treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[linux-2.6-microblaze.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26 #include <memory/jedec_ddr.h>
27 #include "emif.h"
28 #include "of_memory.h"
29
30 /**
31  * struct emif_data - Per device static data for driver's use
32  * @duplicate:                  Whether the DDR devices attached to this EMIF
33  *                              instance are exactly same as that on EMIF1. In
34  *                              this case we can save some memory and processing
35  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
36  *                              to this EMIF - read from MR4 register. If there
37  *                              are two devices attached to this EMIF, this
38  *                              value is the maximum of the two temperature
39  *                              levels.
40  * @node:                       node in the device list
41  * @base:                       base address of memory-mapped IO registers.
42  * @dev:                        device pointer.
43  * @addressing                  table with addressing information from the spec
44  * @regs_cache:                 An array of 'struct emif_regs' that stores
45  *                              calculated register values for different
46  *                              frequencies, to avoid re-calculating them on
47  *                              each DVFS transition.
48  * @curr_regs:                  The set of register values used in the last
49  *                              frequency change (i.e. corresponding to the
50  *                              frequency in effect at the moment)
51  * @plat_data:                  Pointer to saved platform data.
52  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
53  * @np_ddr:                     Pointer to ddr device tree node
54  */
55 struct emif_data {
56         u8                              duplicate;
57         u8                              temperature_level;
58         u8                              lpmode;
59         struct list_head                node;
60         unsigned long                   irq_state;
61         void __iomem                    *base;
62         struct device                   *dev;
63         const struct lpddr2_addressing  *addressing;
64         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
65         struct emif_regs                *curr_regs;
66         struct emif_platform_data       *plat_data;
67         struct dentry                   *debugfs_root;
68         struct device_node              *np_ddr;
69 };
70
71 static struct emif_data *emif1;
72 static spinlock_t       emif_lock;
73 static unsigned long    irq_state;
74 static u32              t_ck; /* DDR clock period in ps */
75 static LIST_HEAD(device_list);
76
77 #ifdef CONFIG_DEBUG_FS
78 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
79         struct emif_regs *regs)
80 {
81         u32 type = emif->plat_data->device_info->type;
82         u32 ip_rev = emif->plat_data->ip_rev;
83
84         seq_printf(s, "EMIF register cache dump for %dMHz\n",
85                 regs->freq/1000000);
86
87         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
88         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
89         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
90         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
91
92         if (ip_rev == EMIF_4D) {
93                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
94                         regs->read_idle_ctrl_shdw_normal);
95                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
96                         regs->read_idle_ctrl_shdw_volt_ramp);
97         } else if (ip_rev == EMIF_4D5) {
98                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
99                         regs->dll_calib_ctrl_shdw_normal);
100                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
101                         regs->dll_calib_ctrl_shdw_volt_ramp);
102         }
103
104         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
105                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
106                         regs->ref_ctrl_shdw_derated);
107                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
108                         regs->sdram_tim1_shdw_derated);
109                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
110                         regs->sdram_tim3_shdw_derated);
111         }
112 }
113
114 static int emif_regdump_show(struct seq_file *s, void *unused)
115 {
116         struct emif_data        *emif   = s->private;
117         struct emif_regs        **regs_cache;
118         int                     i;
119
120         if (emif->duplicate)
121                 regs_cache = emif1->regs_cache;
122         else
123                 regs_cache = emif->regs_cache;
124
125         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
126                 do_emif_regdump_show(s, emif, regs_cache[i]);
127                 seq_putc(s, '\n');
128         }
129
130         return 0;
131 }
132
133 static int emif_regdump_open(struct inode *inode, struct file *file)
134 {
135         return single_open(file, emif_regdump_show, inode->i_private);
136 }
137
138 static const struct file_operations emif_regdump_fops = {
139         .open                   = emif_regdump_open,
140         .read                   = seq_read,
141         .release                = single_release,
142 };
143
144 static int emif_mr4_show(struct seq_file *s, void *unused)
145 {
146         struct emif_data *emif = s->private;
147
148         seq_printf(s, "MR4=%d\n", emif->temperature_level);
149         return 0;
150 }
151
152 static int emif_mr4_open(struct inode *inode, struct file *file)
153 {
154         return single_open(file, emif_mr4_show, inode->i_private);
155 }
156
157 static const struct file_operations emif_mr4_fops = {
158         .open                   = emif_mr4_open,
159         .read                   = seq_read,
160         .release                = single_release,
161 };
162
163 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
164 {
165         struct dentry   *dentry;
166         int             ret;
167
168         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
169         if (!dentry) {
170                 ret = -ENOMEM;
171                 goto err0;
172         }
173         emif->debugfs_root = dentry;
174
175         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
176                         emif->debugfs_root, emif, &emif_regdump_fops);
177         if (!dentry) {
178                 ret = -ENOMEM;
179                 goto err1;
180         }
181
182         dentry = debugfs_create_file("mr4", S_IRUGO,
183                         emif->debugfs_root, emif, &emif_mr4_fops);
184         if (!dentry) {
185                 ret = -ENOMEM;
186                 goto err1;
187         }
188
189         return 0;
190 err1:
191         debugfs_remove_recursive(emif->debugfs_root);
192 err0:
193         return ret;
194 }
195
196 static void __exit emif_debugfs_exit(struct emif_data *emif)
197 {
198         debugfs_remove_recursive(emif->debugfs_root);
199         emif->debugfs_root = NULL;
200 }
201 #else
202 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
203 {
204         return 0;
205 }
206
207 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
208 {
209 }
210 #endif
211
212 /*
213  * Calculate the period of DDR clock from frequency value
214  */
215 static void set_ddr_clk_period(u32 freq)
216 {
217         /* Divide 10^12 by frequency to get period in ps */
218         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
219 }
220
221 /*
222  * Get bus width used by EMIF. Note that this may be different from the
223  * bus width of the DDR devices used. For instance two 16-bit DDR devices
224  * may be connected to a given CS of EMIF. In this case bus width as far
225  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
226  */
227 static u32 get_emif_bus_width(struct emif_data *emif)
228 {
229         u32             width;
230         void __iomem    *base = emif->base;
231
232         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
233                         >> NARROW_MODE_SHIFT;
234         width = width == 0 ? 32 : 16;
235
236         return width;
237 }
238
239 /*
240  * Get the CL from SDRAM_CONFIG register
241  */
242 static u32 get_cl(struct emif_data *emif)
243 {
244         u32             cl;
245         void __iomem    *base = emif->base;
246
247         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
248
249         return cl;
250 }
251
252 static void set_lpmode(struct emif_data *emif, u8 lpmode)
253 {
254         u32 temp;
255         void __iomem *base = emif->base;
256
257         /*
258          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
259          * Efficient
260          *
261          * i743 DESCRIPTION:
262          * The EMIF supports power-down state for low power. The EMIF
263          * automatically puts the SDRAM into power-down after the memory is
264          * not accessed for a defined number of cycles and the
265          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
266          * As the EMIF supports automatic output impedance calibration, a ZQ
267          * calibration long command is issued every time it exits active
268          * power-down and precharge power-down modes. The EMIF waits and
269          * blocks any other command during this calibration.
