memory: Add DMC driver for Exynos5422
[linux-2.6-microblaze.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/io.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include "../jedec_ddr.h"
21 #include "../of_memory.h"
22
23 #define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
24 #define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
25 #define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
26 #define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
27 #define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
28 #define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
29 #define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
30 #define CDREX_PAUSE                             (0x2091c)
31 #define CDREX_LPDDR3PHY_CON3                    (0x20a20)
32 #define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
33 #define EXYNOS5_TIMING_SET_SWI                  BIT(28)
34 #define USE_MX_MSPLL_TIMINGS                    (1)
35 #define USE_BPLL_TIMINGS                        (0)
36 #define EXYNOS5_AREF_NORMAL                     (0x2e)
37
38 /**
39  * struct dmc_opp_table - Operating level desciption
40  *
41  * Covers frequency and voltage settings of the DMC operating mode.
42  */
43 struct dmc_opp_table {
44         u32 freq_hz;
45         u32 volt_uv;
46 };
47
48 /**
49  * struct exynos5_dmc - main structure describing DMC device
50  *
51  * The main structure for the Dynamic Memory Controller which covers clocks,
52  * memory regions, HW information, parameters and current operating mode.
53  */
54 struct exynos5_dmc {
55         struct device *dev;
56         struct devfreq *df;
57         struct devfreq_simple_ondemand_data gov_data;
58         void __iomem *base_drexi0;
59         void __iomem *base_drexi1;
60         struct regmap *clk_regmap;
61         struct mutex lock;
62         unsigned long curr_rate;
63         unsigned long curr_volt;
64         unsigned long bypass_rate;
65         struct dmc_opp_table *opp;
66         struct dmc_opp_table opp_bypass;
67         int opp_count;
68         u32 timings_arr_size;
69         u32 *timing_row;
70         u32 *timing_data;
71         u32 *timing_power;
72         const struct lpddr3_timings *timings;
73         const struct lpddr3_min_tck *min_tck;
74         u32 bypass_timing_row;
75         u32 bypass_timing_data;
76         u32 bypass_timing_power;
77         struct regulator *vdd_mif;
78         struct clk *fout_spll;
79         struct clk *fout_bpll;
80         struct clk *mout_spll;
81         struct clk *mout_bpll;
82         struct clk *mout_mclk_cdrex;
83         struct clk *mout_mx_mspll_ccore;
84         struct clk *mx_mspll_ccore_phy;
85         struct clk *mout_mx_mspll_ccore_phy;
86         struct devfreq_event_dev **counter;
87         int num_counters;
88 };
89
90 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
91         { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
92
93 #define TIMING_VAL2REG(timing, t_val)                   \
94 ({                                                      \
95                 u32 __val;                              \
96                 __val = (t_val) << (timing)->bit_beg;   \
97                 __val;                                  \
98 })
99
100 struct timing_reg {
101         char *name;
102         int bit_beg;
103         int bit_end;
104         unsigned int val;
105 };
106
107 static const struct timing_reg timing_row[] = {
108         TIMING_FIELD("tRFC", 24, 31),
109         TIMING_FIELD("tRRD", 20, 23),
110         TIMING_FIELD("tRP", 16, 19),
111         TIMING_FIELD("tRCD", 12, 15),
112         TIMING_FIELD("tRC", 6, 11),
113         TIMING_FIELD("tRAS", 0, 5),
114 };
115
116 static const struct timing_reg timing_data[] = {
117         TIMING_FIELD("tWTR", 28, 31),
118         TIMING_FIELD("tWR", 24, 27),
119         TIMING_FIELD("tRTP", 20, 23),
120         TIMING_FIELD("tW2W-C2C", 14, 14),
121         TIMING_FIELD("tR2R-C2C", 12, 12),
122         TIMING_FIELD("WL", 8, 11),
123         TIMING_FIELD("tDQSCK", 4, 7),
124         TIMING_FIELD("RL", 0, 3),
125 };
126
127 static const struct timing_reg timing_power[] = {
128         TIMING_FIELD("tFAW", 26, 31),
129         TIMING_FIELD("tXSR", 16, 25),
130         TIMING_FIELD("tXP", 8, 15),
131         TIMING_FIELD("tCKE", 4, 7),
132         TIMING_FIELD("tMRD", 0, 3),
133 };
134
135 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
136                       ARRAY_SIZE(timing_power))
137
138 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
139 {
140         int i, ret;
141
142         for (i = 0; i < dmc->num_counters; i++) {
143                 if (!dmc->counter[i])
144                         continue;
145                 ret = devfreq_event_set_event(dmc->counter[i]);
146                 if (ret < 0)
147                         return ret;
148         }
149         return 0;
150 }
151
152 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
153 {
154         int i, ret;
155
156         for (i = 0; i < dmc->num_counters; i++) {
157                 if (!dmc->counter[i])
158                         continue;
159                 ret = devfreq_event_enable_edev(dmc->counter[i]);
160                 if (ret < 0)
161                         return ret;
162         }
163         return 0;
164 }
165
166 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
167 {
168         int i, ret;
169
170         for (i = 0; i < dmc->num_counters; i++) {
171                 if (!dmc->counter[i])
172                         continue;
173                 ret = devfreq_event_disable_edev(dmc->counter[i]);
174                 if (ret < 0)
175                         return ret;
176         }
177         return 0;
178 }
179
180 /**
181  * find_target_freq_id() - Finds requested frequency in local DMC configuration
182  * @dmc:        device for which the information is checked
183  * @target_rate:        requested frequency in KHz
184  *
185  * Seeks in the local DMC driver structure for the requested frequency value
186  * and returns index or error value.
