Merge tag 'pm-5.8-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include "../jedec_ddr.h"
22 #include "../of_memory.h"
23
24 #define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
25 #define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
26 #define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
27 #define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
28 #define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
29 #define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
30 #define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
31 #define CDREX_PAUSE                             (0x2091c)
32 #define CDREX_LPDDR3PHY_CON3                    (0x20a20)
33 #define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
34 #define EXYNOS5_TIMING_SET_SWI                  BIT(28)
35 #define USE_MX_MSPLL_TIMINGS                    (1)
36 #define USE_BPLL_TIMINGS                        (0)
37 #define EXYNOS5_AREF_NORMAL                     (0x2e)
38
39 #define DREX_PPCCLKCON          (0x0130)
40 #define DREX_PEREV2CONFIG       (0x013c)
41 #define DREX_PMNC_PPC           (0xE000)
42 #define DREX_CNTENS_PPC         (0xE010)
43 #define DREX_CNTENC_PPC         (0xE020)
44 #define DREX_INTENS_PPC         (0xE030)
45 #define DREX_INTENC_PPC         (0xE040)
46 #define DREX_FLAG_PPC           (0xE050)
47 #define DREX_PMCNT2_PPC         (0xE130)
48
49 /*
50  * A value for register DREX_PMNC_PPC which should be written to reset
51  * the cycle counter CCNT (a reference wall clock). It sets zero to the
52  * CCNT counter.
53  */
54 #define CC_RESET                BIT(2)
55
56 /*
57  * A value for register DREX_PMNC_PPC which does the reset of all performance
58  * counters to zero.
59  */
60 #define PPC_COUNTER_RESET       BIT(1)
61
62 /*
63  * Enables all configured counters (including cycle counter). The value should
64  * be written to the register DREX_PMNC_PPC.
65  */
66 #define PPC_ENABLE              BIT(0)
67
68 /* A value for register DREX_PPCCLKCON which enables performance events clock.
69  * Must be written before first access to the performance counters register
70  * set, otherwise it could crash.
71  */
72 #define PEREV_CLK_EN            BIT(0)
73
74 /*
75  * Values which are used to enable counters, interrupts or configure flags of
76  * the performance counters. They configure counter 2 and cycle counter.
77  */
78 #define PERF_CNT2               BIT(2)
79 #define PERF_CCNT               BIT(31)
80
81 /*
82  * Performance event types which are used for setting the preferred event
83  * to track in the counters.
84  * There is a set of different types, the values are from range 0 to 0x6f.
85  * These settings should be written to the configuration register which manages
86  * the type of the event (register DREX_PEREV2CONFIG).
87  */
88 #define READ_TRANSFER_CH0       (0x6d)
89 #define READ_TRANSFER_CH1       (0x6f)
90
91 #define PERF_COUNTER_START_VALUE 0xff000000
92 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
93
94 /**
95  * struct dmc_opp_table - Operating level desciption
96  *
97  * Covers frequency and voltage settings of the DMC operating mode.
98  */
99 struct dmc_opp_table {
100         u32 freq_hz;
101         u32 volt_uv;
102 };
103
104 /**
105  * struct exynos5_dmc - main structure describing DMC device
106  *
107  * The main structure for the Dynamic Memory Controller which covers clocks,
108  * memory regions, HW information, parameters and current operating mode.
109  */
110 struct exynos5_dmc {
111         struct device *dev;
112         struct devfreq *df;
113         struct devfreq_simple_ondemand_data gov_data;
114         void __iomem *base_drexi0;
115         void __iomem *base_drexi1;
116         struct regmap *clk_regmap;
117         struct mutex lock;
118         unsigned long curr_rate;
119         unsigned long curr_volt;
120         unsigned long bypass_rate;
121         struct dmc_opp_table *opp;
122         struct dmc_opp_table opp_bypass;
123         int opp_count;
124         u32 timings_arr_size;
125         u32 *timing_row;
126         u32 *timing_data;
127         u32 *timing_power;
128         const struct lpddr3_timings *timings;
129         const struct lpddr3_min_tck *min_tck;
130         u32 bypass_timing_row;
131         u32 bypass_timing_data;
132         u32 bypass_timing_power;
133         struct regulator *vdd_mif;
134         struct clk *fout_spll;
135         struct clk *fout_bpll;
136         struct clk *mout_spll;
137         struct clk *mout_bpll;
138         struct clk *mout_mclk_cdrex;
139         struct clk *mout_mx_mspll_ccore;
140         struct clk *mx_mspll_ccore_phy;
141         struct clk *mout_mx_mspll_ccore_phy;
142         struct devfreq_event_dev **counter;
143         int num_counters;
144         u64 last_overflow_ts[2];
145         unsigned long load;
146         unsigned long total;
147         bool in_irq_mode;
148 };
149
150 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
151         { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
152
153 #define TIMING_VAL2REG(timing, t_val)                   \
154 ({                                                      \
155                 u32 __val;                              \
156                 __val = (t_val) << (timing)->bit_beg;   \
157                 __val;                                  \
158 })
159
160 struct timing_reg {
161         char *name;
162         int bit_beg;
163         int bit_end;
164         unsigned int val;
165 };
166
167 static const struct timing_reg timing_row[] = {
168         TIMING_FIELD("tRFC", 24, 31),
169         TIMING_FIELD("tRRD", 20, 23),
170         TIMING_FIELD("tRP", 16, 19),
171         TIMING_FIELD("tRCD", 12, 15),
172         TIMING_FIELD("tRC", 6, 11),
173         TIMING_FIELD("tRAS", 0, 5),
174 };
175
176 static const struct timing_reg timing_data[] = {
177         TIMING_FIELD("tWTR", 28, 31),
178         TIMING_FIELD("tWR", 24, 27),
179         TIMING_FIELD("tRTP", 20, 23),
180         TIMING_FIELD("tW2W-C2C", 14, 14),
181         TIMING_FIELD("tR2R-C2C", 12, 12),
182         TIMING_FIELD("WL", 8, 11),
183         TIMING_FIELD("tDQSCK", 4, 7),
184         TIMING_FIELD("RL", 0, 3),
185 };
186
187 static const struct timing_reg timing_power[] = {
188         TIMING_FIELD("tFAW", 26, 31),
189         TIMING_FIELD("tXSR", 16, 25),
190         TIMING_FIELD("tXP", 8, 15),
191         TIMING_FIELD("tCKE", 4, 7),
192         TIMING_FIELD("tMRD", 0, 3),
193 };
194
195 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
