Merge tag 'v5.13-rc3' into asoc-5.13
[linux-2.6-microblaze.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/slab.h>
22 #include "../jedec_ddr.h"
23 #include "../of_memory.h"
24
25 static int irqmode;
26 module_param(irqmode, int, 0644);
27 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
28
29 #define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
30 #define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
31 #define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
32 #define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
33 #define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
34 #define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
35 #define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
36 #define CDREX_PAUSE                             (0x2091c)
37 #define CDREX_LPDDR3PHY_CON3                    (0x20a20)
38 #define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
39 #define EXYNOS5_TIMING_SET_SWI                  BIT(28)
40 #define USE_MX_MSPLL_TIMINGS                    (1)
41 #define USE_BPLL_TIMINGS                        (0)
42 #define EXYNOS5_AREF_NORMAL                     (0x2e)
43
44 #define DREX_PPCCLKCON          (0x0130)
45 #define DREX_PEREV2CONFIG       (0x013c)
46 #define DREX_PMNC_PPC           (0xE000)
47 #define DREX_CNTENS_PPC         (0xE010)
48 #define DREX_CNTENC_PPC         (0xE020)
49 #define DREX_INTENS_PPC         (0xE030)
50 #define DREX_INTENC_PPC         (0xE040)
51 #define DREX_FLAG_PPC           (0xE050)
52 #define DREX_PMCNT2_PPC         (0xE130)
53
54 /*
55  * A value for register DREX_PMNC_PPC which should be written to reset
56  * the cycle counter CCNT (a reference wall clock). It sets zero to the
57  * CCNT counter.
58  */
59 #define CC_RESET                BIT(2)
60
61 /*
62  * A value for register DREX_PMNC_PPC which does the reset of all performance
63  * counters to zero.
64  */
65 #define PPC_COUNTER_RESET       BIT(1)
66
67 /*
68  * Enables all configured counters (including cycle counter). The value should
69  * be written to the register DREX_PMNC_PPC.
70  */
71 #define PPC_ENABLE              BIT(0)
72
73 /* A value for register DREX_PPCCLKCON which enables performance events clock.
74  * Must be written before first access to the performance counters register
75  * set, otherwise it could crash.
76  */
77 #define PEREV_CLK_EN            BIT(0)
78
79 /*
80  * Values which are used to enable counters, interrupts or configure flags of
81  * the performance counters. They configure counter 2 and cycle counter.
82  */
83 #define PERF_CNT2               BIT(2)
84 #define PERF_CCNT               BIT(31)
85
86 /*
87  * Performance event types which are used for setting the preferred event
88  * to track in the counters.
89  * There is a set of different types, the values are from range 0 to 0x6f.
90  * These settings should be written to the configuration register which manages
91  * the type of the event (register DREX_PEREV2CONFIG).
92  */
93 #define READ_TRANSFER_CH0       (0x6d)
94 #define READ_TRANSFER_CH1       (0x6f)
95
96 #define PERF_COUNTER_START_VALUE 0xff000000
97 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
98
99 /**
100  * struct dmc_opp_table - Operating level desciption
101  * @freq_hz:            target frequency in Hz
102  * @volt_uv:            target voltage in uV
103  *
104  * Covers frequency and voltage settings of the DMC operating mode.
105  */
106 struct dmc_opp_table {
107         u32 freq_hz;
108         u32 volt_uv;
109 };
110
111 /**
112  * struct exynos5_dmc - main structure describing DMC device
113  * @dev:                DMC device
114  * @df:                 devfreq device structure returned by devfreq framework
115  * @gov_data:           configuration of devfreq governor
116  * @base_drexi0:        DREX0 registers mapping
117  * @base_drexi1:        DREX1 registers mapping
118  * @clk_regmap:         regmap for clock controller registers
119  * @lock:               protects curr_rate and frequency/voltage setting section
120  * @curr_rate:          current frequency
121  * @curr_volt:          current voltage
122  * @opp:                OPP table
123  * @opp_count:          number of 'opp' elements
124  * @timings_arr_size:   number of 'timings' elements
125  * @timing_row:         values for timing row register, for each OPP
126  * @timing_data:        values for timing data register, for each OPP
127  * @timing_power:       balues for timing power register, for each OPP
128  * @timings:            DDR memory timings, from device tree
129  * @min_tck:            DDR memory minimum timing values, from device tree
130  * @bypass_timing_row:  value for timing row register for bypass timings
131  * @bypass_timing_data: value for timing data register for bypass timings
132  * @bypass_timing_power:        value for timing power register for bypass
133  *                              timings
134  * @vdd_mif:            Memory interface regulator
135  * @fout_spll:          clock: SPLL
136  * @fout_bpll:          clock: BPLL
137  * @mout_spll:          clock: mux SPLL
138  * @mout_bpll:          clock: mux BPLL
139  * @mout_mclk_cdrex:    clock: mux mclk_cdrex
140  * @mout_mx_mspll_ccore:        clock: mux mx_mspll_ccore
141  * @counter:            devfreq events
142  * @num_counters:       number of 'counter' elements
143  * @last_overflow_ts:   time (in ns) of last overflow of each DREX
144  * @load:               utilization in percents
145  * @total:              total time between devfreq events
146  * @in_irq_mode:        whether running in interrupt mode (true)
147  *                      or polling (false)
148  *
149  * The main structure for the Dynamic Memory Controller which covers clocks,
150  * memory regions, HW information, parameters and current operating mode.
