s390/qdio: remove internal polling in non-thinint path
[linux-2.6-microblaze.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:                  Whether the DDR devices attached to this EMIF
34  *                              instance are exactly same as that on EMIF1. In
35  *                              this case we can save some memory and processing
36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
37  *                              to this EMIF - read from MR4 register. If there
38  *                              are two devices attached to this EMIF, this
39  *                              value is the maximum of the two temperature
40  *                              levels.
41  * @node:                       node in the device list
42  * @base:                       base address of memory-mapped IO registers.
43  * @dev:                        device pointer.
44  * @addressing                  table with addressing information from the spec
45  * @regs_cache:                 An array of 'struct emif_regs' that stores
46  *                              calculated register values for different
47  *                              frequencies, to avoid re-calculating them on
48  *                              each DVFS transition.
49  * @curr_regs:                  The set of register values used in the last
50  *                              frequency change (i.e. corresponding to the
51  *                              frequency in effect at the moment)
52  * @plat_data:                  Pointer to saved platform data.
53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
54  * @np_ddr:                     Pointer to ddr device tree node
55  */
56 struct emif_data {
57         u8                              duplicate;
58         u8                              temperature_level;
59         u8                              lpmode;
60         struct list_head                node;
61         unsigned long                   irq_state;
62         void __iomem                    *base;
63         struct device                   *dev;
64         const struct lpddr2_addressing  *addressing;
65         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66         struct emif_regs                *curr_regs;
67         struct emif_platform_data       *plat_data;
68         struct dentry                   *debugfs_root;
69         struct device_node              *np_ddr;
70 };
71
72 static struct emif_data *emif1;
73 static spinlock_t       emif_lock;
74 static unsigned long    irq_state;
75 static u32              t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80         struct emif_regs *regs)
81 {
82         u32 type = emif->plat_data->device_info->type;
83         u32 ip_rev = emif->plat_data->ip_rev;
84
85         seq_printf(s, "EMIF register cache dump for %dMHz\n",
86                 regs->freq/1000000);
87
88         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93         if (ip_rev == EMIF_4D) {
94                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->read_idle_ctrl_shdw_normal);
96                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->read_idle_ctrl_shdw_volt_ramp);
98         } else if (ip_rev == EMIF_4D5) {
99                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100                         regs->dll_calib_ctrl_shdw_normal);
101                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102                         regs->dll_calib_ctrl_shdw_volt_ramp);
103         }
104
105         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107                         regs->ref_ctrl_shdw_derated);
108                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109                         regs->sdram_tim1_shdw_derated);
110                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111                         regs->sdram_tim3_shdw_derated);
112         }
113 }
114
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117         struct emif_data        *emif   = s->private;
118         struct emif_regs        **regs_cache;
119         int                     i;
120
121         if (emif->duplicate)
122                 regs_cache = emif1->regs_cache;
123         else
124                 regs_cache = emif->regs_cache;
125
126         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127                 do_emif_regdump_show(s, emif, regs_cache[i]);
128                 seq_putc(s, '\n');
129         }
130
131         return 0;
132 }
133
134 static int emif_regdump_open(struct inode *inode, struct file *file)
135 {
136         return single_open(file, emif_regdump_show, inode->i_private);
137 }
138
139 static const struct file_operations emif_regdump_fops = {
140         .open                   = emif_regdump_open,
141         .read                   = seq_read,
142         .release                = single_release,
143 };
144
145 static int emif_mr4_show(struct seq_file *s, void *unused)
146 {
147         struct emif_data *emif = s->private;
148
149         seq_printf(s, "MR4=%d\n", emif->temperature_level);
150         return 0;
151 }
152
153 static int emif_mr4_open(struct inode *inode, struct file *file)
154 {
155         return single_open(file, emif_mr4_show, inode->i_private);
156 }
157
158 static const struct file_operations emif_mr4_fops = {
159         .open                   = emif_mr4_open,
160         .read                   = seq_read,
161         .release                = single_release,
162 };
163
164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165 {
166         struct dentry   *dentry;
167         int             ret;
168
169         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
170         if (!dentry) {
171                 ret = -ENOMEM;
172                 goto err0;
173         }
174         emif->debugfs_root = dentry;
175
176         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177                         emif->debugfs_root, emif, &emif_regdump_fops);
178         if (!dentry) {
179                 ret = -ENOMEM;
180                 goto err1;
181         }
182
183         dentry = debugfs_create_file("mr4", S_IRUGO,
184                         emif->debugfs_root, emif, &emif_mr4_fops);
185         if (!dentry) {
186                 ret = -ENOMEM;
187                 goto err1;
188         }
189
190         return 0;
191 err1:
192         debugfs_remove_recursive(emif->debugfs_root);
193 err0:
194         return ret;
195 }
196
197 static void __exit emif_debugfs_exit(struct emif_data *emif)
198 {
199         debugfs_remove_recursive(emif->debugfs_root);
200         emif->debugfs_root = NULL;
201 }
202 #else
203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204 {
205         return 0;
206 }
207
208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209 {
210 }
211 #endif
212
213 /*
214  * Calculate the period of DDR clock from frequency value
215  */
216 static void set_ddr_clk_period(u32 freq)
217 {
218         /* Divide 10^12 by frequency to get period in ps */
219         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220 }
221
222 /*
223  * Get bus width used by EMIF. Note that this may be different from the
224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
225  * may be connected to a given CS of EMIF. In this case bus width as far
226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227  */
228 static u32 get_emif_bus_width(struct emif_data *emif)
229 {
230         u32             width;
231         void __iomem    *base = emif->base;
232
233         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
234                         >> NARROW_MODE_SHIFT;
235         width = width == 0 ? 32 : 16;
236
237         return width;
238 }
239
240 /*
241  * Get the CL from SDRAM_CONFIG register
242  */
243 static u32 get_cl(struct emif_data *emif)
244 {
245         u32             cl;
246         void __iomem    *base = emif->base;
247
248         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249
250         return cl;
251 }
252
253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
254 {
255         u32 temp;
256         void __iomem *base = emif->base;
257
258         /*
259          * Workaround for errata i743 - LPDDR2 Power-Down State is Not
260          * Efficient
261          *
262          * i743 DESCRIPTION:
263          * The EMIF supports power-down state for low power. The EMIF
264          * automatically puts the SDRAM into power-down after the memory is
265          * not accessed for a defined number of cycles and the
266          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
267          * As the EMIF supports automatic output impedance calibration, a ZQ
268          * calibration long command is issued every time it exits active
269          * power-down and precharge power-down modes. The EMIF waits and
270          * blocks any other command during this calibration.
