media: v4l: vsp1: Rename BRU to BRx
[linux-2.6-microblaze.git] / drivers / media / platform / vsp1 / vsp1_video.c
1 /*
2  * vsp1_video.c  --  R-Car VSP1 Video Node
3  *
4  * Copyright (C) 2013-2015 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/v4l2-mediabus.h>
19 #include <linux/videodev2.h>
20 #include <linux/wait.h>
21
22 #include <media/media-entity.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-fh.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-subdev.h>
27 #include <media/videobuf2-v4l2.h>
28 #include <media/videobuf2-dma-contig.h>
29
30 #include "vsp1.h"
31 #include "vsp1_brx.h"
32 #include "vsp1_dl.h"
33 #include "vsp1_entity.h"
34 #include "vsp1_hgo.h"
35 #include "vsp1_hgt.h"
36 #include "vsp1_pipe.h"
37 #include "vsp1_rwpf.h"
38 #include "vsp1_uds.h"
39 #include "vsp1_video.h"
40
41 #define VSP1_VIDEO_DEF_FORMAT           V4L2_PIX_FMT_YUYV
42 #define VSP1_VIDEO_DEF_WIDTH            1024
43 #define VSP1_VIDEO_DEF_HEIGHT           768
44
45 #define VSP1_VIDEO_MIN_WIDTH            2U
46 #define VSP1_VIDEO_MAX_WIDTH            8190U
47 #define VSP1_VIDEO_MIN_HEIGHT           2U
48 #define VSP1_VIDEO_MAX_HEIGHT           8190U
49
50 /* -----------------------------------------------------------------------------
51  * Helper functions
52  */
53
54 static struct v4l2_subdev *
55 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
56 {
57         struct media_pad *remote;
58
59         remote = media_entity_remote_pad(local);
60         if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
61                 return NULL;
62
63         if (pad)
64                 *pad = remote->index;
65
66         return media_entity_to_v4l2_subdev(remote->entity);
67 }
68
69 static int vsp1_video_verify_format(struct vsp1_video *video)
70 {
71         struct v4l2_subdev_format fmt;
72         struct v4l2_subdev *subdev;
73         int ret;
74
75         subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
76         if (subdev == NULL)
77                 return -EINVAL;
78
79         fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
80         ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
81         if (ret < 0)
82                 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
83
84         if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
85             video->rwpf->format.height != fmt.format.height ||
86             video->rwpf->format.width != fmt.format.width)
87                 return -EINVAL;
88
89         return 0;
90 }
91
92 static int __vsp1_video_try_format(struct vsp1_video *video,
93                                    struct v4l2_pix_format_mplane *pix,
94                                    const struct vsp1_format_info **fmtinfo)
95 {
96         static const u32 xrgb_formats[][2] = {
97                 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
98                 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
99                 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
100                 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
101         };
102
103         const struct vsp1_format_info *info;
104         unsigned int width = pix->width;
105         unsigned int height = pix->height;
106         unsigned int i;
107
108         /*
109          * Backward compatibility: replace deprecated RGB formats by their XRGB
110          * equivalent. This selects the format older userspace applications want
111          * while still exposing the new format.
112          */
113         for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
114                 if (xrgb_formats[i][0] == pix->pixelformat) {
115                         pix->pixelformat = xrgb_formats[i][1];
116                         break;
117                 }
118         }
119
120         /*
121          * Retrieve format information and select the default format if the
122          * requested format isn't supported.
123          */
124         info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
125         if (info == NULL)
126                 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
127
128         pix->pixelformat = info->fourcc;
129         pix->colorspace = V4L2_COLORSPACE_SRGB;
130         pix->field = V4L2_FIELD_NONE;
131
132         if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
133             info->fourcc == V4L2_PIX_FMT_HSV32)
134                 pix->hsv_enc = V4L2_HSV_ENC_256;
135
136         memset(pix->reserved, 0, sizeof(pix->reserved));
137
138         /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
139         width = round_down(width, info->hsub);
140         height = round_down(height, info->vsub);
141
142         /* Clamp the width and height. */
143         pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH);
144         pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT,
145                             VSP1_VIDEO_MAX_HEIGHT);
146
147         /*
148          * Compute and clamp the stride and image size. While not documented in
149          * the datasheet, strides not aligned to a multiple of 128 bytes result
150          * in image corruption.