151  */
152 struct exynos5_dmc {
153         struct device *dev;
154         struct devfreq *df;
155         struct devfreq_simple_ondemand_data gov_data;
156         void __iomem *base_drexi0;
157         void __iomem *base_drexi1;
158         struct regmap *clk_regmap;
159         /* Protects curr_rate and frequency/voltage setting section */
160         struct mutex lock;
161         unsigned long curr_rate;
162         unsigned long curr_volt;
163         struct dmc_opp_table *opp;
164         int opp_count;
165         u32 timings_arr_size;
166         u32 *timing_row;
167         u32 *timing_data;
168         u32 *timing_power;
169         const struct lpddr3_timings *timings;
170         const struct lpddr3_min_tck *min_tck;
171         u32 bypass_timing_row;
172         u32 bypass_timing_data;
173         u32 bypass_timing_power;
174         struct regulator *vdd_mif;
175         struct clk *fout_spll;
176         struct clk *fout_bpll;
177         struct clk *mout_spll;
178         struct clk *mout_bpll;
179         struct clk *mout_mclk_cdrex;
180         struct clk *mout_mx_mspll_ccore;
181         struct devfreq_event_dev **counter;
182         int num_counters;
183         u64 last_overflow_ts[2];
184         unsigned long load;
185         unsigned long total;
186         bool in_irq_mode;
187 };
188
189 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
190         { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
191
192 #define TIMING_VAL2REG(timing, t_val)                   \
193 ({                                                      \
194                 u32 __val;                              \
195                 __val = (t_val) << (timing)->bit_beg;   \
196                 __val;                                  \
197 })
198
199 struct timing_reg {
200         char *name;
201         int bit_beg;
202         int bit_end;
203         unsigned int val;
204 };
205
206 static const struct timing_reg timing_row_reg_fields[] = {
207         TIMING_FIELD("tRFC", 24, 31),
208         TIMING_FIELD("tRRD", 20, 23),
209         TIMING_FIELD("tRP", 16, 19),
210         TIMING_FIELD("tRCD", 12, 15),
211         TIMING_FIELD("tRC", 6, 11),
212         TIMING_FIELD("tRAS", 0, 5),
213 };
214
215 static const struct timing_reg timing_data_reg_fields[] = {
216         TIMING_FIELD("tWTR", 28, 31),
217         TIMING_FIELD("tWR", 24, 27),
218         TIMING_FIELD("tRTP", 20, 23),
219         TIMING_FIELD("tW2W-C2C", 14, 14),
220         TIMING_FIELD("tR2R-C2C", 12, 12),
221         TIMING_FIELD("WL", 8, 11),
222         TIMING_FIELD("tDQSCK", 4, 7),
223         TIMING_FIELD("RL", 0, 3),
224 };
225
226 static const struct timing_reg timing_power_reg_fields[] = {
227         TIMING_FIELD("tFAW", 26, 31),
228         TIMING_FIELD("tXSR", 16, 25),
229         TIMING_FIELD("tXP", 8, 15),
230         TIMING_FIELD("tCKE", 4, 7),
231         TIMING_FIELD("tMRD", 0, 3),
232 };
233
234 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
235                       ARRAY_SIZE(timing_data_reg_fields) + \
236                       ARRAY_SIZE(timing_power_reg_fields))
237
238 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
239 {
240         int i, ret;
241
242         for (i = 0; i < dmc->num_counters; i++) {
243                 if (!dmc->counter[i])
244                         continue;
245                 ret = devfreq_event_set_event(dmc->counter[i]);
246                 if (ret < 0)
247                         return ret;
248         }
249         return 0;
250 }
251
252 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
253 {
254         int i, ret;
255
256         for (i = 0; i < dmc->num_counters; i++) {
257                 if (!dmc->counter[i])
258                         continue;
259                 ret = devfreq_event_enable_edev(dmc->counter[i]);
260                 if (ret < 0)
261                         return ret;
262         }
263         return 0;
264 }
265
266 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
267 {
268         int i, ret;
269
270         for (i = 0; i < dmc->num_counters; i++) {
271                 if (!dmc->counter[i])
272                         continue;
273                 ret = devfreq_event_disable_edev(dmc->counter[i]);
274                 if (ret < 0)
275                         return ret;
276         }
277         return 0;
278 }
279
280 /**
281  * find_target_freq_idx() - Finds requested frequency in local DMC configuration
282  * @dmc:        device for which the information is checked
283  * @target_rate:        requested frequency in KHz
284  *
285  * Seeks in the local DMC driver structure for the requested frequency value
286  * and returns index or error value.
287  */
288 static int find_target_freq_idx(struct exynos5_dmc *dmc,
289                                 unsigned long target_rate)
290 {
291         int i;
292
293         for (i = dmc->opp_count - 1; i >= 0; i--)
294                 if (dmc->opp[i].freq_hz <= target_rate)
295                         return i;
296
297         return -EINVAL;
298 }
299
300 /**
301  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
302  * @dmc:        device for which the new settings is going to be applied
303  * @set:        boolean variable passing set value
304  *
305  * Changes the register set, which holds timing parameters.
306  * There is two register sets: 0 and 1. The register set 0
307  * is used in normal operation when the clock is provided from main PLL.
308  * The bank register set 1 is used when the main PLL frequency is going to be
309  * changed and the clock is taken from alternative, stable source.
310  * This function switches between these banks according to the
311  * currently used clock source.
312  */
313 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
314 {
315         unsigned int reg;
316         int ret;
317
318         ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
319         if (ret)
320                 return ret;
321
322         if (set)
323                 reg |= EXYNOS5_TIMING_SET_SWI;
324         else
325                 reg &= ~EXYNOS5_TIMING_SET_SWI;
326
327         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
328
329         return 0;
330 }
331
332 /**
333  * exynos5_init_freq_table() - Initialized PM OPP framework
334  * @dmc:        DMC device for which the frequencies are used for OPP init
335  * @profile:    devfreq device's profile
336  *
337  * Populate the devfreq device's OPP table based on current frequency, voltage.
338  */
339 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
340                                    struct devfreq_dev_profile *profile)
341 {
342         int i, ret;
343         int idx;
344         unsigned long freq;
345
346         ret = devm_pm_opp_of_add_table(dmc->dev);
347         if (ret < 0) {
348                 dev_err(dmc->dev, "Failed to get OPP table\n");
349                 return ret;
350         }
351
352         dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
353
354         dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
355                                       sizeof(struct dmc_opp_table), GFP_KERNEL);
356         if (!dmc->opp)
357                 return -ENOMEM;
358
359         idx = dmc->opp_count - 1;
360         for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
361                 struct dev_pm_opp *opp;
362
363                 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
364                 if (IS_ERR(opp))
365                         return PTR_ERR(opp);
366
367                 dmc->opp[idx - i].freq_hz = freq;
368                 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
369
370                 dev_pm_opp_put(opp);
371         }
372
373         return 0;
374 }
375
376 /**
377  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
378  * @dmc:        device for which the new settings is going to be applied
379  *
380  * Low-level function for changing timings for DRAM memory clocking from
381  * 'bypass' clock source (fixed frequency @400MHz).