187  */
188 static int find_target_freq_idx(struct exynos5_dmc *dmc,
189                                 unsigned long target_rate)
190 {
191         int i;
192
193         for (i = dmc->opp_count - 1; i >= 0; i--)
194                 if (dmc->opp[i].freq_hz <= target_rate)
195                         return i;
196
197         return -EINVAL;
198 }
199
200 /**
201  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
202  * @dmc:        device for which the new settings is going to be applied
203  * @set:        boolean variable passing set value
204  *
205  * Changes the register set, which holds timing parameters.
206  * There is two register sets: 0 and 1. The register set 0
207  * is used in normal operation when the clock is provided from main PLL.
208  * The bank register set 1 is used when the main PLL frequency is going to be
209  * changed and the clock is taken from alternative, stable source.
210  * This function switches between these banks according to the
211  * currently used clock source.
212  */
213 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
214 {
215         unsigned int reg;
216         int ret;
217
218         ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
219
220         if (set)
221                 reg |= EXYNOS5_TIMING_SET_SWI;
222         else
223                 reg &= ~EXYNOS5_TIMING_SET_SWI;
224
225         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
226 }
227
228 /**
229  * exynos5_init_freq_table() - Initialized PM OPP framework
230  * @dmc:        DMC device for which the frequencies are used for OPP init
231  * @profile:    devfreq device's profile
232  *
233  * Populate the devfreq device's OPP table based on current frequency, voltage.
234  */
235 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
236                                    struct devfreq_dev_profile *profile)
237 {
238         int i, ret;
239         int idx;
240         unsigned long freq;
241
242         ret = dev_pm_opp_of_add_table(dmc->dev);
243         if (ret < 0) {
244                 dev_err(dmc->dev, "Failed to get OPP table\n");
245                 return ret;
246         }
247
248         dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
249
250         dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
251                                       sizeof(struct dmc_opp_table), GFP_KERNEL);
252         if (!dmc->opp)
253                 goto err_opp;
254
255         idx = dmc->opp_count - 1;
256         for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
257                 struct dev_pm_opp *opp;
258
259                 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
260                 if (IS_ERR(opp))
261                         goto err_free_tables;
262
263                 dmc->opp[idx - i].freq_hz = freq;
264                 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
265
266                 dev_pm_opp_put(opp);
267         }
268
269         return 0;
270
271 err_free_tables:
272         kfree(dmc->opp);
273 err_opp:
274         dev_pm_opp_of_remove_table(dmc->dev);
275
276         return -EINVAL;
277 }
278
279 /**
280  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
281  * @dmc:        device for which the new settings is going to be applied
282  * @param:      DRAM parameters which passes timing data
283  *
284  * Low-level function for changing timings for DRAM memory clocking from
285  * 'bypass' clock source (fixed frequency @400MHz).
286  * It uses timing bank registers set 1.
287  */
288 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
289 {
290         writel(EXYNOS5_AREF_NORMAL,
291                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
292
293         writel(dmc->bypass_timing_row,
294                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
295         writel(dmc->bypass_timing_row,
296                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
297         writel(dmc->bypass_timing_data,
298                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
299         writel(dmc->bypass_timing_data,
300                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
301         writel(dmc->bypass_timing_power,
302                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
303         writel(dmc->bypass_timing_power,
304                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
305 }
306
307 /**
308  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
309  * @dmc:        device for which the new settings is going to be applied
310  * @target_rate:        target frequency of the DMC
311  *
312  * Low-level function for changing timings for DRAM memory operating from main
313  * clock source (BPLL), which can have different frequencies. Thus, each
314  * frequency must have corresponding timings register values in order to keep
315  * the needed delays.
316  * It uses timing bank registers set 0.
