFAULT;
2330         }
2331
2332 unlock_and_return:
2333         mutex_unlock(&mb0_transfer.ac_wake_lock);
2334         return ret;
2335 }
2336
2337 /**
2338  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2339  */
2340 void prcmu_ac_sleep_req(void)
2341 {
2342         u32 val;
2343
2344         mutex_lock(&mb0_transfer.ac_wake_lock);
2345
2346         val = readl(PRCM_HOSTACCESS_REQ);
2347         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2348                 goto unlock_and_return;
2349
2350         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2351                 PRCM_HOSTACCESS_REQ);
2352
2353         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2354                         msecs_to_jiffies(5000))) {
2355                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2356                         __func__);
2357         }
2358
2359         atomic_set(&ac_wake_req_state, 0);
2360
2361 unlock_and_return:
2362         mutex_unlock(&mb0_transfer.ac_wake_lock);
2363 }
2364
2365 bool db8500_prcmu_is_ac_wake_requested(void)
2366 {
2367         return (atomic_read(&ac_wake_req_state) != 0);
2368 }
2369
2370 /**
2371  * db8500_prcmu_system_reset - System reset
2372  *
2373  * Saves the reset reason code and then sets the APE_SOFTRST register which
2374  * fires interrupt to fw
2375  */
2376 void db8500_prcmu_system_reset(u16 reset_code)
2377 {
2378         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2379         writel(1, PRCM_APE_SOFTRST);
2380 }
2381
2382 /**
2383  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2384  *
2385  * Retrieves the reset reason code stored by prcmu_system_reset() before
2386  * last restart.
2387  */
2388 u16 db8500_prcmu_get_reset_code(void)
2389 {
2390         return readw(tcdm_base + PRCM_SW_RST_REASON);
2391 }
2392
2393 /**
2394  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2395  */
2396 void db8500_prcmu_modem_reset(void)
2397 {
2398         mutex_lock(&mb1_transfer.lock);
2399
2400         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2401                 cpu_relax();
2402
2403         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2404         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2405         wait_for_completion(&mb1_transfer.work);
2406
2407         /*
2408          * No need to check return from PRCMU as modem should go in reset state
2409          * This state is already managed by upper layer
2410          */
2411
2412         mutex_unlock(&mb1_transfer.lock);
2413 }
2414
2415 static void ack_dbb_wakeup(void)
2416 {
2417         unsigned long flags;
2418
2419         spin_lock_irqsave(&mb0_transfer.lock, flags);
2420
2421         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2422                 cpu_relax();
2423
2424         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2425         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2426
2427         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2428 }
2429
2430 static inline void print_unknown_header_warning(u8 n, u8 header)
2431 {
2432         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2433                 header, n);
2434 }
2435
2436 static bool read_mailbox_0(void)
2437 {
2438         bool r;
2439         u32 ev;
2440         unsigned int n;
2441         u8 header;
2442
2443         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2444         switch (header) {
2445         case MB0H_WAKEUP_EXE:
2446         case MB0H_WAKEUP_SLEEP:
2447                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2448                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2449                 else
2450                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2451
2452                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2453                         complete(&mb0_transfer.ac_wake_work);
2454                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2455                         complete(&mb3_transfer.sysclk_work);
2456
2457                 ev &= mb0_transfer.req.dbb_irqs;
2458
2459                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2460                         if (ev & prcmu_irq_bit[n])
2461                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2462                 }
2463                 r = true;
2464                 break;
2465         default:
2466                 print_unknown_header_warning(0, header);
2467                 r = false;
2468                 break;
2469         }
2470         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2471         return r;
2472 }
2473
2474 static bool read_mailbox_1(void)
2475 {