382  * It uses timing bank registers set 1.
383  */
384 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
385 {
386         writel(EXYNOS5_AREF_NORMAL,
387                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
388
389         writel(dmc->bypass_timing_row,
390                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
391         writel(dmc->bypass_timing_row,
392                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
393         writel(dmc->bypass_timing_data,
394                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
395         writel(dmc->bypass_timing_data,
396                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
397         writel(dmc->bypass_timing_power,
398                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
399         writel(dmc->bypass_timing_power,
400                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
401 }
402
403 /**
404  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
405  * @dmc:        device for which the new settings is going to be applied
406  * @target_rate:        target frequency of the DMC
407  *
408  * Low-level function for changing timings for DRAM memory operating from main
409  * clock source (BPLL), which can have different frequencies. Thus, each
410  * frequency must have corresponding timings register values in order to keep
411  * the needed delays.
412  * It uses timing bank registers set 0.
413  */
414 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
415                                        unsigned long target_rate)
416 {
417         int idx;
418
419         for (idx = dmc->opp_count - 1; idx >= 0; idx--)
420                 if (dmc->opp[idx].freq_hz <= target_rate)
421                         break;
422
423         if (idx < 0)
424                 return -EINVAL;
425
426         writel(EXYNOS5_AREF_NORMAL,
427                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
428
429         writel(dmc->timing_row[idx],
430                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
431         writel(dmc->timing_row[idx],
432                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
433         writel(dmc->timing_data[idx],
434                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
435         writel(dmc->timing_data[idx],
436                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
437         writel(dmc->timing_power[idx],
438                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
439         writel(dmc->timing_power[idx],
440                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
441
442         return 0;
443 }
444
445 /**
446  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
447  * @dmc:        device for which it is going to be set
448  * @target_volt:        new voltage which is chosen to be final
449  *
450  * Function tries to align voltage to the safe level for 'normal' mode.
451  * It checks the need of higher voltage and changes the value. The target
452  * voltage might be lower that currently set and still the system will be
453  * stable.
454  */
455 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
456                                             unsigned long target_volt)
457 {
458         int ret = 0;
459
460         if (dmc->curr_volt <= target_volt)
461                 return 0;
462
463         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
464                                     target_volt);
465         if (!ret)
466                 dmc->curr_volt = target_volt;
467
468         return ret;
469 }
470
471 /**
472  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
473  * @dmc:        device for which it is going to be set
474  * @target_volt:        new voltage which is chosen to be final
475  *
476  * Function tries to align voltage to the safe level for the 'bypass' mode.
477  * It checks the need of higher voltage and changes the value.
478  * The target voltage must not be less than currently needed, because
479  * for current frequency the device might become unstable.
480  */
481 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
482                                             unsigned long target_volt)
483 {
484         int ret = 0;
485
486         if (dmc->curr_volt >= target_volt)
487                 return 0;
488
489         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
490                                     target_volt);
491         if (!ret)
492                 dmc->curr_volt = target_volt;
493
494         return ret;
495 }
496
497 /**
498  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
499  * @dmc:        device for which it is going to be set
500  * @target_rate:        new frequency which is chosen to be final
501  *
502  * Function changes the DRAM timings for the temporary 'bypass' mode.
503  */
504 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
505                                                  unsigned long target_rate)
506 {
507         int idx = find_target_freq_idx(dmc, target_rate);
508
509         if (idx < 0)
510                 return -EINVAL;
511
512         exynos5_set_bypass_dram_timings(dmc);
513
514         return 0;
515 }
516
517 /**
518  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
519  * @dmc:        DMC device for which the switching is going to happen
520  * @target_rate:        new frequency which is going to be set as a final
521  * @target_volt:        new voltage which is going to be set as a final
522  *
523  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
524  * This mode is used only temporary but if required, changes voltage and timings
525  * for DRAM chips. It switches the main clock to stable clock source for the
526  * period of the main PLL reconfiguration.
527  */
528 static int
529 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
530                                            unsigned long target_rate,
531                                            unsigned long target_volt)
532 {
533         int ret;
534
535         /*
536          * Having higher voltage for a particular frequency does not harm
537          * the chip. Use it for the temporary frequency change when one
538          * voltage manipulation might be avoided.
539          */
540         ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
541         if (ret)
542                 return ret;
543
544         /*
545          * Longer delays for DRAM does not cause crash, the opposite does.
546          */
547         ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
548         if (ret)
549                 return ret;
550
551         /*
552          * Delays are long enough, so use them for the new coming clock.
553          */
554         ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
555
556         return ret;
557 }
558
559 /**
560  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
561  * using safe procedure
562  * @dmc:        device for which the frequency is going to be changed
563  * @target_rate:        requested new frequency
564  * @target_volt:        requested voltage which corresponds to the new frequency
565  *
566  * The DMC frequency change procedure requires a few steps.
567  * The main requirement is to change the clock source in the clk mux
568  * for the time of main clock PLL locking. The assumption is that the
569  * alternative clock source set as parent is stable.
570  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
571  * clock. This requires alignment in DRAM timing parameters for the new
572  * T-period. There is two bank sets for keeping DRAM
573  * timings: set 0 and set 1. The set 0 is used when main clock source is
574  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
575  * the two bank sets is part of the process.
576  * The voltage must also be aligned to the minimum required level. There is
577  * this intermediate step with switching to 'bypass' parent clock source.
578  * if the old voltage is lower, it requires an increase of the voltage level.
579  * The complexity of the voltage manipulation is hidden in low level function.
580  * In this function there is last alignment of the voltage level at the end.
