Merge tag 'imx-drivers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/shawngu...
[linux-2.6-microblaze.git] / drivers / memory / tegra / mc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18
19 #include <soc/tegra/fuse.h>
20
21 #include "mc.h"
22
23 static const struct of_device_id tegra_mc_of_match[] = {
24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
25         { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
26 #endif
27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
28         { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
29 #endif
30 #ifdef CONFIG_ARCH_TEGRA_114_SOC
31         { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
32 #endif
33 #ifdef CONFIG_ARCH_TEGRA_124_SOC
34         { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
35 #endif
36 #ifdef CONFIG_ARCH_TEGRA_132_SOC
37         { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
38 #endif
39 #ifdef CONFIG_ARCH_TEGRA_210_SOC
40         { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
41 #endif
42         { }
43 };
44 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
45
46 static void tegra_mc_devm_action_put_device(void *data)
47 {
48         struct tegra_mc *mc = data;
49
50         put_device(mc->dev);
51 }
52
53 /**
54  * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
55  * @dev: device pointer for the consumer device
56  *
57  * This function will search for the Memory Controller node in a device-tree
58  * and retrieve the Memory Controller handle.
59  *
60  * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
61  */
62 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
63 {
64         struct platform_device *pdev;
65         struct device_node *np;
66         struct tegra_mc *mc;
67         int err;
68
69         np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
70         if (!np)
71                 return ERR_PTR(-ENOENT);
72
73         pdev = of_find_device_by_node(np);
74         of_node_put(np);
75         if (!pdev)
76                 return ERR_PTR(-ENODEV);
77
78         mc = platform_get_drvdata(pdev);
79         if (!mc) {
80                 put_device(&pdev->dev);
81                 return ERR_PTR(-EPROBE_DEFER);
82         }
83
84         err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc);
85         if (err) {
86                 put_device(mc->dev);
87                 return ERR_PTR(err);
88         }
89
90         return mc;
91 }
92 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
93
94 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
95                                      const struct tegra_mc_reset *rst)
96 {
97         unsigned long flags;
98         u32 value;
99
100         spin_lock_irqsave(&mc->lock, flags);
101
102         value = mc_readl(mc, rst->control) | BIT(rst->bit);
103         mc_writel(mc, value, rst->control);
104
105         spin_unlock_irqrestore(&mc->lock, flags);
106
107         return 0;
108 }
109
110 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
111                                        const struct tegra_mc_reset *rst)
112 {
113         return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
114 }
115
116 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
117                                        const struct tegra_mc_reset *rst)
118 {
119         unsigned long flags;
120         u32 value;
121
122         spin_lock_irqsave(&mc->lock, flags);
123
124         value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
125         mc_writel(mc, value, rst->control);
126
127         spin_unlock_irqrestore(&mc->lock, flags);
128
129         return 0;
130 }
131
132 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
133                                         const struct tegra_mc_reset *rst)
134 {
135         return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
136 }
137
138 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
139         .block_dma = tegra_mc_block_dma_common,
140         .dma_idling = tegra_mc_dma_idling_common,
141         .unblock_dma = tegra_mc_unblock_dma_common,
142         .reset_status = tegra_mc_reset_status_common,
143 };
144
145 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
146 {
147         return container_of(rcdev, struct tegra_mc, reset);
148 }
149
150 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
151                                                         unsigned long id)
152 {
153         unsigned int i;
154
155         for (i = 0; i < mc->soc->num_resets; i++)
156                 if (mc->soc->resets[i].id == id)
157                         return &mc->soc->resets[i];
158
159         return NULL;
160 }
161
162 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
163                                     unsigned long id)
164 {
165         struct tegra_mc *mc = reset_to_mc(rcdev);
166         const struct tegra_mc_reset_ops *rst_ops;
167         const struct tegra_mc_reset *rst;
168         int retries = 500;
169         int err;
170
171         rst = tegra_mc_reset_find(mc, id);
172         if (!rst)
173                 return -ENODEV;
174
175         rst_ops = mc->soc->reset_ops;
176         if (!rst_ops)
177                 return -ENODEV;
178
179         if (rst_ops->block_dma) {
180                 /* block clients DMA requests */
181                 err = rst_ops->block_dma(mc, rst);
182                 if (err) {
183                         dev_err(mc->dev, "failed to block %s DMA: %d\n",
184                                 rst->name, err);