2476         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2477         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2478                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2479         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2480                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2481         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2482                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2483         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2484         complete(&mb1_transfer.work);
2485         return false;
2486 }
2487
2488 static bool read_mailbox_2(void)
2489 {
2490         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2491         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2492         complete(&mb2_transfer.work);
2493         return false;
2494 }
2495
2496 static bool read_mailbox_3(void)
2497 {
2498         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2499         return false;
2500 }
2501
2502 static bool read_mailbox_4(void)
2503 {
2504         u8 header;
2505         bool do_complete = true;
2506
2507         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2508         switch (header) {
2509         case MB4H_MEM_ST:
2510         case MB4H_HOTDOG:
2511         case MB4H_HOTMON:
2512         case MB4H_HOT_PERIOD:
2513         case MB4H_A9WDOG_CONF:
2514         case MB4H_A9WDOG_EN:
2515         case MB4H_A9WDOG_DIS:
2516         case MB4H_A9WDOG_LOAD:
2517         case MB4H_A9WDOG_KICK:
2518                 break;
2519         default:
2520                 print_unknown_header_warning(4, header);
2521                 do_complete = false;
2522                 break;
2523         }
2524
2525         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2526
2527         if (do_complete)
2528                 complete(&mb4_transfer.work);
2529
2530         return false;
2531 }
2532
2533 static bool read_mailbox_5(void)
2534 {
2535         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2536         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2537         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2538         complete(&mb5_transfer.work);
2539         return false;
2540 }
2541
2542 static bool read_mailbox_6(void)
2543 {
2544         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2545         return false;
2546 }
2547
2548 static bool read_mailbox_7(void)
2549 {
2550         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2551         return false;
2552 }
2553
2554 static bool (* const read_mailbox[NUM_MB])(void) = {
2555         read_mailbox_0,
2556         read_mailbox_1,
2557         read_mailbox_2,
2558         read_mailbox_3,
2559         read_mailbox_4,
2560         read_mailbox_5,
2561         read_mailbox_6,
2562         read_mailbox_7
2563 };
2564
2565 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2566 {
2567         u32 bits;
2568         u8 n;
2569         irqreturn_t r;
2570
2571         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2572         if (unlikely(!bits))
2573                 return IRQ_NONE;
2574
2575         r = IRQ_HANDLED;
2576         for (n = 0; bits; n++) {
2577                 if (bits & MBOX_BIT(n)) {
2578                         bits -= MBOX_BIT(n);
2579                         if (read_mailbox[n]())
2580                                 r = IRQ_WAKE_THREAD;
2581                 }
2582         }
2583         return r;
2584 }
2585
2586 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2587 {
2588         ack_dbb_wakeup();
2589         return IRQ_HANDLED;
2590 }
2591
2592 static void prcmu_mask_work(struct work_struct *work)
2593 {
2594         unsigned long flags;
2595
2596         spin_lock_irqsave(&mb0_transfer.lock, flags);
2597
2598         config_wakeups();
2599
2600         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2601 }
2602
2603 static void prcmu_irq_mask(struct irq_data *d)
2604 {
2605         unsigned long flags;
2606
2607         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2608
2609         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2610
2611         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2612
2613         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2614                 schedule_work(&mb0_transfer.mask_work);
2615 }
2616
2617 static void prcmu_irq_unmask(struct irq_data *d)
2618 {
2619         unsigned long flags;
2620
2621         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2622
2623         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2624
2625         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2626
2627         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2628                 schedule_work(&mb0_transfer.mask_work);
2629 }
2630