196                       ARRAY_SIZE(timing_power))
197
198 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
199 {
200         int i, ret;
201
202         for (i = 0; i < dmc->num_counters; i++) {
203                 if (!dmc->counter[i])
204                         continue;
205                 ret = devfreq_event_set_event(dmc->counter[i]);
206                 if (ret < 0)
207                         return ret;
208         }
209         return 0;
210 }
211
212 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
213 {
214         int i, ret;
215
216         for (i = 0; i < dmc->num_counters; i++) {
217                 if (!dmc->counter[i])
218                         continue;
219                 ret = devfreq_event_enable_edev(dmc->counter[i]);
220                 if (ret < 0)
221                         return ret;
222         }
223         return 0;
224 }
225
226 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
227 {
228         int i, ret;
229
230         for (i = 0; i < dmc->num_counters; i++) {
231                 if (!dmc->counter[i])
232                         continue;
233                 ret = devfreq_event_disable_edev(dmc->counter[i]);
234                 if (ret < 0)
235                         return ret;
236         }
237         return 0;
238 }
239
240 /**
241  * find_target_freq_id() - Finds requested frequency in local DMC configuration
242  * @dmc:        device for which the information is checked
243  * @target_rate:        requested frequency in KHz
244  *
245  * Seeks in the local DMC driver structure for the requested frequency value
246  * and returns index or error value.
247  */
248 static int find_target_freq_idx(struct exynos5_dmc *dmc,
249                                 unsigned long target_rate)
250 {
251         int i;
252
253         for (i = dmc->opp_count - 1; i >= 0; i--)
254                 if (dmc->opp[i].freq_hz <= target_rate)
255                         return i;
256
257         return -EINVAL;
258 }
259
260 /**
261  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
262  * @dmc:        device for which the new settings is going to be applied
263  * @set:        boolean variable passing set value
264  *
265  * Changes the register set, which holds timing parameters.
266  * There is two register sets: 0 and 1. The register set 0
267  * is used in normal operation when the clock is provided from main PLL.
268  * The bank register set 1 is used when the main PLL frequency is going to be
269  * changed and the clock is taken from alternative, stable source.
270  * This function switches between these banks according to the
271  * currently used clock source.
272  */
273 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
274 {
275         unsigned int reg;
276         int ret;
277
278         ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
279
280         if (set)
281                 reg |= EXYNOS5_TIMING_SET_SWI;
282         else
283                 reg &= ~EXYNOS5_TIMING_SET_SWI;
284
285         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
286 }
287
288 /**
289  * exynos5_init_freq_table() - Initialized PM OPP framework
290  * @dmc:        DMC device for which the frequencies are used for OPP init
291  * @profile:    devfreq device's profile
292  *
293  * Populate the devfreq device's OPP table based on current frequency, voltage.
294  */
295 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
296                                    struct devfreq_dev_profile *profile)
297 {
298         int i, ret;
299         int idx;
300         unsigned long freq;
301
302         ret = dev_pm_opp_of_add_table(dmc->dev);
303         if (ret < 0) {
304                 dev_err(dmc->dev, "Failed to get OPP table\n");
305                 return ret;
306         }
307
308         dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
309
310         dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
311                                       sizeof(struct dmc_opp_table), GFP_KERNEL);
312         if (!dmc->opp)
313                 goto err_opp;
314
315         idx = dmc->opp_count - 1;
316         for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
317                 struct dev_pm_opp *opp;
318
319                 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
320                 if (IS_ERR(opp))
321                         goto err_opp;
322
323                 dmc->opp[idx - i].freq_hz = freq;
324                 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
325
326                 dev_pm_opp_put(opp);
327         }
328
329         return 0;
330
331 err_opp:
332         dev_pm_opp_of_remove_table(dmc->dev);
333
334         return -EINVAL;
335 }
336
337 /**
338  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
339  * @dmc:        device for which the new settings is going to be applied
340  * @param:      DRAM parameters which passes timing data
341  *
342  * Low-level function for changing timings for DRAM memory clocking from
343  * 'bypass' clock source (fixed frequency @400MHz).
344  * It uses timing bank registers set 1.
345  */
346 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
347 {
348         writel(EXYNOS5_AREF_NORMAL,
349                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
350
351         writel(dmc->bypass_timing_row,
352                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
353         writel(dmc->bypass_timing_row,
354                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
355         writel(dmc->bypass_timing_data,
356                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
357         writel(dmc->bypass_timing_data,
358                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
359         writel(dmc->bypass_timing_power,
360                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
361         writel(dmc->bypass_timing_power,
362                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
363 }
364
365 /**
366  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
367  * @dmc:        device for which the new settings is going to be applied
368  * @target_rate:        target frequency of the DMC
369  *
370  * Low-level function for changing timings for DRAM memory operating from main
371  * clock source (BPLL), which can have different frequencies. Thus, each
372  * frequency must have corresponding timings register values in order to keep
373  * the needed delays.
374  * It uses timing bank registers set 0.