271          * The EMIF does not allow selective disabling of ZQ calibration upon
272          * exit of power-down mode. Due to very short periods of power-down
273          * cycles, ZQ calibration overhead creates bandwidth issues and
274          * increases overall system power consumption. On the other hand,
275          * issuing ZQ calibration long commands when exiting self-refresh is
276          * still required.
277          *
278          * WORKAROUND
279          * Because there is no power consumption benefit of the power-down due
280          * to the calibration and there is a performance risk, the guideline
281          * is to not allow power-down state and, therefore, to not have set
282          * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
283          */
284         if ((emif->plat_data->ip_rev == EMIF_4D) &&
285             (EMIF_LP_MODE_PWR_DN == lpmode)) {
286                 WARN_ONCE(1,
287                           "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
288                           "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
289                 /* rollback LP_MODE to Self-refresh mode */
290                 lpmode = EMIF_LP_MODE_SELF_REFRESH;
291         }
292
293         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
294         temp &= ~LP_MODE_MASK;
295         temp |= (lpmode << LP_MODE_SHIFT);
296         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
297 }
298
299 static void do_freq_update(void)
300 {
301         struct emif_data *emif;
302
303         /*
304          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
305          *
306          * i728 DESCRIPTION:
307          * The EMIF automatically puts the SDRAM into self-refresh mode
308          * after the EMIF has not performed accesses during
309          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
310          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
311          * to 0x2. If during a small window the following three events
312          * occur:
313          * - The SR_TIMING counter expires
314          * - And frequency change is requested
315          * - And OCP access is requested
316          * Then it causes instable clock on the DDR interface.
317          *
318          * WORKAROUND
319          * To avoid the occurrence of the three events, the workaround
320          * is to disable the self-refresh when requesting a frequency
321          * change. Before requesting a frequency change the software must
322          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
323          * frequency change has been done, the software can reprogram
324          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
325          */
326         list_for_each_entry(emif, &device_list, node) {
327                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
328                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
329         }
330
331         /*
332          * TODO: Do FREQ_UPDATE here when an API
333          * is available for this as part of the new
334          * clock framework
335          */
336
337         list_for_each_entry(emif, &device_list, node) {
338                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
339                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
340         }
341 }
342
343 /* Find addressing table entry based on the device's type and density */
344 static const struct lpddr2_addressing *get_addressing_table(
345         const struct ddr_device_info *device_info)
346 {
347         u32             index, type, density;
348
349         type = device_info->type;
350         density = device_info->density;
351
352         switch (type) {
353         case DDR_TYPE_LPDDR2_S4:
354                 index = density - 1;
355                 break;
356         case DDR_TYPE_LPDDR2_S2:
357                 switch (density) {
358                 case DDR_DENSITY_1Gb:
359                 case DDR_DENSITY_2Gb:
360                         index = density + 3;
361                         break;
362                 default:
363                         index = density - 1;
364                 }
365                 break;
366         default:
367                 return NULL;
368         }
369
370         return &lpddr2_jedec_addressing_table[index];
371 }
372
373 /*
374  * Find the the right timing table from the array of timing
375  * tables of the device using DDR clock frequency
376  */
377 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
378                 u32 freq)
379 {
380         u32                             i, min, max, freq_nearest;
381         const struct lpddr2_timings     *timings = NULL;
382         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
383         struct                          device *dev = emif->dev;
384
385         /* Start with a very high frequency - 1GHz */
386         freq_nearest = 1000000000;
387
388         /*
389          * Find the timings table such that:
390          *  1. the frequency range covers the required frequency(safe) AND
391          *  2. the max_freq is closest to the required frequency(optimal)
392          */
393         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
394                 max = timings_arr[i].max_freq;
395                 min = timings_arr[i].min_freq;
396                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
397                         freq_nearest = max;
398                         timings = &timings_arr[i];
399                 }
400         }
401
402         if (!timings)
403                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
404                         __func__, freq);
405
406         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
407                 __func__, freq, freq_nearest);
408
409         return timings;
410 }
411
412 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
413                 const struct lpddr2_addressing *addressing)
414 {
415         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
416
417         /* Scale down frequency and t_refi to avoid overflow */
418         freq_khz = freq / 1000;
419         t_refi = addressing->tREFI_ns / 100;
420
421         /*
422          * refresh rate to be set is 'tREFI(in us) * freq in MHz
423          * division by 10000 to account for change in units
424          */
425         val = t_refi * freq_khz / 10000;
426         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
427
428         return ref_ctrl_shdw;
429 }
430
431 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
432                 const struct lpddr2_min_tck *min_tck,
433                 const struct lpddr2_addressing *addressing)
434 {
435         u32 tim1 = 0, val = 0;
436
437         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
438         tim1 |= val << T_WTR_SHIFT;
439
440         if (addressing->num_banks == B8)
441                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
442         else
443                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
444         tim1 |= (val - 1) << T_RRD_SHIFT;
445
446         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
447         tim1 |= val << T_RC_SHIFT;
448
449         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
450         tim1 |= (val - 1) << T_RAS_SHIFT;
451
452         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
453         tim1 |= val << T_WR_SHIFT;
454
455         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
456         tim1 |= val << T_RCD_SHIFT;
457
458         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
459         tim1 |= val << T_RP_SHIFT;
460
461         return tim1;
462 }
463
464 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
465                 const struct lpddr2_min_tck *min_tck,
466                 const struct lpddr2_addressing *addressing)
467 {
468         u32 tim1 = 0, val = 0;
469
470         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
471         tim1 = val << T_WTR_SHIFT;
472
473         /*
474          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
475          * to tFAW for de-rating
476          */
477         if (addressing->num_banks == B8) {
478                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
479         } else {
480                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
481                 val = max(min_tck->tRRD, val) - 1;
482         }
483         tim1 |= val << T_RRD_SHIFT;
484
485         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
486         tim1 |= (val - 1) << T_RC_SHIFT;
487
488         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
489         val = max(min_tck->tRASmin, val) - 1;
490         tim1 |= val << T_RAS_SHIFT;
491
492         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
493         tim1 |= val << T_WR_SHIFT;
494
495         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
496         tim1 |= (val - 1) << T_RCD_SHIFT;
497
498         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
499         tim1 |= (val - 1) << T_RP_SHIFT;
500
501         return tim1;
502 }
503
504 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
505                 const struct lpddr2_min_tck *min_tck,
506                 const struct lpddr2_addressing *addressing,
507                 u32 type)
508 {
509         u32 tim2 = 0, val = 0;
510
511         val = min_tck->tCKE - 1;
512         tim2 |= val << T_CKE_SHIFT;
513
514         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
515         tim2 |= val << T_RTP_SHIFT;
516
517         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
518         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
519         tim2 |= val << T_XSNR_SHIFT;
520
521         /* XSRD same as XSNR for LPDDR2 */
522         tim2 |= val << T_XSRD_SHIFT;
523
524         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
525         tim2 |= val << T_XP_SHIFT;
526
527         return tim2;
528 }
529
530 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
531                 const struct lpddr2_min_tck *min_tck,
532                 const struct lpddr2_addressing *addressing,
533                 u32 type, u32 ip_rev, u32 derated)
534 {
535         u32 tim3 = 0, val = 0, t_dqsck;
536
537         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
538         val = val > 0xF ? 0xF : val;
539         tim3 |= val << T_RAS_MAX_SHIFT;
540
541         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
542         tim3 |= val << T_RFC_SHIFT;
543
544         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