2631 static void noop(struct irq_data *d)
2632 {
2633 }
2634
2635 static struct irq_chip prcmu_irq_chip = {
2636         .name           = "prcmu",
2637         .irq_disable    = prcmu_irq_mask,
2638         .irq_ack        = noop,
2639         .irq_mask       = prcmu_irq_mask,
2640         .irq_unmask     = prcmu_irq_unmask,
2641 };
2642
2643 static char *fw_project_name(u32 project)
2644 {
2645         switch (project) {
2646         case PRCMU_FW_PROJECT_U8500:
2647                 return "U8500";
2648         case PRCMU_FW_PROJECT_U8400:
2649                 return "U8400";
2650         case PRCMU_FW_PROJECT_U9500:
2651                 return "U9500";
2652         case PRCMU_FW_PROJECT_U8500_MBB:
2653                 return "U8500 MBB";
2654         case PRCMU_FW_PROJECT_U8500_C1:
2655                 return "U8500 C1";
2656         case PRCMU_FW_PROJECT_U8500_C2:
2657                 return "U8500 C2";
2658         case PRCMU_FW_PROJECT_U8500_C3:
2659                 return "U8500 C3";
2660         case PRCMU_FW_PROJECT_U8500_C4:
2661                 return "U8500 C4";
2662         case PRCMU_FW_PROJECT_U9500_MBL:
2663                 return "U9500 MBL";
2664         case PRCMU_FW_PROJECT_U8500_MBL:
2665                 return "U8500 MBL";
2666         case PRCMU_FW_PROJECT_U8500_MBL2:
2667                 return "U8500 MBL2";
2668         case PRCMU_FW_PROJECT_U8520:
2669                 return "U8520 MBL";
2670         case PRCMU_FW_PROJECT_U8420:
2671                 return "U8420";
2672         case PRCMU_FW_PROJECT_U8420_SYSCLK:
2673                 return "U8420-sysclk";
2674         case PRCMU_FW_PROJECT_U9540:
2675                 return "U9540";
2676         case PRCMU_FW_PROJECT_A9420:
2677                 return "A9420";
2678         case PRCMU_FW_PROJECT_L8540:
2679                 return "L8540";
2680         case PRCMU_FW_PROJECT_L8580:
2681                 return "L8580";
2682         default:
2683                 return "Unknown";
2684         }
2685 }
2686
2687 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2688                                 irq_hw_number_t hwirq)
2689 {
2690         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2691                                 handle_simple_irq);
2692
2693         return 0;
2694 }
2695
2696 static const struct irq_domain_ops db8500_irq_ops = {
2697         .map    = db8500_irq_map,
2698         .xlate  = irq_domain_xlate_twocell,
2699 };
2700
2701 static int db8500_irq_init(struct device_node *np)
2702 {
2703         int i;
2704
2705         db8500_irq_domain = irq_domain_add_simple(
2706                 np, NUM_PRCMU_WAKEUPS, 0,
2707                 &db8500_irq_ops, NULL);
2708
2709         if (!db8500_irq_domain) {
2710                 pr_err("Failed to create irqdomain\n");
2711                 return -ENOSYS;
2712         }
2713
2714         /* All wakeups will be used, so create mappings for all */
2715         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2716                 irq_create_mapping(db8500_irq_domain, i);
2717
2718         return 0;
2719 }
2720
2721 static void dbx500_fw_version_init(struct device_node *np)
2722 {
2723         void __iomem *tcpm_base;
2724         u32 version;
2725
2726         tcpm_base = of_iomap(np, 1);
2727         if (!tcpm_base) {
2728                 pr_err("no prcmu tcpm mem region provided\n");
2729                 return;
2730         }
2731
2732         version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2733         fw_info.version.project = (version & 0xFF);
2734         fw_info.version.api_version = (version >> 8) & 0xFF;
2735         fw_info.version.func_version = (version >> 16) & 0xFF;
2736         fw_info.version.errata = (version >> 24) & 0xFF;
2737         strncpy(fw_info.version.project_name,
2738                 fw_project_name(fw_info.version.project),
2739                 PRCMU_FW_PROJECT_NAME_LEN);
2740         fw_info.valid = true;
2741         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2742                 fw_info.version.project_name,
2743                 fw_info.version.project,
2744                 fw_info.version.api_version,
2745                 fw_info.version.func_version,
2746                 fw_info.version.errata);
2747         iounmap(tcpm_base);
2748 }
2749
2750 void __init db8500_prcmu_early_init(void)
2751 {
2752         /*
2753          * This is a temporary remap to bring up the clocks. It is
2754          * subsequently replaces with a real remap. After the merge of
2755          * the mailbox subsystem all of this early code goes away, and the
2756          * clock driver can probe independently. An early initcall will
2757          * still be needed, but it can be diverted into drivers/clk/ux500.