270          * The EMIF does not allow selective disabling of ZQ calibration upon
271          * exit of power-down mode. Due to very short periods of power-down
272          * cycles, ZQ calibration overhead creates bandwidth issues and
273          * increases overall system power consumption. On the other hand,
274          * issuing ZQ calibration long commands when exiting self-refresh is
275          * still required.
276          *
277          * WORKAROUND
278          * Because there is no power consumption benefit of the power-down due
279          * to the calibration and there is a performance risk, the guideline
280          * is to not allow power-down state and, therefore, to not have set
281          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
282          */
283         if ((emif->plat_data->ip_rev == EMIF_4D) &&
284             (EMIF_LP_MODE_PWR_DN == lpmode)) {
285                 WARN_ONCE(1,
286                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
287                           "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
288                 /* rollback LP_MODE to Self-refresh mode */
289                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
290         }
291
292         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
293         temp &= ~LP_MODE_MASK;
294         temp |= (lpmode << LP_MODE_SHIFT);
295         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
296 }
297
298 static void do_freq_update(void)
299 {
300         struct emif_data *emif;
301
302         /*
303          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
304          *
305          * i728 DESCRIPTION:
306          * The EMIF automatically puts the SDRAM into self-refresh mode
307          * after the EMIF has not performed accesses during
308          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
309          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
310          * to 0x2. If during a small window the following three events
311          * occur:
312          * - The SR_TIMING counter expires
313          * - And frequency change is requested
314          * - And OCP access is requested
315          * Then it causes instable clock on the DDR interface.
316          *
317          * WORKAROUND
318          * To avoid the occurrence of the three events, the workaround
319          * is to disable the self-refresh when requesting a frequency
320          * change. Before requesting a frequency change the software must
321          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
322          * frequency change has been done, the software can reprogram
323          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
324          */
325         list_for_each_entry(emif, &device_list, node) {
326                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
327                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
328         }
329
330         /*
331          * TODO: Do FREQ_UPDATE here when an API
332          * is available for this as part of the new
333          * clock framework
334          */
335
336         list_for_each_entry(emif, &device_list, node) {
337                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
338                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
339         }
340 }
341
342 /* Find addressing table entry based on the device's type and density */
343 static const struct lpddr2_addressing *get_addressing_table(
344         const struct ddr_device_info *device_info)
345 {
346         u32             index, type, density;
347
348         type = device_info->type;
349         density = device_info->density;
350
351         switch (type) {
352         case DDR_TYPE_LPDDR2_S4:
353                 index = density - 1;
354                 break;
355         case DDR_TYPE_LPDDR2_S2:
356                 switch (density) {
357                 case DDR_DENSITY_1Gb:
358                 case DDR_DENSITY_2Gb:
359                         index = density + 3;
360                         break;
361                 default:
362                         index = density - 1;
363                 }
364                 break;
365         default:
366                 return NULL;
367         }
368
369         return &lpddr2_jedec_addressing_table[index];
370 }
371
372 /*
373  * Find the the right timing table from the array of timing
374  * tables of the device using DDR clock frequency
375  */
376 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
377                 u32 freq)
378 {
379         u32                             i, min, max, freq_nearest;
380         const struct lpddr2_timings     *timings = NULL;
381         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
382         struct                          device *dev = emif->dev;
383
384         /* Start with a very high frequency - 1GHz */
385         freq_nearest = 1000000000;
386
387         /*
388          * Find the timings table such that:
389          *  1. the frequency range covers the required frequency(safe) AND
390          *  2. the max_freq is closest to the required frequency(optimal)
391          */
392         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
393                 max = timings_arr[i].max_freq;
394                 min = timings_arr[i].min_freq;
395                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
396                         freq_nearest = max;
397                         timings = &timings_arr[i];
398                 }
399         }
400
401         if (!timings)
402                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
403                         __func__, freq);
404
405         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
406                 __func__, freq, freq_nearest);
407
408         return timings;
409 }
410
411 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
412                 const struct lpddr2_addressing *addressing)
413 {
414         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
415
416         /* Scale down frequency and t_refi to avoid overflow */
417         freq_khz = freq / 1000;
418         t_refi = addressing->tREFI_ns / 100;
419
420         /*
421          * refresh rate to be set is 'tREFI(in us) * freq in MHz
422          * division by 10000 to account for change in units
423          */
424         val = t_refi * freq_khz / 10000;
425         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
426
427         return ref_ctrl_shdw;
428 }
429
430 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
431                 const struct lpddr2_min_tck *min_tck,
432                 const struct lpddr2_addressing *addressing)
433 {
434         u32 tim1 = 0, val = 0;
435
436         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437         tim1 |= val << T_WTR_SHIFT;
438
439         if (addressing->num_banks == B8)
440                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
441         else
442                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
443         tim1 |= (val - 1) << T_RRD_SHIFT;
444
445         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
446         tim1 |= val << T_RC_SHIFT;
447
448         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
449         tim1 |= (val - 1) << T_RAS_SHIFT;
450
451         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
452         tim1 |= val << T_WR_SHIFT;
453
454         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
455         tim1 |= val << T_RCD_SHIFT;
456
457         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
458         tim1 |= val << T_RP_SHIFT;
459
460         return tim1;
461 }
462
463 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
464                 const struct lpddr2_min_tck *min_tck,
465                 const struct lpddr2_addressing *addressing)
466 {
467         u32 tim1 = 0, val = 0;
468
469         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
470         tim1 = val << T_WTR_SHIFT;
471
472         /*
473          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
474          * to tFAW for de-rating
475          */
476         if (addressing->num_banks == B8) {
477                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
478         } else {
479                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
480                 val = max(min_tck->tRRD, val) - 1;
481         }
482         tim1 |= val << T_RRD_SHIFT;
483
484         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
485         tim1 |= (val - 1) << T_RC_SHIFT;
486
487         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
488         val = max(min_tck->tRASmin, val) - 1;
489         tim1 |= val << T_RAS_SHIFT;
490
491         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
492         tim1 |= val << T_WR_SHIFT;
493
494         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
495         tim1 |= (val - 1) << T_RCD_SHIFT;
496
497         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
498         tim1 |= (val - 1) << T_RP_SHIFT;
499
500         return tim1;
501 }
502
503 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
504                 const struct lpddr2_min_tck *min_tck,
505                 const struct lpddr2_addressing *addressing,
506                 u32 type)
507 {
508         u32 tim2 = 0, val = 0;
509
510         val = min_tck->tCKE - 1;
511         tim2 |= val << T_CKE_SHIFT;
512
513         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
514         tim2 |= val << T_RTP_SHIFT;
515
516         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
517         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
518         tim2 |= val << T_XSNR_SHIFT;
519
520         /* XSRD same as XSNR for LPDDR2 */
521         tim2 |= val << T_XSRD_SHIFT;
522
523         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
524         tim2 |= val << T_XP_SHIFT;
525
526         return tim2;
527 }
528
529 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
530                 const struct lpddr2_min_tck *min_tck,
531                 const struct lpddr2_addressing *addressing,
532                 u32 type, u32 ip_rev, u32 derated)
533 {
534         u32 tim3 = 0, val = 0, t_dqsck;
535
536         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
537         val = val > 0xF ? 0xF : val;
538         tim3 |= val << T_RAS_MAX_SHIFT;
539
540         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
541         tim3 |= val << T_RFC_SHIFT;
542
543         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