185                         return err;
186                 }
187         }
188
189         if (rst_ops->dma_idling) {
190                 /* wait for completion of the outstanding DMA requests */
191                 while (!rst_ops->dma_idling(mc, rst)) {
192                         if (!retries--) {
193                                 dev_err(mc->dev, "failed to flush %s DMA\n",
194                                         rst->name);
195                                 return -EBUSY;
196                         }
197
198                         usleep_range(10, 100);
199                 }
200         }
201
202         if (rst_ops->hotreset_assert) {
203                 /* clear clients DMA requests sitting before arbitration */
204                 err = rst_ops->hotreset_assert(mc, rst);
205                 if (err) {
206                         dev_err(mc->dev, "failed to hot reset %s: %d\n",
207                                 rst->name, err);
208                         return err;
209                 }
210         }
211
212         return 0;
213 }
214
215 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
216                                       unsigned long id)
217 {
218         struct tegra_mc *mc = reset_to_mc(rcdev);
219         const struct tegra_mc_reset_ops *rst_ops;
220         const struct tegra_mc_reset *rst;
221         int err;
222
223         rst = tegra_mc_reset_find(mc, id);
224         if (!rst)
225                 return -ENODEV;
226
227         rst_ops = mc->soc->reset_ops;
228         if (!rst_ops)
229                 return -ENODEV;
230
231         if (rst_ops->hotreset_deassert) {
232                 /* take out client from hot reset */
233                 err = rst_ops->hotreset_deassert(mc, rst);
234                 if (err) {
235                         dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
236                                 rst->name, err);
237                         return err;
238                 }
239         }
240
241         if (rst_ops->unblock_dma) {
242                 /* allow new DMA requests to proceed to arbitration */
243                 err = rst_ops->unblock_dma(mc, rst);
244                 if (err) {
245                         dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
246                                 rst->name, err);
247                         return err;
248                 }
249         }
250
251         return 0;
252 }
253
254 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
255                                     unsigned long id)
256 {
257         struct tegra_mc *mc = reset_to_mc(rcdev);
258         const struct tegra_mc_reset_ops *rst_ops;
259         const struct tegra_mc_reset *rst;
260
261         rst = tegra_mc_reset_find(mc, id);
262         if (!rst)
263                 return -ENODEV;
264
265         rst_ops = mc->soc->reset_ops;
266         if (!rst_ops)
267                 return -ENODEV;
268
269         return rst_ops->reset_status(mc, rst);
270 }
271
272 static const struct reset_control_ops tegra_mc_reset_ops = {
273         .assert = tegra_mc_hotreset_assert,
274         .deassert = tegra_mc_hotreset_deassert,
275         .status = tegra_mc_hotreset_status,
276 };
277
278 static int tegra_mc_reset_setup(struct tegra_mc *mc)
279 {
280         int err;
281
282         mc->reset.ops = &tegra_mc_reset_ops;
283         mc->reset.owner = THIS_MODULE;
284         mc->reset.of_node = mc->dev->of_node;
285         mc->reset.of_reset_n_cells = 1;
286         mc->reset.nr_resets = mc->soc->num_resets;
287
288         err = reset_controller_register(&mc->reset);
289         if (err < 0)
290                 return err;
291
292         return 0;
293 }
294
295 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
296 {
297         unsigned long long tick;
298         unsigned int i;
299         u32 value;
300
301         /* compute the number of MC clock cycles per tick */
302         tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
303         do_div(tick, NSEC_PER_SEC);
304
305         value = mc_readl(mc, MC_EMEM_ARB_CFG);
306         value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
307         value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
308         mc_writel(mc, value, MC_EMEM_ARB_CFG);
309
310         /* write latency allowance defaults */
311         for (i = 0; i < mc->soc->num_clients; i++) {
312                 const struct tegra_mc_la *la = &mc->soc->clients[i].la;
313                 u32 value;
314
315                 value = mc_readl(mc, la->reg);
316                 value &= ~(la->mask << la->shift);
317                 value |= (la->def & la->mask) << la->shift;
318                 mc_writel(mc, value, la->reg);
319         }
320
321         /* latch new values */
322         mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
323
324         return 0;
325 }
326
327 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
328 {
329         unsigned int i;
330         struct tegra_mc_timing *timing = NULL;
331
332         for (i = 0; i < mc->num_timings; i++) {
333                 if (mc->timings[i].rate == rate) {
334                         timing = &mc->timings[i];
335                         break;
336                 }
337         }
338
339         if (!timing) {
340                 dev_err(mc->dev, "no memory timing registered for rate %lu\n",
341                         rate);
342                 return -EINVAL;
343         }
344
345         for (i = 0; i < mc->soc->num_emem_regs; ++i)