317  */
318 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
319                                        unsigned long target_rate)
320 {
321         int idx;
322
323         for (idx = dmc->opp_count - 1; idx >= 0; idx--)
324                 if (dmc->opp[idx].freq_hz <= target_rate)
325                         break;
326
327         if (idx < 0)
328                 return -EINVAL;
329
330         writel(EXYNOS5_AREF_NORMAL,
331                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
332
333         writel(dmc->timing_row[idx],
334                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
335         writel(dmc->timing_row[idx],
336                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
337         writel(dmc->timing_data[idx],
338                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
339         writel(dmc->timing_data[idx],
340                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
341         writel(dmc->timing_power[idx],
342                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
343         writel(dmc->timing_power[idx],
344                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
345
346         return 0;
347 }
348
349 /**
350  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
351  * @dmc:        device for which it is going to be set
352  * @target_volt:        new voltage which is chosen to be final
353  *
354  * Function tries to align voltage to the safe level for 'normal' mode.
355  * It checks the need of higher voltage and changes the value. The target
356  * voltage might be lower that currently set and still the system will be
357  * stable.
358  */
359 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
360                                             unsigned long target_volt)
361 {
362         int ret = 0;
363
364         if (dmc->curr_volt <= target_volt)
365                 return 0;
366
367         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
368                                     target_volt);
369         if (!ret)
370                 dmc->curr_volt = target_volt;
371
372         return ret;
373 }
374
375 /**
376  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
377  * @dmc:        device for which it is going to be set
378  * @target_volt:        new voltage which is chosen to be final
379  *
380  * Function tries to align voltage to the safe level for the 'bypass' mode.
381  * It checks the need of higher voltage and changes the value.
382  * The target voltage must not be less than currently needed, because
383  * for current frequency the device might become unstable.
384  */
385 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
386                                             unsigned long target_volt)
387 {
388         int ret = 0;
389         unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
390
391         target_volt = max(bypass_volt, target_volt);
392
393         if (dmc->curr_volt >= target_volt)
394                 return 0;
395
396         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
397                                     target_volt);
398         if (!ret)
399                 dmc->curr_volt = target_volt;
400
401         return ret;
402 }
403
404 /**
405  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
406  * @dmc:        device for which it is going to be set
407  * @target_rate:        new frequency which is chosen to be final
408  *
409  * Function changes the DRAM timings for the temporary 'bypass' mode.
410  */
411 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
412                                                  unsigned long target_rate)
413 {
414         int idx = find_target_freq_idx(dmc, target_rate);
415
416         if (idx < 0)
417                 return -EINVAL;
418
419         exynos5_set_bypass_dram_timings(dmc);
420
421         return 0;
422 }
423
424 /**
425  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
426  * @dmc:        DMC device for which the switching is going to happen
427  * @target_rate:        new frequency which is going to be set as a final
428  * @target_volt:        new voltage which is going to be set as a final
429  *
430  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
431  * This mode is used only temporary but if required, changes voltage and timings
432  * for DRAM chips. It switches the main clock to stable clock source for the
433  * period of the main PLL reconfiguration.
434  */
435 static int
436 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
437                                            unsigned long target_rate,
438                                            unsigned long target_volt)
439 {
440         int ret;
441
442         /*
443          * Having higher voltage for a particular frequency does not harm
444          * the chip. Use it for the temporary frequency change when one
445          * voltage manipulation might be avoided.
446          */
447         ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
448         if (ret)
449                 return ret;
450
451         /*
452          * Longer delays for DRAM does not cause crash, the opposite does.
453          */
454         ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
455         if (ret)
456                 return ret;
457
458         /*
459          * Delays are long enough, so use them for the new coming clock.
460          */
461         exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
462
463         return ret;
464 }
465
466 /**
467  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
468  * using safe procedure
469  * @dmc:        device for which the frequency is going to be changed
470  * @target_rate:        requested new frequency
471  * @target_volt:        requested voltage which corresponds to the new frequency
472  *
473  * The DMC frequency change procedure requires a few steps.
474  * The main requirement is to change the clock source in the clk mux
475  * for the time of main clock PLL locking. The assumption is that the
476  * alternative clock source set as parent is stable.
477  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
478  * clock. This requires alignment in DRAM timing parameters for the new
479  * T-period. There is two bank sets for keeping DRAM
480  * timings: set 0 and set 1. The set 0 is used when main clock source is
481  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
482  * the two bank sets is part of the process.
483  * The voltage must also be aligned to the minimum required level. There is
484  * this intermediate step with switching to 'bypass' parent clock source.
485  * if the old voltage is lower, it requires an increase of the voltage level.
486  * The complexity of the voltage manipulation is hidden in low level function.
487  * In this function there is last alignment of the voltage level at the end.
488  */
489 static int
490 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
491                                  unsigned long target_rate,
492                                  unsigned long target_volt)
493 {
494         int ret;
495
496         ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
497                                                          target_volt);
498         if (ret)
499                 return ret;
500
501         /*
502          * Voltage is set at least to a level needed for this frequency,
503          * so switching clock source is safe now.
