Merge tag 'x86-kaslr-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:                  Whether the DDR devices attached to this EMIF
34  *                              instance are exactly same as that on EMIF1. In
35  *                              this case we can save some memory and processing
36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
37  *                              to this EMIF - read from MR4 register. If there
38  *                              are two devices attached to this EMIF, this
39  *                              value is the maximum of the two temperature
40  *                              levels.
41  * @node:                       node in the device list
42  * @base:                       base address of memory-mapped IO registers.
43  * @dev:                        device pointer.
44  * @addressing                  table with addressing information from the spec
45  * @regs_cache:                 An array of 'struct emif_regs' that stores
46  *                              calculated register values for different
47  *                              frequencies, to avoid re-calculating them on
48  *                              each DVFS transition.
49  * @curr_regs:                  The set of register values used in the last
50  *                              frequency change (i.e. corresponding to the
51  *                              frequency in effect at the moment)
52  * @plat_data:                  Pointer to saved platform data.
53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
54  * @np_ddr:                     Pointer to ddr device tree node
55  */
56 struct emif_data {
57         u8                              duplicate;
58         u8                              temperature_level;
59         u8                              lpmode;
60         struct list_head                node;
61         unsigned long                   irq_state;
62         void __iomem                    *base;
63         struct device                   *dev;
64         const struct lpddr2_addressing  *addressing;
65         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66         struct emif_regs                *curr_regs;
67         struct emif_platform_data       *plat_data;
68         struct dentry                   *debugfs_root;
69         struct device_node              *np_ddr;
70 };
71
72 static struct emif_data *emif1;
73 static spinlock_t       emif_lock;
74 static unsigned long    irq_state;
75 static u32              t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80         struct emif_regs *regs)
81 {
82         u32 type = emif->plat_data->device_info->type;
83         u32 ip_rev = emif->plat_data->ip_rev;
84
85         seq_printf(s, "EMIF register cache dump for %dMHz\n",
86                 regs->freq/1000000);
87
88         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93         if (ip_rev == EMIF_4D) {
94                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->read_idle_ctrl_shdw_normal);
96                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->read_idle_ctrl_shdw_volt_ramp);
98         } else if (ip_rev == EMIF_4D5) {
99                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100                         regs->dll_calib_ctrl_shdw_normal);
101                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102                         regs->dll_calib_ctrl_shdw_volt_ramp);
103         }
104
105         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107                         regs->ref_ctrl_shdw_derated);
108                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109                         regs->sdram_tim1_shdw_derated);
110                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111                         regs->sdram_tim3_shdw_derated);
112         }
113 }
114
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117         struct emif_data        *emif   = s->private;
118         struct emif_regs        **regs_cache;
119         int                     i;
120
121         if (emif->duplicate)
122                 regs_cache = emif1->regs_cache;
123         else
124                 regs_cache = emif->regs_cache;
125
126         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127                 do_emif_regdump_show(s, emif, regs_cache[i]);
128                 seq_putc(s, '\n');
129         }
130
131         return 0;
132 }
133
134 static int emif_regdump_open(struct inode *inode, struct file *file)
135 {
136         return single_open(file, emif_regdump_show, inode->i_private);
137 }
138
139 static const struct file_operations emif_regdump_fops = {
140         .open                   = emif_regdump_open,
141         .read                   = seq_read,
142         .release                = single_release,
143 };
144
145 static int emif_mr4_show(struct seq_file *s, void *unused)
146 {
147         struct emif_data *emif = s->private;
148
149         seq_printf(s, "MR4=%d\n", emif->temperature_level);
150         return 0;
151 }
152
153 static int emif_mr4_open(struct inode *inode, struct file *file)
154 {
155         return single_open(file, emif_mr4_show, inode->i_private);
156 }
157
158 static const struct file_operations emif_mr4_fops = {
159         .open                   = emif_mr4_open,
160         .read                   = seq_read,
161         .release                = single_release,
162 };
163
164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165 {
166         struct dentry   *dentry;
167         int             ret;
168
169         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
170         if (!dentry) {
171                 ret = -ENOMEM;
172                 goto err0;
173         }
174         emif->debugfs_root = dentry;
175
176         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177                         emif->debugfs_root, emif, &emif_regdump_fops);
178         if (!dentry) {
179                 ret = -ENOMEM;
180                 goto err1;
181         }
182
183         dentry = debugfs_create_file("mr4", S_IRUGO,
184                         emif->debugfs_root, emif, &emif_mr4_fops);
185         if (!dentry) {
186                 ret = -ENOMEM;
187                 goto err1;
188         }
189
190         return 0;
191 err1:
192         debugfs_remove_recursive(emif->debugfs_root);
193 err0:
194         return ret;
195 }
196
197 static void __exit emif_debugfs_exit(struct emif_data *emif)
198 {
199         debugfs_remove_recursive(emif->debugfs_root);
200         emif->debugfs_root = NULL;
201 }
202 #else
203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204 {
205         return 0;
206 }
207
208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209 {
210 }
211 #endif
212
213 /*
214  * Calculate the period of DDR clock from frequency value
215  */
216 static void set_ddr_clk_period(u32 freq)
217 {
218         /* Divide 10^12 by frequency to get period in ps */
219         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220 }
221
222 /*
223  * Get bus width used by EMIF. Note that this may be different from the
224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
225  * may be connected to a given CS of EMIF. In this case bus width as far
226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227  */
228 static u32 get_emif_bus_width(struct emif_data *emif)
229 {
230         u32             width;
231         void __iomem    *base = emif->base;
232
233         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
234                         >> NARROW_MODE_SHIFT;
235         width = width == 0 ? 32 : 16;
236
237         return width;
238 }
239
240 /*
241  * Get the CL from SDRAM_CONFIG register
242  */
243 static u32 get_cl(struct emif_data *emif)
244 {
245         u32             cl;
246         void __iomem    *base = emif->base;
247
248         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249
250         return cl;
251 }
252
253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
254 {
255         u32 temp;
256         void __iomem *base = emif->base;
257
258         /*
259          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
260          * Efficient
261          *
262          * i743 DESCRIPTION:
263          * The EMIF supports power-down state for low power. The EMIF
264          * automatically puts the SDRAM into power-down after the memory is
265          * not accessed for a defined number of cycles and the
266          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
267          * As the EMIF supports automatic output impedance calibration, a ZQ
268          * calibration long command is issued every time it exits active
269          * power-down and precharge power-down modes. The EMIF waits and
270          * blocks any other command during this calibration.