346                 mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
347
348         return 0;
349 }
350 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
351
352 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
353 {
354         u8 dram_count;
355
356         dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
357         dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
358         dram_count++;
359
360         return dram_count;
361 }
362 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
363
364 static int load_one_timing(struct tegra_mc *mc,
365                            struct tegra_mc_timing *timing,
366                            struct device_node *node)
367 {
368         int err;
369         u32 tmp;
370
371         err = of_property_read_u32(node, "clock-frequency", &tmp);
372         if (err) {
373                 dev_err(mc->dev,
374                         "timing %pOFn: failed to read rate\n", node);
375                 return err;
376         }
377
378         timing->rate = tmp;
379         timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
380                                          sizeof(u32), GFP_KERNEL);
381         if (!timing->emem_data)
382                 return -ENOMEM;
383
384         err = of_property_read_u32_array(node, "nvidia,emem-configuration",
385                                          timing->emem_data,
386                                          mc->soc->num_emem_regs);
387         if (err) {
388                 dev_err(mc->dev,
389                         "timing %pOFn: failed to read EMEM configuration\n",
390                         node);
391                 return err;
392         }
393
394         return 0;
395 }
396
397 static int load_timings(struct tegra_mc *mc, struct device_node *node)
398 {
399         struct device_node *child;
400         struct tegra_mc_timing *timing;
401         int child_count = of_get_child_count(node);
402         int i = 0, err;
403
404         mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
405                                    GFP_KERNEL);
406         if (!mc->timings)
407                 return -ENOMEM;
408
409         mc->num_timings = child_count;
410
411         for_each_child_of_node(node, child) {
412                 timing = &mc->timings[i++];
413
414                 err = load_one_timing(mc, timing, child);
415                 if (err) {
416                         of_node_put(child);
417                         return err;
418                 }
419         }
420
421         return 0;
422 }
423
424 static int tegra_mc_setup_timings(struct tegra_mc *mc)
425 {
426         struct device_node *node;
427         u32 ram_code, node_ram_code;
428         int err;
429
430         ram_code = tegra_read_ram_code();
431
432         mc->num_timings = 0;
433
434         for_each_child_of_node(mc->dev->of_node, node) {
435                 err = of_property_read_u32(node, "nvidia,ram-code",
436                                            &node_ram_code);
437                 if (err || (node_ram_code != ram_code))
438                         continue;
439
440                 err = load_timings(mc, node);
441                 of_node_put(node);
442                 if (err)
443                         return err;
444                 break;
445         }
446
447         if (mc->num_timings == 0)
448                 dev_warn(mc->dev,
449                          "no memory timings for RAM code %u registered\n",
450                          ram_code);
451
452         return 0;
453 }
454
455 static const char *const status_names[32] = {
456         [ 1] = "External interrupt",
457         [ 6] = "EMEM address decode error",
458         [ 7] = "GART page fault",
459         [ 8] = "Security violation",
460         [ 9] = "EMEM arbitration error",
461         [10] = "Page fault",
462         [11] = "Invalid APB ASID update",
463         [12] = "VPR violation",
464         [13] = "Secure carveout violation",
465         [16] = "MTS carveout violation",
466 };
467
468 static const char *const error_names[8] = {
469         [2] = "EMEM decode error",
470         [3] = "TrustZone violation",
471         [4] = "Carveout violation",
472         [6] = "SMMU translation error",
473 };
474
475 static irqreturn_t tegra_mc_irq(int irq, void *data)
476 {
477         struct tegra_mc *mc = data;
478         unsigned long status;
479         unsigned int bit;
480
481         /* mask all interrupts to avoid flooding */
482         status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
483         if (!status)
484                 return IRQ_NONE;
485
486         for_each_set_bit(bit, &status, 32) {
487                 const char *error = status_names[bit] ?: "unknown";
488                 const char *client = "unknown", *desc;
489                 const char *direction, *secure;
490                 phys_addr_t addr = 0;
491                 unsigned int i;
492                 char perm[7];
493                 u8 id, type;
494                 u32 value;
495
496                 value = mc_readl(mc, MC_ERR_STATUS);
497
498 #ifdef CONFIG_PHYS_ADDR_T_64BIT
499                 if (mc->soc->num_address_bits > 32) {
500                         addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
501                                 MC_ERR_STATUS_ADR_HI_MASK);
502                         addr <<= 32;
503                 }
504 #endif
505
506                 if (value & MC_ERR_STATUS_RW)
507                         direction = "write";
508                 else