504          */
505         clk_prepare_enable(dmc->fout_spll);
506         clk_prepare_enable(dmc->mout_spll);
507         clk_prepare_enable(dmc->mout_mx_mspll_ccore);
508
509         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
510         if (ret)
511                 goto disable_clocks;
512
513         /*
514          * We are safe to increase the timings for current bypass frequency.
515          * Thanks to this the settings will be ready for the upcoming clock
516          * source change.
517          */
518         exynos5_dram_change_timings(dmc, target_rate);
519
520         clk_set_rate(dmc->fout_bpll, target_rate);
521
522         exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
523
524         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
525         if (ret)
526                 goto disable_clocks;
527
528         /*
529          * Make sure if the voltage is not from 'bypass' settings and align to
530          * the right level for power efficiency.
531          */
532         ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
533
534 disable_clocks:
535         clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
536         clk_disable_unprepare(dmc->mout_spll);
537         clk_disable_unprepare(dmc->fout_spll);
538
539         return ret;
540 }
541
542 /**
543  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
544  * table.
545  * @dmc:        device for which the frequency is going to be changed
546  * @freq:       requested frequency in KHz
547  * @target_rate:        returned frequency which is the same or lower than
548  *                      requested
549  * @target_volt:        returned voltage which corresponds to the returned
550  *                      frequency
551  *
552  * Function gets requested frequency and checks OPP framework for needed
553  * frequency and voltage. It populates the values 'target_rate' and
554  * 'target_volt' or returns error value when OPP framework fails.
555  */
556 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
557                                      unsigned long *freq,
558                                      unsigned long *target_rate,
559                                      unsigned long *target_volt, u32 flags)
560 {
561         struct dev_pm_opp *opp;
562
563         opp = devfreq_recommended_opp(dmc->dev, freq, flags);
564         if (IS_ERR(opp))
565                 return PTR_ERR(opp);
566
567         *target_rate = dev_pm_opp_get_freq(opp);
568         *target_volt = dev_pm_opp_get_voltage(opp);
569         dev_pm_opp_put(opp);
570
571         return 0;
572 }
573
574 /**
575  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
576  * @dev:        device for which the frequency is going to be changed
577  * @freq:       requested frequency in KHz
578  * @flags:      flags provided for this frequency change request
579  *
580  * An entry function provided to the devfreq framework which provides frequency
581  * change of the DMC. The function gets the possible rate from OPP table based
582  * on requested frequency. It calls the next function responsible for the
583  * frequency and voltage change. In case of failure, does not set 'curr_rate'
584  * and returns error value to the framework.
585  */
586 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
587                               u32 flags)
588 {
589         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
590         unsigned long target_rate = 0;
591         unsigned long target_volt = 0;
592         int ret;
593
594         ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
595                                         flags);
596
597         if (ret)
598                 return ret;
599
600         if (target_rate == dmc->curr_rate)
601                 return 0;
602
603         mutex_lock(&dmc->lock);
604
605         ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
606
607         if (ret) {
608                 mutex_unlock(&dmc->lock);
609                 return ret;
610         }
611
612         dmc->curr_rate = target_rate;
613
614         mutex_unlock(&dmc->lock);
615         return 0;
616 }
617
618 /**
619  * exynos5_counters_get() - Gets the performance counters values.
620  * @dmc:        device for which the counters are going to be checked
621  * @load_count: variable which is populated with counter value
622  * @total_count:        variable which is used as 'wall clock' reference
623  *
624  * Function which provides performance counters values. It sums up counters for
625  * two DMC channels. The 'total_count' is used as a reference and max value.
626  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
627  */
628 static int exynos5_counters_get(struct exynos5_dmc *dmc,
629                                 unsigned long *load_count,
630                                 unsigned long *total_count)
631 {
632         unsigned long total = 0;
633         struct devfreq_event_data event;
634         int ret, i;
635
636         *load_count = 0;
637
638         /* Take into account only read+write counters, but stop all */
639         for (i = 0; i < dmc->num_counters; i++) {
640                 if (!dmc->counter[i])
641                         continue;
642
643                 ret = devfreq_event_get_event(dmc->counter[i], &event);
644                 if (ret < 0)
645                         return ret;
646
647                 *load_count += event.load_count;
648
649                 if (total < event.total_count)
650                         total = event.total_count;
651         }
652
653         *total_count = total;
654
655         return 0;
656 }
657
658 /**
659  * exynos5_dmc_get_status() - Read current DMC performance statistics.
660  * @dev:        device for which the statistics are requested
661  * @stat:       structure which has statistic fields
662  *
663  * Function reads the DMC performance counters and calculates 'busy_time'
664  * and 'total_time'. To protect from overflow, the values are shifted right
665  * by 10. After read out the counters are setup to count again.