271          * The EMIF does not allow selective disabling of ZQ calibration upon
272          * exit of power-down mode. Due to very short periods of power-down
273          * cycles, ZQ calibration overhead creates bandwidth issues and
274          * increases overall system power consumption. On the other hand,
275          * issuing ZQ calibration long commands when exiting self-refresh is
276          * still required.
277          *
278          * WORKAROUND
279          * Because there is no power consumption benefit of the power-down due
280          * to the calibration and there is a performance risk, the guideline
281          * is to not allow power-down state and, therefore, to not have set
282          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
283          */
284         if ((emif->plat_data->ip_rev == EMIF_4D) &&
285             (lpmode == EMIF_LP_MODE_PWR_DN)) {
286                 WARN_ONCE(1,
287                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
288                 /* rollback LP_MODE to Self-refresh mode */
289                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
290         }
291
292         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
293         temp &= ~LP_MODE_MASK;
294         temp |= (lpmode << LP_MODE_SHIFT);
295         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
296 }
297
298 static void do_freq_update(void)
299 {
300         struct emif_data *emif;
301
302         /*
303          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
304          *
305          * i728 DESCRIPTION:
306          * The EMIF automatically puts the SDRAM into self-refresh mode
307          * after the EMIF has not performed accesses during
308          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
309          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
310          * to 0x2. If during a small window the following three events
311          * occur:
312          * - The SR_TIMING counter expires
313          * - And frequency change is requested
314          * - And OCP access is requested
315          * Then it causes instable clock on the DDR interface.
316          *
317          * WORKAROUND
318          * To avoid the occurrence of the three events, the workaround
319          * is to disable the self-refresh when requesting a frequency
320          * change. Before requesting a frequency change the software must
321          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
322          * frequency change has been done, the software can reprogram
323          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
324          */
325         list_for_each_entry(emif, &device_list, node) {
326                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
327                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
328         }
329
330         /*
331          * TODO: Do FREQ_UPDATE here when an API
332          * is available for this as part of the new
333          * clock framework
334          */
335
336         list_for_each_entry(emif, &device_list, node) {
337                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
338                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
339         }
340 }
341
342 /* Find addressing table entry based on the device's type and density */
343 static const struct lpddr2_addressing *get_addressing_table(
344         const struct ddr_device_info *device_info)
345 {
346         u32             index, type, density;
347
348         type = device_info->type;
349         density = device_info->density;
350
351         switch (type) {
352         case DDR_TYPE_LPDDR2_S4:
353                 index = density - 1;
354                 break;
355         case DDR_TYPE_LPDDR2_S2:
356                 switch (density) {
357                 case DDR_DENSITY_1Gb:
358                 case DDR_DENSITY_2Gb:
359                         index = density + 3;
360                         break;
361                 default:
362                         index = density - 1;
363                 }
364                 break;
365         default:
366                 return NULL;
367         }
368
369         return &lpddr2_jedec_addressing_table[index];
370 }
371
372 /*
373  * Find the the right timing table from the array of timing
374  * tables of the device using DDR clock frequency
375  */
376 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
377                 u32 freq)
378 {
379         u32                             i, min, max, freq_nearest;
380         const struct lpddr2_timings     *timings = NULL;
381         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
382         struct                          device *dev = emif->dev;
383
384         /* Start with a very high frequency - 1GHz */
385         freq_nearest = 1000000000;
386
387         /*
388          * Find the timings table such that:
389          *  1. the frequency range covers the required frequency(safe) AND
390          *  2. the max_freq is closest to the required frequency(optimal)
391          */
392         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
393                 max = timings_arr[i].max_freq;
394                 min = timings_arr[i].min_freq;
395                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
396                         freq_nearest = max;
397                         timings = &timings_arr[i];
398                 }
399         }
400
401         if (!timings)
402                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
403                         __func__, freq);
404
405         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
406                 __func__, freq, freq_nearest);
407
408         return timings;
409 }
410
411 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
412                 const struct lpddr2_addressing *addressing)
413 {
414         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
415
416         /* Scale down frequency and t_refi to avoid overflow */
417         freq_khz = freq / 1000;
418         t_refi = addressing->tREFI_ns / 100;
419
420         /*
421          * refresh rate to be set is 'tREFI(in us) * freq in MHz
422          * division by 10000 to account for change in units
423          */
424         val = t_refi * freq_khz / 10000;
425         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
426
427         return ref_ctrl_shdw;
428 }
429
430 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
431                 const struct lpddr2_min_tck *min_tck,
432                 const struct lpddr2_addressing *addressing)
433 {
434         u32 tim1 = 0, val = 0;
435
436         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437         tim1 |= val << T_WTR_SHIFT;
438
439         if (addressing->num_banks == B8)
440                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
441         else
442                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
443         tim1 |= (val - 1) << T_RRD_SHIFT;
444
445         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
446         tim1 |= val << T_RC_SHIFT;
447
448         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
449         tim1 |= (val - 1) << T_RAS_SHIFT;
450
451         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
452         tim1 |= val << T_WR_SHIFT;
453
454         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
455         tim1 |= val << T_RCD_SHIFT;
456
457         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
458         tim1 |= val << T_RP_SHIFT;
459
460         return tim1;
461 }
462
463 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
464                 const struct lpddr2_min_tck *min_tck,
465                 const struct lpddr2_addressing *addressing)
466 {
467         u32 tim1 = 0, val = 0;
468
469         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
470         tim1 = val << T_WTR_SHIFT;
471
472         /*
473          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
474          * to tFAW for de-rating
475          */
476         if (addressing->num_banks == B8) {
477                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
478         } else {
479                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
480                 val = max(min_tck->tRRD, val) - 1;
481         }
482         tim1 |= val << T_RRD_SHIFT;
483
484         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
485         tim1 |= (val - 1) << T_RC_SHIFT;
486
487         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
488         val = max(min_tck->tRASmin, val) - 1;
489         tim1 |= val << T_RAS_SHIFT;
490
491         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
492         tim1 |= val << T_WR_SHIFT;
493
494         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
495         tim1 |= (val - 1) << T_RCD_SHIFT;
496
497         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
498         tim1 |= (val - 1) << T_RP_SHIFT;
499
500         return tim1;
501 }
502
503 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
504                 const struct lpddr2_min_tck *min_tck,
505                 const struct lpddr2_addressing *addressing,
506                 u32 type)
507 {
508         u32 tim2 = 0, val = 0;
509
510         val = min_tck->tCKE - 1;
511         tim2 |= val << T_CKE_SHIFT;
512
513         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
514         tim2 |= val << T_RTP_SHIFT;
515
516         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
517         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
518         tim2 |= val << T_XSNR_SHIFT;
519
520         /* XSRD same as XSNR for LPDDR2 */
521         tim2 |= val << T_XSRD_SHIFT;
522
523         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
524         tim2 |= val << T_XP_SHIFT;
525
526         return tim2;
527 }
528
529 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
530                 const struct lpddr2_min_tck *min_tck,
531                 const struct lpddr2_addressing *addressing,
532                 u32 type, u32 ip_rev, u32 derated)
533 {
534         u32 tim3 = 0, val = 0, t_dqsck;
535
536         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
537         val = val > 0xF ? 0xF : val;
538         tim3 |= val << T_RAS_MAX_SHIFT;
539
540         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
541         tim3 |= val << T_RFC_SHIFT;
542
543         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
544                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