2758          */
2759         struct device_node *np;
2760
2761         np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2762         prcmu_base = of_iomap(np, 0);
2763         if (!prcmu_base) {
2764                 of_node_put(np);
2765                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2766                 return;
2767         }
2768         dbx500_fw_version_init(np);
2769         of_node_put(np);
2770
2771         spin_lock_init(&mb0_transfer.lock);
2772         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2773         mutex_init(&mb0_transfer.ac_wake_lock);
2774         init_completion(&mb0_transfer.ac_wake_work);
2775         mutex_init(&mb1_transfer.lock);
2776         init_completion(&mb1_transfer.work);
2777         mb1_transfer.ape_opp = APE_NO_CHANGE;
2778         mutex_init(&mb2_transfer.lock);
2779         init_completion(&mb2_transfer.work);
2780         spin_lock_init(&mb2_transfer.auto_pm_lock);
2781         spin_lock_init(&mb3_transfer.lock);
2782         mutex_init(&mb3_transfer.sysclk_lock);
2783         init_completion(&mb3_transfer.sysclk_work);
2784         mutex_init(&mb4_transfer.lock);
2785         init_completion(&mb4_transfer.work);
2786         mutex_init(&mb5_transfer.lock);
2787         init_completion(&mb5_transfer.work);
2788
2789         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2790 }
2791
2792 static void init_prcm_registers(void)
2793 {
2794         u32 val;
2795
2796         val = readl(PRCM_A9PL_FORCE_CLKEN);
2797         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2798                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2799         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2800 }
2801
2802 /*
2803  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2804  */
2805 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2806         REGULATOR_SUPPLY("v-ape", NULL),
2807         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2808         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2809         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2810         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2811         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2812         /* "v-mmc" changed to "vcore" in the mainline kernel */
2813         REGULATOR_SUPPLY("vcore", "sdi0"),
2814         REGULATOR_SUPPLY("vcore", "sdi1"),
2815         REGULATOR_SUPPLY("vcore", "sdi2"),
2816         REGULATOR_SUPPLY("vcore", "sdi3"),
2817         REGULATOR_SUPPLY("vcore", "sdi4"),
2818         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2819         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2820         /* "v-uart" changed to "vcore" in the mainline kernel */
2821         REGULATOR_SUPPLY("vcore", "uart0"),
2822         REGULATOR_SUPPLY("vcore", "uart1"),
2823         REGULATOR_SUPPLY("vcore", "uart2"),
2824         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2825         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2826         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2827 };
2828
2829 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2830         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2831         /* AV8100 regulator */
2832         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2833 };
2834
2835 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2836         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2837         REGULATOR_SUPPLY("vsupply", "mcde"),
2838 };
2839
2840 /* SVA MMDSP regulator switch */
2841 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2842         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2843 };
2844
2845 /* SVA pipe regulator switch */
2846 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2847         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2848 };
2849
2850 /* SIA MMDSP regulator switch */
2851 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2852         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2853 };
2854
2855 /* SIA pipe regulator switch */
2856 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2857         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2858 };
2859
2860 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2861         REGULATOR_SUPPLY("v-mali", NULL),
2862 };
2863
2864 /* ESRAM1 and 2 regulator switch */
2865 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2866         REGULATOR_SUPPLY("esram12", "cm_control"),
2867 };
2868
2869 /* ESRAM3 and 4 regulator switch */
2870 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2871         REGULATOR_SUPPLY("v-esram34", "mcde"),
2872         REGULATOR_SUPPLY("esram34", "cm_control"),
2873         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2874 };
2875
2876 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2877         [DB8500_REGULATOR_VAPE] = {
2878                 .constraints = {
2879                         .name = "db8500-vape",
2880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                         .always_on = true,
2882                 },
2883                 .consumer_supplies = db8500_vape_consumers,
2884                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2885         },
2886         [DB8500_REGULATOR_VARM] = {
2887                 .constraints = {
2888                         .name = "db8500-varm",
2889                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890                 },
2891         },
2892         [DB8500_REGULATOR_VMODEM] = {
2893                 .constraints = {
2894                         .name = "db8500-vmodem",
2895                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896                 },
2897         },
2898         [DB8500_REGULATOR_VPLL] = {
2899                 .constraints = {
2900                         .name = "db8500-vpll",
2901                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902                 },
2903         },
2904         [DB8500_REGULATOR_VSMPS1] = {
2905                 .constraints = {