666  */
667 static int exynos5_dmc_get_status(struct device *dev,
668                                   struct devfreq_dev_status *stat)
669 {
670         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
671         unsigned long load, total;
672         int ret;
673
674         ret = exynos5_counters_get(dmc, &load, &total);
675         if (ret < 0)
676                 return -EINVAL;
677
678         /* To protect from overflow in calculation ratios, divide by 1024 */
679         stat->busy_time = load >> 10;
680         stat->total_time = total >> 10;
681
682         ret = exynos5_counters_set_event(dmc);
683         if (ret < 0) {
684                 dev_err(dev, "could not set event counter\n");
685                 return ret;
686         }
687
688         return 0;
689 }
690
691 /**
692  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
693  * @dev:        device for which the framework checks operating frequency
694  * @freq:       returned frequency value
695  *
696  * It returns the currently used frequency of the DMC. The real operating
697  * frequency might be lower when the clock source value could not be divided
698  * to the requested value.
699  */
700 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
701 {
702         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
703
704         mutex_lock(&dmc->lock);
705         *freq = dmc->curr_rate;
706         mutex_unlock(&dmc->lock);
707
708         return 0;
709 }
710
711 /**
712  * exynos5_dmc_df_profile - Devfreq governor's profile structure
713  *
714  * It provides to the devfreq framework needed functions and polling period.
715  */
716 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
717         .polling_ms = 500,
718         .target = exynos5_dmc_target,
719         .get_dev_status = exynos5_dmc_get_status,
720         .get_cur_freq = exynos5_dmc_get_cur_freq,
721 };
722
723 /**
724  * exynos5_dmc_align_initial_frequency() - Align initial frequency value
725  * @dmc:        device for which the frequency is going to be set
726  * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
727  *
728  * The initial bootloader frequency, which is present during boot, might be
729  * different that supported frequency values in the driver. It is possible
730  * due to different PLL settings or used PLL as a source.
731  * This function provides the 'initial_freq' for the devfreq framework
732  * statistics engine which supports only registered values. Thus, some alignment
733  * must be made.
734  */
735 unsigned long
736 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
737                             unsigned long bootloader_init_freq)
738 {
739         unsigned long aligned_freq;
740         int idx;
741
742         idx = find_target_freq_idx(dmc, bootloader_init_freq);
743         if (idx >= 0)
744                 aligned_freq = dmc->opp[idx].freq_hz;
745         else
746                 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
747
748         return aligned_freq;
749 }
750
751 /**
752  * create_timings_aligned() - Create register values and align with standard
753  * @dmc:        device for which the frequency is going to be set
754  * @idx:        speed bin in the OPP table
755  * @clk_period_ps:      the period of the clock, known as tCK
756  *
757  * The function calculates timings and creates a register value ready for
758  * a frequency transition. The register contains a few timings. They are
759  * shifted by a known offset. The timing value is calculated based on memory
760  * specyfication: minimal time required and minimal cycles required.
761  */
762 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
763                                   u32 *reg_timing_data, u32 *reg_timing_power,
764                                   u32 clk_period_ps)
765 {
766         u32 val;
767         const struct timing_reg *reg;
768
769         if (clk_period_ps == 0)
770                 return -EINVAL;
771
772         *reg_timing_row = 0;
773         *reg_timing_data = 0;
774         *reg_timing_power = 0;
775
776         val = dmc->timings->tRFC / clk_period_ps;
777         val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
778         val = max(val, dmc->min_tck->tRFC);
779         reg = &timing_row[0];
780         *reg_timing_row |= TIMING_VAL2REG(reg, val);
781
782         val = dmc->timings->tRRD / clk_period_ps;
783         val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
784         val = max(val, dmc->min_tck->tRRD);
785         reg = &timing_row[1];
786         *reg_timing_row |= TIMING_VAL2REG(reg, val);
787
788         val = dmc->timings->tRPab / clk_period_ps;
789         val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
790         val = max(val, dmc->min_tck->tRPab);
791         reg = &timing_row[2];
792         *reg_timing_row |= TIMING_VAL2REG(reg, val);
793
794         val = dmc->timings->tRCD / clk_period_ps;
795         val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
796         val = max(val, dmc->min_tck->tRCD);
797         reg = &timing_row[3];
798         *reg_timing_row |= TIMING_VAL2REG(reg, val);
799
800         val = dmc->timings->tRC / clk_period_ps;
801         val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
802         val = max(val, dmc->min_tck->tRC);
803         reg = &timing_row[4];
804         *reg_timing_row |= TIMING_VAL2REG(reg, val);
805
806         val = dmc->timings->tRAS / clk_period_ps;
807         val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
808         val = max(val, dmc->min_tck->tRAS);
809         reg = &timing_row[5];
810         *reg_timing_row |= TIMING_VAL2REG(reg, val);
811
812         /* data related timings */
813         val = dmc->timings->tWTR / clk_period_ps;
814         val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
815         val = max(val, dmc->min_tck->tWTR);
816         reg = &timing_data[0];
817         *reg_timing_data |= TIMING_VAL2REG(reg, val);
818
819         val = dmc->timings->tWR / clk_period_ps;
820         val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
821         val = max(val, dmc->min_tck->tWR);
822         reg = &timing_data[1];