545                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
546         if (ip_rev == EMIF_4D5)
547                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
548         else
549                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
550
551         tim3 |= val << T_TDQSCKMAX_SHIFT;
552
553         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
554         tim3 |= val << ZQ_ZQCS_SHIFT;
555
556         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
557         val = max(min_tck->tCKESR, val) - 1;
558         tim3 |= val << T_CKESR_SHIFT;
559
560         if (ip_rev == EMIF_4D5) {
561                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
562
563                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
564                 tim3 |= val << T_PDLL_UL_SHIFT;
565         }
566
567         return tim3;
568 }
569
570 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
571                 bool cs1_used, bool cal_resistors_per_cs)
572 {
573         u32 zq = 0, val = 0;
574
575         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
576         zq |= val << ZQ_REFINTERVAL_SHIFT;
577
578         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
579         zq |= val << ZQ_ZQCL_MULT_SHIFT;
580
581         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
582         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
583
584         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
585
586         if (cal_resistors_per_cs)
587                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
588         else
589                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
590
591         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
592
593         val = cs1_used ? 1 : 0;
594         zq |= val << ZQ_CS1EN_SHIFT;
595
596         return zq;
597 }
598
599 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
600                 const struct emif_custom_configs *custom_configs, bool cs1_used,
601                 u32 sdram_io_width, u32 emif_bus_width)
602 {
603         u32 alert = 0, interval, devcnt;
604
605         if (custom_configs && (custom_configs->mask &
606                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
607                 interval = custom_configs->temp_alert_poll_interval_ms;
608         else
609                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
610
611         interval *= 1000000;                    /* Convert to ns */
612         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
613         alert |= (interval << TA_REFINTERVAL_SHIFT);
614
615         /*
616          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
617          * also to this form and subtract to get TA_DEVCNT, which is
618          * in log2(x) form.
619          */
620         emif_bus_width = __fls(emif_bus_width) - 1;
621         devcnt = emif_bus_width - sdram_io_width;
622         alert |= devcnt << TA_DEVCNT_SHIFT;
623
624         /* DEVWDT is in 'log2(x) - 3' form */
625         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
626
627         alert |= 1 << TA_SFEXITEN_SHIFT;
628         alert |= 1 << TA_CS0EN_SHIFT;
629         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
630
631         return alert;
632 }
633
634 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
635 {
636         u32 idle = 0, val = 0;
637
638         /*
639          * Maximum value in normal conditions and increased frequency
640          * when voltage is ramping
641          */
642         if (volt_ramp)
643                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
644         else
645                 val = 0x1FF;
646
647         /*
648          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
649          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
650          */
651         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
652         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
653
654         return idle;
655 }
656
657 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
658 {
659         u32 calib = 0, val = 0;
660
661         if (volt_ramp == DDR_VOLTAGE_RAMPING)
662                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
663         else
664                 val = 0; /* Disabled when voltage is stable */
665
666         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
667         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
668
669         return calib;
670 }
671
672 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
673         u32 freq, u8 RL)
674 {
675         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
676
677         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
678         phy |= val << READ_LATENCY_SHIFT_4D;
679
680         if (freq <= 100000000)
681                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
682         else if (freq <= 200000000)
683                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
684         else
685                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
686
687         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
688
689         return phy;
690 }
691
692 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
693 {
694         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
695
696         /*
697          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
698          * half-delay is not needed else set half-delay
699          */
700         if (freq >= 265000000 && freq < 267000000)
701                 half_delay = 0;
702         else
703                 half_delay = 1;
704
705         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
706         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
707                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
708
709         return phy;
710 }
711
712 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
713 {
714         u32 fifo_we_slave_ratio;
715
716         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
717                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
718
719         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
720                 fifo_we_slave_ratio << 22;
721 }
722
723 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
724 {
725         u32 fifo_we_slave_ratio;
726
727         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
728                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
729
730         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
731                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
732 }
733
734 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
735 {
736         u32 fifo_we_slave_ratio;
737
738         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
739                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
740
741         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
742                 fifo_we_slave_ratio << 13;
743 }
744
745 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
746 {
747         u32 pwr_mgmt_ctrl       = 0, timeout;
748         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
749         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
750         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
751         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
752         u32 mask;
753         u8 shift;
754
755         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
756
757         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
758                 lpmode          = cust_cfgs->lpmode;
759                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
760                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
761                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
762         }
763
764         /* Timeout based on DDR frequency */
765         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
766
767         /*
768          * The value to be set in register is "log2(timeout) - 3"
769          * if timeout < 16 load 0 in register
770          * if timeout is not a power of 2, round to next highest power of 2
771          */
772         if (timeout < 16) {
773                 timeout = 0;
774         } else {
775                 if (timeout & (timeout - 1))
776                         timeout <<= 1;
777                 timeout = __fls(timeout) - 3;
778         }
779
780         switch (lpmode) {
781         case EMIF_LP_MODE_CLOCK_STOP:
782                 shift = CS_TIM_SHIFT;
783                 mask = CS_TIM_MASK;
784                 break;
785         case EMIF_LP_MODE_SELF_REFRESH:
786                 /* Workaround for errata i735 */
787                 if (timeout < 6)
788                         timeout = 6;
789
790                 shift = SR_TIM_SHIFT;
791                 mask = SR_TIM_MASK;
792                 break;
793         case EMIF_LP_MODE_PWR_DN:
794                 shift = PD_TIM_SHIFT;
795                 mask = PD_TIM_MASK;
796                 break;
797         case EMIF_LP_MODE_DISABLE:
798         default:
799                 mask = 0;
800                 shift = 0;
801                 break;
802         }
803         /* Round to maximum in case of overflow, BUT warn! */
804         if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
805                 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
806                        lpmode,
807                        timeout_perf,
808                        timeout_pwr,
809                        freq_threshold);
810                 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
811                      timeout, mask >> shift);
812                 timeout = mask >> shift;
813         }
814
815         /* Setup required timing */
816         pwr_mgmt_ctrl = (timeout << shift) & mask;
817         /* setup a default mask for rest of the modes */
818         pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
819                           ~mask;
820
821         /* No CS_TIM in EMIF_4D5 */
822         if (ip_rev == EMIF_4D5)
823                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
824
825         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
826
827         return pwr_mgmt_ctrl;
828 }
829
830 /*
831  * Get the temperature level of the EMIF instance:
832  * Reads the MR4 register of attached SDRAM parts to find out the temperature
833  * level. If there are two parts attached(one on each CS), then the temperature
834  * level for the EMIF instance is the higher of the two temperatures.