509                         direction = "read";
510
511                 if (value & MC_ERR_STATUS_SECURITY)
512                         secure = "secure ";
513                 else
514                         secure = "";
515
516                 id = value & mc->soc->client_id_mask;
517
518                 for (i = 0; i < mc->soc->num_clients; i++) {
519                         if (mc->soc->clients[i].id == id) {
520                                 client = mc->soc->clients[i].name;
521                                 break;
522                         }
523                 }
524
525                 type = (value & MC_ERR_STATUS_TYPE_MASK) >>
526                        MC_ERR_STATUS_TYPE_SHIFT;
527                 desc = error_names[type];
528
529                 switch (value & MC_ERR_STATUS_TYPE_MASK) {
530                 case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
531                         perm[0] = ' ';
532                         perm[1] = '[';
533
534                         if (value & MC_ERR_STATUS_READABLE)
535                                 perm[2] = 'R';
536                         else
537                                 perm[2] = '-';
538
539                         if (value & MC_ERR_STATUS_WRITABLE)
540                                 perm[3] = 'W';
541                         else
542                                 perm[3] = '-';
543
544                         if (value & MC_ERR_STATUS_NONSECURE)
545                                 perm[4] = '-';
546                         else
547                                 perm[4] = 'S';
548
549                         perm[5] = ']';
550                         perm[6] = '\0';
551                         break;
552
553                 default:
554                         perm[0] = '\0';
555                         break;
556                 }
557
558                 value = mc_readl(mc, MC_ERR_ADR);
559                 addr |= value;
560
561                 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
562                                     client, secure, direction, &addr, error,
563                                     desc, perm);
564         }
565
566         /* clear interrupts */
567         mc_writel(mc, status, MC_INTSTATUS);
568
569         return IRQ_HANDLED;
570 }
571
572 static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data)
573 {
574         struct tegra_mc *mc = data;
575         unsigned long status;
576         unsigned int bit;
577
578         /* mask all interrupts to avoid flooding */
579         status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
580         if (!status)
581                 return IRQ_NONE;
582
583         for_each_set_bit(bit, &status, 32) {
584                 const char *direction = "read", *secure = "";
585                 const char *error = status_names[bit];
586                 const char *client, *desc;
587                 phys_addr_t addr;
588                 u32 value, reg;
589                 u8 id, type;
590
591                 switch (BIT(bit)) {
592                 case MC_INT_DECERR_EMEM:
593                         reg = MC_DECERR_EMEM_OTHERS_STATUS;
594                         value = mc_readl(mc, reg);
595
596                         id = value & mc->soc->client_id_mask;
597                         desc = error_names[2];
598
599                         if (value & BIT(31))
600                                 direction = "write";
601                         break;
602
603                 case MC_INT_INVALID_GART_PAGE:
604                         reg = MC_GART_ERROR_REQ;
605                         value = mc_readl(mc, reg);
606
607                         id = (value >> 1) & mc->soc->client_id_mask;
608                         desc = error_names[2];
609
610                         if (value & BIT(0))
611                                 direction = "write";
612                         break;
613
614                 case MC_INT_SECURITY_VIOLATION:
615                         reg = MC_SECURITY_VIOLATION_STATUS;
616                         value = mc_readl(mc, reg);
617
618                         id = value & mc->soc->client_id_mask;
619                         type = (value & BIT(30)) ? 4 : 3;
620                         desc = error_names[type];
621                         secure = "secure ";
622
623                         if (value & BIT(31))
624                                 direction = "write";
625                         break;
626
627                 default:
628                         continue;
629                 }
630
631                 client = mc->soc->clients[id].name;
632                 addr = mc_readl(mc, reg + sizeof(u32));
633
634                 dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n",
635                                     client, secure, direction, &addr, error,
636                                     desc);
637         }
638
639         /* clear interrupts */
640         mc_writel(mc, status, MC_INTSTATUS);
641
642         return IRQ_HANDLED;
643 }
644
645 /*
646  * Memory Controller (MC) has few Memory Clients that are issuing memory
647  * bandwidth allocation requests to the MC interconnect provider. The MC
648  * provider aggregates the requests and then sends the aggregated request
649  * up to the External Memory Controller (EMC) interconnect provider which
650  * re-configures hardware interface to External Memory (EMEM) in accordance
651  * to the required bandwidth. Each MC interconnect node represents an
652  * individual Memory Client.