544                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
545         if (ip_rev == EMIF_4D5)
546                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
547         else
548                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
549
550         tim3 |= val << T_TDQSCKMAX_SHIFT;
551
552         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
553         tim3 |= val << ZQ_ZQCS_SHIFT;
554
555         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
556         val = max(min_tck->tCKESR, val) - 1;
557         tim3 |= val << T_CKESR_SHIFT;
558
559         if (ip_rev == EMIF_4D5) {
560                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
561
562                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
563                 tim3 |= val << T_PDLL_UL_SHIFT;
564         }
565
566         return tim3;
567 }
568
569 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
570                 bool cs1_used, bool cal_resistors_per_cs)
571 {
572         u32 zq = 0, val = 0;
573
574         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
575         zq |= val << ZQ_REFINTERVAL_SHIFT;
576
577         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
578         zq |= val << ZQ_ZQCL_MULT_SHIFT;
579
580         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
581         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
582
583         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
584
585         if (cal_resistors_per_cs)
586                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
587         else
588                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
589
590         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
591
592         val = cs1_used ? 1 : 0;
593         zq |= val << ZQ_CS1EN_SHIFT;
594
595         return zq;
596 }
597
598 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
599                 const struct emif_custom_configs *custom_configs, bool cs1_used,
600                 u32 sdram_io_width, u32 emif_bus_width)
601 {
602         u32 alert = 0, interval, devcnt;
603
604         if (custom_configs && (custom_configs->mask &
605                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
606                 interval = custom_configs->temp_alert_poll_interval_ms;
607         else
608                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
609
610         interval *= 1000000;                    /* Convert to ns */
611         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
612         alert |= (interval << TA_REFINTERVAL_SHIFT);
613
614         /*
615          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
616          * also to this form and subtract to get TA_DEVCNT, which is
617          * in log2(x) form.
618          */
619         emif_bus_width = __fls(emif_bus_width) - 1;
620         devcnt = emif_bus_width - sdram_io_width;
621         alert |= devcnt << TA_DEVCNT_SHIFT;
622
623         /* DEVWDT is in 'log2(x) - 3' form */
624         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
625
626         alert |= 1 << TA_SFEXITEN_SHIFT;
627         alert |= 1 << TA_CS0EN_SHIFT;
628         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
629
630         return alert;
631 }
632
633 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
634 {
635         u32 idle = 0, val = 0;
636
637         /*
638          * Maximum value in normal conditions and increased frequency
639          * when voltage is ramping
640          */
641         if (volt_ramp)
642                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
643         else
644                 val = 0x1FF;
645
646         /*
647          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
648          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
649          */
650         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
651         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
652
653         return idle;
654 }
655
656 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
657 {
658         u32 calib = 0, val = 0;
659
660         if (volt_ramp == DDR_VOLTAGE_RAMPING)
661                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
662         else
663                 val = 0; /* Disabled when voltage is stable */
664
665         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
666         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
667
668         return calib;
669 }
670
671 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
672         u32 freq, u8 RL)
673 {
674         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
675
676         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
677         phy |= val << READ_LATENCY_SHIFT_4D;
678
679         if (freq <= 100000000)
680                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
681         else if (freq <= 200000000)
682                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
683         else
684                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
685
686         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
687
688         return phy;
689 }
690
691 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
692 {
693         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
694
695         /*
696          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
697          * half-delay is not needed else set half-delay
698          */
699         if (freq >= 265000000 && freq < 267000000)
700                 half_delay = 0;
701         else
702                 half_delay = 1;
703
704         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
705         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
706                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
707
708         return phy;
709 }
710
711 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
712 {
713         u32 fifo_we_slave_ratio;
714
715         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
716                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
717
718         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
719                 fifo_we_slave_ratio << 22;
720 }
721
722 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
723 {
724         u32 fifo_we_slave_ratio;
725
726         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
727                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
728
729         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
730                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
731 }
732
733 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
734 {
735         u32 fifo_we_slave_ratio;
736
737         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
738                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
739
740         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
741                 fifo_we_slave_ratio << 13;
742 }
743
744 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
745 {
746         u32 pwr_mgmt_ctrl       = 0, timeout;
747         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
748         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
749         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
750         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
751         u32 mask;
752         u8 shift;
753
754         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
755
756         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
757                 lpmode          = cust_cfgs->lpmode;
758                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
759                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
760                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
761         }
762
763         /* Timeout based on DDR frequency */
764         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
765
766         /*
767          * The value to be set in register is "log2(timeout) - 3"
768          * if timeout < 16 load 0 in register
769          * if timeout is not a power of 2, round to next highest power of 2
770          */
771         if (timeout < 16) {
772                 timeout = 0;
773         } else {
774                 if (timeout & (timeout - 1))
775                         timeout <<= 1;
776                 timeout = __fls(timeout) - 3;
777         }
778
779         switch (lpmode) {
780         case EMIF_LP_MODE_CLOCK_STOP:
781                 shift = CS_TIM_SHIFT;
782                 mask = CS_TIM_MASK;
783                 break;
784         case EMIF_LP_MODE_SELF_REFRESH:
785                 /* Workaround for errata i735 */
786                 if (timeout < 6)
787                         timeout = 6;
788
789                 shift = SR_TIM_SHIFT;
790                 mask = SR_TIM_MASK;
791                 break;
792         case EMIF_LP_MODE_PWR_DN:
793                 shift = PD_TIM_SHIFT;
794                 mask = PD_TIM_MASK;
795                 break;
796         case EMIF_LP_MODE_DISABLE:
797         default:
798                 mask = 0;
799                 shift = 0;
800                 break;
801         }
802         /* Round to maximum in case of overflow, BUT warn! */
803         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
804                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
805                        lpmode,
806                        timeout_perf,
807                        timeout_pwr,
808                        freq_threshold);
809                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
810                      timeout, mask >> shift);
811                 timeout = mask >> shift;
812         }
813
814         /* Setup required timing */
815         pwr_mgmt_ctrl = (timeout << shift) & mask;
816         /* setup a default mask for rest of the modes */
817         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
818                           ~mask;
819
820         /* No CS_TIM in EMIF_4D5 */
821         if (ip_rev == EMIF_4D5)
822                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
823
824         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
825
826         return pwr_mgmt_ctrl;
827 }
828
829 /*
830  * Get the temperature level of the EMIF instance:
831  * Reads the MR4 register of attached SDRAM parts to find out the temperature
832  * level. If there are two parts attached(one on each CS), then the temperature
833  * level for the EMIF instance is the higher of the two temperatures.