835  */
836 static void get_temperature_level(struct emif_data *emif)
837 {
838         u32             temp, temperature_level;
839         void __iomem    *base;
840
841         base = emif->base;
842
843         /* Read mode register 4 */
844         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
845         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
846         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
847                                 MR4_SDRAM_REF_RATE_SHIFT;
848
849         if (emif->plat_data->device_info->cs1_used) {
850                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
851                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
852                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
853                                 >> MR4_SDRAM_REF_RATE_SHIFT;
854                 temperature_level = max(temp, temperature_level);
855         }
856
857         /* treat everything less than nominal(3) in MR4 as nominal */
858         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
859                 temperature_level = SDRAM_TEMP_NOMINAL;
860
861         /* if we get reserved value in MR4 persist with the existing value */
862         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
863                 emif->temperature_level = temperature_level;
864 }
865
866 /*
867  * Program EMIF shadow registers that are not dependent on temperature
868  * or voltage
869  */
870 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
871 {
872         void __iomem    *base = emif->base;
873
874         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
875         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
876         writel(regs->pwr_mgmt_ctrl_shdw,
877                base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
878
879         /* Settings specific for EMIF4D5 */
880         if (emif->plat_data->ip_rev != EMIF_4D5)
881                 return;
882         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
883         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
884         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
885 }
886
887 /*
888  * When voltage ramps dll calibration and forced read idle should
889  * happen more often
890  */
891 static void setup_volt_sensitive_regs(struct emif_data *emif,
892                 struct emif_regs *regs, u32 volt_state)
893 {
894         u32             calib_ctrl;
895         void __iomem    *base = emif->base;
896
897         /*
898          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
899          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
900          * is an alias of the respective read_idle_ctrl_shdw_* (members of
901          * a union). So, the below code takes care of both cases
902          */
903         if (volt_state == DDR_VOLTAGE_RAMPING)
904                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
905         else
906                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
907
908         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
909 }
910
911 /*
912  * setup_temperature_sensitive_regs() - set the timings for temperature
913  * sensitive registers. This happens once at initialisation time based
914  * on the temperature at boot time and subsequently based on the temperature
915  * alert interrupt. Temperature alert can happen when the temperature
916  * increases or drops. So this function can have the effect of either
917  * derating the timings or going back to nominal values.
918  */
919 static void setup_temperature_sensitive_regs(struct emif_data *emif,
920                 struct emif_regs *regs)
921 {
922         u32             tim1, tim3, ref_ctrl, type;
923         void __iomem    *base = emif->base;
924         u32             temperature;
925
926         type = emif->plat_data->device_info->type;
927
928         tim1 = regs->sdram_tim1_shdw;
929         tim3 = regs->sdram_tim3_shdw;
930         ref_ctrl = regs->ref_ctrl_shdw;
931
932         /* No de-rating for non-lpddr2 devices */
933         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
934                 goto out;
935
936         temperature = emif->temperature_level;
937         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
938                 ref_ctrl = regs->ref_ctrl_shdw_derated;
939         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
940                 tim1 = regs->sdram_tim1_shdw_derated;
941                 tim3 = regs->sdram_tim3_shdw_derated;
942                 ref_ctrl = regs->ref_ctrl_shdw_derated;
943         }
944
945 out:
946         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
947         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
948         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
949 }
950
951 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
952 {
953         u32             old_temp_level;
954         irqreturn_t     ret = IRQ_HANDLED;
955         struct emif_custom_configs *custom_configs;
956
957         spin_lock_irqsave(&emif_lock, irq_state);
958         old_temp_level = emif->temperature_level;
959         get_temperature_level(emif);
960
961         if (unlikely(emif->temperature_level == old_temp_level)) {
962                 goto out;
963         } else if (!emif->curr_regs) {
964                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
965                 goto out;
966         }
967
968         custom_configs = emif->plat_data->custom_configs;
969
970         /*
971          * IF we detect higher than "nominal rating" from DDR sensor
972          * on an unsupported DDR part, shutdown system
973          */
974         if (custom_configs && !(custom_configs->mask &
975                                 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
976                 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
977                         dev_err(emif->dev,
978                                 "%s:NOT Extended temperature capable memory."