545         if (ip_rev == EMIF_4D5)
546                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
547         else
548                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
549
550         tim3 |= val << T_TDQSCKMAX_SHIFT;
551
552         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
553         tim3 |= val << ZQ_ZQCS_SHIFT;
554
555         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
556         val = max(min_tck->tCKESR, val) - 1;
557         tim3 |= val << T_CKESR_SHIFT;
558
559         if (ip_rev == EMIF_4D5) {
560                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
561
562                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
563                 tim3 |= val << T_PDLL_UL_SHIFT;
564         }
565
566         return tim3;
567 }
568
569 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
570                 bool cs1_used, bool cal_resistors_per_cs)
571 {
572         u32 zq = 0, val = 0;
573
574         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
575         zq |= val << ZQ_REFINTERVAL_SHIFT;
576
577         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
578         zq |= val << ZQ_ZQCL_MULT_SHIFT;
579
580         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
581         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
582
583         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
584
585         if (cal_resistors_per_cs)
586                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
587         else
588                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
589
590         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
591
592         val = cs1_used ? 1 : 0;
593         zq |= val << ZQ_CS1EN_SHIFT;
594
595         return zq;
596 }
597
598 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
599                 const struct emif_custom_configs *custom_configs, bool cs1_used,
600                 u32 sdram_io_width, u32 emif_bus_width)
601 {
602         u32 alert = 0, interval, devcnt;
603
604         if (custom_configs && (custom_configs->mask &
605                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
606                 interval = custom_configs->temp_alert_poll_interval_ms;
607         else
608                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
609
610         interval *= 1000000;                    /* Convert to ns */
611         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
612         alert |= (interval << TA_REFINTERVAL_SHIFT);
613
614         /*
615          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
616          * also to this form and subtract to get TA_DEVCNT, which is
617          * in log2(x) form.
618          */
619         emif_bus_width = __fls(emif_bus_width) - 1;
620         devcnt = emif_bus_width - sdram_io_width;
621         alert |= devcnt << TA_DEVCNT_SHIFT;
622
623         /* DEVWDT is in 'log2(x) - 3' form */
624         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
625
626         alert |= 1 << TA_SFEXITEN_SHIFT;
627         alert |= 1 << TA_CS0EN_SHIFT;
628         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
629
630         return alert;
631 }
632
633 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
634 {
635         u32 idle = 0, val = 0;
636
637         /*
638          * Maximum value in normal conditions and increased frequency
639          * when voltage is ramping
640          */
641         if (volt_ramp)
642                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
643         else
644                 val = 0x1FF;
645
646         /*
647          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
648          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
649          */
650         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
651         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
652
653         return idle;
654 }
655
656 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
657 {
658         u32 calib = 0, val = 0;
659
660         if (volt_ramp == DDR_VOLTAGE_RAMPING)
661                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
662         else
663                 val = 0; /* Disabled when voltage is stable */
664
665         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
666         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
667
668         return calib;
669 }
670
671 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
672         u32 freq, u8 RL)
673 {
674         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
675
676         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
677         phy |= val << READ_LATENCY_SHIFT_4D;
678
679         if (freq <= 100000000)
680                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
681         else if (freq <= 200000000)
682                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
683         else
684                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
685
686         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
687
688         return phy;
689 }
690
691 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
692 {
693         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
694
695         /*
696          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
697          * half-delay is not needed else set half-delay
698          */
699         if (freq >= 265000000 && freq < 267000000)
700                 half_delay = 0;
701         else
702                 half_delay = 1;
703
704         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
705         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
706                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
707
708         return phy;
709 }
710
711 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
712 {
713         u32 fifo_we_slave_ratio;
714
715         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
716                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
717
718         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
719                 fifo_we_slave_ratio << 22;
720 }
721
722 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
723 {
724         u32 fifo_we_slave_ratio;
725
726         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
727                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
728
729         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
730                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
731 }
732
733 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
734 {
735         u32 fifo_we_slave_ratio;
736
737         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
738                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
739
740         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
741                 fifo_we_slave_ratio << 13;
742 }
743
744 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
745 {
746         u32 pwr_mgmt_ctrl       = 0, timeout;
747         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
748         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
749         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
750         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
751         u32 mask;
752         u8 shift;
753
754         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
755
756         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
757                 lpmode          = cust_cfgs->lpmode;
758                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
759                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
760                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
761         }
762
763         /* Timeout based on DDR frequency */
764         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
765
766         /*
767          * The value to be set in register is "log2(timeout) - 3"
768          * if timeout < 16 load 0 in register
769          * if timeout is not a power of 2, round to next highest power of 2
770          */
771         if (timeout < 16) {
772                 timeout = 0;
773         } else {
774                 if (timeout & (timeout - 1))
775                         timeout <<= 1;
776                 timeout = __fls(timeout) - 3;
777         }
778
779         switch (lpmode) {
780         case EMIF_LP_MODE_CLOCK_STOP:
781                 shift = CS_TIM_SHIFT;
782                 mask = CS_TIM_MASK;
783                 break;
784         case EMIF_LP_MODE_SELF_REFRESH:
785                 /* Workaround for errata i735 */
786                 if (timeout < 6)
787                         timeout = 6;
788
789                 shift = SR_TIM_SHIFT;
790                 mask = SR_TIM_MASK;
791                 break;
792         case EMIF_LP_MODE_PWR_DN:
793                 shift = PD_TIM_SHIFT;
794                 mask = PD_TIM_MASK;
795                 break;
796         case EMIF_LP_MODE_DISABLE:
797         default:
798                 mask = 0;
799                 shift = 0;
800                 break;
801         }
802         /* Round to maximum in case of overflow, BUT warn! */
803         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
804                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
805                        lpmode,
806                        timeout_perf,
807                        timeout_pwr,
808                        freq_threshold);
809                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
810                      timeout, mask >> shift);
811                 timeout = mask >> shift;
812         }
813
814         /* Setup required timing */
815         pwr_mgmt_ctrl = (timeout << shift) & mask;
816         /* setup a default mask for rest of the modes */
817         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
818                           ~mask;
819
820         /* No CS_TIM in EMIF_4D5 */
821         if (ip_rev == EMIF_4D5)
822                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
823
824         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
825
826         return pwr_mgmt_ctrl;
827 }
828
829 /*
830  * Get the temperature level of the EMIF instance:
831  * Reads the MR4 register of attached SDRAM parts to find out the temperature
832  * level. If there are two parts attached(one on each CS), then the temperature
833  * level for the EMIF instance is the higher of the two temperatures.