375  */
376 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
377                                        unsigned long target_rate)
378 {
379         int idx;
380
381         for (idx = dmc->opp_count - 1; idx >= 0; idx--)
382                 if (dmc->opp[idx].freq_hz <= target_rate)
383                         break;
384
385         if (idx < 0)
386                 return -EINVAL;
387
388         writel(EXYNOS5_AREF_NORMAL,
389                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390
391         writel(dmc->timing_row[idx],
392                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
393         writel(dmc->timing_row[idx],
394                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
395         writel(dmc->timing_data[idx],
396                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
397         writel(dmc->timing_data[idx],
398                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
399         writel(dmc->timing_power[idx],
400                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
401         writel(dmc->timing_power[idx],
402                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
403
404         return 0;
405 }
406
407 /**
408  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
409  * @dmc:        device for which it is going to be set
410  * @target_volt:        new voltage which is chosen to be final
411  *
412  * Function tries to align voltage to the safe level for 'normal' mode.
413  * It checks the need of higher voltage and changes the value. The target
414  * voltage might be lower that currently set and still the system will be
415  * stable.
416  */
417 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
418                                             unsigned long target_volt)
419 {
420         int ret = 0;
421
422         if (dmc->curr_volt <= target_volt)
423                 return 0;
424
425         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
426                                     target_volt);
427         if (!ret)
428                 dmc->curr_volt = target_volt;
429
430         return ret;
431 }
432
433 /**
434  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
435  * @dmc:        device for which it is going to be set
436  * @target_volt:        new voltage which is chosen to be final
437  *
438  * Function tries to align voltage to the safe level for the 'bypass' mode.
439  * It checks the need of higher voltage and changes the value.
440  * The target voltage must not be less than currently needed, because
441  * for current frequency the device might become unstable.
442  */
443 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
444                                             unsigned long target_volt)
445 {
446         int ret = 0;
447         unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
448
449         target_volt = max(bypass_volt, target_volt);
450
451         if (dmc->curr_volt >= target_volt)
452                 return 0;
453
454         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
455                                     target_volt);
456         if (!ret)
457                 dmc->curr_volt = target_volt;
458
459         return ret;
460 }
461
462 /**
463  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
464  * @dmc:        device for which it is going to be set
465  * @target_rate:        new frequency which is chosen to be final
466  *
467  * Function changes the DRAM timings for the temporary 'bypass' mode.
468  */
469 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
470                                                  unsigned long target_rate)
471 {
472         int idx = find_target_freq_idx(dmc, target_rate);
473
474         if (idx < 0)
475                 return -EINVAL;
476
477         exynos5_set_bypass_dram_timings(dmc);
478
479         return 0;
480 }
481
482 /**
483  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
484  * @dmc:        DMC device for which the switching is going to happen
485  * @target_rate:        new frequency which is going to be set as a final
486  * @target_volt:        new voltage which is going to be set as a final
487  *
488  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
489  * This mode is used only temporary but if required, changes voltage and timings
490  * for DRAM chips. It switches the main clock to stable clock source for the
491  * period of the main PLL reconfiguration.
492  */
493 static int
494 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
495                                            unsigned long target_rate,
496                                            unsigned long target_volt)
497 {
498         int ret;
499
500         /*
501          * Having higher voltage for a particular frequency does not harm
502          * the chip. Use it for the temporary frequency change when one
503          * voltage manipulation might be avoided.
504          */
505         ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
506         if (ret)
507                 return ret;
508
509         /*
510          * Longer delays for DRAM does not cause crash, the opposite does.
511          */
512         ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
513         if (ret)
514                 return ret;
515
516         /*
517          * Delays are long enough, so use them for the new coming clock.
518          */
519         exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
520
521         return ret;
522 }
523
524 /**
525  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
526  * using safe procedure
527  * @dmc:        device for which the frequency is going to be changed
528  * @target_rate:        requested new frequency
529  * @target_volt:        requested voltage which corresponds to the new frequency
530  *
531  * The DMC frequency change procedure requires a few steps.
532  * The main requirement is to change the clock source in the clk mux
533  * for the time of main clock PLL locking. The assumption is that the
534  * alternative clock source set as parent is stable.
535  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
536  * clock. This requires alignment in DRAM timing parameters for the new
537  * T-period. There is two bank sets for keeping DRAM
538  * timings: set 0 and set 1. The set 0 is used when main clock source is
539  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
540  * the two bank sets is part of the process.
541  * The voltage must also be aligned to the minimum required level. There is
542  * this intermediate step with switching to 'bypass' parent clock source.
543  * if the old voltage is lower, it requires an increase of the voltage level.
544  * The complexity of the voltage manipulation is hidden in low level function.
545  * In this function there is last alignment of the voltage level at the end.
546  */
547 static int
548 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
549                                  unsigned long target_rate,
550                                  unsigned long target_volt)
551 {
552         int ret;
553
554         ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
555                                                          target_volt);
556         if (ret)
557                 return ret;
558
559         /*
560          * Voltage is set at least to a level needed for this frequency,
561          * so switching clock source is safe now.
562          */
563         clk_prepare_enable(dmc->fout_spll);
564         clk_prepare_enable(dmc->mout_spll);
565         clk_prepare_enable(dmc->mout_mx_mspll_ccore);
566
567         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
568         if (ret)
569                 goto disable_clocks;
570
571         /*
572          * We are safe to increase the timings for current bypass frequency.
573          * Thanks to this the settings will be ready for the upcoming clock
574          * source change.
575          */
576         exynos5_dram_change_timings(dmc, target_rate);
577
578         clk_set_rate(dmc->fout_bpll, target_rate);
579
580         exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
581
582         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
583         if (ret)
584                 goto disable_clocks;
585
586         /*
587          * Make sure if the voltage is not from 'bypass' settings and align to
588          * the right level for power efficiency.