834  */
835 static void get_temperature_level(struct emif_data *emif)
836 {
837         u32             temp, temperature_level;
838         void __iomem    *base;
839
840         base = emif->base;
841
842         /* Read mode register 4 */
843         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
844         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
845         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
846                                 MR4_SDRAM_REF_RATE_SHIFT;
847
848         if (emif->plat_data->device_info->cs1_used) {
849                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
850                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
851                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
852                                 >> MR4_SDRAM_REF_RATE_SHIFT;
853                 temperature_level = max(temp, temperature_level);
854         }
855
856         /* treat everything less than nominal(3) in MR4 as nominal */
857         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
858                 temperature_level = SDRAM_TEMP_NOMINAL;
859
860         /* if we get reserved value in MR4 persist with the existing value */
861         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
862                 emif->temperature_level = temperature_level;
863 }
864
865 /*
866  * Program EMIF shadow registers that are not dependent on temperature
867  * or voltage
868  */
869 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
870 {
871         void __iomem    *base = emif->base;
872
873         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
874         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
875         writel(regs->pwr_mgmt_ctrl_shdw,
876                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
877
878         /* Settings specific for EMIF4D5 */
879         if (emif->plat_data->ip_rev != EMIF_4D5)
880                 return;
881         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
882         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
883         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
884 }
885
886 /*
887  * When voltage ramps dll calibration and forced read idle should
888  * happen more often
889  */
890 static void setup_volt_sensitive_regs(struct emif_data *emif,
891                 struct emif_regs *regs, u32 volt_state)
892 {
893         u32             calib_ctrl;
894         void __iomem    *base = emif->base;
895
896         /*
897          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
898          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
899          * is an alias of the respective read_idle_ctrl_shdw_* (members of
900          * a union). So, the below code takes care of both cases
901          */
902         if (volt_state == DDR_VOLTAGE_RAMPING)
903                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
904         else
905                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
906
907         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
908 }
909
910 /*
911  * setup_temperature_sensitive_regs() - set the timings for temperature
912  * sensitive registers. This happens once at initialisation time based
913  * on the temperature at boot time and subsequently based on the temperature
914  * alert interrupt. Temperature alert can happen when the temperature
915  * increases or drops. So this function can have the effect of either
916  * derating the timings or going back to nominal values.
917  */
918 static void setup_temperature_sensitive_regs(struct emif_data *emif,
919                 struct emif_regs *regs)
920 {
921         u32             tim1, tim3, ref_ctrl, type;
922         void __iomem    *base = emif->base;
923         u32             temperature;
924
925         type = emif->plat_data->device_info->type;
926
927         tim1 = regs->sdram_tim1_shdw;
928         tim3 = regs->sdram_tim3_shdw;
929         ref_ctrl = regs->ref_ctrl_shdw;
930
931         /* No de-rating for non-lpddr2 devices */
932         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
933                 goto out;
934
935         temperature = emif->temperature_level;
936         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
937                 ref_ctrl = regs->ref_ctrl_shdw_derated;
938         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
939                 tim1 = regs->sdram_tim1_shdw_derated;
940                 tim3 = regs->sdram_tim3_shdw_derated;
941                 ref_ctrl = regs->ref_ctrl_shdw_derated;
942         }
943
944 out:
945         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
946         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
947         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
948 }
949
950 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
951 {
952         u32             old_temp_level;
953         irqreturn_t     ret = IRQ_HANDLED;
954         struct emif_custom_configs *custom_configs;
955
956         spin_lock_irqsave(&emif_lock, irq_state);
957         old_temp_level = emif->temperature_level;
958         get_temperature_level(emif);
959
960         if (unlikely(emif->temperature_level == old_temp_level)) {
961                 goto out;
962         } else if (!emif->curr_regs) {
963                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
964                 goto out;
965         }
966
967         custom_configs = emif->plat_data->custom_configs;
968
969         /*
970          * IF we detect higher than "nominal rating" from DDR sensor
971          * on an unsupported DDR part, shutdown system
972          */
973         if (custom_configs && !(custom_configs->mask &
974                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
975                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
976                         dev_err(emif->dev,
977                                 "%s:NOT Extended temperature capable memory."
