Merge tag 'drm-fixes-2021-05-14' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25         V4L2_DV_BT_CEA_640X480P59_94,
26         V4L2_DV_BT_CEA_720X480I59_94,
27         V4L2_DV_BT_CEA_720X480P59_94,
28         V4L2_DV_BT_CEA_720X576I50,
29         V4L2_DV_BT_CEA_720X576P50,
30         V4L2_DV_BT_CEA_1280X720P24,
31         V4L2_DV_BT_CEA_1280X720P25,
32         V4L2_DV_BT_CEA_1280X720P30,
33         V4L2_DV_BT_CEA_1280X720P50,
34         V4L2_DV_BT_CEA_1280X720P60,
35         V4L2_DV_BT_CEA_1920X1080P24,
36         V4L2_DV_BT_CEA_1920X1080P25,
37         V4L2_DV_BT_CEA_1920X1080P30,
38         V4L2_DV_BT_CEA_1920X1080I50,
39         V4L2_DV_BT_CEA_1920X1080P50,
40         V4L2_DV_BT_CEA_1920X1080I60,
41         V4L2_DV_BT_CEA_1920X1080P60,
42         V4L2_DV_BT_DMT_640X350P85,
43         V4L2_DV_BT_DMT_640X400P85,
44         V4L2_DV_BT_DMT_720X400P85,
45         V4L2_DV_BT_DMT_640X480P72,
46         V4L2_DV_BT_DMT_640X480P75,
47         V4L2_DV_BT_DMT_640X480P85,
48         V4L2_DV_BT_DMT_800X600P56,
49         V4L2_DV_BT_DMT_800X600P60,
50         V4L2_DV_BT_DMT_800X600P72,
51         V4L2_DV_BT_DMT_800X600P75,
52         V4L2_DV_BT_DMT_800X600P85,
53         V4L2_DV_BT_DMT_800X600P120_RB,
54         V4L2_DV_BT_DMT_848X480P60,
55         V4L2_DV_BT_DMT_1024X768I43,
56         V4L2_DV_BT_DMT_1024X768P60,
57         V4L2_DV_BT_DMT_1024X768P70,
58         V4L2_DV_BT_DMT_1024X768P75,
59         V4L2_DV_BT_DMT_1024X768P85,
60         V4L2_DV_BT_DMT_1024X768P120_RB,
61         V4L2_DV_BT_DMT_1152X864P75,
62         V4L2_DV_BT_DMT_1280X768P60_RB,
63         V4L2_DV_BT_DMT_1280X768P60,
64         V4L2_DV_BT_DMT_1280X768P75,
65         V4L2_DV_BT_DMT_1280X768P85,
66         V4L2_DV_BT_DMT_1280X768P120_RB,
67         V4L2_DV_BT_DMT_1280X800P60_RB,
68         V4L2_DV_BT_DMT_1280X800P60,
69         V4L2_DV_BT_DMT_1280X800P75,
70         V4L2_DV_BT_DMT_1280X800P85,
71         V4L2_DV_BT_DMT_1280X800P120_RB,
72         V4L2_DV_BT_DMT_1280X960P60,
73         V4L2_DV_BT_DMT_1280X960P85,
74         V4L2_DV_BT_DMT_1280X960P120_RB,
75         V4L2_DV_BT_DMT_1280X1024P60,
76         V4L2_DV_BT_DMT_1280X1024P75,
77         V4L2_DV_BT_DMT_1280X1024P85,
78         V4L2_DV_BT_DMT_1280X1024P120_RB,
79         V4L2_DV_BT_DMT_1360X768P60,
80         V4L2_DV_BT_DMT_1360X768P120_RB,
81         V4L2_DV_BT_DMT_1366X768P60,
82         V4L2_DV_BT_DMT_1366X768P60_RB,
83         V4L2_DV_BT_DMT_1400X1050P60_RB,
84         V4L2_DV_BT_DMT_1400X1050P60,
85         V4L2_DV_BT_DMT_1400X1050P75,
86         V4L2_DV_BT_DMT_1400X1050P85,
87         V4L2_DV_BT_DMT_1400X1050P120_RB,
88         V4L2_DV_BT_DMT_1440X900P60_RB,
89         V4L2_DV_BT_DMT_1440X900P60,
90         V4L2_DV_BT_DMT_1440X900P75,
91         V4L2_DV_BT_DMT_1440X900P85,
92         V4L2_DV_BT_DMT_1440X900P120_RB,
93         V4L2_DV_BT_DMT_1600X900P60_RB,
94         V4L2_DV_BT_DMT_1600X1200P60,
95         V4L2_DV_BT_DMT_1600X1200P65,
96         V4L2_DV_BT_DMT_1600X1200P70,
97         V4L2_DV_BT_DMT_1600X1200P75,
98         V4L2_DV_BT_DMT_1600X1200P85,
99         V4L2_DV_BT_DMT_1600X1200P120_RB,
100         V4L2_DV_BT_DMT_1680X1050P60_RB,
101         V4L2_DV_BT_DMT_1680X1050P60,
102         V4L2_DV_BT_DMT_1680X1050P75,
103         V4L2_DV_BT_DMT_1680X1050P85,
104         V4L2_DV_BT_DMT_1680X1050P120_RB,
105         V4L2_DV_BT_DMT_1792X1344P60,
106         V4L2_DV_BT_DMT_1792X1344P75,
107         V4L2_DV_BT_DMT_1792X1344P120_RB,
108         V4L2_DV_BT_DMT_1856X1392P60,
109         V4L2_DV_BT_DMT_1856X1392P75,
110         V4L2_DV_BT_DMT_1856X1392P120_RB,
111         V4L2_DV_BT_DMT_1920X1200P60_RB,
112         V4L2_DV_BT_DMT_1920X1200P60,
113         V4L2_DV_BT_DMT_1920X1200P75,
114         V4L2_DV_BT_DMT_1920X1200P85,
115         V4L2_DV_BT_DMT_1920X1200P120_RB,
116         V4L2_DV_BT_DMT_1920X1440P60,
117         V4L2_DV_BT_DMT_1920X1440P75,
118         V4L2_DV_BT_DMT_1920X1440P120_RB,
119         V4L2_DV_BT_DMT_2048X1152P60_RB,
120         V4L2_DV_BT_DMT_2560X1600P60_RB,
121         V4L2_DV_BT_DMT_2560X1600P60,
122         V4L2_DV_BT_DMT_2560X1600P75,
123         V4L2_DV_BT_DMT_2560X1600P85,
124         V4L2_DV_BT_DMT_2560X1600P120_RB,
125         V4L2_DV_BT_CEA_3840X2160P24,
126         V4L2_DV_BT_CEA_3840X2160P25,
127         V4L2_DV_BT_CEA_3840X2160P30,
128         V4L2_DV_BT_CEA_3840X2160P50,
129         V4L2_DV_BT_CEA_3840X2160P60,