151          */
152         for (i = 0; i < min(info->planes, 2U); ++i) {
153                 unsigned int hsub = i > 0 ? info->hsub : 1;
154                 unsigned int vsub = i > 0 ? info->vsub : 1;
155                 unsigned int align = 128;
156                 unsigned int bpl;
157
158                 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
159                               pix->width / hsub * info->bpp[i] / 8,
160                               round_down(65535U, align));
161
162                 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
163                 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
164                                             * pix->height / vsub;
165         }
166
167         if (info->planes == 3) {
168                 /* The second and third planes must have the same stride. */
169                 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
170                 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
171         }
172
173         pix->num_planes = info->planes;
174
175         if (fmtinfo)
176                 *fmtinfo = info;
177
178         return 0;
179 }
180
181 /* -----------------------------------------------------------------------------
182  * VSP1 Partition Algorithm support
183  */
184
185 /**
186  * vsp1_video_calculate_partition - Calculate the active partition output window
187  *
188  * @pipe: the pipeline
189  * @partition: partition that will hold the calculated values
190  * @div_size: pre-determined maximum partition division size
191  * @index: partition index
192  */
193 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
194                                            struct vsp1_partition *partition,
195                                            unsigned int div_size,
196                                            unsigned int index)
197 {
198         const struct v4l2_mbus_framefmt *format;
199         struct vsp1_partition_window window;
200         unsigned int modulus;
201
202         /*
203          * Partitions are computed on the size before rotation, use the format
204          * at the WPF sink.
205          */
206         format = vsp1_entity_get_pad_format(&pipe->output->entity,
207                                             pipe->output->entity.config,
208                                             RWPF_PAD_SINK);
209
210         /* A single partition simply processes the output size in full. */
211         if (pipe->partitions <= 1) {
212                 window.left = 0;
213                 window.width = format->width;
214
215                 vsp1_pipeline_propagate_partition(pipe, partition, index,
216                                                   &window);
217                 return;
218         }
219
220         /* Initialise the partition with sane starting conditions. */
221         window.left = index * div_size;
222         window.width = div_size;
223
224         modulus = format->width % div_size;
225
226         /*
227          * We need to prevent the last partition from being smaller than the
228          * *minimum* width of the hardware capabilities.
229          *
230          * If the modulus is less than half of the partition size,
231          * the penultimate partition is reduced to half, which is added
232          * to the final partition: |1234|1234|1234|12|341|
233          * to prevents this:       |1234|1234|1234|1234|1|.
234          */
235         if (modulus) {
236                 /*
237                  * pipe->partitions is 1 based, whilst index is a 0 based index.
238                  * Normalise this locally.
239                  */
240                 unsigned int partitions = pipe->partitions - 1;
241
242                 if (modulus < div_size / 2) {
243                         if (index == partitions - 1) {
244                                 /* Halve the penultimate partition. */
245                                 window.width = div_size / 2;
246                         } else if (index == partitions) {
247                                 /* Increase the final partition. */
248                                 window.width = (div_size / 2) + modulus;
249                                 window.left -= div_size / 2;
250                         }
251                 } else if (index == partitions) {
252                         window.width = modulus;
253                 }
254         }
255
256         vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
257 }
258
259 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
260 {
261         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
262         const struct v4l2_mbus_framefmt *format;
263         struct vsp1_entity *entity;
264         unsigned int div_size;
265         unsigned int i;
266
267         /*
268          * Partitions are computed on the size before rotation, use the format
269          * at the WPF sink.
270          */
271         format = vsp1_entity_get_pad_format(&pipe->output->entity,
272                                             pipe->output->entity.config,
273                                             RWPF_PAD_SINK);
274         div_size = format->width;
275
276         /*
277          * Only Gen3 hardware requires image partitioning, Gen2 will operate
278          * with a single partition that covers the whole output.