978                                 "Converting MR4=0x%02x as shutdown event\n",
979                                 __func__, emif->temperature_level);
980                         /*
981                          * Temperature far too high - do kernel_power_off()
982                          * from thread context
983                          */
984                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
985                         ret = IRQ_WAKE_THREAD;
986                         goto out;
987                 }
988         }
989
990         if (emif->temperature_level < old_temp_level ||
991                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
992                 /*
993                  * Temperature coming down - defer handling to thread OR
994                  * Temperature far too high - do kernel_power_off() from
995                  * thread context
996                  */
997                 ret = IRQ_WAKE_THREAD;
998         } else {
999                 /* Temperature is going up - handle immediately */
1000                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1001                 do_freq_update();
1002         }
1003
1004 out:
1005         spin_unlock_irqrestore(&emif_lock, irq_state);
1006         return ret;
1007 }
1008
1009 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1010 {
1011         u32                     interrupts;
1012         struct emif_data        *emif = dev_id;
1013         void __iomem            *base = emif->base;
1014         struct device           *dev = emif->dev;
1015         irqreturn_t             ret = IRQ_HANDLED;
1016
1017         /* Save the status and clear it */
1018         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020
1021         /*
1022          * Handle temperature alert
1023          * Temperature alert should be same for all ports
1024          * So, it's enough to process it only for one of the ports
1025          */
1026         if (interrupts & TA_SYS_MASK)
1027                 ret = handle_temp_alert(base, emif);
1028
1029         if (interrupts & ERR_SYS_MASK)
1030                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1031
1032         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1033                 /* Save the status and clear it */
1034                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036
1037                 if (interrupts & ERR_LL_MASK)
1038                         dev_err(dev, "Access error from LL port - %x\n",
1039                                 interrupts);
1040         }
1041
1042         return ret;
1043 }
1044
1045 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1046 {
1047         struct emif_data        *emif = dev_id;
1048
1049         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1050                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1051
1052                 /* If we have Power OFF ability, use it, else try restarting */
1053                 if (pm_power_off) {
1054                         kernel_power_off();
1055                 } else {
1056                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1057                         kernel_restart("SDRAM Over-temp Emergency restart");
1058                 }
1059                 return IRQ_HANDLED;
1060         }
1061
1062         spin_lock_irqsave(&emif_lock, irq_state);
1063
1064         if (emif->curr_regs) {
1065                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1066                 do_freq_update();
1067         } else {
1068                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1069         }
1070
1071         spin_unlock_irqrestore(&emif_lock, irq_state);
1072
1073         return IRQ_HANDLED;
1074 }
1075
1076 static void clear_all_interrupts(struct emif_data *emif)
1077 {
1078         void __iomem    *base = emif->base;
1079
1080         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1081                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1082         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1083                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1084                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1085 }
1086
1087 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1088 {
1089         void __iomem            *base = emif->base;
1090
1091         /* Disable all interrupts */
1092         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1093                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1094         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1095                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1096                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1097
1098         /* Clear all interrupts */
1099         clear_all_interrupts(emif);
1100 }
1101
1102 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1103 {
1104         u32             interrupts, type;
1105         void __iomem    *base = emif->base;
1106
1107         type = emif->plat_data->device_info->type;
1108
1109         clear_all_interrupts(emif);
1110
1111         /* Enable interrupts for SYS interface */
1112         interrupts = EN_ERR_SYS_MASK;
1113         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1114                 interrupts |= EN_TA_SYS_MASK;
1115         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1116
1117         /* Enable interrupts for LL interface */
1118         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1119                 /* TA need not be enabled for LL */
1120                 interrupts = EN_ERR_LL_MASK;
1121                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1122         }
1123
1124         /* setup IRQ handlers */
1125         return devm_request_threaded_irq(emif->dev, irq,
1126                                     emif_interrupt_handler,
1127                                     emif_threaded_isr,
1128                                     0, dev_name(emif->dev),
1129                                     emif);
1130
1131 }
1132
1133 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1134 {
1135         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1136         void __iomem                    *base = emif->base;
1137         const struct lpddr2_addressing  *addressing;
1138         const struct ddr_device_info    *device_info;
1139
1140         device_info = emif->plat_data->device_info;
1141         addressing = get_addressing_table(device_info);
1142
1143         /*
1144          * Init power management settings
1145          * We don't know the frequency yet. Use a high frequency
1146          * value for a conservative timeout setting
1147          */
1148         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1149                         emif->plat_data->ip_rev);
1150         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1151         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1152
1153         /* Init ZQ calibration settings */
1154         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1155                 device_info->cal_resistors_per_cs);
1156         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1157
1158         /* Check temperature level temperature level*/
1159         get_temperature_level(emif);
1160         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1161                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1162
1163         /* Init temperature polling */
1164         temp_alert_cfg = get_temp_alert_config(addressing,
1165                 emif->plat_data->custom_configs, device_info->cs1_used,
1166                 device_info->io_width, get_emif_bus_width(emif));
1167         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1168
1169         /*
1170          * Program external PHY control registers that are not frequency
1171          * dependent
1172          */
1173         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1174                 return;
1175         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1176         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1177         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1178         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1179         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1180         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1181         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1182         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1183         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1184         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1185         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1186         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1187         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1188         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1189         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1190         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1191         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1192         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1193         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1194         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1195         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1196 }
1197
1198 static void get_default_timings(struct emif_data *emif)
1199 {
1200         struct emif_platform_data *pd = emif->plat_data;
1201
1202         pd->timings             = lpddr2_jedec_timings;
1203         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1204
1205         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1206 }
1207
1208 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1209                 u32 ip_rev, struct device *dev)
1210 {
1211         int valid;
1212
1213         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1214                         type == DDR_TYPE_LPDDR2_S2)
1215                 && (density >= DDR_DENSITY_64Mb
1216                         && density <= DDR_DENSITY_8Gb)
1217                 && (io_width >= DDR_IO_WIDTH_8