130         V4L2_DV_BT_CEA_4096X2160P24,
131         V4L2_DV_BT_CEA_4096X2160P25,
132         V4L2_DV_BT_CEA_4096X2160P30,
133         V4L2_DV_BT_CEA_4096X2160P50,
134         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135         V4L2_DV_BT_CEA_4096X2160P60,
136         { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141                            const struct v4l2_dv_timings_cap *dvcap,
142                            v4l2_check_dv_timings_fnc fnc,
143                            void *fnc_handle)
144 {
145         const struct v4l2_bt_timings *bt = &t->bt;
146         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147         u32 caps = cap->capabilities;
148
149         if (t->type != V4L2_DV_BT_656_1120)
150                 return false;
151         if (t->type != dvcap->type ||
152             bt->height < cap->min_height ||
153             bt->height > cap->max_height ||
154             bt->width < cap->min_width ||
155             bt->width > cap->max_width ||
156             bt->pixelclock < cap->min_pixelclock ||
157             bt->pixelclock > cap->max_pixelclock ||
158             (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
159              cap->standards && bt->standards &&
160              !(bt->standards & cap->standards)) ||
161             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
162             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
163                 return false;
164         return fnc == NULL || fnc(t, fnc_handle);
165 }
166 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
167
168 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
169                              const struct v4l2_dv_timings_cap *cap,
170                              v4l2_check_dv_timings_fnc fnc,
171                              void *fnc_handle)
172 {
173         u32 i, idx;
174
175         memset(t->reserved, 0, sizeof(t->reserved));
176         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
177                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
178                                           fnc, fnc_handle) &&
179                     idx++ == t->index) {
180                         t->timings = v4l2_dv_timings_presets[i];
181                         return 0;
182                 }
183         }
184         return -EINVAL;
185 }
186 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
187
188 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
189                               const struct v4l2_dv_timings_cap *cap,
190                               unsigned pclock_delta,
191                               v4l2_check_dv_timings_fnc fnc,
192                               void *fnc_handle)
193 {
194         int i;
195
196         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
197                 return false;
198
199         for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
200                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
201                                           fnc, fnc_handle) &&
202                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
203                                           pclock_delta, false)) {
204                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
205
206                         *t = v4l2_dv_timings_presets[i];
207                         if (can_reduce_fps(&t->bt))
208                                 t->bt.flags |= flags;
209
210                         return true;
211                 }
212         }
213         return false;
214 }
215 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
216
217 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
218 {
219         unsigned int i;
220
221         for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
222                 const struct v4l2_bt_timings *bt =
223                         &v4l2_dv_timings_presets[i].bt;
224
225                 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
226                     bt->cea861_vic == vic) {
227                         *t = v4l2_dv_timings_presets[i];
228                         return true;
229                 }
230         }
231         return false;
232 }
233 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
234
235 /**
236  * v4l2_match_dv_timings - check if two timings match
237  * @t1: compare this v4l2_dv_timings struct...