589          */
590         ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
591
592 disable_clocks:
593         clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
594         clk_disable_unprepare(dmc->mout_spll);
595         clk_disable_unprepare(dmc->fout_spll);
596
597         return ret;
598 }
599
600 /**
601  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
602  * table.
603  * @dmc:        device for which the frequency is going to be changed
604  * @freq:       requested frequency in KHz
605  * @target_rate:        returned frequency which is the same or lower than
606  *                      requested
607  * @target_volt:        returned voltage which corresponds to the returned
608  *                      frequency
609  *
610  * Function gets requested frequency and checks OPP framework for needed
611  * frequency and voltage. It populates the values 'target_rate' and
612  * 'target_volt' or returns error value when OPP framework fails.
613  */
614 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
615                                      unsigned long *freq,
616                                      unsigned long *target_rate,
617                                      unsigned long *target_volt, u32 flags)
618 {
619         struct dev_pm_opp *opp;
620
621         opp = devfreq_recommended_opp(dmc->dev, freq, flags);
622         if (IS_ERR(opp))
623                 return PTR_ERR(opp);
624
625         *target_rate = dev_pm_opp_get_freq(opp);
626         *target_volt = dev_pm_opp_get_voltage(opp);
627         dev_pm_opp_put(opp);
628
629         return 0;
630 }
631
632 /**
633  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
634  * @dev:        device for which the frequency is going to be changed
635  * @freq:       requested frequency in KHz
636  * @flags:      flags provided for this frequency change request
637  *
638  * An entry function provided to the devfreq framework which provides frequency
639  * change of the DMC. The function gets the possible rate from OPP table based
640  * on requested frequency. It calls the next function responsible for the
641  * frequency and voltage change. In case of failure, does not set 'curr_rate'
642  * and returns error value to the framework.
643  */
644 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
645                               u32 flags)
646 {
647         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
648         unsigned long target_rate = 0;
649         unsigned long target_volt = 0;
650         int ret;
651
652         ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
653                                         flags);
654
655         if (ret)
656                 return ret;
657
658         if (target_rate == dmc->curr_rate)
659                 return 0;
660
661         mutex_lock(&dmc->lock);
662
663         ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
664
665         if (ret) {
666                 mutex_unlock(&dmc->lock);
667                 return ret;
668         }
669
670         dmc->curr_rate = target_rate;
671
672         mutex_unlock(&dmc->lock);
673         return 0;
674 }
675
676 /**
677  * exynos5_counters_get() - Gets the performance counters values.
678  * @dmc:        device for which the counters are going to be checked
679  * @load_count: variable which is populated with counter value
680  * @total_count:        variable which is used as 'wall clock' reference
681  *
682  * Function which provides performance counters values. It sums up counters for
683  * two DMC channels. The 'total_count' is used as a reference and max value.
684  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
685  */
686 static int exynos5_counters_get(struct exynos5_dmc *dmc,
687                                 unsigned long *load_count,
688                                 unsigned long *total_count)
689 {
690         unsigned long total = 0;
691         struct devfreq_event_data event;
692         int ret, i;
693
694         *load_count = 0;
695
696         /* Take into account only read+write counters, but stop all */
697         for (i = 0; i < dmc->num_counters; i++) {
698                 if (!dmc->counter[i])
699                         continue;
700
701                 ret = devfreq_event_get_event(dmc->counter[i], &event);
702                 if (ret < 0)
703                         return ret;
704
705                 *load_count += event.load_count;
706
707                 if (total < event.total_count)
708                         total = event.total_count;
709         }
710
711         *total_count = total;
712
713         return 0;
714 }
715
716 /**
717  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
718  * @dmc:        device for which the counters are going to be checked
719  * @beg_value:  initial value for the counter
720  *
721  * Function which enables needed counters, interrupts and sets initial values
722  * then starts the counters.
723  */
724 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
725                                           u32 beg_value)
726 {
727         /* Enable interrupts for counter 2 */
728         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
729         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
730
731         /* Enable counter 2 and CCNT  */
732         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
733         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
734
735         /* Clear overflow flag for all counters */
736         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
737         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
738
739         /* Reset all counters */
740         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
741         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
742
743         /*
744          * Set start value for the counters, the number of samples that
745          * will be gathered is calculated as: 0xffffffff - beg_value
746          */
747         writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
748         writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
749
750         /* Start all counters */
751         writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
752         writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
753 }
754
755 /**
756  * exynos5_dmc_perf_events_calc() - Calculate utilization
757  * @dmc:        device for which the counters are going to be checked
758  * @diff_ts:    time between last interrupt and current one
759  *
760  * Function which calculates needed utilization for the devfreq governor.
761  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
762  * between interrupts, which approximates utilization.
763  */
764 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
765 {
766         /*
767          * This is a simple algorithm for managing traffic on DMC.
768          * When there is almost no load the counters overflow every 4s,
769          * no mater the DMC frequency.
770          * The high load might be approximated using linear function.
771          * Knowing that, simple calculation can provide 'busy_time' and
772          * 'total_time' to the devfreq governor which picks up target
773          * frequency.
774          * We want a fast ramp up and slow decay in frequency change function.
775          */
776         if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
777                 /*
778                  * Set higher utilization for the simple_ondemand governor.
779                  * The governor should increase the frequency of the DMC.
780                  */
781                 dmc->load = 70;
782                 dmc->total = 100;
783         } else {
784                 /*
785                  * Set low utilization for the simple_ondemand governor.
786                  * The governor should decrease the frequency of the DMC.
