Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / memory / fsl_ifc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2011 Freescale Semiconductor, Inc
4  *
5  * Freescale Integrated Flash Controller
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27
28 /*
29  * convert_ifc_address - convert the base address
30  * @addr_base:  base address of the memory bank
31  */
32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34         return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37
38 /*
39  * fsl_ifc_find - find IFC bank
40  * @addr_base:  base address of the memory bank
41  *
42  * This function walks IFC banks comparing "Base address" field of the CSPR
43  * registers with the supplied addr_base argument. When bases match this
44  * function returns bank number (starting with 0), otherwise it returns
45  * appropriate errno value.
46  */
47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49         int i = 0;
50
51         if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52                 return -ENODEV;
53
54         for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55                 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56
57                 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58                                 convert_ifc_address(addr_base))
59                         return i;
60         }
61
62         return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65
66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68         struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69
70         /*
71          * Clear all the common status and event registers
72          */
73         if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74                 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75
76         /* enable all error and events */
77         ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78
79         /* enable all error and event interrupts */
80         ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81         ifc_out32(0x0, &ifc->cm_erattr0);
82         ifc_out32(0x0, &ifc->cm_erattr1);
83
84         return 0;
85 }
86
87 static void fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89         struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90
91         of_platform_depopulate(&dev->dev);
92         free_irq(ctrl->nand_irq, ctrl);
93         free_irq(ctrl->irq, ctrl);
94
95         irq_dispose_mapping(ctrl->nand_irq);
96         irq_dispose_mapping(ctrl->irq);
97
98         iounmap(ctrl->gregs);
99
100         dev_set_drvdata(&dev->dev, NULL);
101 }
102
103 /*
104  * NAND events are split between an operational interrupt which only
105  * receives OPC, and an error interrupt that receives everything else,
106  * including non-NAND errors.  Whichever interrupt gets to it first
107  * records the status and wakes the wait queue.
108  */
109 static DEFINE_SPINLOCK(nand_irq_lock);
110
111 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
112 {
113         struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
114         unsigned long flags;
115         u32 stat;
116
117         spin_lock_irqsave(&nand_irq_lock, flags);
118
119         stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
120         if (stat) {
121                 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
122                 ctrl->nand_stat = stat;
123                 wake_up(&ctrl->nand_wait);
124         }
125
126         spin_unlock_irqrestore(&nand_irq_lock, flags);
127
128         return stat;
129 }
130
131 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
132 {
133         struct fsl_ifc_ctrl *ctrl = data;
134
135         if (check_nand_stat(ctrl))
136                 return IRQ_HANDLED;
137
138         return IRQ_NONE;
139 }
140
141 /*
142  * NOTE: This interrupt is used to report ifc events of various kinds,
143  * such as transaction errors on the chipselects.
144  */
145 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
146 {
147         struct fsl_ifc_ctrl *ctrl = data;
148         struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
149         u32 err_axiid, err_srcid, status, cs_err, err_addr;
150         irqreturn_t ret = IRQ_NONE;
151
152         /* read for chip select error */
153         cs_err = ifc_in32(&ifc->cm_evter_stat);
154         if (cs_err) {
155                 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
156                         cs_err);
157                 /* clear the chip select error */
158                 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
159
160                 /* read error attribute registers print the error information */
161                 status = ifc_in32(&ifc->cm_erattr0);
162                 err_addr = ifc_in32(&ifc->cm_erattr1);
163
164                 if (status & IFC_CM_ERATTR0_ERTYP_READ)
165                         dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
166                                 status);
167                 else
168                         dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
169                                 status);
170
171                 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
172                                         IFC_CM_ERATTR0_ERAID_SHIFT;
173                 dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
174                         err_axiid);
175
176                 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
177                                         IFC_CM_ERATTR0_ESRCID_SHIFT;
178                 dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
179                         err_srcid);
180
181                 dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
182                         err_addr);
183
184                 ret = IRQ_HANDLED;
185         }
186
187         if (check_nand_stat(ctrl))
188                 ret = IRQ_HANDLED;
189
190         return ret;
191 }
192
193 /*
194  * fsl_ifc_ctrl_probe
195  *
196  * called by device layer when it finds a device matching
197  * one our driver can handled. This code allocates all of
198  * the resources needed for the controller only.  The
199  * resources for the NAND banks themselves are allocated
200  * in the chip probe function.