979                                 "Converting MR4=0x%02x as shutdown event\n",
980                                 __func__, emif->temperature_level);
981                         /*
982                          * Temperature far too high - do kernel_power_off()
983                          * from thread context
984                          */
985                         emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
986                         ret = IRQ_WAKE_THREAD;
987                         goto out;
988                 }
989         }
990
991         if (emif->temperature_level < old_temp_level ||
992                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
993                 /*
994                  * Temperature coming down - defer handling to thread OR
995                  * Temperature far too high - do kernel_power_off() from
996                  * thread context
997                  */
998                 ret = IRQ_WAKE_THREAD;
999         } else {
1000                 /* Temperature is going up - handle immediately */
1001                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1002                 do_freq_update();
1003         }
1004
1005 out:
1006         spin_unlock_irqrestore(&emif_lock, irq_state);
1007         return ret;
1008 }
1009
1010 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1011 {
1012         u32                     interrupts;
1013         struct emif_data        *emif = dev_id;
1014         void __iomem            *base = emif->base;
1015         struct device           *dev = emif->dev;
1016         irqreturn_t             ret = IRQ_HANDLED;
1017
1018         /* Save the status and clear it */
1019         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1021
1022         /*
1023          * Handle temperature alert
1024          * Temperature alert should be same for all ports
1025          * So, it's enough to process it only for one of the ports
1026          */
1027         if (interrupts & TA_SYS_MASK)
1028                 ret = handle_temp_alert(base, emif);
1029
1030         if (interrupts & ERR_SYS_MASK)
1031                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1032
1033         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1034                 /* Save the status and clear it */
1035                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1037
1038                 if (interrupts & ERR_LL_MASK)
1039                         dev_err(dev, "Access error from LL port - %x\n",
1040                                 interrupts);
1041         }
1042
1043         return ret;
1044 }
1045
1046 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1047 {
1048         struct emif_data        *emif = dev_id;
1049
1050         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1051                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1052
1053                 /* If we have Power OFF ability, use it, else try restarting */
1054                 if (pm_power_off) {
1055                         kernel_power_off();
1056                 } else {
1057                         WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1058                         kernel_restart("SDRAM Over-temp Emergency restart");
1059                 }
1060                 return IRQ_HANDLED;
1061         }
1062
1063         spin_lock_irqsave(&emif_lock, irq_state);
1064
1065         if (emif->curr_regs) {
1066                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1067                 do_freq_update();
1068         } else {
1069                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1070         }
1071
1072         spin_unlock_irqrestore(&emif_lock, irq_state);
1073
1074         return IRQ_HANDLED;
1075 }
1076
1077 static void clear_all_interrupts(struct emif_data *emif)
1078 {
1079         void __iomem    *base = emif->base;
1080
1081         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1082                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1083         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1084                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1085                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
1086 }
1087
1088 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1089 {
1090         void __iomem            *base = emif->base;
1091
1092         /* Disable all interrupts */
1093         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1094                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1095         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1096                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1097                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1098
1099         /* Clear all interrupts */
1100         clear_all_interrupts(emif);
1101 }
1102
1103 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1104 {
1105         u32             interrupts, type;
1106         void __iomem    *base = emif->base;
1107
1108         type = emif->plat_data->device_info->type;
1109
1110         clear_all_interrupts(emif);
1111
1112         /* Enable interrupts for SYS interface */
1113         interrupts = EN_ERR_SYS_MASK;
1114         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1115                 interrupts |= EN_TA_SYS_MASK;
1116         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1117
1118         /* Enable interrupts for LL interface */
1119         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1120                 /* TA need not be enabled for LL */
1121                 interrupts = EN_ERR_LL_MASK;
1122                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1123         }
1124
1125         /* setup IRQ handlers */
1126         return devm_request_threaded_irq(emif->dev, irq,
1127                                     emif_interrupt_handler,
1128                                     emif_threaded_isr,
1129                                     0, dev_name(emif->dev),
1130                                     emif);
1131
1132 }
1133
1134 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1135 {
1136         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1137         void __iomem                    *base = emif->base;
1138         const struct lpddr2_addressing  *addressing;
1139         const struct ddr_device_info    *device_info;
1140
1141         device_info = emif->plat_data->device_info;
1142         addressing = get_addressing_table(device_info);
1143
1144         /*
1145          * Init power management settings
1146          * We don't know the frequency yet. Use a high frequency
1147          * value for a conservative timeout setting
1148          */
1149         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1150                         emif->plat_data->ip_rev);
1151         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1152         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1153
1154         /* Init ZQ calibration settings */
1155         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1156                 device_info->cal_resistors_per_cs);
1157         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1158
1159         /* Check temperature level temperature level*/
1160         get_temperature_level(emif);
1161         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1162                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1163
1164         /* Init temperature polling */
1165         temp_alert_cfg = get_temp_alert_config(addressing,
1166                 emif->plat_data->custom_configs, device_info->cs1_used,
1167                 device_info->io_width, get_emif_bus_width(emif));
1168         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1169
1170         /*
1171          * Program external PHY control registers that are not frequency
1172          * dependent
1173          */
1174         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1175                 return;
1176         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1177         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1178         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1179         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1180         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1181         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1182         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1183         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1184         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1185         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1186         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1187         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1188         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1189         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1190         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1191         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1192         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1193         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1194         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1195         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1196         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1197 }
1198
1199 static void get_default_timings(struct emif_data *emif)
1200 {
1201         struct emif_platform_data *pd = emif->plat_data;
1202
1203         pd->timings             = lpddr2_jedec_timings;
1204         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1205
1206         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1207 }
1208
1209 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1210                 u32 ip_rev, struct device *dev)
1211 {
1212         int valid;
1213
1214         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1215                         type == DDR_TYPE_LPDDR2_S2)
1216                 && (density >= DDR_DENSITY_64Mb
1217                         && density <= DDR_DENSITY_8Gb)
1218                 && (io_width >= DDR_IO_WIDTH_8