834  */
835 static void get_temperature_level(struct emif_data *emif)
836 {
837         u32             temp, temperature_level;
838         void __iomem    *base;
839
840         base = emif->base;
841
842         /* Read mode register 4 */
843         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
844         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
845         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
846                                 MR4_SDRAM_REF_RATE_SHIFT;
847
848         if (emif->plat_data->device_info->cs1_used) {
849                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
850                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
851                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
852                                 >> MR4_SDRAM_REF_RATE_SHIFT;
853                 temperature_level = max(temp, temperature_level);
854         }
855
856         /* treat everything less than nominal(3) in MR4 as nominal */
857         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
858                 temperature_level = SDRAM_TEMP_NOMINAL;
859
860         /* if we get reserved value in MR4 persist with the existing value */
861         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
862                 emif->temperature_level = temperature_level;
863 }
864
865 /*
866  * Program EMIF shadow registers that are not dependent on temperature
867  * or voltage
868  */
869 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
870 {
871         void __iomem    *base = emif->base;
872
873         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
874         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
875         writel(regs->pwr_mgmt_ctrl_shdw,
876                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
877
878         /* Settings specific for EMIF4D5 */
879         if (emif->plat_data->ip_rev != EMIF_4D5)
880                 return;
881         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
882         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
883         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
884 }
885
886 /*
887  * When voltage ramps dll calibration and forced read idle should
888  * happen more often
889  */
890 static void setup_volt_sensitive_regs(struct emif_data *emif,
891                 struct emif_regs *regs, u32 volt_state)
892 {
893         u32             calib_ctrl;
894         void __iomem    *base = emif->base;
895
896         /*
897          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
898          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
899          * is an alias of the respective read_idle_ctrl_shdw_* (members of
900          * a union). So, the below code takes care of both cases
901          */
902         if (volt_state == DDR_VOLTAGE_RAMPING)
903                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
904         else
905                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
906
907         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
908 }
909
910 /*
911  * setup_temperature_sensitive_regs() - set the timings for temperature
912  * sensitive registers. This happens once at initialisation time based
913  * on the temperature at boot time and subsequently based on the temperature
914  * alert interrupt. Temperature alert can happen when the temperature
915  * increases or drops. So this function can have the effect of either
916  * derating the timings or going back to nominal values.
917  */
918 static void setup_temperature_sensitive_regs(struct emif_data *emif,
919                 struct emif_regs *regs)
920 {
921         u32             tim1, tim3, ref_ctrl, type;
922         void __iomem    *base = emif->base;
923         u32             temperature;
924
925         type = emif->plat_data->device_info->type;
926
927         tim1 = regs->sdram_tim1_shdw;
928         tim3 = regs->sdram_tim3_shdw;
929         ref_ctrl = regs->ref_ctrl_shdw;
930
931         /* No de-rating for non-lpddr2 devices */
932         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
933                 goto out;
934
935         temperature = emif->temperature_level;
936         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
937                 ref_ctrl = regs->ref_ctrl_shdw_derated;
938         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
939                 tim1 = regs->sdram_tim1_shdw_derated;
940                 tim3 = regs->sdram_tim3_shdw_derated;
941                 ref_ctrl = regs->ref_ctrl_shdw_derated;
942         }
943
944 out:
945         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
946         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
947         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
948 }
949
950 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
951 {
952         u32             old_temp_level;
953         irqreturn_t     ret = IRQ_HANDLED;
954         struct emif_custom_configs *custom_configs;
955
956         spin_lock_irqsave(&emif_lock, irq_state);
957         old_temp_level = emif->temperature_level;
958         get_temperature_level(emif);
959
960         if (unlikely(emif->temperature_level == old_temp_level)) {
961                 goto out;
962         } else if (!emif->curr_regs) {
963                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
964                 goto out;
965         }
966
967         custom_configs = emif->plat_data->custom_configs;
968
969         /*
970          * IF we detect higher than "nominal rating" from DDR sensor
971          * on an unsupported DDR part, shutdown system
972          */
973         if (custom_configs && !(custom_configs->mask &
974                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
975                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
976                         dev_err(emif->dev,
977                                 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
978                                 __func__, emif->temperature_level);
979                         /*
980                          * Temperature far too high - do kernel_power_off()
981                          * from thread context
982                          */
983                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
984                         ret = IRQ_WAKE_THREAD;
985                         goto out;
986                 }
987         }
988
989         if (emif->temperature_level < old_temp_level ||
990                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
991                 /*
992                  * Temperature coming down - defer handling to thread OR
993                  * Temperature far too high - do kernel_power_off() from
994                  * thread context
995                  */
996                 ret = IRQ_WAKE_THREAD;
997         } else {
998                 /* Temperature is going up - handle immediately */
999                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1000                 do_freq_update();
1001         }
1002
1003 out:
1004         spin_unlock_irqrestore(&emif_lock, irq_state);
1005         return ret;
1006 }
1007
1008 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1009 {
1010         u32                     interrupts;
1011         struct emif_data        *emif = dev_id;
1012         void __iomem            *base = emif->base;
1013         struct device           *dev = emif->dev;
1014         irqreturn_t             ret = IRQ_HANDLED;
1015
1016         /* Save the status and clear it */
1017         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1018         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019
1020         /*
1021          * Handle temperature alert
1022          * Temperature alert should be same for all ports
1023          * So, it's enough to process it only for one of the ports
1024          */
1025         if (interrupts & TA_SYS_MASK)
1026                 ret = handle_temp_alert(base, emif);
1027
1028         if (interrupts & ERR_SYS_MASK)
1029                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1030
1031         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1032                 /* Save the status and clear it */
1033                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1034                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035
1036                 if (interrupts & ERR_LL_MASK)
1037                         dev_err(dev, "Access error from LL port - %x\n",
1038                                 interrupts);
1039         }
1040
1041         return ret;
1042 }
1043
1044 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1045 {
1046         struct emif_data        *emif = dev_id;
1047