581  */
582 static int
583 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
584                                  unsigned long target_rate,
585                                  unsigned long target_volt)
586 {
587         int ret;
588
589         ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
590                                                          target_volt);
591         if (ret)
592                 return ret;
593
594         /*
595          * Voltage is set at least to a level needed for this frequency,
596          * so switching clock source is safe now.
597          */
598         clk_prepare_enable(dmc->fout_spll);
599         clk_prepare_enable(dmc->mout_spll);
600         clk_prepare_enable(dmc->mout_mx_mspll_ccore);
601
602         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
603         if (ret)
604                 goto disable_clocks;
605
606         /*
607          * We are safe to increase the timings for current bypass frequency.
608          * Thanks to this the settings will be ready for the upcoming clock
609          * source change.
610          */
611         exynos5_dram_change_timings(dmc, target_rate);
612
613         clk_set_rate(dmc->fout_bpll, target_rate);
614
615         ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
616         if (ret)
617                 goto disable_clocks;
618
619         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
620         if (ret)
621                 goto disable_clocks;
622
623         /*
624          * Make sure if the voltage is not from 'bypass' settings and align to
625          * the right level for power efficiency.
626          */
627         ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
628
629 disable_clocks:
630         clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
631         clk_disable_unprepare(dmc->mout_spll);
632         clk_disable_unprepare(dmc->fout_spll);
633
634         return ret;
635 }
636
637 /**
638  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
639  * table.
640  * @dmc:        device for which the frequency is going to be changed
641  * @freq:       requested frequency in KHz
642  * @target_rate:        returned frequency which is the same or lower than
643  *                      requested
644  * @target_volt:        returned voltage which corresponds to the returned
645  *                      frequency
646  * @flags:      devfreq flags provided for this frequency change request
647  *
648  * Function gets requested frequency and checks OPP framework for needed
649  * frequency and voltage. It populates the values 'target_rate' and
650  * 'target_volt' or returns error value when OPP framework fails.
651  */
652 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
653                                      unsigned long *freq,
654                                      unsigned long *target_rate,
655                                      unsigned long *target_volt, u32 flags)
656 {
657         struct dev_pm_opp *opp;
658
659         opp = devfreq_recommended_opp(dmc->dev, freq, flags);
660         if (IS_ERR(opp))
661                 return PTR_ERR(opp);
662
663         *target_rate = dev_pm_opp_get_freq(opp);
664         *target_volt = dev_pm_opp_get_voltage(opp);
665         dev_pm_opp_put(opp);
666
667         return 0;
668 }
669
670 /**
671  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
672  * @dev:        device for which the frequency is going to be changed
673  * @freq:       requested frequency in KHz
674  * @flags:      flags provided for this frequency change request
675  *
676  * An entry function provided to the devfreq framework which provides frequency
677  * change of the DMC. The function gets the possible rate from OPP table based
678  * on requested frequency. It calls the next function responsible for the
679  * frequency and voltage change. In case of failure, does not set 'curr_rate'
680  * and returns error value to the framework.
681  */
682 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
683                               u32 flags)
684 {
685         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
686         unsigned long target_rate = 0;
687         unsigned long target_volt = 0;
688         int ret;
689
690         ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
691                                         flags);
692
693         if (ret)
694                 return ret;
695
696         if (target_rate == dmc->curr_rate)
697                 return 0;
698
699         mutex_lock(&dmc->lock);
700
701         ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
702
703         if (ret) {
704                 mutex_unlock(&dmc->lock);
705                 return ret;
706         }
707
708         dmc->curr_rate = target_rate;
709
710         mutex_unlock(&dmc->lock);
711         return 0;
712 }
713
714 /**
715  * exynos5_counters_get() - Gets the performance counters values.
716  * @dmc:        device for which the counters are going to be checked
717  * @load_count: variable which is populated with counter value
718  * @total_count:        variable which is used as 'wall clock' reference
719  *
720  * Function which provides performance counters values. It sums up counters for
721  * two DMC channels. The 'total_count' is used as a reference and max value.
722  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
723  */
724 static int exynos5_counters_get(struct exynos5_dmc *dmc,
725                                 unsigned long *load_count,
726                                 unsigned long *total_count)
727 {
728         unsigned long total = 0;
729         struct devfreq_event_data event;
730         int ret, i;
731
732         *load_count = 0;
733
734         /* Take into account only read+write counters, but stop all */
735         for (i = 0; i < dmc->num_counters; i++) {
736                 if (!dmc->counter[i])
737                         continue;
738
739                 ret = devfreq_event_get_event(dmc->counter[i], &event);
740                 if (ret < 0)
741                         return ret;
742
743                 *load_count += event.load_count;
744
745                 if (total < event.total_count)
746                         total = event.total_count;
747         }
748
749         *total_count = total;
750
751         return 0;
752 }
753
754 /**
755  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
756  * @dmc:        device for which the counters are going to be checked
757  * @beg_value:  initial value for the counter
758  *
759  * Function which enables needed counters, interrupts and sets initial values
760  * then starts the counters.
761  */
762 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
763                                           u32 beg_value)
764 {
765         /* Enable interrupts for counter 2 */
766         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
767         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
768
769         /* Enable counter 2 and CCNT  */
770         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
771         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
772
773         /* Clear overflow flag for all counters */
774         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
775         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
776
777         /* Reset all counters */
778         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
779         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
780
781         /*
782          * Set start value for the counters, the number of samples that
783          * will be gathered is calculated as: 0xffffffff - beg_value
784          */
785         writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
786         writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
787
788         /* Start all counters */
789         writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
790         writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
791 }
792
793 /**
794  * exynos5_dmc_perf_events_calc() - Calculate utilization
795  * @dmc:        device for which the counters are going to be checked
796  * @diff_ts:    time between last interrupt and current one
797  *
798  * Function which calculates needed utilization for the devfreq governor.
799  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
800  * between interrupts, which approximates utilization.
801  */
802 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
803 {
804         /*
805          * This is a simple algorithm for managing traffic on DMC.
806          * When there is almost no load the counters overflow every 4s,
807          * no mater the DMC frequency.
808          * The high load might be approximated using linear function.