823         *reg_timing_data |= TIMING_VAL2REG(reg, val);
824
825         val = dmc->timings->tRTP / clk_period_ps;
826         val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
827         val = max(val, dmc->min_tck->tRTP);
828         reg = &timing_data[2];
829         *reg_timing_data |= TIMING_VAL2REG(reg, val);
830
831         val = dmc->timings->tW2W_C2C / clk_period_ps;
832         val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
833         val = max(val, dmc->min_tck->tW2W_C2C);
834         reg = &timing_data[3];
835         *reg_timing_data |= TIMING_VAL2REG(reg, val);
836
837         val = dmc->timings->tR2R_C2C / clk_period_ps;
838         val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
839         val = max(val, dmc->min_tck->tR2R_C2C);
840         reg = &timing_data[4];
841         *reg_timing_data |= TIMING_VAL2REG(reg, val);
842
843         val = dmc->timings->tWL / clk_period_ps;
844         val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
845         val = max(val, dmc->min_tck->tWL);
846         reg = &timing_data[5];
847         *reg_timing_data |= TIMING_VAL2REG(reg, val);
848
849         val = dmc->timings->tDQSCK / clk_period_ps;
850         val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
851         val = max(val, dmc->min_tck->tDQSCK);
852         reg = &timing_data[6];
853         *reg_timing_data |= TIMING_VAL2REG(reg, val);
854
855         val = dmc->timings->tRL / clk_period_ps;
856         val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
857         val = max(val, dmc->min_tck->tRL);
858         reg = &timing_data[7];
859         *reg_timing_data |= TIMING_VAL2REG(reg, val);
860
861         /* power related timings */
862         val = dmc->timings->tFAW / clk_period_ps;
863         val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
864         val = max(val, dmc->min_tck->tXP);
865         reg = &timing_power[0];
866         *reg_timing_power |= TIMING_VAL2REG(reg, val);
867
868         val = dmc->timings->tXSR / clk_period_ps;
869         val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
870         val = max(val, dmc->min_tck->tXSR);
871         reg = &timing_power[1];
872         *reg_timing_power |= TIMING_VAL2REG(reg, val);
873
874         val = dmc->timings->tXP / clk_period_ps;
875         val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
876         val = max(val, dmc->min_tck->tXP);
877         reg = &timing_power[2];
878         *reg_timing_power |= TIMING_VAL2REG(reg, val);
879
880         val = dmc->timings->tCKE / clk_period_ps;
881         val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
882         val = max(val, dmc->min_tck->tCKE);
883         reg = &timing_power[3];
884         *reg_timing_power |= TIMING_VAL2REG(reg, val);
885
886         val = dmc->timings->tMRD / clk_period_ps;
887         val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
888         val = max(val, dmc->min_tck->tMRD);
889         reg = &timing_power[4];
890         *reg_timing_power |= TIMING_VAL2REG(reg, val);
891
892         return 0;
893 }
894
895 /**
896  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
897  * @dmc:        device for which the frequency is going to be set
898  *
899  * The function parses DT entries with DRAM information.
900  */
901 static int of_get_dram_timings(struct exynos5_dmc *dmc)
902 {
903         int ret = 0;
904         int idx;
905         struct device_node *np_ddr;
906         u32 freq_mhz, clk_period_ps;
907
908         np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
909         if (!np_ddr) {
910                 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
911                 return -EINVAL;
912         }
913
914         dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
915                                              sizeof(u32), GFP_KERNEL);
916         if (!dmc->timing_row)
917                 return -ENOMEM;
918
919         dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
920                                               sizeof(u32), GFP_KERNEL);
921         if (!dmc->timing_data)
922                 return -ENOMEM;
923
924         dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
925                                                sizeof(u32), GFP_KERNEL);
926         if (!dmc->timing_power)
927                 return -ENOMEM;
928
929         dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
930                                                  DDR_TYPE_LPDDR3,
931                                                  &dmc->timings_arr_size);
932         if (!dmc->timings) {
933                 of_node_put(np_ddr);
934                 dev_warn(dmc->dev, "could not get timings from DT\n");
935                 return -EINVAL;
936         }
937
938         dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
939         if (!dmc->min_tck) {
940                 of_node_put(np_ddr);
941                 dev_warn(dmc->dev, "could not get tck from DT\n");
942                 return -EINVAL;
943         }
944
945         /* Sorted array of OPPs with frequency ascending */
946         for (idx = 0; idx < dmc->opp_count; idx++) {
947                 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
948                 clk_period_ps = 1000000 / freq_mhz;
949
950                 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
951                                              &dmc->timing_data[idx],
952                                              &dmc->timing_power[idx],
953                                              clk_period_ps);
954         }
955
956         of_node_put(np_ddr);
957
958         /* Take the highest frequency's timings as 'bypass' */
959         dmc->bypass_timing_row = dmc->timing_row[idx - 1];
960         dmc->bypass_timing_data = dmc->timing_data[idx - 1];
961         dmc->bypass_timing_power = dmc->timing_power[idx - 1];
962
963         return ret;
964 }
965
966 /**
967  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
968  * @dmc:        DMC structure containing needed fields
969  *
970  * Get the needed clocks defined in DT device, enable and set the right parents.