787                  */
788                 dmc->load = 35;
789                 dmc->total = 100;
790         }
791
792         dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
793 }
794
795 /**
796  * exynos5_dmc_perf_events_check() - Checks the status of the counters
797  * @dmc:        device for which the counters are going to be checked
798  *
799  * Function which is called from threaded IRQ to check the counters state
800  * and to call approximation for the needed utilization.
801  */
802 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
803 {
804         u32 val;
805         u64 diff_ts, ts;
806
807         ts = ktime_get_ns();
808
809         /* Stop all counters */
810         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
811         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
812
813         /* Check the source in interrupt flag registers (which channel) */
814         val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
815         if (val) {
816                 diff_ts = ts - dmc->last_overflow_ts[0];
817                 dmc->last_overflow_ts[0] = ts;
818                 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
819         } else {
820                 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
821                 diff_ts = ts - dmc->last_overflow_ts[1];
822                 dmc->last_overflow_ts[1] = ts;
823                 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
824         }
825
826         exynos5_dmc_perf_events_calc(dmc, diff_ts);
827
828         exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
829 }
830
831 /**
832  * exynos5_dmc_enable_perf_events() - Enable performance events
833  * @dmc:        device for which the counters are going to be checked
834  *
835  * Function which is setup needed environment and enables counters.
836  */
837 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
838 {
839         u64 ts;
840
841         /* Enable Performance Event Clock */
842         writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
843         writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
844
845         /* Select read transfers as performance event2 */
846         writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
847         writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
848
849         ts = ktime_get_ns();
850         dmc->last_overflow_ts[0] = ts;
851         dmc->last_overflow_ts[1] = ts;
852
853         /* Devfreq shouldn't be faster than initialization, play safe though. */
854         dmc->load = 99;
855         dmc->total = 100;
856 }
857
858 /**
859  * exynos5_dmc_disable_perf_events() - Disable performance events
860  * @dmc:        device for which the counters are going to be checked
861  *
862  * Function which stops, disables performance event counters and interrupts.
863  */
864 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
865 {
866         /* Stop all counters */
867         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
868         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
869
870         /* Disable interrupts for counter 2 */
871         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
872         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
873
874         /* Disable counter 2 and CCNT  */
875         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
876         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
877
878         /* Clear overflow flag for all counters */
879         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
880         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
881 }
882
883 /**
884  * exynos5_dmc_get_status() - Read current DMC performance statistics.
885  * @dev:        device for which the statistics are requested
886  * @stat:       structure which has statistic fields
887  *
888  * Function reads the DMC performance counters and calculates 'busy_time'
889  * and 'total_time'. To protect from overflow, the values are shifted right
890  * by 10. After read out the counters are setup to count again.
891  */
892 static int exynos5_dmc_get_status(struct device *dev,
893                                   struct devfreq_dev_status *stat)
894 {
895         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
896         unsigned long load, total;
897         int ret;
898
899         if (dmc->in_irq_mode) {
900                 stat->current_frequency = dmc->curr_rate;
901                 stat->busy_time = dmc->load;
902                 stat->total_time = dmc->total;
903         } else {
904                 ret = exynos5_counters_get(dmc, &load, &total);
905                 if (ret < 0)
906                         return -EINVAL;
907
908                 /* To protect from overflow, divide by 1024 */
909                 stat->busy_time = load >> 10;
910                 stat->total_time = total >> 10;
911
912                 ret = exynos5_counters_set_event(dmc);
913                 if (ret < 0) {
914                         dev_err(dev, "could not set event counter\n");
915                         return ret;
916                 }
917         }
918
919         return 0;
920 }
921
922 /**
923  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
924  * @dev:        device for which the framework checks operating frequency
925  * @freq:       returned frequency value
926  *
927  * It returns the currently used frequency of the DMC. The real operating
928  * frequency might be lower when the clock source value could not be divided
929  * to the requested value.
930  */
931 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
932 {
933         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
934
935         mutex_lock(&dmc->lock);
936         *freq = dmc->curr_rate;
937         mutex_unlock(&dmc->lock);
938
939         return 0;
940 }
941
942 /**
943  * exynos5_dmc_df_profile - Devfreq governor's profile structure
944  *
945  * It provides to the devfreq framework needed functions and polling period.
946  */
947 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
948         .target = exynos5_dmc_target,
949         .get_dev_status = exynos5_dmc_get_status,
950         .get_cur_freq = exynos5_dmc_get_cur_freq,
951 };
952
953 /**
954  * exynos5_dmc_align_initial_frequency() - Align initial frequency value
955  * @dmc:        device for which the frequency is going to be set
956  * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
957  *
958  * The initial bootloader frequency, which is present during boot, might be
959  * different that supported frequency values in the driver. It is possible
960  * due to different PLL settings or used PLL as a source.
961  * This function provides the 'initial_freq' for the devfreq framework
962  * statistics engine which supports only registered values. Thus, some alignment
963  * must be made.
964  */
965 static unsigned long
966 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
967                             unsigned long bootloader_init_freq)
968 {
969         unsigned long aligned_freq;
970         int idx;
971
972         idx = find_target_freq_idx(dmc, bootloader_init_freq);
973         if (idx >= 0)
974                 aligned_freq = dmc->opp[idx].freq_hz;
975         else
976                 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
977
978         return aligned_freq;
979 }
980
981 /**
982  * create_timings_aligned() - Create register values and align with standard
983  * @dmc:        device for which the frequency is going to be set
984  * @idx:        speed bin in the OPP table
985  * @clk_period_ps:      the period of the clock, known as tCK
986  *
987  * The function calculates timings and creates a register value ready for
988  * a frequency transition. The register contains a few timings. They are
989  * shifted by a known offset. The timing value is calculated based on memory
990  * specyfication: minimal time required and minimal cycles required.