238  * @t2: with this struct.
239  * @pclock_delta: the allowed pixelclock deviation.
240  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
241  *      match.
242  *
243  * Compare t1 with t2 with a given margin of error for the pixelclock.
244  */
245 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
246                            const struct v4l2_dv_timings *t2,
247                            unsigned pclock_delta, bool match_reduced_fps)
248 {
249         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
250                 return false;
251         if (t1->bt.width == t2->bt.width &&
252             t1->bt.height == t2->bt.height &&
253             t1->bt.interlaced == t2->bt.interlaced &&
254             t1->bt.polarities == t2->bt.polarities &&
255             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
256             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
257             t1->bt.hfrontporch == t2->bt.hfrontporch &&
258             t1->bt.hsync == t2->bt.hsync &&
259             t1->bt.hbackporch == t2->bt.hbackporch &&
260             t1->bt.vfrontporch == t2->bt.vfrontporch &&
261             t1->bt.vsync == t2->bt.vsync &&
262             t1->bt.vbackporch == t2->bt.vbackporch &&
263             (!match_reduced_fps ||
264              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
265                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
266             (!t1->bt.interlaced ||
267                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
268                  t1->bt.il_vsync == t2->bt.il_vsync &&
269                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
270                 return true;
271         return false;
272 }
273 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
274
275 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
276                            const struct v4l2_dv_timings *t, bool detailed)
277 {
278         const struct v4l2_bt_timings *bt = &t->bt;
279         u32 htot, vtot;
280         u32 fps;
281
282         if (t->type != V4L2_DV_BT_656_1120)
283                 return;
284
285         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
286         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
287         if (bt->interlaced)
288                 vtot /= 2;
289
290         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
291                                   (htot * vtot)) : 0;
292
293         if (prefix == NULL)
294                 prefix = "";
295
296         pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
297                 bt->width, bt->height, bt->interlaced ? "i" : "p",
298                 fps / 100, fps % 100, htot, vtot);
299
300         if (!detailed)
301                 return;
302
303         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
304                         dev_prefix, bt->hfrontporch,
305                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
306                         bt->hsync, bt->hbackporch);
307         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
308                         dev_prefix, bt->vfrontporch,
309                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
310                         bt->vsync, bt->vbackporch);
311         if (bt->interlaced)
312                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
313                         dev_prefix, bt->il_vfrontporch,
314                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
315                         bt->il_vsync, bt->il_vbackporch);
316         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
317         pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
318                         dev_prefix, bt->flags,
319                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
320                         " REDUCED_BLANKING" : "",
321                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
322                          bt->vsync == 8) ? " (V2)" : "",
323                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
324                         " CAN_REDUCE_FPS" : "",
325                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
326                         " REDUCED_FPS" : "",
327                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
328                         " HALF_LINE" : "",
329                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
330                         " CE_VIDEO" : "",
331                         (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
332                         " FIRST_FIELD_EXTRA_LINE" : "",
333                         (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
334                         " HAS_PICTURE_ASPECT" : "",
335                         (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
336                         " HAS_CEA861_VIC" : "",
337                         (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
338                         " HAS_HDMI_VIC" : "");
339         pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
340                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
341                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
342                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
343                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
344                         (bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
345         if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
346                 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
347                         bt->picture_aspect.numerator,
348                         bt->picture_aspect.denominator);
349         if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
350                 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
351         if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
352                 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
353 }
354 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
355
356 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
357 {
358         struct v4l2_fract ratio = { 1, 1 };
359         unsigned long n, d;
360
361         if (t->type != V4L2_DV_BT_656_1120)
362                 return ratio;
363         if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
364                 return ratio;
365
366         ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
367         ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
368
369         rational_best_approximation(ratio.numerator, ratio.denominator,
370                                     ratio.numerator, ratio.denominator, &n, &d);
371         ratio.numerator = n;
372         ratio.denominator = d;
373         return ratio;
374 }
375 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
376
377 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
378  *      v4l2_dv_timings fields.
379  * @t - Timings for the video mode.
380  *
381  * Calculates the expected timeperframe using the pixel clock value and
382  * horizontal/vertical measures. This means that v4l2_dv_timings structure
383  * must be correctly and fully filled.