1218                         && io_width <= DDR_IO_WIDTH_32);
1219
1220         /* Combinations of EMIF and PHY revisions that we support today */
1221         switch (ip_rev) {
1222         case EMIF_4D:
1223                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1224                 break;
1225         case EMIF_4D5:
1226                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1227                 break;
1228         default:
1229                 valid = 0;
1230         }
1231
1232         if (!valid)
1233                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1234         return valid;
1235 }
1236
1237 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1238                 struct device *dev)
1239 {
1240         int valid = 1;
1241
1242         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1243                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1244                 valid = cust_cfgs->lpmode_freq_threshold &&
1245                         cust_cfgs->lpmode_timeout_performance &&
1246                         cust_cfgs->lpmode_timeout_power;
1247
1248         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1249                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1250
1251         if (!valid)
1252                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1253
1254         return valid;
1255 }
1256
1257 #if defined(CONFIG_OF)
1258 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1259                 struct emif_data *emif)
1260 {
1261         struct emif_custom_configs      *cust_cfgs = NULL;
1262         int                             len;
1263         const __be32                    *lpmode, *poll_intvl;
1264
1265         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1266         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1267
1268         if (lpmode || poll_intvl)
1269                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1270                         GFP_KERNEL);
1271
1272         if (!cust_cfgs)
1273                 return;
1274
1275         if (lpmode) {
1276                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1277                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1278                 of_property_read_u32(np_emif,
1279                                 "low-power-mode-timeout-performance",
1280                                 &cust_cfgs->lpmode_timeout_performance);
1281                 of_property_read_u32(np_emif,
1282                                 "low-power-mode-timeout-power",
1283                                 &cust_cfgs->lpmode_timeout_power);
1284                 of_property_read_u32(np_emif,
1285                                 "low-power-mode-freq-threshold",
1286                                 &cust_cfgs->lpmode_freq_threshold);
1287         }
1288
1289         if (poll_intvl) {
1290                 cust_cfgs->mask |=
1291                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1292                 cust_cfgs->temp_alert_poll_interval_ms =
1293                                                 be32_to_cpup(poll_intvl);
1294         }
1295
1296         if (of_find_property(np_emif, "extended-temp-part", &len))
1297                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1298
1299         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1300                 devm_kfree(emif->dev, cust_cfgs);
1301                 return;
1302         }
1303
1304         emif->plat_data->custom_configs = cust_cfgs;
1305 }
1306
1307 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1308                 struct device_node *np_ddr,
1309                 struct ddr_device_info *dev_info)
1310 {
1311         u32 density = 0, io_width = 0;
1312         int len;
1313
1314         if (of_find_property(np_emif, "cs1-used", &len))
1315                 dev_info->cs1_used = true;
1316
1317         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1318                 dev_info->cal_resistors_per_cs = true;
1319
1320         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1321                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1322         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1323                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1324
1325         of_property_read_u32(np_ddr, "density", &density);
1326         of_property_read_u32(np_ddr, "io-width", &io_width);
1327
1328         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1329         if (density & (density - 1))
1330                 dev_info->density = 0;
1331         else
1332                 dev_info->density = __fls(density) - 5;
1333
1334         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1335         if (io_width & (io_width - 1))
1336                 dev_info->io_width = 0;
1337         else
1338                 dev_info->io_width = __fls(io_width) - 1;
1339 }
1340
1341 static struct emif_data * __init_or_module of_get_memory_device_details(
1342                 struct device_node *np_emif, struct device *dev)
1343 {
1344         struct emif_data                *emif = NULL;
1345         struct ddr_device_info          *dev_info = NULL;
1346         struct emif_platform_data       *pd = NULL;
1347         struct device_node              *np_ddr;
1348         int                             len;
1349
1350         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1351         if (!np_ddr)
1352                 goto error;
1353         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1354         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1355         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1356
1357         if (!emif || !pd || !dev_info) {
1358                 dev_err(dev, "%s: Out of memory!!\n",
1359                         __func__);
1360                 goto error;
1361         }
1362
1363         emif->plat_data         = pd;
1364         pd->device_info         = dev_info;
1365         emif->dev               = dev;
1366         emif->np_ddr            = np_ddr;
1367         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1368
1369         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1370                 emif->plat_data->ip_rev = EMIF_4D;
1371         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1372                 emif->plat_data->ip_rev = EMIF_4D5;
1373
1374         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1375
1376         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1377                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1378
1379         of_get_ddr_info(np_emif, np_ddr, dev_info);
1380         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1381                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1382                         emif->dev)) {
1383                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1384                 goto error;
1385         }
1386         /*
1387          * For EMIF instances other than EMIF1 see if the devices connected
1388          * are exactly same as on EMIF1(which is typically the case). If so,
1389          * mark it as a duplicate of EMIF1. This will save some memory and
1390          * computation.
1391          */
1392         if (emif1 && emif1->np_ddr == np_ddr) {
1393                 emif->duplicate = true;
1394                 goto out;
1395         } else if (emif1) {
1396                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1397                         __func__);
1398         }
1399
1400         of_get_custom_configs(np_emif, emif);
1401         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1402                                         emif->plat_data->device_info->type,
1403                                         &emif->plat_data->timings_arr_size);
1404
1405         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1406         goto out;
1407
1408 error:
1409         return NULL;
1410 out:
1411         return emif;
1412 }
1413
1414 #else
1415
1416 static struct emif_data * __init_or_module of_get_memory_device_details(
1417                 struct device_node *np_emif, struct device *dev)
1418 {
1419         return NULL;
1420 }
1421 #endif
1422
1423 static struct emif_data *__init_or_module get_device_details(
1424                 struct platform_device *pdev)
1425 {
1426         u32                             size;
1427         struct emif_data                *emif = NULL;
1428         struct ddr_device_info          *dev_info;
1429         struct emif_custom_configs      *cust_cfgs;
1430         struct emif_platform_data       *pd;
1431         struct device                   *dev;
1432         void                            *temp;
1433
1434         pd = pdev->dev.platform_data;
1435         dev = &pdev->dev;
1436
1437         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1438                         pd->device_info->density, pd->device_info->io_width,
1439                         pd->phy_type, pd->ip_rev, dev))) {
1440                 dev_err(dev, "%s: invalid device data\n", __func__);
1441                 goto error;
1442         }
1443
1444         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1445         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1446         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1447
1448         if (!emif || !pd || !dev_info) {
1449                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1450                 goto error;
1451         }
1452
1453         memcpy(temp, pd, sizeof(*pd));
1454         pd = temp;
1455         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1456
1457         pd->device_info         = dev_info;
1458         emif->plat_data         = pd;
1459         emif->dev               = dev;
1460         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1461
1462         /*
1463          * For EMIF instances other than EMIF1 see if the devices connected
1464          * are exactly same as on EMIF1(which is typically the case). If so,
1465          * mark it as a duplicate of EMIF1 and skip copying timings data.
1466          * This will save some memory and some computation later.