279          */
280         if (vsp1->info->gen == 3) {
281                 list_for_each_entry(entity, &pipe->entities, list_pipe) {
282                         unsigned int entity_max;
283
284                         if (!entity->ops->max_width)
285                                 continue;
286
287                         entity_max = entity->ops->max_width(entity, pipe);
288                         if (entity_max)
289                                 div_size = min(div_size, entity_max);
290                 }
291         }
292
293         pipe->partitions = DIV_ROUND_UP(format->width, div_size);
294         pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
295                                    GFP_KERNEL);
296         if (!pipe->part_table)
297                 return -ENOMEM;
298
299         for (i = 0; i < pipe->partitions; ++i)
300                 vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
301                                                div_size, i);
302
303         return 0;
304 }
305
306 /* -----------------------------------------------------------------------------
307  * Pipeline Management
308  */
309
310 /*
311  * vsp1_video_complete_buffer - Complete the current buffer
312  * @video: the video node
313  *
314  * This function completes the current buffer by filling its sequence number,
315  * time stamp and payload size, and hands it back to the videobuf core.
316  *
317  * When operating in DU output mode (deep pipeline to the DU through the LIF),
318  * the VSP1 needs to constantly supply frames to the display. In that case, if
319  * no other buffer is queued, reuse the one that has just been processed instead
320  * of handing it back to the videobuf core.
321  *
322  * Return the next queued buffer or NULL if the queue is empty.
323  */
324 static struct vsp1_vb2_buffer *
325 vsp1_video_complete_buffer(struct vsp1_video *video)
326 {
327         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
328         struct vsp1_vb2_buffer *next = NULL;
329         struct vsp1_vb2_buffer *done;
330         unsigned long flags;
331         unsigned int i;
332
333         spin_lock_irqsave(&video->irqlock, flags);
334
335         if (list_empty(&video->irqqueue)) {
336                 spin_unlock_irqrestore(&video->irqlock, flags);
337                 return NULL;
338         }
339
340         done = list_first_entry(&video->irqqueue,
341                                 struct vsp1_vb2_buffer, queue);
342
343         /* In DU output mode reuse the buffer if the list is singular. */
344         if (pipe->lif && list_is_singular(&video->irqqueue)) {
345                 spin_unlock_irqrestore(&video->irqlock, flags);
346                 return done;
347         }
348
349         list_del(&done->queue);
350
351         if (!list_empty(&video->irqqueue))
352                 next = list_first_entry(&video->irqqueue,
353                                         struct vsp1_vb2_buffer, queue);
354
355         spin_unlock_irqrestore(&video->irqlock, flags);
356
357         done->buf.sequence = pipe->sequence;
358         done->buf.vb2_buf.timestamp = ktime_get_ns();
359         for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
360                 vb2_set_plane_payload(&done->buf.vb2_buf, i,
361                                       vb2_plane_size(&done->buf.vb2_buf, i));
362         vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
363
364         return next;
365 }
366
367 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
368                                  struct vsp1_rwpf *rwpf)
369 {
370         struct vsp1_video *video = rwpf->video;
371         struct vsp1_vb2_buffer *buf;
372
373         buf = vsp1_video_complete_buffer(video);
374         if (buf == NULL)
375                 return;
376
377         video->rwpf->mem = buf->mem;
378         pipe->buffers_ready |= 1 << video->pipe_index;
379 }
380
381 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
382                                               struct vsp1_dl_list *dl,
383                                               unsigned int partition)
384 {
385         struct vsp1_entity *entity;
386
387         pipe->partition = &pipe->part_table[partition];
388
389         list_for_each_entry(entity, &pipe->entities, list_pipe) {
390                 if (entity->ops->configure)
391                         entity->ops->configure(entity, pipe, dl,
392                                                VSP1_ENTITY_PARAMS_PARTITION);
393         }
394 }
395
396 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
397 {
398         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
399         struct vsp1_entity *entity;
400         unsigned int partition;
401
402         if (!pipe->dl)
403                 pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
404
405         /*
406          * Start with the runtime parameters as the configure operation can
407          * compute/cache information needed when configuring partitions. This
408          * is the case with flipping in the WPF.
409          */
410         list_for_each_entry(entity, &pipe->entities, list_pipe) {
411                 if (entity->ops->configure)
412                         entity->ops->configure(entity, pipe, pipe->dl,
413                                                VSP1_ENTITY_PARAMS_RUNTIME);
414         }
415
416         /* Run the first partition */
417         vsp1_video_pipeline_run_partition(pipe, pipe->dl, 0);
418
419         /* Process consecutive partitions as necessary */
420         for (partition = 1; partition < pipe->partitions; ++partition) {
421                 struct vsp1_dl_list *dl;
422
423                 dl = vsp1_dl_list_get(pipe->output->dlm);
424
425                 /*
426                  * An incomplete chain will still function, but output only
427                  * the partitions that had a dl available. The frame end
428                  * interrupt will be marked on the last dl in the chain.