991  */
992 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
993                                   u32 *reg_timing_data, u32 *reg_timing_power,
994                                   u32 clk_period_ps)
995 {
996         u32 val;
997         const struct timing_reg *reg;
998
999         if (clk_period_ps == 0)
1000                 return -EINVAL;
1001
1002         *reg_timing_row = 0;
1003         *reg_timing_data = 0;
1004         *reg_timing_power = 0;
1005
1006         val = dmc->timings->tRFC / clk_period_ps;
1007         val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1008         val = max(val, dmc->min_tck->tRFC);
1009         reg = &timing_row[0];
1010         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1011
1012         val = dmc->timings->tRRD / clk_period_ps;
1013         val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1014         val = max(val, dmc->min_tck->tRRD);
1015         reg = &timing_row[1];
1016         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1017
1018         val = dmc->timings->tRPab / clk_period_ps;
1019         val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1020         val = max(val, dmc->min_tck->tRPab);
1021         reg = &timing_row[2];
1022         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024         val = dmc->timings->tRCD / clk_period_ps;
1025         val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1026         val = max(val, dmc->min_tck->tRCD);
1027         reg = &timing_row[3];
1028         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030         val = dmc->timings->tRC / clk_period_ps;
1031         val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1032         val = max(val, dmc->min_tck->tRC);
1033         reg = &timing_row[4];
1034         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036         val = dmc->timings->tRAS / clk_period_ps;
1037         val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1038         val = max(val, dmc->min_tck->tRAS);
1039         reg = &timing_row[5];
1040         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042         /* data related timings */
1043         val = dmc->timings->tWTR / clk_period_ps;
1044         val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1045         val = max(val, dmc->min_tck->tWTR);
1046         reg = &timing_data[0];
1047         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1048
1049         val = dmc->timings->tWR / clk_period_ps;
1050         val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1051         val = max(val, dmc->min_tck->tWR);
1052         reg = &timing_data[1];
1053         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1054
1055         val = dmc->timings->tRTP / clk_period_ps;
1056         val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1057         val = max(val, dmc->min_tck->tRTP);
1058         reg = &timing_data[2];
1059         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061         val = dmc->timings->tW2W_C2C / clk_period_ps;
1062         val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1063         val = max(val, dmc->min_tck->tW2W_C2C);
1064         reg = &timing_data[3];
1065         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067         val = dmc->timings->tR2R_C2C / clk_period_ps;
1068         val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1069         val = max(val, dmc->min_tck->tR2R_C2C);
1070         reg = &timing_data[4];
1071         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073         val = dmc->timings->tWL / clk_period_ps;
1074         val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1075         val = max(val, dmc->min_tck->tWL);
1076         reg = &timing_data[5];
1077         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079         val = dmc->timings->tDQSCK / clk_period_ps;
1080         val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1081         val = max(val, dmc->min_tck->tDQSCK);
1082         reg = &timing_data[6];
1083         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085         val = dmc->timings->tRL / clk_period_ps;
1086         val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1087         val = max(val, dmc->min_tck->tRL);
1088         reg = &timing_data[7];
1089         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091         /* power related timings */
1092         val = dmc->timings->tFAW / clk_period_ps;
1093         val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1094         val = max(val, dmc->min_tck->tFAW);
1095         reg = &timing_power[0];
1096         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1097
1098         val = dmc->timings->tXSR / clk_period_ps;
1099         val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1100         val = max(val, dmc->min_tck->tXSR);
1101         reg = &timing_power[1];
1102         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1103
1104         val = dmc->timings->tXP / clk_period_ps;
1105         val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1106         val = max(val, dmc->min_tck->tXP);
1107         reg = &timing_power[2];
1108         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110         val = dmc->timings->tCKE / clk_period_ps;
1111         val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1112         val = max(val, dmc->min_tck->tCKE);
1113         reg = &timing_power[3];
1114         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116         val = dmc->timings->tMRD / clk_period_ps;
1117         val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1118         val = max(val, dmc->min_tck->tMRD);
1119         reg = &timing_power[4];
1120         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122         return 0;
1123 }
1124
1125 /**
1126  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1127  * @dmc:        device for which the frequency is going to be set
1128  *
1129  * The function parses DT entries with DRAM information.
1130  */
1131 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1132 {
1133         int ret = 0;
1134         int idx;
1135         struct device_node *np_ddr;
1136         u32 freq_mhz, clk_period_ps;
1137
1138         np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1139         if (!np_ddr) {
1140                 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1141                 return -EINVAL;
1142         }
1143
1144         dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1145                                              sizeof(u32), GFP_KERNEL);
1146         if (!dmc->timing_row)
1147                 return -ENOMEM;
1148
1149         dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1150                                               sizeof(u32), GFP_KERNEL);
1151         if (!dmc->timing_data)
1152                 return -ENOMEM;
1153
1154         dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1155                                                sizeof(u32), GFP_KERNEL);
1156         if (!dmc->timing_power)
1157                 return -ENOMEM;
1158
1159         dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1160                                                  DDR_TYPE_LPDDR3,
1161                                                  &dmc->timings_arr_size);
1162         if (!dmc->timings) {
1163                 of_node_put(np_ddr);
1164                 dev_warn(dmc->dev, "could not get timings from DT\n");
1165                 return -EINVAL;
1166         }
1167
1168         dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1169         if (!dmc->min_tck) {
1170                 of_node_put(np_ddr);
1171                 dev_warn(dmc->dev, "could not get tck from DT\n");
1172                 return -EINVAL;
1173         }
1174
1175         /* Sorted array of OPPs with frequency ascending */
1176         for (idx = 0; idx < dmc->opp_count; idx++) {
1177                 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1178                 clk_period_ps = 1000000 / freq_mhz;
1179
1180                 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1181                                              &dmc->timing_data[idx],
1182                                              &dmc->timing_power[idx],
1183                                              clk_period_ps);
1184         }
1185
1186         of_node_put(np_ddr);
1187
1188         /* Take the highest frequency's timings as 'bypass' */
1189         dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1190         dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1191         dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1192
1193         return ret;
1194 }
1195
1196 /**
1197  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1198  * @dmc:        DMC structure containing needed fields
1199  *
1200  * Get the needed clocks defined in DT device, enable and set the right parents.