1048         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1049                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1050
1051                 /* If we have Power OFF ability, use it, else try restarting */
1052                 if (pm_power_off) {
1053                         kernel_power_off();
1054                 } else {
1055                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1056                         kernel_restart("SDRAM Over-temp Emergency restart");
1057                 }
1058                 return IRQ_HANDLED;
1059         }
1060
1061         spin_lock_irqsave(&emif_lock, irq_state);
1062
1063         if (emif->curr_regs) {
1064                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1065                 do_freq_update();
1066         } else {
1067                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1068         }
1069
1070         spin_unlock_irqrestore(&emif_lock, irq_state);
1071
1072         return IRQ_HANDLED;
1073 }
1074
1075 static void clear_all_interrupts(struct emif_data *emif)
1076 {
1077         void __iomem    *base = emif->base;
1078
1079         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1080                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1081         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1082                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1083                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1084 }
1085
1086 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1087 {
1088         void __iomem            *base = emif->base;
1089
1090         /* Disable all interrupts */
1091         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1092                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1093         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1094                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1095                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1096
1097         /* Clear all interrupts */
1098         clear_all_interrupts(emif);
1099 }
1100
1101 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1102 {
1103         u32             interrupts, type;
1104         void __iomem    *base = emif->base;
1105
1106         type = emif->plat_data->device_info->type;
1107
1108         clear_all_interrupts(emif);
1109
1110         /* Enable interrupts for SYS interface */
1111         interrupts = EN_ERR_SYS_MASK;
1112         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1113                 interrupts |= EN_TA_SYS_MASK;
1114         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1115
1116         /* Enable interrupts for LL interface */
1117         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1118                 /* TA need not be enabled for LL */
1119                 interrupts = EN_ERR_LL_MASK;
1120                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1121         }
1122
1123         /* setup IRQ handlers */
1124         return devm_request_threaded_irq(emif->dev, irq,
1125                                     emif_interrupt_handler,
1126                                     emif_threaded_isr,
1127                                     0, dev_name(emif->dev),
1128                                     emif);
1129
1130 }
1131
1132 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1133 {
1134         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1135         void __iomem                    *base = emif->base;
1136         const struct lpddr2_addressing  *addressing;
1137         const struct ddr_device_info    *device_info;
1138
1139         device_info = emif->plat_data->device_info;
1140         addressing = get_addressing_table(device_info);
1141
1142         /*
1143          * Init power management settings
1144          * We don't know the frequency yet. Use a high frequency
1145          * value for a conservative timeout setting
1146          */
1147         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1148                         emif->plat_data->ip_rev);
1149         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1150         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1151
1152         /* Init ZQ calibration settings */
1153         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1154                 device_info->cal_resistors_per_cs);
1155         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1156
1157         /* Check temperature level temperature level*/
1158         get_temperature_level(emif);
1159         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1160                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1161
1162         /* Init temperature polling */
1163         temp_alert_cfg = get_temp_alert_config(addressing,
1164                 emif->plat_data->custom_configs, device_info->cs1_used,
1165                 device_info->io_width, get_emif_bus_width(emif));
1166         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1167
1168         /*
1169          * Program external PHY control registers that are not frequency
1170          * dependent
1171          */
1172         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1173                 return;
1174         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1175         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1176         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1177         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1178         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1179         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1180         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1181         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1182         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1183         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1184         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1185         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1186         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1187         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1188         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1189         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1190         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1191         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1192         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1193         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1194         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1195 }
1196
1197 static void get_default_timings(struct emif_data *emif)
1198 {
1199         struct emif_platform_data *pd = emif->plat_data;
1200
1201         pd->timings             = lpddr2_jedec_timings;
1202         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1203
1204         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1205 }
1206
1207 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1208                 u32 ip_rev, struct device *dev)
1209 {
1210         int valid;
1211
1212         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1213                         type == DDR_TYPE_LPDDR2_S2)
1214                 && (density >= DDR_DENSITY_64Mb
1215                         && density <= DDR_DENSITY_8Gb)
1216                 && (io_width >= DDR_IO_WIDTH_8
1217                         && io_width <= DDR_IO_WIDTH_32);
1218
1219         /* Combinations of EMIF and PHY revisions that we support today */
1220         switch (ip_rev) {
1221         case EMIF_4D:
1222                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1223                 break;
1224         case EMIF_4D5:
1225                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1226                 break;
1227         default:
1228                 valid = 0;
1229         }
1230
1231         if (!valid)
1232                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1233         return valid;
1234 }
1235
1236 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1237                 struct device *dev)
1238 {
1239         int valid = 1;
1240
1241         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1242                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1243                 valid = cust_cfgs->lpmode_freq_threshold &&
1244                         cust_cfgs->lpmode_timeout_performance &&
1245                         cust_cfgs->lpmode_timeout_power;
1246
1247         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1248                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1249
1250         if (!valid)
1251                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1252
1253         return valid;