971  * Read current frequency and initialize the initial rate for governor.
972  */
973 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
974 {
975         int ret;
976         unsigned long target_volt = 0;
977         unsigned long target_rate = 0;
978         unsigned int tmp;
979
980         dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
981         if (IS_ERR(dmc->fout_spll))
982                 return PTR_ERR(dmc->fout_spll);
983
984         dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
985         if (IS_ERR(dmc->fout_bpll))
986                 return PTR_ERR(dmc->fout_bpll);
987
988         dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
989         if (IS_ERR(dmc->mout_mclk_cdrex))
990                 return PTR_ERR(dmc->mout_mclk_cdrex);
991
992         dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
993         if (IS_ERR(dmc->mout_bpll))
994                 return PTR_ERR(dmc->mout_bpll);
995
996         dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
997                                                 "mout_mx_mspll_ccore");
998         if (IS_ERR(dmc->mout_mx_mspll_ccore))
999                 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1000
1001         dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1002         if (IS_ERR(dmc->mout_spll)) {
1003                 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1004                 if (IS_ERR(dmc->mout_spll))
1005                         return PTR_ERR(dmc->mout_spll);
1006         }
1007
1008         /*
1009          * Convert frequency to KHz values and set it for the governor.
1010          */
1011         dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1012         dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1013         exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1014
1015         ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1016                                         &target_volt, 0);
1017         if (ret)
1018                 return ret;
1019
1020         dmc->curr_volt = target_volt;
1021
1022         clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1023
1024         dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1025
1026         clk_prepare_enable(dmc->fout_bpll);
1027         clk_prepare_enable(dmc->mout_bpll);
1028
1029         /*
1030          * Some bootloaders do not set clock routes correctly.
1031          * Stop one path in clocks to PHY.
1032          */
1033         regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1034         tmp &= ~(BIT(1) | BIT(0));
1035         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1036
1037         return 0;
1038 }
1039
1040 /**
1041  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1042  * @dmc:        DMC for which it does the setup
1043  *
1044  * Initialization of performance counters in DMC for estimating usage.
1045  * The counter's values are used for calculation of a memory bandwidth and based
1046  * on that the governor changes the frequency.
1047  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1048  */
1049 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1050 {
1051         int counters_size;
1052         int ret, i;
1053
1054         dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1055         if (dmc->num_counters < 0) {
1056                 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1057                 return dmc->num_counters;
1058         }
1059
1060         counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1061         dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1062         if (!dmc->counter)
1063                 return -ENOMEM;
1064
1065         for (i = 0; i < dmc->num_counters; i++) {
1066                 dmc->counter[i] =
1067                         devfreq_event_get_edev_by_phandle(dmc->dev, i);
1068                 if (IS_ERR_OR_NULL(dmc->counter[i]))
1069                         return -EPROBE_DEFER;
1070         }
1071
1072         ret = exynos5_counters_enable_edev(dmc);
1073         if (ret < 0) {
1074                 dev_err(dmc->dev, "could not enable event counter\n");
1075                 return ret;
1076         }
1077
1078         ret = exynos5_counters_set_event(dmc);
1079         if (ret < 0) {
1080                 exynos5_counters_disable_edev(dmc);
1081                 dev_err(dmc->dev, "counld not set event counter\n");
1082                 return ret;
1083         }
1084
1085         return 0;
1086 }
1087
1088 /**
1089  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1090  * @dmc:        device which is used for changing this feature
1091  * @set:        a boolean state passing enable/disable request
1092  *
1093  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1094  * changes its configuration. In such situation access to the memory is blocked
1095  * in DMC automatically. This feature is used when clock frequency change
1096  * request appears and touches clock tree.
1097  */
1098 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1099 {
1100         unsigned int val;
1101         int ret;
1102
1103         ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1104         if (ret)
1105                 return ret;
1106
1107         val |= 1UL;
1108         regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1109
1110         return 0;
1111 }
1112
1113 /**
1114  * exynos5_dmc_probe() - Probe function for the DMC driver
1115  * @pdev:       platform device for which the driver is going to be initialized
1116  *
1117  * Initialize basic components: clocks, regulators, performance counters, etc.