1467          */
1468         emif->duplicate = emif1 && (memcmp(dev_info,
1469                 emif1->plat_data->device_info,
1470                 sizeof(struct ddr_device_info)) == 0);
1471
1472         if (emif->duplicate) {
1473                 pd->timings = NULL;
1474                 pd->min_tck = NULL;
1475                 goto out;
1476         } else if (emif1) {
1477                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1478                         __func__);
1479         }
1480
1481         /*
1482          * Copy custom configs - ignore allocation error, if any, as
1483          * custom_configs is not very critical
1484          */
1485         cust_cfgs = pd->custom_configs;
1486         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1487                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1488                 if (temp)
1489                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1490                 else
1491                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1492                                 __LINE__);
1493                 pd->custom_configs = temp;
1494         }
1495
1496         /*
1497          * Copy timings and min-tck values from platform data. If it is not
1498          * available or if memory allocation fails, use JEDEC defaults
1499          */
1500         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1501         if (pd->timings) {
1502                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1503                 if (temp) {
1504                         memcpy(temp, pd->timings, size);
1505                         pd->timings = temp;
1506                 } else {
1507                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1508                                 __LINE__);
1509                         get_default_timings(emif);
1510                 }
1511         } else {
1512                 get_default_timings(emif);
1513         }
1514
1515         if (pd->min_tck) {
1516                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1517                 if (temp) {
1518                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1519                         pd->min_tck = temp;
1520                 } else {
1521                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1522                                 __LINE__);
1523                         pd->min_tck = &lpddr2_jedec_min_tck;
1524                 }
1525         } else {
1526                 pd->min_tck = &lpddr2_jedec_min_tck;
1527         }
1528
1529 out:
1530         return emif;
1531
1532 error:
1533         return NULL;
1534 }
1535
1536 static int __init_or_module emif_probe(struct platform_device *pdev)
1537 {
1538         struct emif_data        *emif;
1539         struct resource         *res;
1540         int                     irq;
1541
1542         if (pdev->dev.of_node)
1543                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1544         else
1545                 emif = get_device_details(pdev);
1546
1547         if (!emif) {
1548                 pr_err("%s: error getting device data\n", __func__);
1549                 goto error;
1550         }
1551
1552         list_add(&emif->node, &device_list);
1553         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1554
1555         /* Save pointers to each other in emif and device structures */
1556         emif->dev = &pdev->dev;
1557         platform_set_drvdata(pdev, emif);
1558
1559         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560         emif->base = devm_ioremap_resource(emif->dev, res);
1561         if (IS_ERR(emif->base))
1562                 goto error;
1563
1564         irq = platform_get_irq(pdev, 0);
1565         if (irq < 0) {
1566                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1567                         __func__, irq);
1568                 goto error;
1569         }
1570
1571         emif_onetime_settings(emif);
1572         emif_debugfs_init(emif);
1573         disable_and_clear_all_interrupts(emif);
1574         setup_interrupts(emif, irq);
1575
1576         /* One-time actions taken on probing the first device */
1577         if (!emif1) {
1578                 emif1 = emif;
1579                 spin_lock_init(&emif_lock);
1580
1581                 /*
1582                  * TODO: register notifiers for frequency and voltage
1583                  * change here once the respective frameworks are
1584                  * available
1585                  */
1586         }
1587
1588         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1589                 __func__, emif->base, irq);
1590
1591         return 0;
1592 error:
1593         return -ENODEV;
1594 }
1595
1596 static int __exit emif_remove(struct platform_device *pdev)
1597 {
1598         struct emif_data *emif = platform_get_drvdata(pdev);
1599
1600         emif_debugfs_exit(emif);
1601
1602         return 0;
1603 }
1604
1605 static void emif_shutdown(struct platform_device *pdev)
1606 {
1607         struct emif_data        *emif = platform_get_drvdata(pdev);
1608
1609         disable_and_clear_all_interrupts(emif);
1610 }
1611
1612 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1613                 struct emif_regs *regs)
1614 {
1615         u32                             cs1_used, ip_rev, phy_type;
1616         u32                             cl, type;
1617         const struct lpddr2_timings     *timings;
1618         const struct lpddr2_min_tck     *min_tck;
1619         const struct ddr_device_info    *device_info;
1620         const struct lpddr2_addressing  *addressing;
1621         struct emif_data                *emif_for_calc;
1622         struct device                   *dev;
1623         const struct emif_custom_configs *custom_configs;
1624
1625         dev = emif->dev;
1626         /*
1627          * If the devices on this EMIF instance is duplicate of EMIF1,
1628          * use EMIF1 details for the calculation
1629          */
1630         emif_for_calc   = emif->duplicate ? emif1 : emif;
1631         timings         = get_timings_table(emif_for_calc, freq);
1632         addressing      = emif_for_calc->addressing;
1633         if (!timings || !addressing) {
1634                 dev_err(dev, "%s: not enough data available for %dHz",
1635                         __func__, freq);
1636                 return -1;
1637         }
1638
1639         device_info     = emif_for_calc->plat_data->device_info;
1640         type            = device_info->type;
1641         cs1_used        = device_info->cs1_used;
1642         ip_rev          = emif_for_calc->plat_data->ip_rev;
1643         phy_type        = emif_for_calc->plat_data->phy_type;
1644
1645         min_tck         = emif_for_calc->plat_data->min_tck;
1646         custom_configs  = emif_for_calc->plat_data->custom_configs;
1647
1648         set_ddr_clk_period(freq);
1649
1650         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1651         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1652                         addressing);
1653         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1654                         addressing, type);
1655         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1656                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1657
1658         cl = get_cl(emif);
1659
1660         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1661                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1662                         timings, freq, cl);
1663         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1664                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1665                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1666                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1667                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1668         } else {
1669                 return -1;
1670         }
1671
1672         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1673         regs->pwr_mgmt_ctrl_shdw =
1674                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1675                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1676
1677         if (ip_rev & EMIF_4D) {
1678                 regs->read_idle_ctrl_shdw_normal =
1679                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1680
1681                 regs->read_idle_ctrl_shdw_volt_ramp =
1682                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1683         } else if (ip_rev & EMIF_4D5) {
1684                 regs->dll_calib_ctrl_shdw_normal =
1685                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1686
1687                 regs->dll_calib_ctrl_shdw_volt_ramp =
1688                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1689         }
1690
1691         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1692                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1693                         addressing);
1694
1695                 regs->sdram_tim1_shdw_derated =
1696                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1697                                 addressing);
1698
1699                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1700                         min_tck, addressing, type, ip_rev,
1701                         EMIF_DERATED_TIMINGS);
1702         }
1703
1704         regs->freq = freq;
1705
1706         return 0;
1707 }
1708
1709 /*
1710  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1711  * given frequency(freq):
1712  *
1713  * As an optimisation, every EMIF instance other than EMIF1 shares the
1714  * register cache with EMIF1 if the devices connected on this instance
1715  * are same as that on EMIF1(indicated by the duplicate flag)
1716  *
1717  * If we do not have an entry corresponding to the frequency given, we
1718  * allocate a new entry and calculate the values
1719  *
1720  * Upon finding the right reg dump, save it in curr_regs. It can be
1721  * directly used for thermal de-rating and voltage ramping changes.