653  *
654  * Memory interconnect topology:
655  *
656  *               +----+
657  * +--------+    |    |
658  * | TEXSRD +--->+    |
659  * +--------+    |    |
660  *               |    |    +-----+    +------+
661  *    ...        | MC +--->+ EMC +--->+ EMEM |
662  *               |    |    +-----+    +------+
663  * +--------+    |    |
664  * | DISP.. +--->+    |
665  * +--------+    |    |
666  *               +----+
667  */
668 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
669 {
670         struct icc_node *node;
671         unsigned int i;
672         int err;
673
674         /* older device-trees don't have interconnect properties */
675         if (!device_property_present(mc->dev, "#interconnect-cells") ||
676             !mc->soc->icc_ops)
677                 return 0;
678
679         mc->provider.dev = mc->dev;
680         mc->provider.data = &mc->provider;
681         mc->provider.set = mc->soc->icc_ops->set;
682         mc->provider.aggregate = mc->soc->icc_ops->aggregate;
683         mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
684
685         err = icc_provider_add(&mc->provider);
686         if (err)
687                 return err;
688
689         /* create Memory Controller node */
690         node = icc_node_create(TEGRA_ICC_MC);
691         if (IS_ERR(node)) {
692                 err = PTR_ERR(node);
693                 goto del_provider;
694         }
695
696         node->name = "Memory Controller";
697         icc_node_add(node, &mc->provider);
698
699         /* link Memory Controller to External Memory Controller */
700         err = icc_link_create(node, TEGRA_ICC_EMC);
701         if (err)
702                 goto remove_nodes;
703
704         for (i = 0; i < mc->soc->num_clients; i++) {
705                 /* create MC client node */
706                 node = icc_node_create(mc->soc->clients[i].id);
707                 if (IS_ERR(node)) {
708                         err = PTR_ERR(node);
709                         goto remove_nodes;
710                 }
711
712                 node->name = mc->soc->clients[i].name;
713                 icc_node_add(node, &mc->provider);
714
715                 /* link Memory Client to Memory Controller */
716                 err = icc_link_create(node, TEGRA_ICC_MC);
717                 if (err)
718                         goto remove_nodes;
719         }
720
721         /*
722          * MC driver is registered too early, so early that generic driver
723          * syncing doesn't work for the MC. But it doesn't really matter
724          * since syncing works for the EMC drivers, hence we can sync the
725          * MC driver by ourselves and then EMC will complete syncing of
726          * the whole ICC state.