1254 }
1255
1256 #if defined(CONFIG_OF)
1257 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1258                 struct emif_data *emif)
1259 {
1260         struct emif_custom_configs      *cust_cfgs = NULL;
1261         int                             len;
1262         const __be32                    *lpmode, *poll_intvl;
1263
1264         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1265         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1266
1267         if (lpmode || poll_intvl)
1268                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1269                         GFP_KERNEL);
1270
1271         if (!cust_cfgs)
1272                 return;
1273
1274         if (lpmode) {
1275                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1276                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1277                 of_property_read_u32(np_emif,
1278                                 "low-power-mode-timeout-performance",
1279                                 &cust_cfgs->lpmode_timeout_performance);
1280                 of_property_read_u32(np_emif,
1281                                 "low-power-mode-timeout-power",
1282                                 &cust_cfgs->lpmode_timeout_power);
1283                 of_property_read_u32(np_emif,
1284                                 "low-power-mode-freq-threshold",
1285                                 &cust_cfgs->lpmode_freq_threshold);
1286         }
1287
1288         if (poll_intvl) {
1289                 cust_cfgs->mask |=
1290                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1291                 cust_cfgs->temp_alert_poll_interval_ms =
1292                                                 be32_to_cpup(poll_intvl);
1293         }
1294
1295         if (of_find_property(np_emif, "extended-temp-part", &len))
1296                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1297
1298         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1299                 devm_kfree(emif->dev, cust_cfgs);
1300                 return;
1301         }
1302
1303         emif->plat_data->custom_configs = cust_cfgs;
1304 }
1305
1306 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1307                 struct device_node *np_ddr,
1308                 struct ddr_device_info *dev_info)
1309 {
1310         u32 density = 0, io_width = 0;
1311         int len;
1312
1313         if (of_find_property(np_emif, "cs1-used", &len))
1314                 dev_info->cs1_used = true;
1315
1316         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1317                 dev_info->cal_resistors_per_cs = true;
1318
1319         if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1320                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1321         else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1322                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1323
1324         of_property_read_u32(np_ddr, "density", &density);
1325         of_property_read_u32(np_ddr, "io-width", &io_width);
1326
1327         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1328         if (density & (density - 1))
1329                 dev_info->density = 0;
1330         else
1331                 dev_info->density = __fls(density) - 5;
1332
1333         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1334         if (io_width & (io_width - 1))
1335                 dev_info->io_width = 0;
1336         else
1337                 dev_info->io_width = __fls(io_width) - 1;
1338 }
1339
1340 static struct emif_data * __init_or_module of_get_memory_device_details(
1341                 struct device_node *np_emif, struct device *dev)
1342 {
1343         struct emif_data                *emif = NULL;
1344         struct ddr_device_info          *dev_info = NULL;
1345         struct emif_platform_data       *pd = NULL;
1346         struct device_node              *np_ddr;
1347         int                             len;
1348
1349         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1350         if (!np_ddr)
1351                 goto error;
1352         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1353         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1354         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1355
1356         if (!emif || !pd || !dev_info) {
1357                 dev_err(dev, "%s: Out of memory!!\n",
1358                         __func__);
1359                 goto error;
1360         }
1361
1362         emif->plat_data         = pd;
1363         pd->device_info         = dev_info;
1364         emif->dev               = dev;
1365         emif->np_ddr            = np_ddr;
1366         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1367
1368         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1369                 emif->plat_data->ip_rev = EMIF_4D;
1370         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1371                 emif->plat_data->ip_rev = EMIF_4D5;
1372
1373         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1374
1375         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1376                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1377
1378         of_get_ddr_info(np_emif, np_ddr, dev_info);
1379         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1380                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1381                         emif->dev)) {
1382                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1383                 goto error;
1384         }
1385         /*
1386          * For EMIF instances other than EMIF1 see if the devices connected
1387          * are exactly same as on EMIF1(which is typically the case). If so,
1388          * mark it as a duplicate of EMIF1. This will save some memory and
1389          * computation.
1390          */
1391         if (emif1 && emif1->np_ddr == np_ddr) {
1392                 emif->duplicate = true;
1393                 goto out;
1394         } else if (emif1) {
1395                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1396                         __func__);
1397         }
1398
1399         of_get_custom_configs(np_emif, emif);
1400         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1401                                         emif->plat_data->device_info->type,
1402                                         &emif->plat_data->timings_arr_size);
1403
1404         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1405         goto out;
1406
1407 error:
1408         return NULL;
1409 out:
1410         return emif;
1411 }
1412
1413 #else
1414
1415 static struct emif_data * __init_or_module of_get_memory_device_details(
1416                 struct device_node *np_emif, struct device *dev)
1417 {
1418         return NULL;
1419 }
1420 #endif
1421
1422 static struct emif_data *__init_or_module get_device_details(
1423                 struct platform_device *pdev)
1424 {
1425         u32                             size;
1426         struct emif_data                *emif = NULL;
1427         struct ddr_device_info          *dev_info;
1428         struct emif_custom_configs      *cust_cfgs;
1429         struct emif_platform_data       *pd;
1430         struct device                   *dev;
1431         void                            *temp;
1432
1433         pd = pdev->dev.platform_data;
1434         dev = &pdev->dev;
1435
1436         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1437                         pd->device_info->density, pd->device_info->io_width,
1438                         pd->phy_type, pd->ip_rev, dev))) {
1439                 dev_err(dev, "%s: invalid device data\n", __func__);
1440                 goto error;
1441         }
1442
1443         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1444         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1445         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1446
1447         if (!emif || !pd || !dev_info) {
1448                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1449                 goto error;
1450         }
1451
1452         memcpy(temp, pd, sizeof(*pd));
1453         pd = temp;
1454         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1455
1456         pd->device_info         = dev_info;
1457         emif->plat_data         = pd;
1458         emif->dev               = dev;
1459         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1460
1461         /*
1462          * For EMIF instances other than EMIF1 see if the devices connected
1463          * are exactly same as on EMIF1(which is typically the case). If so,
1464          * mark it as a duplicate of EMIF1 and skip copying timings data.
1465          * This will save some memory and some computation later.