1201  * Read current frequency and initialize the initial rate for governor.
1202  */
1203 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1204 {
1205         int ret;
1206         unsigned long target_volt = 0;
1207         unsigned long target_rate = 0;
1208         unsigned int tmp;
1209
1210         dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1211         if (IS_ERR(dmc->fout_spll))
1212                 return PTR_ERR(dmc->fout_spll);
1213
1214         dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1215         if (IS_ERR(dmc->fout_bpll))
1216                 return PTR_ERR(dmc->fout_bpll);
1217
1218         dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1219         if (IS_ERR(dmc->mout_mclk_cdrex))
1220                 return PTR_ERR(dmc->mout_mclk_cdrex);
1221
1222         dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1223         if (IS_ERR(dmc->mout_bpll))
1224                 return PTR_ERR(dmc->mout_bpll);
1225
1226         dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1227                                                 "mout_mx_mspll_ccore");
1228         if (IS_ERR(dmc->mout_mx_mspll_ccore))
1229                 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1230
1231         dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1232         if (IS_ERR(dmc->mout_spll)) {
1233                 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1234                 if (IS_ERR(dmc->mout_spll))
1235                         return PTR_ERR(dmc->mout_spll);
1236         }
1237
1238         /*
1239          * Convert frequency to KHz values and set it for the governor.
1240          */
1241         dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1242         dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1243         exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1244
1245         ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1246                                         &target_volt, 0);
1247         if (ret)
1248                 return ret;
1249
1250         dmc->curr_volt = target_volt;
1251
1252         clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1253
1254         dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1255
1256         clk_prepare_enable(dmc->fout_bpll);
1257         clk_prepare_enable(dmc->mout_bpll);
1258
1259         /*
1260          * Some bootloaders do not set clock routes correctly.
1261          * Stop one path in clocks to PHY.
1262          */
1263         regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1264         tmp &= ~(BIT(1) | BIT(0));
1265         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1266
1267         return 0;
1268 }
1269
1270 /**
1271  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1272  * @dmc:        DMC for which it does the setup
1273  *
1274  * Initialization of performance counters in DMC for estimating usage.
1275  * The counter's values are used for calculation of a memory bandwidth and based
1276  * on that the governor changes the frequency.
1277  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1278  */
1279 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1280 {
1281         int counters_size;
1282         int ret, i;
1283
1284         dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1285         if (dmc->num_counters < 0) {
1286                 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1287                 return dmc->num_counters;
1288         }
1289
1290         counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1291         dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1292         if (!dmc->counter)
1293                 return -ENOMEM;
1294
1295         for (i = 0; i < dmc->num_counters; i++) {
1296                 dmc->counter[i] =
1297                         devfreq_event_get_edev_by_phandle(dmc->dev, i);
1298                 if (IS_ERR_OR_NULL(dmc->counter[i]))
1299                         return -EPROBE_DEFER;
1300         }
1301
1302         ret = exynos5_counters_enable_edev(dmc);
1303         if (ret < 0) {
1304                 dev_err(dmc->dev, "could not enable event counter\n");
1305                 return ret;
1306         }
1307
1308         ret = exynos5_counters_set_event(dmc);
1309         if (ret < 0) {
1310                 exynos5_counters_disable_edev(dmc);
1311                 dev_err(dmc->dev, "could not set event counter\n");
1312                 return ret;
1313         }
1314
1315         return 0;
1316 }
1317
1318 /**
1319  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1320  * @dmc:        device which is used for changing this feature
1321  * @set:        a boolean state passing enable/disable request
1322  *
1323  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1324  * changes its configuration. In such situation access to the memory is blocked
1325  * in DMC automatically. This feature is used when clock frequency change
1326  * request appears and touches clock tree.
1327  */
1328 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1329 {
1330         unsigned int val;
1331         int ret;
1332
1333         ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1334         if (ret)
1335                 return ret;
1336
1337         val |= 1UL;
1338         regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1339
1340         return 0;
1341 }
1342
1343 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1344 {
1345         int res;
1346         struct exynos5_dmc *dmc = priv;
1347
1348         mutex_lock(&dmc->df->lock);
1349         exynos5_dmc_perf_events_check(dmc);
1350         res = update_devfreq(dmc->df);
1351         mutex_unlock(&dmc->df->lock);
1352
1353         if (res)
1354                 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1355
1356         return IRQ_HANDLED;
1357 }
1358
1359 /**
1360  * exynos5_dmc_probe() - Probe function for the DMC driver
1361  * @pdev:       platform device for which the driver is going to be initialized
1362  *
1363  * Initialize basic components: clocks, regulators, performance counters, etc.
1364  * Read out product version and based on the information setup
1365  * internal structures for the controller (frequency and voltage) and for DRAM
1366  * memory parameters: timings for each operating frequency.
1367  * Register new devfreq device for controlling DVFS of the DMC.