384  */
385 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
386 {
387         const struct v4l2_bt_timings *bt = &t->bt;
388         struct v4l2_fract fps_fract = { 1, 1 };
389         unsigned long n, d;
390         u32 htot, vtot, fps;
391         u64 pclk;
392
393         if (t->type != V4L2_DV_BT_656_1120)
394                 return fps_fract;
395
396         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
397         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
398         pclk = bt->pixelclock;
399
400         if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
401             (bt->flags & V4L2_DV_FL_REDUCED_FPS))
402                 pclk = div_u64(pclk * 1000ULL, 1001);
403
404         fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
405         if (!fps)
406                 return fps_fract;
407
408         rational_best_approximation(fps, 100, fps, 100, &n, &d);
409
410         fps_fract.numerator = d;
411         fps_fract.denominator = n;
412         return fps_fract;
413 }
414 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
415
416 /*
417  * CVT defines
418  * Based on Coordinated Video Timings Standard
419  * version 1.1 September 10, 2003
420  */
421
422 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
423 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
424
425 /* Normal blanking */
426 #define CVT_MIN_V_BPORCH        7       /* lines */
427 #define CVT_MIN_V_PORCH_RND     3       /* lines */
428 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
429 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
430
431 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
432 #define CVT_CELL_GRAN           8       /* character cell granularity */
433 #define CVT_M                   600     /* blanking formula gradient */
434 #define CVT_C                   40      /* blanking formula offset */
435 #define CVT_K                   128     /* blanking formula scaling factor */
436 #define CVT_J                   20      /* blanking formula scaling factor */
437 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
438 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
439
440 /* Reduced Blanking */
441 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
442 #define CVT_RB_V_FPORCH        3       /* lines  */
443 #define CVT_RB_MIN_V_BLANK   460       /* us     */
444 #define CVT_RB_H_SYNC         32       /* pixels */
445 #define CVT_RB_H_BLANK       160       /* pixels */
446 /* Reduce blanking Version 2 */
447 #define CVT_RB_V2_H_BLANK     80       /* pixels */
448 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
449 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
450 #define CVT_RB_V_BPORCH        6       /* lines  */
451
452 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
453  * @frame_height - the total height of the frame (including blanking) in lines.
454  * @hfreq - the horizontal frequency in Hz.
455  * @vsync - the height of the vertical sync in lines.
456  * @active_width - active width of image (does not include blanking). This
457  * information is needed only in case of version 2 of reduced blanking.
458  * In other cases, this parameter does not have any effect on timings.
459  * @polarities - the horizontal and vertical polarities (same as struct
460  *              v4l2_bt_timings polarities).
461  * @interlaced - if this flag is true, it indicates interlaced format
462  * @fmt - the resulting timings.
463  *
464  * This function will attempt to detect if the given values correspond to a
465  * valid CVT format. If so, then it will return true, and fmt will be filled
466  * in with the found CVT timings.
467  */
468 bool v4l2_detect_cvt(unsigned frame_height,
469                      unsigned hfreq,
470                      unsigned vsync,
471                      unsigned active_width,
472                      u32 polarities,
473                      bool interlaced,
474                      struct v4l2_dv_timings *fmt)
475 {
476         int  v_fp, v_bp, h_fp, h_bp, hsync;
477         int  frame_width, image_height, image_width;
478         bool reduced_blanking;
479         bool rb_v2 = false;
480         unsigned pix_clk;
481
482         if (vsync < 4 || vsync > 8)
483                 return false;
484
485         if (polarities == V4L2_DV_VSYNC_POS_POL)
486                 reduced_blanking = false;
487         else if (polarities == V4L2_DV_HSYNC_POS_POL)
488                 reduced_blanking = true;
489         else
490                 return false;
491
492         if (reduced_blanking && vsync == 8)
493                 rb_v2 = true;
494
495         if (rb_v2 && active_width == 0)
496                 return false;
497
498         if (!rb_v2 && vsync > 7)
499                 return false;
500
501         if (hfreq == 0)
502                 return false;
503
504         /* Vertical */
505         if (reduced_blanking) {
506                 if (rb_v2) {
507                         v_bp = CVT_RB_V_BPORCH;
508                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
509                         v_fp -= vsync + v_bp;
510
511                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
512                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
513                 } else {
514                         v_fp = CVT_RB_V_FPORCH;
515                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
516                         v_bp -= vsync + v_fp;
517
518                         if (v_bp < CVT_RB_MIN_V_BPORCH)
519                                 v_bp = CVT_RB_MIN_V_BPORCH;
520                 }
521         } else {
522                 v_fp = CVT_MIN_V_PORCH_RND;
523                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
524
525                 if (v_bp < CVT_MIN_V_BPORCH)
526                         v_bp = CVT_MIN_V_BPORCH;
527         }
528
529         if (interlaced)
530                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
531         else
532                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
533
534         if (image_height < 0)
535                 return false;
536
537         /* Aspect ratio based on vsync */
538         switch (vsync) {
539         case 4:
540                 image_width = (image_height * 4) / 3;