1722  */
1723 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1724 {
1725         int                     i;
1726         struct emif_regs        **regs_cache;
1727         struct emif_regs        *regs = NULL;
1728         struct device           *dev;
1729
1730         dev = emif->dev;
1731         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1732                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1733                 return emif->curr_regs;
1734         }
1735
1736         if (emif->duplicate)
1737                 regs_cache = emif1->regs_cache;
1738         else
1739                 regs_cache = emif->regs_cache;
1740
1741         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1742                 if (regs_cache[i]->freq == freq) {
1743                         regs = regs_cache[i];
1744                         dev_dbg(dev,
1745                                 "%s: reg dump found in reg cache for %u Hz\n",
1746                                 __func__, freq);
1747                         break;
1748                 }
1749         }
1750
1751         /*
1752          * If we don't have an entry for this frequency in the cache create one
1753          * and calculate the values
1754          */
1755         if (!regs) {
1756                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1757                 if (!regs)
1758                         return NULL;
1759
1760                 if (get_emif_reg_values(emif, freq, regs)) {
1761                         devm_kfree(emif->dev, regs);
1762                         return NULL;
1763                 }
1764
1765                 /*
1766                  * Now look for an un-used entry in the cache and save the
1767                  * newly created struct. If there are no free entries
1768                  * over-write the last entry
1769                  */
1770                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1771                         ;
1772
1773                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1774                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1775                                 __func__);
1776                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1777                         devm_kfree(emif->dev, regs_cache[i]);
1778                 }
1779                 regs_cache[i] = regs;
1780         }
1781
1782         return regs;
1783 }
1784
1785 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1786 {
1787         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1788                 volt_state);
1789
1790         if (!emif->curr_regs) {
1791                 dev_err(emif->dev,
1792                         "%s: volt-notify before registers are ready: %d\n",
1793                         __func__, volt_state);
1794                 return;
1795         }
1796
1797         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1798 }
1799
1800 /*
1801  * TODO: voltage notify handling should be hooked up to
1802  * regulator framework as soon as the necessary support
1803  * is available in mainline kernel. This function is un-used
1804  * right now.
1805  */
1806 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1807 {
1808         struct emif_data *emif;
1809
1810         spin_lock_irqsave(&emif_lock, irq_state);
1811
1812         list_for_each_entry(emif, &device_list, node)
1813                 do_volt_notify_handling(emif, volt_state);
1814         do_freq_update();
1815
1816         spin_unlock_irqrestore(&emif_lock, irq_state);
1817 }
1818
1819 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1820 {
1821         struct emif_regs *regs;
1822
1823         regs = get_regs(emif, new_freq);
1824         if (!regs)
1825                 return;
1826
1827         emif->curr_regs = regs;
1828
1829         /*
1830          * Update the shadow registers:
1831          * Temperature and voltage-ramp sensitive settings are also configured
1832          * in terms of DDR cycles. So, we need to update them too when there
1833          * is a freq change
1834          */
1835         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1836                 __func__, new_freq);
1837         setup_registers(emif, regs);
1838         setup_temperature_sensitive_regs(emif, regs);
1839         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1840
1841         /*
1842          * Part of workaround for errata i728. See do_freq_update()
1843          * for more details
1844          */
1845         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1846                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1847 }
1848
1849 /*
1850  * TODO: frequency notify handling should be hooked up to
1851  * clock framework as soon as the necessary support is
1852  * available in mainline kernel. This function is un-used
1853  * right now.
1854  */
1855 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1856 {
1857         struct emif_data *emif;
1858
1859         /*
1860          * NOTE: we are taking the spin-lock here and releases it
1861          * only in post-notifier. This doesn't look good and
1862          * Sparse complains about it, but this seems to be
1863          * un-avoidable. We need to lock a sequence of events
1864          * that is split between EMIF and clock framework.
1865          *
1866          * 1. EMIF driver updates EMIF timings in shadow registers in the
1867          *    frequency pre-notify callback from clock framework
1868          * 2. clock framework sets up the registers for the new frequency
1869          * 3. clock framework initiates a hw-sequence that updates
1870          *    the frequency EMIF timings synchronously.
1871          *
1872          * All these 3 steps should be performed as an atomic operation
1873          * vis-a-vis similar sequence in the EMIF interrupt handler
1874          * for temperature events. Otherwise, there could be race
1875          * conditions that could result in incorrect EMIF timings for
1876          * a given frequency
1877          */
1878         spin_lock_irqsave(&emif_lock, irq_state);
1879
1880         list_for_each_entry(emif, &device_list, node)
1881                 do_freq_pre_notify_handling(emif, new_freq);
1882 }
1883
1884 static void do_freq_post_notify_handling(struct emif_data *emif)
1885 {
1886         /*
1887          * Part of workaround for errata i728. See do_freq_update()
1888          * for more details
1889          */
1890         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1891                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1892 }
1893
1894 /*
1895  * TODO: frequency notify handling should be hooked up to
1896  * clock framework as soon as the necessary support is
1897  * available in mainline kernel. This function is un-used
1898  * right now.
1899  */
1900 static void __attribute__((unused)) freq_post_notify_handling(void)
1901 {
1902         struct emif_data *emif;
1903
1904         list_for_each_entry(emif, &device_list, node)
1905                 do_freq_post_notify_handling(emif);
1906
1907         /*
1908          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1909          * for more details
1910          */
1911         spin_unlock_irqrestore(&emif_lock, irq_state);
1912 }
1913
1914 #if defined(CONFIG_OF)
1915 static const struct of_device_id emif_of_match[] = {
1916                 { .compatible = "ti,emif-4d" },
1917                 { .compatible = "ti,emif-4d5" },
1918                 {},
1919 };
1920 MODULE_DEVICE_TABLE(of, emif_of_match);
1921 #endif
1922
1923 static struct platform_driver emif_driver = {
1924         .remove         = __exit_p(emif_remove),
1925         .shutdown       = emif_shutdown,
1926         .driver = {
1927                 .name = "emif",
1928                 .of_match_table = of_match_ptr(emif_of_match),
1929         },
1930 };
1931
1932 module_platform_driver_probe(emif_driver, emif_probe);
1933
1934 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1935 MODULE_LICENSE("GPL");
1936 MODULE_ALIAS("platform:emif");
1937 MODULE_AUTHOR("Texas Instruments Inc");