727          */
728         icc_sync_state(mc->dev);
729
730         return 0;
731
732 remove_nodes:
733         icc_nodes_remove(&mc->provider);
734 del_provider:
735         icc_provider_del(&mc->provider);
736
737         return err;
738 }
739
740 static int tegra_mc_probe(struct platform_device *pdev)
741 {
742         struct resource *res;
743         struct tegra_mc *mc;
744         void *isr;
745         u64 mask;
746         int err;
747
748         mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
749         if (!mc)
750                 return -ENOMEM;
751
752         platform_set_drvdata(pdev, mc);
753         spin_lock_init(&mc->lock);
754         mc->soc = of_device_get_match_data(&pdev->dev);
755         mc->dev = &pdev->dev;
756
757         mask = DMA_BIT_MASK(mc->soc->num_address_bits);
758
759         err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
760         if (err < 0) {
761                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
762                 return err;
763         }
764
765         /* length of MC tick in nanoseconds */
766         mc->tick = 30;
767
768         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
769         mc->regs = devm_ioremap_resource(&pdev->dev, res);
770         if (IS_ERR(mc->regs))
771                 return PTR_ERR(mc->regs);
772
773         mc->clk = devm_clk_get(&pdev->dev, "mc");
774         if (IS_ERR(mc->clk)) {
775                 dev_err(&pdev->dev, "failed to get MC clock: %ld\n",
776                         PTR_ERR(mc->clk));
777                 return PTR_ERR(mc->clk);
778         }
779
780 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
781         if (mc->soc == &tegra20_mc_soc) {
782                 isr = tegra20_mc_irq;
783         } else
784 #endif
785         {
786                 /* ensure that debug features are disabled */
787                 mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
788
789                 err = tegra_mc_setup_latency_allowance(mc);
790                 if (err < 0) {
791                         dev_err(&pdev->dev,
792                                 "failed to setup latency allowance: %d\n",
793                                 err);
794                         return err;
795                 }
796
797                 isr = tegra_mc_irq;
798
799                 err = tegra_mc_setup_timings(mc);
800                 if (err < 0) {
801                         dev_err(&pdev->dev, "failed to setup timings: %d\n",
802                                 err);
803                         return err;
804                 }
805         }
806
807         mc->irq = platform_get_irq(pdev, 0);
808         if (mc->irq < 0)
809                 return mc->irq;
810
811         WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
812
813         mc_writel(mc, mc->soc->intmask, MC_INTMASK);
814
815         err = devm_request_irq(&pdev->dev, mc->irq, isr, 0,
816                                dev_name(&pdev->dev), mc);
817         if (err < 0) {
818                 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
819                         err);
820                 return err;
821         }
822
823         err = tegra_mc_reset_setup(mc);
824         if (err < 0)
825                 dev_err(&pdev->dev, "failed to register reset controller: %d\n",
826                         err);
827
828         err = tegra_mc_interconnect_setup(mc);
829         if (err < 0)
830                 dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
831                         err);
832
833         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
834                 mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
835                 if (IS_ERR(mc->smmu)) {
836                         dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
837                                 PTR_ERR(mc->smmu));
838                         mc->smmu = NULL;
839                 }
840         }
841
842         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
843                 mc->gart = tegra_gart_probe(&pdev->dev, mc);
844                 if (IS_ERR(mc->gart)) {
845                         dev_err(&pdev->dev, "failed to probe GART: %ld\n",
846                                 PTR_ERR(mc->gart));
847                         mc->gart = NULL;
848                 }
849         }
850
851         return 0;
852 }
853
854 static int tegra_mc_suspend(struct device *dev)
855 {
856         struct tegra_mc *mc = dev_get_drvdata(dev);
857         int err;
858
859         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
860                 err = tegra_gart_suspend(mc->gart);
861                 if (err)
862                         return err;
863         }
864
865         return 0;
866 }
867
868 static int tegra_mc_resume(struct device *dev)
869 {
870         struct tegra_mc *mc = dev_get_drvdata(dev);
871         int err;
872
873         if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
874                 err = tegra_gart_resume(mc->gart);
875                 if (err)
876                         return err;
877         }
878
879         return 0;
880 }
881
882 static const struct dev_pm_ops tegra_mc_pm_ops = {
883         .suspend = tegra_mc_suspend,
884         .resume = tegra_mc_resume,
885 };
886
887 static struct platform_driver tegra_mc_driver = {
888         .driver = {
889                 .name = "tegra-mc",
890                 .of_match_table = tegra_mc_of_match,
891                 .pm = &tegra_mc_pm_ops,
892                 .suppress_bind_attrs = true,
893         },
894         .prevent_deferred_probe = true,
895         .probe = tegra_mc_probe,
896 };
897
898 static int tegra_mc_init(void)
899 {
900         return platform_driver_register(&tegra_mc_driver);
901 }
902 arch_initcall(tegra_mc_init);
903
904 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
905 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
906 MODULE_LICENSE("GPL v2");