201  */
202 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
203 {
204         int ret = 0;
205         int version, banks;
206         void __iomem *addr;
207
208         dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
209
210         fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
211                                         GFP_KERNEL);
212         if (!fsl_ifc_ctrl_dev)
213                 return -ENOMEM;
214
215         dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
216
217         /* IOMAP the entire IFC region */
218         fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
219         if (!fsl_ifc_ctrl_dev->gregs) {
220                 dev_err(&dev->dev, "failed to get memory region\n");
221                 return -ENODEV;
222         }
223
224         if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
225                 fsl_ifc_ctrl_dev->little_endian = true;
226                 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
227         } else {
228                 fsl_ifc_ctrl_dev->little_endian = false;
229                 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
230         }
231
232         version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
233                         FSL_IFC_VERSION_MASK;
234
235         banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
236         dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
237                 version >> 24, (version >> 16) & 0xf, banks);
238
239         fsl_ifc_ctrl_dev->version = version;
240         fsl_ifc_ctrl_dev->banks = banks;
241
242         addr = fsl_ifc_ctrl_dev->gregs;
243         if (version >= FSL_IFC_VERSION_2_0_0)
244                 addr += PGOFFSET_64K;
245         else
246                 addr += PGOFFSET_4K;
247         fsl_ifc_ctrl_dev->rregs = addr;
248
249         /* get the Controller level irq */
250         fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
251         if (fsl_ifc_ctrl_dev->irq == 0) {
252                 dev_err(&dev->dev, "failed to get irq resource for IFC\n");
253                 ret = -ENODEV;
254                 goto err;
255         }
256
257         /* get the nand machine irq */
258         fsl_ifc_ctrl_dev->nand_irq =
259                         irq_of_parse_and_map(dev->dev.of_node, 1);
260
261         fsl_ifc_ctrl_dev->dev = &dev->dev;
262
263         ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
264         if (ret < 0)
265                 goto err_unmap_nandirq;
266
267         init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
268
269         ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
270                           "fsl-ifc", fsl_ifc_ctrl_dev);
271         if (ret != 0) {
272                 dev_err(&dev->dev, "failed to install irq (%d)\n",
273                         fsl_ifc_ctrl_dev->irq);
274                 goto err_unmap_nandirq;
275         }
276
277         if (fsl_ifc_ctrl_dev->nand_irq) {
278                 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
279                                 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
280                 if (ret != 0) {
281                         dev_err(&dev->dev, "failed to install irq (%d)\n",
282                                 fsl_ifc_ctrl_dev->nand_irq);
283                         goto err_free_irq;
284                 }
285         }
286
287         /* legacy dts may still use "simple-bus" compatible */
288         ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
289         if (ret)
290                 goto err_free_nandirq;
291
292         return 0;
293
294 err_free_nandirq:
295         free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
296 err_free_irq:
297         free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
298 err_unmap_nandirq:
299         irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
300         irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
301 err:
302         iounmap(fsl_ifc_ctrl_dev->gregs);
303         return ret;
304 }
305
306 static const struct of_device_id fsl_ifc_match[] = {
307         {
308                 .compatible = "fsl,ifc",
309         },
310         {},
311 };
312
313 static struct platform_driver fsl_ifc_ctrl_driver = {
314         .driver = {
315                 .name   = "fsl-ifc",
316                 .of_match_table = fsl_ifc_match,
317         },
318         .probe       = fsl_ifc_ctrl_probe,
319         .remove_new  = fsl_ifc_ctrl_remove,
320 };
321
322 static int __init fsl_ifc_init(void)
323 {
324         return platform_driver_register(&fsl_ifc_ctrl_driver);
325 }
326 subsys_initcall(fsl_ifc_init);
327
328 MODULE_AUTHOR("Freescale Semiconductor");
329 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");