1466          */
1467         emif->duplicate = emif1 && (memcmp(dev_info,
1468                 emif1->plat_data->device_info,
1469                 sizeof(struct ddr_device_info)) == 0);
1470
1471         if (emif->duplicate) {
1472                 pd->timings = NULL;
1473                 pd->min_tck = NULL;
1474                 goto out;
1475         } else if (emif1) {
1476                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1477                         __func__);
1478         }
1479
1480         /*
1481          * Copy custom configs - ignore allocation error, if any, as
1482          * custom_configs is not very critical
1483          */
1484         cust_cfgs = pd->custom_configs;
1485         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1486                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1487                 if (temp)
1488                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1489                 else
1490                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1491                                 __LINE__);
1492                 pd->custom_configs = temp;
1493         }
1494
1495         /*
1496          * Copy timings and min-tck values from platform data. If it is not
1497          * available or if memory allocation fails, use JEDEC defaults
1498          */
1499         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1500         if (pd->timings) {
1501                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1502                 if (temp) {
1503                         memcpy(temp, pd->timings, size);
1504                         pd->timings = temp;
1505                 } else {
1506                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1507                                 __LINE__);
1508                         get_default_timings(emif);
1509                 }
1510         } else {
1511                 get_default_timings(emif);
1512         }
1513
1514         if (pd->min_tck) {
1515                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1516                 if (temp) {
1517                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1518                         pd->min_tck = temp;
1519                 } else {
1520                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1521                                 __LINE__);
1522                         pd->min_tck = &lpddr2_jedec_min_tck;
1523                 }
1524         } else {
1525                 pd->min_tck = &lpddr2_jedec_min_tck;
1526         }
1527
1528 out:
1529         return emif;
1530
1531 error:
1532         return NULL;
1533 }
1534
1535 static int __init_or_module emif_probe(struct platform_device *pdev)
1536 {
1537         struct emif_data        *emif;
1538         struct resource         *res;
1539         int                     irq;
1540
1541         if (pdev->dev.of_node)
1542                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1543         else
1544                 emif = get_device_details(pdev);
1545
1546         if (!emif) {
1547                 pr_err("%s: error getting device data\n", __func__);
1548                 goto error;
1549         }
1550
1551         list_add(&emif->node, &device_list);
1552         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1553
1554         /* Save pointers to each other in emif and device structures */
1555         emif->dev = &pdev->dev;
1556         platform_set_drvdata(pdev, emif);
1557
1558         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1559         emif->base = devm_ioremap_resource(emif->dev, res);
1560         if (IS_ERR(emif->base))
1561                 goto error;
1562
1563         irq = platform_get_irq(pdev, 0);
1564         if (irq < 0)
1565                 goto error;
1566
1567         emif_onetime_settings(emif);
1568         emif_debugfs_init(emif);
1569         disable_and_clear_all_interrupts(emif);
1570         setup_interrupts(emif, irq);
1571
1572         /* One-time actions taken on probing the first device */
1573         if (!emif1) {
1574                 emif1 = emif;
1575                 spin_lock_init(&emif_lock);
1576
1577                 /*
1578                  * TODO: register notifiers for frequency and voltage
1579                  * change here once the respective frameworks are
1580                  * available
1581                  */
1582         }
1583
1584         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1585                 __func__, emif->base, irq);
1586
1587         return 0;
1588 error:
1589         return -ENODEV;
1590 }
1591
1592 static int __exit emif_remove(struct platform_device *pdev)
1593 {
1594         struct emif_data *emif = platform_get_drvdata(pdev);
1595
1596         emif_debugfs_exit(emif);
1597
1598         return 0;
1599 }
1600
1601 static void emif_shutdown(struct platform_device *pdev)
1602 {
1603         struct emif_data        *emif = platform_get_drvdata(pdev);
1604
1605         disable_and_clear_all_interrupts(emif);
1606 }
1607
1608 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1609                 struct emif_regs *regs)
1610 {
1611         u32                             ip_rev, phy_type;
1612         u32                             cl, type;
1613         const struct lpddr2_timings     *timings;
1614         const struct lpddr2_min_tck     *min_tck;
1615         const struct ddr_device_info    *device_info;
1616         const struct lpddr2_addressing  *addressing;
1617         struct emif_data                *emif_for_calc;
1618         struct device                   *dev;
1619
1620         dev = emif->dev;
1621         /*
1622          * If the devices on this EMIF instance is duplicate of EMIF1,
1623          * use EMIF1 details for the calculation
1624          */
1625         emif_for_calc   = emif->duplicate ? emif1 : emif;
1626         timings         = get_timings_table(emif_for_calc, freq);
1627         addressing      = emif_for_calc->addressing;
1628         if (!timings || !addressing) {
1629                 dev_err(dev, "%s: not enough data available for %dHz",
1630                         __func__, freq);
1631                 return -1;
1632         }
1633
1634         device_info     = emif_for_calc->plat_data->device_info;
1635         type            = device_info->type;
1636         ip_rev          = emif_for_calc->plat_data->ip_rev;
1637         phy_type        = emif_for_calc->plat_data->phy_type;
1638
1639         min_tck         = emif_for_calc->plat_data->min_tck;
1640
1641         set_ddr_clk_period(freq);
1642
1643         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1644         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1645                         addressing);
1646         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1647                         addressing, type);
1648         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1649                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1650
1651         cl = get_cl(emif);
1652
1653         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1654                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1655                         timings, freq, cl);
1656         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1657                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1658                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1659                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1660                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1661         } else {
1662                 return -1;
1663         }
1664
1665         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1666         regs->pwr_mgmt_ctrl_shdw =
1667                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1668                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1669
1670         if (ip_rev & EMIF_4D) {
1671                 regs->read_idle_ctrl_shdw_normal =
1672                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1673
1674                 regs->read_idle_ctrl_shdw_volt_ramp =
1675                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1676         } else if (ip_rev & EMIF_4D5) {
1677                 regs->dll_calib_ctrl_shdw_normal =
1678                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1679
1680                 regs->dll_calib_ctrl_shdw_volt_ramp =
1681                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1682         }
1683
1684         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1685                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1686                         addressing);
1687
1688                 regs->sdram_tim1_shdw_derated =
1689                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1690                                 addressing);
1691
1692                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1693                         min_tck, addressing, type, ip_rev,
1694                         EMIF_DERATED_TIMINGS);
1695         }
1696
1697         regs->freq = freq;
1698
1699         return 0;
1700 }
1701
1702 /*
1703  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1704  * given frequency(freq):
1705  *
1706  * As an optimisation, every EMIF instance other than EMIF1 shares the
1707  * register cache with EMIF1 if the devices connected on this instance
1708  * are same as that on EMIF1(indicated by the duplicate flag)
1709  *
1710  * If we do not have an entry corresponding to the frequency given, we
1711  * allocate a new entry and calculate the values
1712  *
1713  * Upon finding the right reg dump, save it in curr_regs. It can be
1714  * directly used for thermal de-rating and voltage ramping changes.