2906                         .name = "db8500-vsmps1",
2907                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908                 },
2909         },
2910         [DB8500_REGULATOR_VSMPS2] = {
2911                 .constraints = {
2912                         .name = "db8500-vsmps2",
2913                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2914                 },
2915                 .consumer_supplies = db8500_vsmps2_consumers,
2916                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2917         },
2918         [DB8500_REGULATOR_VSMPS3] = {
2919                 .constraints = {
2920                         .name = "db8500-vsmps3",
2921                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922                 },
2923         },
2924         [DB8500_REGULATOR_VRF1] = {
2925                 .constraints = {
2926                         .name = "db8500-vrf1",
2927                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2928                 },
2929         },
2930         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2931                 /* dependency to u8500-vape is handled outside regulator framework */
2932                 .constraints = {
2933                         .name = "db8500-sva-mmdsp",
2934                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2935                 },
2936                 .consumer_supplies = db8500_svammdsp_consumers,
2937                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2938         },
2939         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2940                 .constraints = {
2941                         /* "ret" means "retention" */
2942                         .name = "db8500-sva-mmdsp-ret",
2943                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944                 },
2945         },
2946         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2947                 /* dependency to u8500-vape is handled outside regulator framework */
2948                 .constraints = {
2949                         .name = "db8500-sva-pipe",
2950                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951                 },
2952                 .consumer_supplies = db8500_svapipe_consumers,
2953                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2954         },
2955         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2956                 /* dependency to u8500-vape is handled outside regulator framework */
2957                 .constraints = {
2958                         .name = "db8500-sia-mmdsp",
2959                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960                 },
2961                 .consumer_supplies = db8500_siammdsp_consumers,
2962                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2963         },
2964         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2965                 .constraints = {
2966                         .name = "db8500-sia-mmdsp-ret",
2967                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2968                 },
2969         },
2970         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2971                 /* dependency to u8500-vape is handled outside regulator framework */
2972                 .constraints = {
2973                         .name = "db8500-sia-pipe",
2974                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975                 },
2976                 .consumer_supplies = db8500_siapipe_consumers,
2977                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2978         },
2979         [DB8500_REGULATOR_SWITCH_SGA] = {
2980                 .supply_regulator = "db8500-vape",
2981                 .constraints = {
2982                         .name = "db8500-sga",
2983                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2984                 },
2985                 .consumer_supplies = db8500_sga_consumers,
2986                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2987
2988         },
2989         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2990                 .supply_regulator = "db8500-vape",
2991                 .constraints = {
2992                         .name = "db8500-b2r2-mcde",
2993                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2994                 },
2995                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2996                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2997         },
2998         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2999                 /*
3000                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
3001                  * no need to hold Vape
3002                  */
3003                 .constraints = {
3004                         .name = "db8500-esram12",
3005                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3006                 },
3007                 .consumer_supplies = db8500_esram12_consumers,
3008                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3009         },
3010         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3011                 .constraints = {
3012                         .name = "db8500-esram12-ret",
3013                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3014                 },
3015         },
3016         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3017                 /*
3018                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
3019                  * no need to hold Vape
3020                  */
3021                 .constraints = {
3022                         .name = "db8500-esram34",
3023                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3024                 },
3025                 .consumer_supplies = db8500_esram34_consumers,
3026                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3027         },
3028         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3029                 .constraints = {