1368  */
1369 static int exynos5_dmc_probe(struct platform_device *pdev)
1370 {
1371         int ret = 0;
1372         struct device *dev = &pdev->dev;
1373         struct device_node *np = dev->of_node;
1374         struct exynos5_dmc *dmc;
1375         int irq[2];
1376
1377         dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1378         if (!dmc)
1379                 return -ENOMEM;
1380
1381         mutex_init(&dmc->lock);
1382
1383         dmc->dev = dev;
1384         platform_set_drvdata(pdev, dmc);
1385
1386         dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1387         if (IS_ERR(dmc->base_drexi0))
1388                 return PTR_ERR(dmc->base_drexi0);
1389
1390         dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1391         if (IS_ERR(dmc->base_drexi1))
1392                 return PTR_ERR(dmc->base_drexi1);
1393
1394         dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1395                                 "samsung,syscon-clk");
1396         if (IS_ERR(dmc->clk_regmap))
1397                 return PTR_ERR(dmc->clk_regmap);
1398
1399         ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1400         if (ret) {
1401                 dev_warn(dev, "couldn't initialize frequency settings\n");
1402                 return ret;
1403         }
1404
1405         dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1406         if (IS_ERR(dmc->vdd_mif)) {
1407                 ret = PTR_ERR(dmc->vdd_mif);
1408                 return ret;
1409         }
1410
1411         ret = exynos5_dmc_init_clks(dmc);
1412         if (ret)
1413                 return ret;
1414
1415         ret = of_get_dram_timings(dmc);
1416         if (ret) {
1417                 dev_warn(dev, "couldn't initialize timings settings\n");
1418                 goto remove_clocks;
1419         }
1420
1421         ret = exynos5_dmc_set_pause_on_switching(dmc);
1422         if (ret) {
1423                 dev_warn(dev, "couldn't get access to PAUSE register\n");
1424                 goto remove_clocks;
1425         }
1426
1427         /* There is two modes in which the driver works: polling or IRQ */
1428         irq[0] = platform_get_irq_byname(pdev, "drex_0");
1429         irq[1] = platform_get_irq_byname(pdev, "drex_1");
1430         if (irq[0] > 0 && irq[1] > 0) {
1431                 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1432                                                 dmc_irq_thread, IRQF_ONESHOT,
1433                                                 dev_name(dev), dmc);
1434                 if (ret) {
1435                         dev_err(dev, "couldn't grab IRQ\n");
1436                         goto remove_clocks;
1437                 }
1438
1439                 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1440                                                 dmc_irq_thread, IRQF_ONESHOT,
1441                                                 dev_name(dev), dmc);
1442                 if (ret) {
1443                         dev_err(dev, "couldn't grab IRQ\n");
1444                         goto remove_clocks;
1445                 }
1446
1447                 /*
1448                  * Setup default thresholds for the devfreq governor.
1449                  * The values are chosen based on experiments.
1450                  */
1451                 dmc->gov_data.upthreshold = 55;
1452                 dmc->gov_data.downdifferential = 5;
1453
1454                 exynos5_dmc_enable_perf_events(dmc);
1455
1456                 dmc->in_irq_mode = 1;
1457         } else {
1458                 ret = exynos5_performance_counters_init(dmc);
1459                 if (ret) {
1460                         dev_warn(dev, "couldn't probe performance counters\n");
1461                         goto remove_clocks;
1462                 }
1463
1464                 /*
1465                  * Setup default thresholds for the devfreq governor.
1466                  * The values are chosen based on experiments.
1467                  */
1468                 dmc->gov_data.upthreshold = 30;
1469                 dmc->gov_data.downdifferential = 5;
1470
1471                 exynos5_dmc_df_profile.polling_ms = 500;
1472         }
1473
1474
1475         dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1476                                           DEVFREQ_GOV_SIMPLE_ONDEMAND,
1477                                           &dmc->gov_data);
1478
1479         if (IS_ERR(dmc->df)) {
1480                 ret = PTR_ERR(dmc->df);
1481                 goto err_devfreq_add;
1482         }
1483
1484         if (dmc->in_irq_mode)
1485                 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1486
1487         dev_info(dev, "DMC initialized\n");
1488
1489         return 0;
1490
1491 err_devfreq_add:
1492         if (dmc->in_irq_mode)
1493                 exynos5_dmc_disable_perf_events(dmc);
1494         else
1495                 exynos5_counters_disable_edev(dmc);
1496 remove_clocks:
1497         clk_disable_unprepare(dmc->mout_bpll);
1498         clk_disable_unprepare(dmc->fout_bpll);
1499
1500         return ret;
1501 }
1502
1503 /**
1504  * exynos5_dmc_remove() - Remove function for the platform device
1505  * @pdev:       platform device which is going to be removed
1506  *
1507  * The function relies on 'devm' framework function which automatically
1508  * clean the device's resources. It just calls explicitly disable function for
1509  * the performance counters.
1510  */
1511 static int exynos5_dmc_remove(struct platform_device *pdev)
1512 {
1513         struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1514
1515         if (dmc->in_irq_mode)
1516                 exynos5_dmc_disable_perf_events(dmc);
1517         else
1518                 exynos5_counters_disable_edev(dmc);
1519
1520         clk_disable_unprepare(dmc->mout_bpll);
1521         clk_disable_unprepare(dmc->fout_bpll);
1522
1523         dev_pm_opp_remove_table(dmc->dev);
1524
1525         return 0;
1526 }
1527
1528 static const struct of_device_id exynos5_dmc_of_match[] = {
1529         { .compatible = "samsung,exynos5422-dmc", },
1530         { },
1531 };
1532 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1533
1534 static struct platform_driver exynos5_dmc_platdrv = {
1535         .probe  = exynos5_dmc_probe,
1536         .remove = exynos5_dmc_remove,
1537         .driver = {
1538                 .name   = "exynos5-dmc",
1539                 .of_match_table = exynos5_dmc_of_match,
1540         },
1541 };
1542 module_platform_driver(exynos5_dmc_platdrv);
1543 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1544 MODULE_LICENSE("GPL v2");
1545 MODULE_AUTHOR("Lukasz Luba");