809          * Knowing that, simple calculation can provide 'busy_time' and
810          * 'total_time' to the devfreq governor which picks up target
811          * frequency.
812          * We want a fast ramp up and slow decay in frequency change function.
813          */
814         if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
815                 /*
816                  * Set higher utilization for the simple_ondemand governor.
817                  * The governor should increase the frequency of the DMC.
818                  */
819                 dmc->load = 70;
820                 dmc->total = 100;
821         } else {
822                 /*
823                  * Set low utilization for the simple_ondemand governor.
824                  * The governor should decrease the frequency of the DMC.
825                  */
826                 dmc->load = 35;
827                 dmc->total = 100;
828         }
829
830         dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
831 }
832
833 /**
834  * exynos5_dmc_perf_events_check() - Checks the status of the counters
835  * @dmc:        device for which the counters are going to be checked
836  *
837  * Function which is called from threaded IRQ to check the counters state
838  * and to call approximation for the needed utilization.
839  */
840 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
841 {
842         u32 val;
843         u64 diff_ts, ts;
844
845         ts = ktime_get_ns();
846
847         /* Stop all counters */
848         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
849         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
850
851         /* Check the source in interrupt flag registers (which channel) */
852         val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
853         if (val) {
854                 diff_ts = ts - dmc->last_overflow_ts[0];
855                 dmc->last_overflow_ts[0] = ts;
856                 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
857         } else {
858                 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
859                 diff_ts = ts - dmc->last_overflow_ts[1];
860                 dmc->last_overflow_ts[1] = ts;
861                 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
862         }
863
864         exynos5_dmc_perf_events_calc(dmc, diff_ts);
865
866         exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
867 }
868
869 /**
870  * exynos5_dmc_enable_perf_events() - Enable performance events
871  * @dmc:        device for which the counters are going to be checked
872  *
873  * Function which is setup needed environment and enables counters.
874  */
875 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
876 {
877         u64 ts;
878
879         /* Enable Performance Event Clock */
880         writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
881         writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
882
883         /* Select read transfers as performance event2 */
884         writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
885         writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
886
887         ts = ktime_get_ns();
888         dmc->last_overflow_ts[0] = ts;
889         dmc->last_overflow_ts[1] = ts;
890
891         /* Devfreq shouldn't be faster than initialization, play safe though. */
892         dmc->load = 99;
893         dmc->total = 100;
894 }
895
896 /**
897  * exynos5_dmc_disable_perf_events() - Disable performance events
898  * @dmc:        device for which the counters are going to be checked
899  *
900  * Function which stops, disables performance event counters and interrupts.
901  */
902 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
903 {
904         /* Stop all counters */
905         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
906         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
907
908         /* Disable interrupts for counter 2 */
909         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
910         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
911
912         /* Disable counter 2 and CCNT  */
913         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
914         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
915
916         /* Clear overflow flag for all counters */
917         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
918         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
919 }
920
921 /**
922  * exynos5_dmc_get_status() - Read current DMC performance statistics.
923  * @dev:        device for which the statistics are requested
924  * @stat:       structure which has statistic fields
925  *
926  * Function reads the DMC performance counters and calculates 'busy_time'
927  * and 'total_time'. To protect from overflow, the values are shifted right
928  * by 10. After read out the counters are setup to count again.
929  */
930 static int exynos5_dmc_get_status(struct device *dev,
931                                   struct devfreq_dev_status *stat)
932 {
933         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
934         unsigned long load, total;
935         int ret;
936
937         if (dmc->in_irq_mode) {
938                 mutex_lock(&dmc->lock);
939                 stat->current_frequency = dmc->curr_rate;
940                 mutex_unlock(&dmc->lock);
941
942                 stat->busy_time = dmc->load;
943                 stat->total_time = dmc->total;
944         } else {
945                 ret = exynos5_counters_get(dmc, &load, &total);
946                 if (ret < 0)
947                         return -EINVAL;
948
949                 /* To protect from overflow, divide by 1024 */
950                 stat->busy_time = load >> 10;
951                 stat->total_time = total >> 10;
952
953                 ret = exynos5_counters_set_event(dmc);
954                 if (ret < 0) {
955                         dev_err(dev, "could not set event counter\n");
956                         return ret;
957                 }
958         }
959
960         return 0;
961 }
962
963 /**
964  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
965  * @dev:        device for which the framework checks operating frequency
966  * @freq:       returned frequency value
967  *
968  * It returns the currently used frequency of the DMC. The real operating
969  * frequency might be lower when the clock source value could not be divided
970  * to the requested value.
971  */
972 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
973 {
974         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
975
976         mutex_lock(&dmc->lock);
977         *freq = dmc->curr_rate;
978         mutex_unlock(&dmc->lock);
979
980         return 0;
981 }
982
983 /*
984  * exynos5_dmc_df_profile - Devfreq governor's profile structure
985  *
986  * It provides to the devfreq framework needed functions and polling period.
987  */
988 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
989         .timer = DEVFREQ_TIMER_DELAYED,
990         .target = exynos5_dmc_target,
991         .get_dev_status = exynos5_dmc_get_status,
992         .get_cur_freq = exynos5_dmc_get_cur_freq,
993 };
994
995 /**
996  * exynos5_dmc_align_init_freq() - Align initial frequency value
997  * @dmc:        device for which the frequency is going to be set
998  * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
999  *
1000  * The initial bootloader frequency, which is present during boot, might be
1001  * different that supported frequency values in the driver. It is possible
1002  * due to different PLL settings or used PLL as a source.
1003  * This function provides the 'initial_freq' for the devfreq framework
1004  * statistics engine which supports only registered values. Thus, some alignment
1005  * must be made.