1219                         && io_width <= DDR_IO_WIDTH_32);
1220
1221         /* Combinations of EMIF and PHY revisions that we support today */
1222         switch (ip_rev) {
1223         case EMIF_4D:
1224                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1225                 break;
1226         case EMIF_4D5:
1227                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1228                 break;
1229         default:
1230                 valid = 0;
1231         }
1232
1233         if (!valid)
1234                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1235         return valid;
1236 }
1237
1238 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1239                 struct device *dev)
1240 {
1241         int valid = 1;
1242
1243         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1244                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1245                 valid = cust_cfgs->lpmode_freq_threshold &&
1246                         cust_cfgs->lpmode_timeout_performance &&
1247                         cust_cfgs->lpmode_timeout_power;
1248
1249         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1250                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1251
1252         if (!valid)
1253                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1254
1255         return valid;
1256 }
1257
1258 #if defined(CONFIG_OF)
1259 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1260                 struct emif_data *emif)
1261 {
1262         struct emif_custom_configs      *cust_cfgs = NULL;
1263         int                             len;
1264         const __be32                    *lpmode, *poll_intvl;
1265
1266         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1267         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1268
1269         if (lpmode || poll_intvl)
1270                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1271                         GFP_KERNEL);
1272
1273         if (!cust_cfgs)
1274                 return;
1275
1276         if (lpmode) {
1277                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1278                 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1279                 of_property_read_u32(np_emif,
1280                                 "low-power-mode-timeout-performance",
1281                                 &cust_cfgs->lpmode_timeout_performance);
1282                 of_property_read_u32(np_emif,
1283                                 "low-power-mode-timeout-power",
1284                                 &cust_cfgs->lpmode_timeout_power);
1285                 of_property_read_u32(np_emif,
1286                                 "low-power-mode-freq-threshold",
1287                                 &cust_cfgs->lpmode_freq_threshold);
1288         }
1289
1290         if (poll_intvl) {
1291                 cust_cfgs->mask |=
1292                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1293                 cust_cfgs->temp_alert_poll_interval_ms =
1294                                                 be32_to_cpup(poll_intvl);
1295         }
1296
1297         if (of_find_property(np_emif, "extended-temp-part", &len))
1298                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1299
1300         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1301                 devm_kfree(emif->dev, cust_cfgs);
1302                 return;
1303         }
1304
1305         emif->plat_data->custom_configs = cust_cfgs;
1306 }
1307
1308 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1309                 struct device_node *np_ddr,
1310                 struct ddr_device_info *dev_info)
1311 {
1312         u32 density = 0, io_width = 0;
1313         int len;
1314
1315         if (of_find_property(np_emif, "cs1-used", &len))
1316                 dev_info->cs1_used = true;
1317
1318         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1319                 dev_info->cal_resistors_per_cs = true;
1320
1321         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1322                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1323         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1324                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1325
1326         of_property_read_u32(np_ddr, "density", &density);
1327         of_property_read_u32(np_ddr, "io-width", &io_width);
1328
1329         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1330         if (density & (density - 1))
1331                 dev_info->density = 0;
1332         else
1333                 dev_info->density = __fls(density) - 5;
1334
1335         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1336         if (io_width & (io_width - 1))
1337                 dev_info->io_width = 0;
1338         else
1339                 dev_info->io_width = __fls(io_width) - 1;
1340 }
1341
1342 static struct emif_data * __init_or_module of_get_memory_device_details(
1343                 struct device_node *np_emif, struct device *dev)
1344 {
1345         struct emif_data                *emif = NULL;
1346         struct ddr_device_info          *dev_info = NULL;
1347         struct emif_platform_data       *pd = NULL;
1348         struct device_node              *np_ddr;
1349         int                             len;
1350
1351         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1352         if (!np_ddr)
1353                 goto error;
1354         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1355         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1356         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1357
1358         if (!emif || !pd || !dev_info) {
1359                 dev_err(dev, "%s: Out of memory!!\n",
1360                         __func__);
1361                 goto error;
1362         }
1363
1364         emif->plat_data         = pd;
1365         pd->device_info         = dev_info;
1366         emif->dev               = dev;
1367         emif->np_ddr            = np_ddr;
1368         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1369
1370         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1371                 emif->plat_data->ip_rev = EMIF_4D;
1372         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1373                 emif->plat_data->ip_rev = EMIF_4D5;
1374
1375         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1376
1377         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1378                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1379
1380         of_get_ddr_info(np_emif, np_ddr, dev_info);
1381         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1382                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1383                         emif->dev)) {
1384                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1385                 goto error;
1386         }
1387         /*
1388          * For EMIF instances other than EMIF1 see if the devices connected
1389          * are exactly same as on EMIF1(which is typically the case). If so,
1390          * mark it as a duplicate of EMIF1. This will save some memory and
1391          * computation.
1392          */
1393         if (emif1 && emif1->np_ddr == np_ddr) {
1394                 emif->duplicate = true;
1395                 goto out;
1396         } else if (emif1) {
1397                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1398                         __func__);
1399         }
1400
1401         of_get_custom_configs(np_emif, emif);
1402         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1403                                         emif->plat_data->device_info->type,
1404                                         &emif->plat_data->timings_arr_size);
1405
1406         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1407         goto out;
1408
1409 error:
1410         return NULL;
1411 out:
1412         return emif;
1413 }
1414
1415 #else
1416
1417 static struct emif_data * __init_or_module of_get_memory_device_details(
1418                 struct device_node *np_emif, struct device *dev)
1419 {
1420         return NULL;
1421 }
1422 #endif
1423
1424 static struct emif_data *__init_or_module get_device_details(
1425                 struct platform_device *pdev)
1426 {
1427         u32                             size;
1428         struct emif_data                *emif = NULL;
1429         struct ddr_device_info          *dev_info;
1430         struct emif_custom_configs      *cust_cfgs;
1431         struct emif_platform_data       *pd;
1432         struct device                   *dev;
1433         void                            *temp;
1434
1435         pd = pdev->dev.platform_data;
1436         dev = &pdev->dev;
1437
1438         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1439                         pd->device_info->density, pd->device_info->io_width,
1440                         pd->phy_type, pd->ip_rev, dev))) {
1441                 dev_err(dev, "%s: invalid device data\n", __func__);
1442                 goto error;
1443         }
1444
1445         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1446         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1447         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1448
1449         if (!emif || !pd || !dev_info) {
1450                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1451                 goto error;
1452         }
1453
1454         memcpy(temp, pd, sizeof(*pd));
1455         pd = temp;
1456         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1457
1458         pd->device_info         = dev_info;
1459         emif->plat_data         = pd;
1460         emif->dev               = dev;
1461         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1462
1463         /*
1464          * For EMIF instances other than EMIF1 see if the devices connected
1465          * are exactly same as on EMIF1(which is typically the case). If so,
1466          * mark it as a duplicate of EMIF1 and skip copying timings data.
1467          * This will save some memory and some computation later.