541                 break;
542         case 5:
543                 image_width = (image_height * 16) / 9;
544                 break;
545         case 6:
546                 image_width = (image_height * 16) / 10;
547                 break;
548         case 7:
549                 /* special case */
550                 if (image_height == 1024)
551                         image_width = (image_height * 5) / 4;
552                 else if (image_height == 768)
553                         image_width = (image_height * 15) / 9;
554                 else
555                         return false;
556                 break;
557         case 8:
558                 image_width = active_width;
559                 break;
560         default:
561                 return false;
562         }
563
564         if (!rb_v2)
565                 image_width = image_width & ~7;
566
567         /* Horizontal */
568         if (reduced_blanking) {
569                 int h_blank;
570                 int clk_gran;
571
572                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
573                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
574
575                 pix_clk = (image_width + h_blank) * hfreq;
576                 pix_clk = (pix_clk / clk_gran) * clk_gran;
577
578                 h_bp  = h_blank / 2;
579                 hsync = CVT_RB_H_SYNC;
580                 h_fp  = h_blank - h_bp - hsync;
581
582                 frame_width = image_width + h_blank;
583         } else {
584                 unsigned ideal_duty_cycle_per_myriad =
585                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
586                 int h_blank;
587
588                 if (ideal_duty_cycle_per_myriad < 2000)
589                         ideal_duty_cycle_per_myriad = 2000;
590
591                 h_blank = image_width * ideal_duty_cycle_per_myriad /
592                                         (10000 - ideal_duty_cycle_per_myriad);
593                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
594
595                 pix_clk = (image_width + h_blank) * hfreq;
596                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
597
598                 h_bp = h_blank / 2;
599                 frame_width = image_width + h_blank;
600
601                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
602                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
603                 h_fp = h_blank - hsync - h_bp;
604         }
605
606         fmt->type = V4L2_DV_BT_656_1120;
607         fmt->bt.polarities = polarities;
608         fmt->bt.width = image_width;
609         fmt->bt.height = image_height;
610         fmt->bt.hfrontporch = h_fp;
611         fmt->bt.vfrontporch = v_fp;
612         fmt->bt.hsync = hsync;
613         fmt->bt.vsync = vsync;
614         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
615
616         if (!interlaced) {
617                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
618                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
619         } else {
620                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
621                                       2 * vsync) / 2;
622                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
623                                         2 * vsync - fmt->bt.vbackporch;
624                 fmt->bt.il_vfrontporch = v_fp;
625                 fmt->bt.il_vsync = vsync;
626                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
627                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
628         }
629
630         fmt->bt.pixelclock = pix_clk;
631         fmt->bt.standards = V4L2_DV_BT_STD_CVT;
632
633         if (reduced_blanking)
634                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
635
636         return true;
637 }
638 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
639
640 /*
641  * GTF defines
642  * Based on Generalized Timing Formula Standard
643  * Version 1.1 September 2, 1999
644  */
645
646 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
647
648 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
649 #define GTF_V_FP                1       /* vertical front porch (lines) */
650 #define GTF_CELL_GRAN           8       /* character cell granularity */
651
652 /* Default */
653 #define GTF_D_M                 600     /* blanking formula gradient */
654 #define GTF_D_C                 40      /* blanking formula offset */
655 #define GTF_D_K                 128     /* blanking formula scaling factor */
656 #define GTF_D_J                 20      /* blanking formula scaling factor */
657 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
658 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
659
660 /* Secondary */
661 #define GTF_S_M                 3600    /* blanking formula gradient */
662 #define GTF_S_C                 40      /* blanking formula offset */
663 #define GTF_S_K                 128     /* blanking formula scaling factor */
664 #define GTF_S_J                 35      /* blanking formula scaling factor */
665 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
666 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
667
668 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
669  * @frame_height - the total height of the frame (including blanking) in lines.
670  * @hfreq - the horizontal frequency in Hz.
671  * @vsync - the height of the vertical sync in lines.
672  * @polarities - the horizontal and vertical polarities (same as struct
673  *              v4l2_bt_timings polarities).
674  * @interlaced - if this flag is true, it indicates interlaced format
675  * @aspect - preferred aspect ratio. GTF has no method of determining the
676  *              aspect ratio in order to derive the image width from the
677  *              image height, so it has to be passed explicitly. Usually
678  *              the native screen aspect ratio is used for this. If it
679  *              is not filled in correctly, then 16:9 will be assumed.
680  * @fmt - the resulting timings.
681  *
682  * This function will attempt to detect if the given values correspond to a
683  * valid GTF format. If so, then it will return true, and fmt will be filled
684  * in with the found GTF timings.