1118  * Read out product version and based on the information setup
1119  * internal structures for the controller (frequency and voltage) and for DRAM
1120  * memory parameters: timings for each operating frequency.
1121  * Register new devfreq device for controlling DVFS of the DMC.
1122  */
1123 static int exynos5_dmc_probe(struct platform_device *pdev)
1124 {
1125         int ret = 0;
1126         struct device *dev = &pdev->dev;
1127         struct device_node *np = dev->of_node;
1128         struct exynos5_dmc *dmc;
1129         struct resource *res;
1130
1131         dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1132         if (!dmc)
1133                 return -ENOMEM;
1134
1135         mutex_init(&dmc->lock);
1136
1137         dmc->dev = dev;
1138         platform_set_drvdata(pdev, dmc);
1139
1140         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1141         dmc->base_drexi0 = devm_ioremap_resource(dev, res);
1142         if (IS_ERR(dmc->base_drexi0))
1143                 return PTR_ERR(dmc->base_drexi0);
1144
1145         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1146         dmc->base_drexi1 = devm_ioremap_resource(dev, res);
1147         if (IS_ERR(dmc->base_drexi1))
1148                 return PTR_ERR(dmc->base_drexi1);
1149
1150         dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1151                                 "samsung,syscon-clk");
1152         if (IS_ERR(dmc->clk_regmap))
1153                 return PTR_ERR(dmc->clk_regmap);
1154
1155         ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1156         if (ret) {
1157                 dev_warn(dev, "couldn't initialize frequency settings\n");
1158                 return ret;
1159         }
1160
1161         dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1162         if (IS_ERR(dmc->vdd_mif)) {
1163                 ret = PTR_ERR(dmc->vdd_mif);
1164                 return ret;
1165         }
1166
1167         ret = exynos5_dmc_init_clks(dmc);
1168         if (ret)
1169                 return ret;
1170
1171         ret = of_get_dram_timings(dmc);
1172         if (ret) {
1173                 dev_warn(dev, "couldn't initialize timings settings\n");
1174                 goto remove_clocks;
1175         }
1176
1177         ret = exynos5_performance_counters_init(dmc);
1178         if (ret) {
1179                 dev_warn(dev, "couldn't probe performance counters\n");
1180                 goto remove_clocks;
1181         }
1182
1183         ret = exynos5_dmc_set_pause_on_switching(dmc);
1184         if (ret) {
1185                 dev_warn(dev, "couldn't get access to PAUSE register\n");
1186                 goto err_devfreq_add;
1187         }
1188
1189         /*
1190          * Setup default thresholds for the devfreq governor.
1191          * The values are chosen based on experiments.
1192          */
1193         dmc->gov_data.upthreshold = 30;
1194         dmc->gov_data.downdifferential = 5;
1195
1196         dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1197                                           DEVFREQ_GOV_SIMPLE_ONDEMAND,
1198                                           &dmc->gov_data);
1199
1200         if (IS_ERR(dmc->df)) {
1201                 ret = PTR_ERR(dmc->df);
1202                 goto err_devfreq_add;
1203         }
1204
1205         dev_info(dev, "DMC initialized\n");
1206
1207         return 0;
1208
1209 err_devfreq_add:
1210         exynos5_counters_disable_edev(dmc);
1211 remove_clocks:
1212         clk_disable_unprepare(dmc->mout_bpll);
1213         clk_disable_unprepare(dmc->fout_bpll);
1214
1215         return ret;
1216 }
1217
1218 /**
1219  * exynos5_dmc_remove() - Remove function for the platform device
1220  * @pdev:       platform device which is going to be removed
1221  *
1222  * The function relies on 'devm' framework function which automatically
1223  * clean the device's resources. It just calls explicitly disable function for
1224  * the performance counters.
1225  */
1226 static int exynos5_dmc_remove(struct platform_device *pdev)
1227 {
1228         struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1229
1230         exynos5_counters_disable_edev(dmc);
1231
1232         clk_disable_unprepare(dmc->mout_bpll);
1233         clk_disable_unprepare(dmc->fout_bpll);
1234
1235         dev_pm_opp_remove_table(dmc->dev);
1236
1237         return 0;
1238 }
1239
1240 static const struct of_device_id exynos5_dmc_of_match[] = {
1241         { .compatible = "samsung,exynos5422-dmc", },
1242         { },
1243 };
1244 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1245
1246 static struct platform_driver exynos5_dmc_platdrv = {
1247         .probe  = exynos5_dmc_probe,
1248         .remove = exynos5_dmc_remove,
1249         .driver = {
1250                 .name   = "exynos5-dmc",
1251                 .of_match_table = exynos5_dmc_of_match,
1252         },
1253 };
1254 module_platform_driver(exynos5_dmc_platdrv);
1255 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1256 MODULE_LICENSE("GPL v2");
1257 MODULE_AUTHOR("Lukasz Luba");