1006  */
1007 static unsigned long
1008 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1009                             unsigned long bootloader_init_freq)
1010 {
1011         unsigned long aligned_freq;
1012         int idx;
1013
1014         idx = find_target_freq_idx(dmc, bootloader_init_freq);
1015         if (idx >= 0)
1016                 aligned_freq = dmc->opp[idx].freq_hz;
1017         else
1018                 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1019
1020         return aligned_freq;
1021 }
1022
1023 /**
1024  * create_timings_aligned() - Create register values and align with standard
1025  * @dmc:        device for which the frequency is going to be set
1026  * @reg_timing_row:     array to fill with values for timing row register
1027  * @reg_timing_data:    array to fill with values for timing data register
1028  * @reg_timing_power:   array to fill with values for timing power register
1029  * @clk_period_ps:      the period of the clock, known as tCK
1030  *
1031  * The function calculates timings and creates a register value ready for
1032  * a frequency transition. The register contains a few timings. They are
1033  * shifted by a known offset. The timing value is calculated based on memory
1034  * specyfication: minimal time required and minimal cycles required.
1035  */
1036 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1037                                   u32 *reg_timing_data, u32 *reg_timing_power,
1038                                   u32 clk_period_ps)
1039 {
1040         u32 val;
1041         const struct timing_reg *reg;
1042
1043         if (clk_period_ps == 0)
1044                 return -EINVAL;
1045
1046         *reg_timing_row = 0;
1047         *reg_timing_data = 0;
1048         *reg_timing_power = 0;
1049
1050         val = dmc->timings->tRFC / clk_period_ps;
1051         val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1052         val = max(val, dmc->min_tck->tRFC);
1053         reg = &timing_row_reg_fields[0];
1054         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1055
1056         val = dmc->timings->tRRD / clk_period_ps;
1057         val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1058         val = max(val, dmc->min_tck->tRRD);
1059         reg = &timing_row_reg_fields[1];
1060         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1061
1062         val = dmc->timings->tRPab / clk_period_ps;
1063         val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1064         val = max(val, dmc->min_tck->tRPab);
1065         reg = &timing_row_reg_fields[2];
1066         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1067
1068         val = dmc->timings->tRCD / clk_period_ps;
1069         val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1070         val = max(val, dmc->min_tck->tRCD);
1071         reg = &timing_row_reg_fields[3];
1072         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1073
1074         val = dmc->timings->tRC / clk_period_ps;
1075         val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1076         val = max(val, dmc->min_tck->tRC);
1077         reg = &timing_row_reg_fields[4];
1078         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1079
1080         val = dmc->timings->tRAS / clk_period_ps;
1081         val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1082         val = max(val, dmc->min_tck->tRAS);
1083         reg = &timing_row_reg_fields[5];
1084         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1085
1086         /* data related timings */
1087         val = dmc->timings->tWTR / clk_period_ps;
1088         val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1089         val = max(val, dmc->min_tck->tWTR);
1090         reg = &timing_data_reg_fields[0];
1091         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1092
1093         val = dmc->timings->tWR / clk_period_ps;
1094         val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1095         val = max(val, dmc->min_tck->tWR);
1096         reg = &timing_data_reg_fields[1];
1097         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1098
1099         val = dmc->timings->tRTP / clk_period_ps;
1100         val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1101         val = max(val, dmc->min_tck->tRTP);
1102         reg = &timing_data_reg_fields[2];
1103         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1104
1105         val = dmc->timings->tW2W_C2C / clk_period_ps;
1106         val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1107         val = max(val, dmc->min_tck->tW2W_C2C);
1108         reg = &timing_data_reg_fields[3];
1109         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1110
1111         val = dmc->timings->tR2R_C2C / clk_period_ps;
1112         val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1113         val = max(val, dmc->min_tck->tR2R_C2C);
1114         reg = &timing_data_reg_fields[4];
1115         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1116
1117         val = dmc->timings->tWL / clk_period_ps;
1118         val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1119         val = max(val, dmc->min_tck->tWL);
1120         reg = &timing_data_reg_fields[5];
1121         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1122
1123         val = dmc->timings->tDQSCK / clk_period_ps;
1124         val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1125         val = max(val, dmc->min_tck->tDQSCK);
1126         reg = &timing_data_reg_fields[6];
1127         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1128
1129         val = dmc->timings->tRL / clk_period_ps;
1130         val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1131         val = max(val, dmc->min_tck->tRL);
1132         reg = &timing_data_reg_fields[7];
1133         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1134
1135         /* power related timings */
1136         val = dmc->timings->tFAW / clk_period_ps;
1137         val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1138         val = max(val, dmc->min_tck->tFAW);
1139         reg = &timing_power_reg_fields[0];
1140         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1141
1142         val = dmc->timings->tXSR / clk_period_ps;
1143         val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1144         val = max(val, dmc->min_tck->tXSR);
1145         reg = &timing_power_reg_fields[1];
1146         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1147
1148         val = dmc->timings->tXP / clk_period_ps;
1149         val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1150         val = max(val, dmc->min_tck->tXP);
1151         reg = &timing_power_reg_fields[2];
1152         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1153
1154         val = dmc->timings->tCKE / clk_period_ps;
1155         val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1156         val = max(val, dmc->min_tck->tCKE);
1157         reg = &timing_power_reg_fields[3];
1158         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1159
1160         val = dmc->timings->tMRD / clk_period_ps;
1161         val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1162         val = max(val, dmc->min_tck->tMRD);
1163         reg = &timing_power_reg_fields[4];
1164         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1165
1166         return 0;
1167 }
1168
1169 /**
1170  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1171  * @dmc:        device for which the frequency is going to be set
1172  *
1173  * The function parses DT entries with DRAM information.