685  */
686 bool v4l2_detect_gtf(unsigned frame_height,
687                 unsigned hfreq,
688                 unsigned vsync,
689                 u32 polarities,
690                 bool interlaced,
691                 struct v4l2_fract aspect,
692                 struct v4l2_dv_timings *fmt)
693 {
694         int pix_clk;
695         int  v_fp, v_bp, h_fp, hsync;
696         int frame_width, image_height, image_width;
697         bool default_gtf;
698         int h_blank;
699
700         if (vsync != 3)
701                 return false;
702
703         if (polarities == V4L2_DV_VSYNC_POS_POL)
704                 default_gtf = true;
705         else if (polarities == V4L2_DV_HSYNC_POS_POL)
706                 default_gtf = false;
707         else
708                 return false;
709
710         if (hfreq == 0)
711                 return false;
712
713         /* Vertical */
714         v_fp = GTF_V_FP;
715         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
716         if (interlaced)
717                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
718         else
719                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
720
721         if (image_height < 0)
722                 return false;
723
724         if (aspect.numerator == 0 || aspect.denominator == 0) {
725                 aspect.numerator = 16;
726                 aspect.denominator = 9;
727         }
728         image_width = ((image_height * aspect.numerator) / aspect.denominator);
729         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
730
731         /* Horizontal */
732         if (default_gtf) {
733                 u64 num;
734                 u32 den;
735
736                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
737                       ((u64)image_width * GTF_D_M_PRIME * 1000));
738                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
739                       (2 * GTF_CELL_GRAN);
740                 h_blank = div_u64((num + (den >> 1)), den);
741                 h_blank *= (2 * GTF_CELL_GRAN);
742         } else {
743                 u64 num;
744                 u32 den;
745
746                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
747                       ((u64)image_width * GTF_S_M_PRIME * 1000));
748                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
749                       (2 * GTF_CELL_GRAN);
750                 h_blank = div_u64((num + (den >> 1)), den);
751                 h_blank *= (2 * GTF_CELL_GRAN);
752         }
753
754         frame_width = image_width + h_blank;
755
756         pix_clk = (image_width + h_blank) * hfreq;
757         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
758
759         hsync = (frame_width * 8 + 50) / 100;
760         hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
761
762         h_fp = h_blank / 2 - hsync;
763
764         fmt->type = V4L2_DV_BT_656_1120;
765         fmt->bt.polarities = polarities;
766         fmt->bt.width = image_width;
767         fmt->bt.height = image_height;
768         fmt->bt.hfrontporch = h_fp;
769         fmt->bt.vfrontporch = v_fp;
770         fmt->bt.hsync = hsync;
771         fmt->bt.vsync = vsync;
772         fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
773
774         if (!interlaced) {
775                 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
776                 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
777         } else {
778                 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
779                                       2 * vsync) / 2;
780                 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
781                                         2 * vsync - fmt->bt.vbackporch;
782                 fmt->bt.il_vfrontporch = v_fp;
783                 fmt->bt.il_vsync = vsync;
784                 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
785                 fmt->bt.interlaced = V4L2_DV_INTERLACED;
786         }
787
788         fmt->bt.pixelclock = pix_clk;
789         fmt->bt.standards = V4L2_DV_BT_STD_GTF;
790
791         if (!default_gtf)
792                 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
793
794         return true;
795 }
796 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
797
798 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
799  *      0x15 and 0x16 from the EDID.
800  * @hor_landscape - byte 0x15 from the EDID.
801  * @vert_portrait - byte 0x16 from the EDID.
802  *
803  * Determines the aspect ratio from the EDID.
804  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
805  * "Horizontal and Vertical Screen Size or Aspect Ratio"
806  */
807 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
808 {
809         struct v4l2_fract aspect = { 16, 9 };
810         u8 ratio;
811
812         /* Nothing filled in, fallback to 16:9 */
813         if (!hor_landscape && !vert_portrait)
814                 return aspect;
815         /* Both filled in, so they are interpreted as the screen size in cm */
816         if (hor_landscape && vert_portrait) {
817                 aspect.numerator = hor_landscape;
818                 aspect.denominator = vert_portrait;
819                 return aspect;
820         }
821         /* Only one is filled in, so interpret them as a ratio:
822            (val + 99) / 100 */
823         ratio = hor_landscape | vert_portrait;
824         /* Change some rounded values into the exact aspect ratio */
825         if (ratio == 79) {
826                 aspect.numerator = 16;
827                 aspect.denominator = 9;
828         } else if (ratio == 34) {
829                 aspect.numerator = 4;
830                 aspect.denominator = 3;
831         } else if (ratio == 68) {
832                 aspect.numerator = 15;
833                 aspect.denominator = 9;
834         } else {
835                 aspect.numerator = hor_landscape + 99;
836                 aspect.denominator = 100;
837         }
838         if (hor_landscape)
839                 return aspect;
840         /* The aspect ratio is for portrait, so swap numerator and denominator */
841         swap(aspect.denominator, aspect.numerator);
842         return aspect;
843 }
844 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
845
846 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
847  *      based on various InfoFrames.