1468          */
1469         emif->duplicate = emif1 && (memcmp(dev_info,
1470                 emif1->plat_data->device_info,
1471                 sizeof(struct ddr_device_info)) == 0);
1472
1473         if (emif->duplicate) {
1474                 pd->timings = NULL;
1475                 pd->min_tck = NULL;
1476                 goto out;
1477         } else if (emif1) {
1478                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1479                         __func__);
1480         }
1481
1482         /*
1483          * Copy custom configs - ignore allocation error, if any, as
1484          * custom_configs is not very critical
1485          */
1486         cust_cfgs = pd->custom_configs;
1487         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1488                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1489                 if (temp)
1490                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1491                 else
1492                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1493                                 __LINE__);
1494                 pd->custom_configs = temp;
1495         }
1496
1497         /*
1498          * Copy timings and min-tck values from platform data. If it is not
1499          * available or if memory allocation fails, use JEDEC defaults
1500          */
1501         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1502         if (pd->timings) {
1503                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1504                 if (temp) {
1505                         memcpy(temp, pd->timings, size);
1506                         pd->timings = temp;
1507                 } else {
1508                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1509                                 __LINE__);
1510                         get_default_timings(emif);
1511                 }
1512         } else {
1513                 get_default_timings(emif);
1514         }
1515
1516         if (pd->min_tck) {
1517                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1518                 if (temp) {
1519                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1520                         pd->min_tck = temp;
1521                 } else {
1522                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1523                                 __LINE__);
1524                         pd->min_tck = &lpddr2_jedec_min_tck;
1525                 }
1526         } else {
1527                 pd->min_tck = &lpddr2_jedec_min_tck;
1528         }
1529
1530 out:
1531         return emif;
1532
1533 error:
1534         return NULL;
1535 }
1536
1537 static int __init_or_module emif_probe(struct platform_device *pdev)
1538 {
1539         struct emif_data        *emif;
1540         struct resource         *res;
1541         int                     irq;
1542
1543         if (pdev->dev.of_node)
1544                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1545         else
1546                 emif = get_device_details(pdev);
1547
1548         if (!emif) {
1549                 pr_err("%s: error getting device data\n", __func__);
1550                 goto error;
1551         }
1552
1553         list_add(&emif->node, &device_list);
1554         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1555
1556         /* Save pointers to each other in emif and device structures */
1557         emif->dev = &pdev->dev;
1558         platform_set_drvdata(pdev, emif);
1559
1560         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1561         emif->base = devm_ioremap_resource(emif->dev, res);
1562         if (IS_ERR(emif->base))
1563                 goto error;
1564
1565         irq = platform_get_irq(pdev, 0);
1566         if (irq < 0) {
1567                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1568                         __func__, irq);
1569                 goto error;
1570         }
1571
1572         emif_onetime_settings(emif);
1573         emif_debugfs_init(emif);
1574         disable_and_clear_all_interrupts(emif);
1575         setup_interrupts(emif, irq);
1576
1577         /* One-time actions taken on probing the first device */
1578         if (!emif1) {
1579                 emif1 = emif;
1580                 spin_lock_init(&emif_lock);
1581
1582                 /*
1583                  * TODO: register notifiers for frequency and voltage
1584                  * change here once the respective frameworks are
1585                  * available
1586                  */
1587         }
1588
1589         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1590                 __func__, emif->base, irq);
1591
1592         return 0;
1593 error:
1594         return -ENODEV;
1595 }
1596
1597 static int __exit emif_remove(struct platform_device *pdev)
1598 {
1599         struct emif_data *emif = platform_get_drvdata(pdev);
1600
1601         emif_debugfs_exit(emif);
1602
1603         return 0;
1604 }
1605
1606 static void emif_shutdown(struct platform_device *pdev)
1607 {
1608         struct emif_data        *emif = platform_get_drvdata(pdev);
1609
1610         disable_and_clear_all_interrupts(emif);
1611 }
1612
1613 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1614                 struct emif_regs *regs)
1615 {
1616         u32                             ip_rev, phy_type;
1617         u32                             cl, type;
1618         const struct lpddr2_timings     *timings;
1619         const struct lpddr2_min_tck     *min_tck;
1620         const struct ddr_device_info    *device_info;
1621         const struct lpddr2_addressing  *addressing;
1622         struct emif_data                *emif_for_calc;
1623         struct device                   *dev;
1624
1625         dev = emif->dev;
1626         /*
1627          * If the devices on this EMIF instance is duplicate of EMIF1,
1628          * use EMIF1 details for the calculation
1629          */
1630         emif_for_calc   = emif->duplicate ? emif1 : emif;
1631         timings         = get_timings_table(emif_for_calc, freq);
1632         addressing      = emif_for_calc->addressing;
1633         if (!timings || !addressing) {
1634                 dev_err(dev, "%s: not enough data available for %dHz",
1635                         __func__, freq);
1636                 return -1;
1637         }
1638
1639         device_info     = emif_for_calc->plat_data->device_info;
1640         type            = device_info->type;
1641         ip_rev          = emif_for_calc->plat_data->ip_rev;
1642         phy_type        = emif_for_calc->plat_data->phy_type;
1643
1644         min_tck         = emif_for_calc->plat_data->min_tck;
1645
1646         set_ddr_clk_period(freq);
1647
1648         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1649         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1650                         addressing);
1651         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1652                         addressing, type);
1653         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1654                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1655
1656         cl = get_cl(emif);
1657
1658         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1659                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1660                         timings, freq, cl);
1661         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1662                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1663                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1664                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1665                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1666         } else {
1667                 return -1;
1668         }
1669
1670         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1671         regs->pwr_mgmt_ctrl_shdw =
1672                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1673                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1674
1675         if (ip_rev & EMIF_4D) {
1676                 regs->read_idle_ctrl_shdw_normal =
1677                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1678
1679                 regs->read_idle_ctrl_shdw_volt_ramp =
1680                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1681         } else if (ip_rev & EMIF_4D5) {
1682                 regs->dll_calib_ctrl_shdw_normal =
1683                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1684
1685                 regs->dll_calib_ctrl_shdw_volt_ramp =
1686                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1687         }
1688
1689         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1690                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1691                         addressing);
1692
1693                 regs->sdram_tim1_shdw_derated =
1694                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1695                                 addressing);
1696
1697                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1698                         min_tck, addressing, type, ip_rev,
1699                         EMIF_DERATED_TIMINGS);
1700         }
1701
1702         regs->freq = freq;
1703
1704         return 0;
1705 }
1706
1707 /*
1708  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1709  * given frequency(freq):
1710  *
1711  * As an optimisation, every EMIF instance other than EMIF1 shares the
1712  * register cache with EMIF1 if the devices connected on this instance
1713  * are same as that on EMIF1(indicated by the duplicate flag)
1714  *
1715  * If we do not have an entry corresponding to the frequency given, we
1716  * allocate a new entry and calculate the values
1717  *
1718  * Upon finding the right reg dump, save it in curr_regs. It can be
1719  * directly used for thermal de-rating and voltage ramping changes.