1174  */
1175 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1176 {
1177         int ret = 0;
1178         int idx;
1179         struct device_node *np_ddr;
1180         u32 freq_mhz, clk_period_ps;
1181
1182         np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1183         if (!np_ddr) {
1184                 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1185                 return -EINVAL;
1186         }
1187
1188         dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1189                                              sizeof(u32), GFP_KERNEL);
1190         if (!dmc->timing_row)
1191                 return -ENOMEM;
1192
1193         dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1194                                               sizeof(u32), GFP_KERNEL);
1195         if (!dmc->timing_data)
1196                 return -ENOMEM;
1197
1198         dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1199                                                sizeof(u32), GFP_KERNEL);
1200         if (!dmc->timing_power)
1201                 return -ENOMEM;
1202
1203         dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1204                                                  DDR_TYPE_LPDDR3,
1205                                                  &dmc->timings_arr_size);
1206         if (!dmc->timings) {
1207                 of_node_put(np_ddr);
1208                 dev_warn(dmc->dev, "could not get timings from DT\n");
1209                 return -EINVAL;
1210         }
1211
1212         dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1213         if (!dmc->min_tck) {
1214                 of_node_put(np_ddr);
1215                 dev_warn(dmc->dev, "could not get tck from DT\n");
1216                 return -EINVAL;
1217         }
1218
1219         /* Sorted array of OPPs with frequency ascending */
1220         for (idx = 0; idx < dmc->opp_count; idx++) {
1221                 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1222                 clk_period_ps = 1000000 / freq_mhz;
1223
1224                 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1225                                              &dmc->timing_data[idx],
1226                                              &dmc->timing_power[idx],
1227                                              clk_period_ps);
1228         }
1229
1230         of_node_put(np_ddr);
1231
1232         /* Take the highest frequency's timings as 'bypass' */
1233         dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1234         dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1235         dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1236
1237         return ret;
1238 }
1239
1240 /**
1241  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242  * @dmc:        DMC structure containing needed fields
1243  *
1244  * Get the needed clocks defined in DT device, enable and set the right parents.
1245  * Read current frequency and initialize the initial rate for governor.
1246  */
1247 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1248 {
1249         int ret;
1250         unsigned long target_volt = 0;
1251         unsigned long target_rate = 0;
1252         unsigned int tmp;
1253
1254         dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1255         if (IS_ERR(dmc->fout_spll))
1256                 return PTR_ERR(dmc->fout_spll);
1257
1258         dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1259         if (IS_ERR(dmc->fout_bpll))
1260                 return PTR_ERR(dmc->fout_bpll);
1261
1262         dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1263         if (IS_ERR(dmc->mout_mclk_cdrex))
1264                 return PTR_ERR(dmc->mout_mclk_cdrex);
1265
1266         dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1267         if (IS_ERR(dmc->mout_bpll))
1268                 return PTR_ERR(dmc->mout_bpll);
1269
1270         dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1271                                                 "mout_mx_mspll_ccore");
1272         if (IS_ERR(dmc->mout_mx_mspll_ccore))
1273                 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1274
1275         dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1276         if (IS_ERR(dmc->mout_spll)) {
1277                 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1278                 if (IS_ERR(dmc->mout_spll))
1279                         return PTR_ERR(dmc->mout_spll);
1280         }
1281
1282         /*
1283          * Convert frequency to KHz values and set it for the governor.
1284          */
1285         dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1286         dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1287         exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1288
1289         ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1290                                         &target_volt, 0);
1291         if (ret)
1292                 return ret;
1293
1294         dmc->curr_volt = target_volt;
1295
1296         ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1297         if (ret)
1298                 return ret;
1299
1300         clk_prepare_enable(dmc->fout_bpll);
1301         clk_prepare_enable(dmc->mout_bpll);
1302
1303         /*
1304          * Some bootloaders do not set clock routes correctly.
1305          * Stop one path in clocks to PHY.
1306          */
1307         regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1308         tmp &= ~(BIT(1) | BIT(0));
1309         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1310
1311         return 0;
1312 }
1313
1314 /**
1315  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316  * @dmc:        DMC for which it does the setup
1317  *
1318  * Initialization of performance counters in DMC for estimating usage.
1319  * The counter's values are used for calculation of a memory bandwidth and based
1320  * on that the governor changes the frequency.
1321  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1322  */
1323 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1324 {
1325         int counters_size;
1326         int ret, i;
1327
1328         dmc->num_counters = devfreq_event_get_edev_count(dmc->dev,
1329                                                         "devfreq-events");
1330         if (dmc->num_counters < 0) {
1331                 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1332                 return dmc->num_counters;
1333         }
1334
1335         counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1336         dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1337         if (!dmc->counter)
1338                 return -ENOMEM;
1339
1340         for (i = 0; i < dmc->num_counters; i++) {
1341                 dmc->counter[i] =
1342                         devfreq_event_get_edev_by_phandle(dmc->dev,
1343                                                 "devfreq-events", i);
1344                 if (IS_ERR_OR_NULL(dmc->counter[i]))
1345                         return -EPROBE_DEFER;
1346         }
1347
1348         ret = exynos5_counters_enable_edev(dmc);
1349         if (ret < 0) {
1350                 dev_err(dmc->dev, "could not enable event counter\n");
1351                 return ret;
1352         }
1353
1354         ret = exynos5_counters_set_event(dmc);
1355         if (ret < 0) {
1356                 exynos5_counters_disable_edev(dmc);
1357                 dev_err(dmc->dev, "could not set event counter\n");
1358                 return ret;
1359         }
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1366  * @dmc:        device which is used for changing this feature
1367  *
1368  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1369  * changes its configuration. In such situation access to the memory is blocked
1370  * in DMC automatically. This feature is used when clock frequency change
1371  * request appears and touches clock tree.
1372  */
1373 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1374 {
1375         unsigned int val;
1376         int ret;
1377
1378         ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1379         if (ret)
1380                 return ret;
1381
1382         val |= 1UL;
1383         regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1384
1385         return 0;
1386 }
1387
1388 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1389 {
1390         int res;
1391         struct exynos5_dmc *dmc = priv;
1392
1393         mutex_lock(&dmc->df->lock);
1394         exynos5_dmc_perf_events_check(dmc);
1395         res = update_devfreq(dmc->df);
1396         mutex_unlock(&dmc->df->lock);
1397
1398         if (res)
1399                 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1400
1401         return IRQ_HANDLED;
1402 }
1403
1404 /**
1405  * exynos5_dmc_probe() - Probe function for the DMC driver
1406  * @pdev:       platform device for which the driver is going to be initialized
1407  *
1408  * Initialize basic components: clocks, regulators, performance counters, etc.
1409  * Read out product version and based on the information setup
1410  * internal structures for the controller (frequency and voltage) and for DRAM
1411  * memory parameters: timings for each operating frequency.