848  * @avi: the AVI InfoFrame
849  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
850  * @height: the frame height
851  *
852  * Determines the HDMI colorimetry information, i.e. how the HDMI
853  * pixel color data should be interpreted.
854  *
855  * Note that some of the newer features (DCI-P3, HDR) are not yet
856  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
857  * and CTA-861-G standards.
858  */
859 struct v4l2_hdmi_colorimetry
860 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
861                          const struct hdmi_vendor_infoframe *hdmi,
862                          unsigned int height)
863 {
864         struct v4l2_hdmi_colorimetry c = {
865                 V4L2_COLORSPACE_SRGB,
866                 V4L2_YCBCR_ENC_DEFAULT,
867                 V4L2_QUANTIZATION_FULL_RANGE,
868                 V4L2_XFER_FUNC_SRGB
869         };
870         bool is_ce = avi->video_code || (hdmi && hdmi->vic);
871         bool is_sdtv = height <= 576;
872         bool default_is_lim_range_rgb = avi->video_code > 1;
873
874         switch (avi->colorspace) {
875         case HDMI_COLORSPACE_RGB:
876                 /* RGB pixel encoding */
877                 switch (avi->colorimetry) {
878                 case HDMI_COLORIMETRY_EXTENDED:
879                         switch (avi->extended_colorimetry) {
880                         case HDMI_EXTENDED_COLORIMETRY_OPRGB:
881                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
882                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
883                                 break;
884                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
885                                 c.colorspace = V4L2_COLORSPACE_BT2020;
886                                 c.xfer_func = V4L2_XFER_FUNC_709;
887                                 break;
888                         default:
889                                 break;
890                         }
891                         break;
892                 default:
893                         break;
894                 }
895                 switch (avi->quantization_range) {
896                 case HDMI_QUANTIZATION_RANGE_LIMITED:
897                         c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
898                         break;
899                 case HDMI_QUANTIZATION_RANGE_FULL:
900                         break;
901                 default:
902                         if (default_is_lim_range_rgb)
903                                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
904                         break;
905                 }
906                 break;
907
908         default:
909                 /* YCbCr pixel encoding */
910                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
911                 switch (avi->colorimetry) {
912                 case HDMI_COLORIMETRY_NONE:
913                         if (!is_ce)
914                                 break;
915                         if (is_sdtv) {
916                                 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
917                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
918                         } else {
919                                 c.colorspace = V4L2_COLORSPACE_REC709;
920                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
921                         }
922                         c.xfer_func = V4L2_XFER_FUNC_709;
923                         break;
924                 case HDMI_COLORIMETRY_ITU_601:
925                         c.colorspace = V4L2_COLORSPACE_SMPTE170M;
926                         c.ycbcr_enc = V4L2_YCBCR_ENC_601;
927                         c.xfer_func = V4L2_XFER_FUNC_709;
928                         break;
929                 case HDMI_COLORIMETRY_ITU_709:
930                         c.colorspace = V4L2_COLORSPACE_REC709;
931                         c.ycbcr_enc = V4L2_YCBCR_ENC_709;
932                         c.xfer_func = V4L2_XFER_FUNC_709;
933                         break;
934                 case HDMI_COLORIMETRY_EXTENDED:
935                         switch (avi->extended_colorimetry) {
936                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
937                                 c.colorspace = V4L2_COLORSPACE_REC709;
938                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
939                                 c.xfer_func = V4L2_XFER_FUNC_709;
940                                 break;
941                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
942                                 c.colorspace = V4L2_COLORSPACE_REC709;
943                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
944                                 c.xfer_func = V4L2_XFER_FUNC_709;
945                                 break;
946                         case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
947                                 c.colorspace = V4L2_COLORSPACE_SRGB;
948                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
949                                 c.xfer_func = V4L2_XFER_FUNC_SRGB;
950                                 break;
951                         case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
952                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
953                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
954                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
955                                 break;
956                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
957                                 c.colorspace = V4L2_COLORSPACE_BT2020;
958                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
959                                 c.xfer_func = V4L2_XFER_FUNC_709;
960                                 break;
961                         case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
962                                 c.colorspace = V4L2_COLORSPACE_BT2020;
963                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
964                                 c.xfer_func = V4L2_XFER_FUNC_709;
965                                 break;
966                         default: /* fall back to ITU_709 */
967                                 c.colorspace = V4L2_COLORSPACE_REC709;
968                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
969                                 c.xfer_func = V4L2_XFER_FUNC_709;
970                                 break;
971                         }
972                         break;
973                 default:
974                         break;
975                 }
976                 /*
977                  * YCC Quantization Range signaling is more-or-less broken,
978                  * let's just ignore this.