3030                         .name = "db8500-esram34-ret",
3031                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3032                 },
3033         },
3034 };
3035
3036 static struct ux500_wdt_data db8500_wdt_pdata = {
3037         .timeout = 600, /* 10 minutes */
3038         .has_28_bits_resolution = true,
3039 };
3040
3041 static const struct mfd_cell common_prcmu_devs[] = {
3042         {
3043                 .name = "ux500_wdt",
3044                 .platform_data = &db8500_wdt_pdata,
3045                 .pdata_size = sizeof(db8500_wdt_pdata),
3046                 .id = -1,
3047         },
3048 };
3049
3050 static const struct mfd_cell db8500_prcmu_devs[] = {
3051         OF_MFD_CELL("db8500-prcmu-regulators", NULL,
3052                     &db8500_regulators, sizeof(db8500_regulators), 0,
3053                     "stericsson,db8500-prcmu-regulator"),
3054         OF_MFD_CELL("cpuidle-dbx500",
3055                     NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
3056         OF_MFD_CELL("db8500-thermal",
3057                     NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
3058 };
3059
3060 static int db8500_prcmu_register_ab8500(struct device *parent)
3061 {
3062         struct device_node *np;
3063         struct resource ab8500_resource;
3064         const struct mfd_cell ab8500_cell = {
3065                 .name = "ab8500-core",
3066                 .of_compatible = "stericsson,ab8500",
3067                 .id = AB8500_VERSION_AB8500,
3068                 .resources = &ab8500_resource,
3069                 .num_resources = 1,
3070         };
3071
3072         if (!parent->of_node)
3073                 return -ENODEV;
3074
3075         /* Look up the device node, sneak the IRQ out of it */
3076         for_each_child_of_node(parent->of_node, np) {
3077                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3078                         break;
3079         }
3080         if (!np) {
3081                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3082                 return -ENODEV;
3083         }
3084         of_irq_to_resource_table(np, &ab8500_resource, 1);
3085
3086         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3087 }
3088
3089 /**
3090  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3091  *
3092  */
3093 static int db8500_prcmu_probe(struct platform_device *pdev)
3094 {
3095         struct device_node *np = pdev->dev.of_node;
3096         int irq = 0, err = 0;
3097         struct resource *res;
3098
3099         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3100         if (!res) {
3101                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3102                 return -EINVAL;
3103         }
3104         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3105         if (!prcmu_base) {
3106                 dev_err(&pdev->dev,
3107                         "failed to ioremap prcmu register memory\n");
3108                 return -ENOMEM;
3109         }
3110         init_prcm_registers();
3111         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3112         if (!res) {
3113                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3114                 return -EINVAL;
3115         }
3116         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3117                         resource_size(res));
3118         if (!tcdm_base) {
3119                 dev_err(&pdev->dev,
3120                         "failed to ioremap prcmu-tcdm register memory\n");
3121                 return -ENOMEM;
3122         }
3123
3124         /* Clean up the mailbox interrupts after pre-kernel code. */
3125         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3126
3127         irq = platform_get_irq(pdev, 0);
3128         if (irq <= 0)
3129                 return irq;
3130
3131         err = request_threaded_irq(irq, prcmu_irq_handler,
3132                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3133         if (err < 0) {
3134                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3135                 return err;
3136         }
3137
3138         db8500_irq_init(np);
3139
3140         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3141
3142         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3143                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3144         if (err) {
3145                 pr_err("prcmu: Failed to add subdevices\n");
3146                 return err;
3147         }
3148
3149         /* TODO: Remove restriction when clk definitions are available. */
3150         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3151                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3152                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3153                                       db8500_irq_domain);
3154                 if (err) {
3155                         mfd_remove_devices(&pdev->dev);
3156                         pr_err("prcmu: Failed to add subdevices\n");
3157                         return err;
3158                 }
3159         }
3160
3161         err = db8500_prcmu_register_ab8500(&pdev->dev);
3162         if (err) {
3163                 mfd_remove_devices(&pdev->dev);
3164                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3165                 return err;
3166         }
3167
3168         pr_info("DB8500 PRCMU initialized\n");
3169         return err;
3170 }
3171 static const struct of_device_id db8500_prcmu_match[] = {
3172         { .compatible = "stericsson,db8500-prcmu"},
3173         { },
3174 };
3175
3176 static struct platform_driver db8500_prcmu_driver = {
3177         .driver = {
3178                 .name = "db8500-prcmu",
3179                 .of_match_table = db8500_prcmu_match,
3180         },
3181         .probe = db8500_prcmu_probe,
3182 };
3183
3184 static int __init db8500_prcmu_init(void)
3185 {
3186         return platform_driver_register(&db8500_prcmu_driver);
3187 }
3188 core_initcall(db8500_prcmu_init);