1412  * Register new devfreq device for controlling DVFS of the DMC.
1413  */
1414 static int exynos5_dmc_probe(struct platform_device *pdev)
1415 {
1416         int ret = 0;
1417         struct device *dev = &pdev->dev;
1418         struct device_node *np = dev->of_node;
1419         struct exynos5_dmc *dmc;
1420         int irq[2];
1421
1422         dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1423         if (!dmc)
1424                 return -ENOMEM;
1425
1426         mutex_init(&dmc->lock);
1427
1428         dmc->dev = dev;
1429         platform_set_drvdata(pdev, dmc);
1430
1431         dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1432         if (IS_ERR(dmc->base_drexi0))
1433                 return PTR_ERR(dmc->base_drexi0);
1434
1435         dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1436         if (IS_ERR(dmc->base_drexi1))
1437                 return PTR_ERR(dmc->base_drexi1);
1438
1439         dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1440                                                           "samsung,syscon-clk");
1441         if (IS_ERR(dmc->clk_regmap))
1442                 return PTR_ERR(dmc->clk_regmap);
1443
1444         ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1445         if (ret) {
1446                 dev_warn(dev, "couldn't initialize frequency settings\n");
1447                 return ret;
1448         }
1449
1450         dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1451         if (IS_ERR(dmc->vdd_mif)) {
1452                 ret = PTR_ERR(dmc->vdd_mif);
1453                 return ret;
1454         }
1455
1456         ret = exynos5_dmc_init_clks(dmc);
1457         if (ret)
1458                 return ret;
1459
1460         ret = of_get_dram_timings(dmc);
1461         if (ret) {
1462                 dev_warn(dev, "couldn't initialize timings settings\n");
1463                 goto remove_clocks;
1464         }
1465
1466         ret = exynos5_dmc_set_pause_on_switching(dmc);
1467         if (ret) {
1468                 dev_warn(dev, "couldn't get access to PAUSE register\n");
1469                 goto remove_clocks;
1470         }
1471
1472         /* There is two modes in which the driver works: polling or IRQ */
1473         irq[0] = platform_get_irq_byname(pdev, "drex_0");
1474         irq[1] = platform_get_irq_byname(pdev, "drex_1");
1475         if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1476                 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1477                                                 dmc_irq_thread, IRQF_ONESHOT,
1478                                                 dev_name(dev), dmc);
1479                 if (ret) {
1480                         dev_err(dev, "couldn't grab IRQ\n");
1481                         goto remove_clocks;
1482                 }
1483
1484                 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1485                                                 dmc_irq_thread, IRQF_ONESHOT,
1486                                                 dev_name(dev), dmc);
1487                 if (ret) {
1488                         dev_err(dev, "couldn't grab IRQ\n");
1489                         goto remove_clocks;
1490                 }
1491
1492                 /*
1493                  * Setup default thresholds for the devfreq governor.
1494                  * The values are chosen based on experiments.
1495                  */
1496                 dmc->gov_data.upthreshold = 55;
1497                 dmc->gov_data.downdifferential = 5;
1498
1499                 exynos5_dmc_enable_perf_events(dmc);
1500
1501                 dmc->in_irq_mode = 1;
1502         } else {
1503                 ret = exynos5_performance_counters_init(dmc);
1504                 if (ret) {
1505                         dev_warn(dev, "couldn't probe performance counters\n");
1506                         goto remove_clocks;
1507                 }
1508
1509                 /*
1510                  * Setup default thresholds for the devfreq governor.
1511                  * The values are chosen based on experiments.
1512                  */
1513                 dmc->gov_data.upthreshold = 10;
1514                 dmc->gov_data.downdifferential = 5;
1515
1516                 exynos5_dmc_df_profile.polling_ms = 100;
1517         }
1518
1519         dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1520                                           DEVFREQ_GOV_SIMPLE_ONDEMAND,
1521                                           &dmc->gov_data);
1522
1523         if (IS_ERR(dmc->df)) {
1524                 ret = PTR_ERR(dmc->df);
1525                 goto err_devfreq_add;
1526         }
1527
1528         if (dmc->in_irq_mode)
1529                 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1530
1531         dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1532
1533         return 0;
1534
1535 err_devfreq_add:
1536         if (dmc->in_irq_mode)
1537                 exynos5_dmc_disable_perf_events(dmc);
1538         else
1539                 exynos5_counters_disable_edev(dmc);
1540 remove_clocks:
1541         clk_disable_unprepare(dmc->mout_bpll);
1542         clk_disable_unprepare(dmc->fout_bpll);
1543
1544         return ret;
1545 }
1546
1547 /**
1548  * exynos5_dmc_remove() - Remove function for the platform device
1549  * @pdev:       platform device which is going to be removed
1550  *
1551  * The function relies on 'devm' framework function which automatically
1552  * clean the device's resources. It just calls explicitly disable function for
1553  * the performance counters.
1554  */
1555 static int exynos5_dmc_remove(struct platform_device *pdev)
1556 {
1557         struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1558
1559         if (dmc->in_irq_mode)
1560                 exynos5_dmc_disable_perf_events(dmc);
1561         else
1562                 exynos5_counters_disable_edev(dmc);
1563
1564         clk_disable_unprepare(dmc->mout_bpll);
1565         clk_disable_unprepare(dmc->fout_bpll);
1566
1567         return 0;
1568 }
1569
1570 static const struct of_device_id exynos5_dmc_of_match[] = {
1571         { .compatible = "samsung,exynos5422-dmc", },
1572         { },
1573 };
1574 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1575
1576 static struct platform_driver exynos5_dmc_platdrv = {
1577         .probe  = exynos5_dmc_probe,
1578         .remove = exynos5_dmc_remove,
1579         .driver = {
1580                 .name   = "exynos5-dmc",
1581                 .of_match_table = exynos5_dmc_of_match,
1582         },
1583 };
1584 module_platform_driver(exynos5_dmc_platdrv);
1585 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1586 MODULE_LICENSE("GPL v2");
1587 MODULE_AUTHOR("Lukasz Luba");