979                  */
980                 break;
981         }
982         return c;
983 }
984 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
985
986 /**
987  * v4l2_get_edid_phys_addr() - find and return the physical address
988  *
989  * @edid:       pointer to the EDID data
990  * @size:       size in bytes of the EDID data
991  * @offset:     If not %NULL then the location of the physical address
992  *              bytes in the EDID will be returned here. This is set to 0
993  *              if there is no physical address found.
994  *
995  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
996  */
997 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
998                             unsigned int *offset)
999 {
1000         unsigned int loc = cec_get_edid_spa_location(edid, size);
1001
1002         if (offset)
1003                 *offset = loc;
1004         if (loc == 0)
1005                 return CEC_PHYS_ADDR_INVALID;
1006         return (edid[loc] << 8) | edid[loc + 1];
1007 }
1008 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1009
1010 /**
1011  * v4l2_set_edid_phys_addr() - find and set the physical address
1012  *
1013  * @edid:       pointer to the EDID data
1014  * @size:       size in bytes of the EDID data
1015  * @phys_addr:  the new physical address
1016  *
1017  * This function finds the location of the physical address in the EDID
1018  * and fills in the given physical address and updates the checksum
1019  * at the end of the EDID block. It does nothing if the EDID doesn't
1020  * contain a physical address.
1021  */
1022 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1023 {
1024         unsigned int loc = cec_get_edid_spa_location(edid, size);
1025         u8 sum = 0;
1026         unsigned int i;
1027
1028         if (loc == 0)
1029                 return;
1030         edid[loc] = phys_addr >> 8;
1031         edid[loc + 1] = phys_addr & 0xff;
1032         loc &= ~0x7f;
1033
1034         /* update the checksum */
1035         for (i = loc; i < loc + 127; i++)
1036                 sum += edid[i];
1037         edid[i] = 256 - sum;
1038 }
1039 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1040
1041 /**
1042  * v4l2_phys_addr_for_input() - calculate the PA for an input
1043  *
1044  * @phys_addr:  the physical address of the parent
1045  * @input:      the number of the input port, must be between 1 and 15
1046  *
1047  * This function calculates a new physical address based on the input
1048  * port number. For example:
1049  *
1050  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1051  *
1052  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1053  *
1054  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1055  *
1056  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1057  *
1058  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1059  */
1060 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1061 {
1062         /* Check if input is sane */
1063         if (WARN_ON(input == 0 || input > 0xf))
1064                 return CEC_PHYS_ADDR_INVALID;
1065
1066         if (phys_addr == 0)
1067                 return input << 12;
1068
1069         if ((phys_addr & 0x0fff) == 0)
1070                 return phys_addr | (input << 8);
1071
1072         if ((phys_addr & 0x00ff) == 0)
1073                 return phys_addr | (input << 4);
1074
1075         if ((phys_addr & 0x000f) == 0)
1076                 return phys_addr | input;
1077
1078         /*
1079          * All nibbles are used so no valid physical addresses can be assigned
1080          * to the input.
1081          */
1082         return CEC_PHYS_ADDR_INVALID;
1083 }
1084 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1085
1086 /**
1087  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1088  *
1089  * @phys_addr:  the physical address to validate
1090  * @parent:     if not %NULL, then this is filled with the parents PA.
1091  * @port:       if not %NULL, then this is filled with the input port.
1092  *
1093  * This validates a physical address as read from an EDID. If the
1094  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1095  * then it will return -EINVAL.
1096  *
1097  * The parent PA is passed into %parent and the input port is passed into
1098  * %port. For example:
1099  *
1100  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1101  *
1102  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1103  *
1104  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1105  *
1106  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1107  *
1108  * Return: 0 if the PA is valid, -EINVAL if not.
1109  */
1110 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1111 {
1112         int i;
1113
1114         if (parent)
1115                 *parent = phys_addr;
1116         if (port)
1117                 *port = 0;
1118         if (phys_addr == CEC_PHYS_ADDR_INVALID)
1119                 return 0;
1120         for (i = 0; i < 16; i += 4)
1121                 if (phys_addr & (0xf << i))
1122                         break;
1123         if (i == 16)
1124                 return 0;
1125         if (parent)
1126                 *parent = phys_addr & (0xfff0 << i);
1127         if (port)
1128                 *port = (phys_addr >> i) & 0xf;
1129         for (i += 4; i < 16; i += 4)
1130                 if ((phys_addr & (0xf << i)) == 0)
1131                         return -EINVAL;
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);