1720  */
1721 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1722 {
1723         int                     i;
1724         struct emif_regs        **regs_cache;
1725         struct emif_regs        *regs = NULL;
1726         struct device           *dev;
1727
1728         dev = emif->dev;
1729         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1730                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1731                 return emif->curr_regs;
1732         }
1733
1734         if (emif->duplicate)
1735                 regs_cache = emif1->regs_cache;
1736         else
1737                 regs_cache = emif->regs_cache;
1738
1739         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1740                 if (regs_cache[i]->freq == freq) {
1741                         regs = regs_cache[i];
1742                         dev_dbg(dev,
1743                                 "%s: reg dump found in reg cache for %u Hz\n",
1744                                 __func__, freq);
1745                         break;
1746                 }
1747         }
1748
1749         /*
1750          * If we don't have an entry for this frequency in the cache create one
1751          * and calculate the values
1752          */
1753         if (!regs) {
1754                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1755                 if (!regs)
1756                         return NULL;
1757
1758                 if (get_emif_reg_values(emif, freq, regs)) {
1759                         devm_kfree(emif->dev, regs);
1760                         return NULL;
1761                 }
1762
1763                 /*
1764                  * Now look for an un-used entry in the cache and save the
1765                  * newly created struct. If there are no free entries
1766                  * over-write the last entry
1767                  */
1768                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1769                         ;
1770
1771                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1772                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1773                                 __func__);
1774                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1775                         devm_kfree(emif->dev, regs_cache[i]);
1776                 }
1777                 regs_cache[i] = regs;
1778         }
1779
1780         return regs;
1781 }
1782
1783 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1784 {
1785         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1786                 volt_state);
1787
1788         if (!emif->curr_regs) {
1789                 dev_err(emif->dev,
1790                         "%s: volt-notify before registers are ready: %d\n",
1791                         __func__, volt_state);
1792                 return;
1793         }
1794
1795         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1796 }
1797
1798 /*
1799  * TODO: voltage notify handling should be hooked up to
1800  * regulator framework as soon as the necessary support
1801  * is available in mainline kernel. This function is un-used
1802  * right now.
1803  */
1804 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1805 {
1806         struct emif_data *emif;
1807
1808         spin_lock_irqsave(&emif_lock, irq_state);
1809
1810         list_for_each_entry(emif, &device_list, node)
1811                 do_volt_notify_handling(emif, volt_state);
1812         do_freq_update();
1813
1814         spin_unlock_irqrestore(&emif_lock, irq_state);
1815 }
1816
1817 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1818 {
1819         struct emif_regs *regs;
1820
1821         regs = get_regs(emif, new_freq);
1822         if (!regs)
1823                 return;
1824
1825         emif->curr_regs = regs;
1826
1827         /*
1828          * Update the shadow registers:
1829          * Temperature and voltage-ramp sensitive settings are also configured
1830          * in terms of DDR cycles. So, we need to update them too when there
1831          * is a freq change
1832          */
1833         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1834                 __func__, new_freq);
1835         setup_registers(emif, regs);
1836         setup_temperature_sensitive_regs(emif, regs);
1837         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1838
1839         /*
1840          * Part of workaround for errata i728. See do_freq_update()
1841          * for more details
1842          */
1843         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1844                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1845 }
1846
1847 /*
1848  * TODO: frequency notify handling should be hooked up to
1849  * clock framework as soon as the necessary support is
1850  * available in mainline kernel. This function is un-used
1851  * right now.
1852  */
1853 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1854 {
1855         struct emif_data *emif;
1856
1857         /*
1858          * NOTE: we are taking the spin-lock here and releases it
1859          * only in post-notifier. This doesn't look good and
1860          * Sparse complains about it, but this seems to be
1861          * un-avoidable. We need to lock a sequence of events
1862          * that is split between EMIF and clock framework.
1863          *
1864          * 1. EMIF driver updates EMIF timings in shadow registers in the
1865          *    frequency pre-notify callback from clock framework
1866          * 2. clock framework sets up the registers for the new frequency
1867          * 3. clock framework initiates a hw-sequence that updates
1868          *    the frequency EMIF timings synchronously.
1869          *
1870          * All these 3 steps should be performed as an atomic operation
1871          * vis-a-vis similar sequence in the EMIF interrupt handler
1872          * for temperature events. Otherwise, there could be race
1873          * conditions that could result in incorrect EMIF timings for
1874          * a given frequency
1875          */
1876         spin_lock_irqsave(&emif_lock, irq_state);
1877
1878         list_for_each_entry(emif, &device_list, node)
1879                 do_freq_pre_notify_handling(emif, new_freq);
1880 }
1881
1882 static void do_freq_post_notify_handling(struct emif_data *emif)
1883 {
1884         /*
1885          * Part of workaround for errata i728. See do_freq_update()
1886          * for more details
1887          */
1888         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1889                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1890 }
1891
1892 /*
1893  * TODO: frequency notify handling should be hooked up to
1894  * clock framework as soon as the necessary support is
1895  * available in mainline kernel. This function is un-used
1896  * right now.
1897  */
1898 static void __attribute__((unused)) freq_post_notify_handling(void)
1899 {
1900         struct emif_data *emif;
1901
1902         list_for_each_entry(emif, &device_list, node)
1903                 do_freq_post_notify_handling(emif);
1904
1905         /*
1906          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1907          * for more details
1908          */
1909         spin_unlock_irqrestore(&emif_lock, irq_state);
1910 }
1911
1912 #if defined(CONFIG_OF)
1913 static const struct of_device_id emif_of_match[] = {
1914                 { .compatible = "ti,emif-4d" },
1915                 { .compatible = "ti,emif-4d5" },
1916                 {},
1917 };
1918 MODULE_DEVICE_TABLE(of, emif_of_match);
1919 #endif
1920
1921 static struct platform_driver emif_driver = {
1922         .remove         = __exit_p(emif_remove),
1923         .shutdown       = emif_shutdown,
1924         .driver = {
1925                 .name = "emif",
1926                 .of_match_table = of_match_ptr(emif_of_match),
1927         },
1928 };
1929
1930 module_platform_driver_probe(emif_driver, emif_probe);
1931
1932 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1933 MODULE_LICENSE("GPL");
1934 MODULE_ALIAS("platform:emif");
1935 MODULE_AUTHOR("Texas Instruments Inc");