1715  */
1716 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1717 {
1718         int                     i;
1719         struct emif_regs        **regs_cache;
1720         struct emif_regs        *regs = NULL;
1721         struct device           *dev;
1722
1723         dev = emif->dev;
1724         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1725                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1726                 return emif->curr_regs;
1727         }
1728
1729         if (emif->duplicate)
1730                 regs_cache = emif1->regs_cache;
1731         else
1732                 regs_cache = emif->regs_cache;
1733
1734         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1735                 if (regs_cache[i]->freq == freq) {
1736                         regs = regs_cache[i];
1737                         dev_dbg(dev,
1738                                 "%s: reg dump found in reg cache for %u Hz\n",
1739                                 __func__, freq);
1740                         break;
1741                 }
1742         }
1743
1744         /*
1745          * If we don't have an entry for this frequency in the cache create one
1746          * and calculate the values
1747          */
1748         if (!regs) {
1749                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1750                 if (!regs)
1751                         return NULL;
1752
1753                 if (get_emif_reg_values(emif, freq, regs)) {
1754                         devm_kfree(emif->dev, regs);
1755                         return NULL;
1756                 }
1757
1758                 /*
1759                  * Now look for an un-used entry in the cache and save the
1760                  * newly created struct. If there are no free entries
1761                  * over-write the last entry
1762                  */
1763                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1764                         ;
1765
1766                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1767                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1768                                 __func__);
1769                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1770                         devm_kfree(emif->dev, regs_cache[i]);
1771                 }
1772                 regs_cache[i] = regs;
1773         }
1774
1775         return regs;
1776 }
1777
1778 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1779 {
1780         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1781                 volt_state);
1782
1783         if (!emif->curr_regs) {
1784                 dev_err(emif->dev,
1785                         "%s: volt-notify before registers are ready: %d\n",
1786                         __func__, volt_state);
1787                 return;
1788         }
1789
1790         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1791 }
1792
1793 /*
1794  * TODO: voltage notify handling should be hooked up to
1795  * regulator framework as soon as the necessary support
1796  * is available in mainline kernel. This function is un-used
1797  * right now.
1798  */
1799 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1800 {
1801         struct emif_data *emif;
1802
1803         spin_lock_irqsave(&emif_lock, irq_state);
1804
1805         list_for_each_entry(emif, &device_list, node)
1806                 do_volt_notify_handling(emif, volt_state);
1807         do_freq_update();
1808
1809         spin_unlock_irqrestore(&emif_lock, irq_state);
1810 }
1811
1812 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1813 {
1814         struct emif_regs *regs;
1815
1816         regs = get_regs(emif, new_freq);
1817         if (!regs)
1818                 return;
1819
1820         emif->curr_regs = regs;
1821
1822         /*
1823          * Update the shadow registers:
1824          * Temperature and voltage-ramp sensitive settings are also configured
1825          * in terms of DDR cycles. So, we need to update them too when there
1826          * is a freq change
1827          */
1828         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1829                 __func__, new_freq);
1830         setup_registers(emif, regs);
1831         setup_temperature_sensitive_regs(emif, regs);
1832         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1833
1834         /*
1835          * Part of workaround for errata i728. See do_freq_update()
1836          * for more details
1837          */
1838         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1839                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1840 }
1841
1842 /*
1843  * TODO: frequency notify handling should be hooked up to
1844  * clock framework as soon as the necessary support is
1845  * available in mainline kernel. This function is un-used
1846  * right now.
1847  */
1848 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1849 {
1850         struct emif_data *emif;
1851
1852         /*
1853          * NOTE: we are taking the spin-lock here and releases it
1854          * only in post-notifier. This doesn't look good and
1855          * Sparse complains about it, but this seems to be
1856          * un-avoidable. We need to lock a sequence of events
1857          * that is split between EMIF and clock framework.
1858          *
1859          * 1. EMIF driver updates EMIF timings in shadow registers in the
1860          *    frequency pre-notify callback from clock framework
1861          * 2. clock framework sets up the registers for the new frequency
1862          * 3. clock framework initiates a hw-sequence that updates
1863          *    the frequency EMIF timings synchronously.
1864          *
1865          * All these 3 steps should be performed as an atomic operation
1866          * vis-a-vis similar sequence in the EMIF interrupt handler
1867          * for temperature events. Otherwise, there could be race
1868          * conditions that could result in incorrect EMIF timings for
1869          * a given frequency
1870          */
1871         spin_lock_irqsave(&emif_lock, irq_state);
1872
1873         list_for_each_entry(emif, &device_list, node)
1874                 do_freq_pre_notify_handling(emif, new_freq);
1875 }
1876
1877 static void do_freq_post_notify_handling(struct emif_data *emif)
1878 {
1879         /*
1880          * Part of workaround for errata i728. See do_freq_update()
1881          * for more details
1882          */
1883         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1884                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1885 }
1886
1887 /*
1888  * TODO: frequency notify handling should be hooked up to
1889  * clock framework as soon as the necessary support is
1890  * available in mainline kernel. This function is un-used
1891  * right now.
1892  */
1893 static void __attribute__((unused)) freq_post_notify_handling(void)
1894 {
1895         struct emif_data *emif;
1896
1897         list_for_each_entry(emif, &device_list, node)
1898                 do_freq_post_notify_handling(emif);
1899
1900         /*
1901          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1902          * for more details
1903          */
1904         spin_unlock_irqrestore(&emif_lock, irq_state);
1905 }
1906
1907 #if defined(CONFIG_OF)
1908 static const struct of_device_id emif_of_match[] = {
1909                 { .compatible = "ti,emif-4d" },
1910                 { .compatible = "ti,emif-4d5" },
1911                 {},
1912 };
1913 MODULE_DEVICE_TABLE(of, emif_of_match);
1914 #endif
1915
1916 static struct platform_driver emif_driver = {
1917         .remove         = __exit_p(emif_remove),
1918         .shutdown       = emif_shutdown,
1919         .driver = {
1920                 .name = "emif",
1921                 .of_match_table = of_match_ptr(emif_of_match),
1922         },
1923 };
1924
1925 module_platform_driver_probe(emif_driver, emif_probe);
1926
1927 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1928 MODULE_LICENSE("GPL");
1929 MODULE_ALIAS("platform:emif");
1930 MODULE_AUTHOR("Texas Instruments Inc");