429                  */
430                 if (!dl) {
431                         dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
432                         break;
433                 }
434
435                 vsp1_video_pipeline_run_partition(pipe, dl, partition);
436                 vsp1_dl_list_add_chain(pipe->dl, dl);
437         }
438
439         /* Complete, and commit the head display list. */
440         vsp1_dl_list_commit(pipe->dl, false);
441         pipe->dl = NULL;
442
443         vsp1_pipeline_run(pipe);
444 }
445
446 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
447                                           unsigned int completion)
448 {
449         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
450         enum vsp1_pipeline_state state;
451         unsigned long flags;
452         unsigned int i;
453
454         /* M2M Pipelines should never call here with an incomplete frame. */
455         WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
456
457         spin_lock_irqsave(&pipe->irqlock, flags);
458
459         /* Complete buffers on all video nodes. */
460         for (i = 0; i < vsp1->info->rpf_count; ++i) {
461                 if (!pipe->inputs[i])
462                         continue;
463
464                 vsp1_video_frame_end(pipe, pipe->inputs[i]);
465         }
466
467         vsp1_video_frame_end(pipe, pipe->output);
468
469         state = pipe->state;
470         pipe->state = VSP1_PIPELINE_STOPPED;
471
472         /*
473          * If a stop has been requested, mark the pipeline as stopped and
474          * return. Otherwise restart the pipeline if ready.
475          */
476         if (state == VSP1_PIPELINE_STOPPING)
477                 wake_up(&pipe->wq);
478         else if (vsp1_pipeline_ready(pipe))
479                 vsp1_video_pipeline_run(pipe);
480
481         spin_unlock_irqrestore(&pipe->irqlock, flags);
482 }
483
484 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
485                                             struct vsp1_rwpf *input,
486                                             struct vsp1_rwpf *output)
487 {
488         struct media_entity_enum ent_enum;
489         struct vsp1_entity *entity;
490         struct media_pad *pad;
491         struct vsp1_brx *brx = NULL;
492         int ret;
493
494         ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
495         if (ret < 0)
496                 return ret;
497
498         /*
499          * The main data path doesn't include the HGO or HGT, use
500          * vsp1_entity_remote_pad() to traverse the graph.
501          */
502
503         pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
504
505         while (1) {
506                 if (pad == NULL) {
507                         ret = -EPIPE;
508                         goto out;
509                 }
510
511                 /* We've reached a video node, that shouldn't have happened. */
512                 if (!is_media_entity_v4l2_subdev(pad->entity)) {
513                         ret = -EPIPE;
514                         goto out;
515                 }
516
517                 entity = to_vsp1_entity(
518                         media_entity_to_v4l2_subdev(pad->entity));
519
520                 /*
521                  * A BRU or BRS is present in the pipeline, store its input pad
522                  * number in the input RPF for use when configuring the RPF.
523                  */
524                 if (entity->type == VSP1_ENTITY_BRU ||
525                     entity->type == VSP1_ENTITY_BRS) {
526                         /* BRU and BRS can't be chained. */
527                         if (brx) {
528                                 ret = -EPIPE;
529                                 goto out;
530                         }
531
532                         brx = to_brx(&entity->subdev);
533                         brx->inputs[pad->index].rpf = input;
534                         input->brx_input = pad->index;
535                 }
536
537                 /* We've reached the WPF, we're done. */
538                 if (entity->type == VSP1_ENTITY_WPF)
539                         break;
540
541                 /* Ensure the branch has no loop. */
542                 if (media_entity_enum_test_and_set(&ent_enum,
543                                                    &entity->subdev.entity)) {
544                         ret = -EPIPE;
545                         goto out;
546                 }
547
548                 /* UDS can't be chained. */
549                 if (entity->type == VSP1_ENTITY_UDS) {
550                         if (pipe->uds) {
551                                 ret = -EPIPE;
552                                 goto out;
553                         }
554
555                         pipe->uds = entity;
556                         pipe->uds_input = brx ? &brx->entity : &input->entity;
557                 }
558
559                 /* Follow the source link, ignoring any HGO or HGT. */
560                 pad = &entity->pads[entity->source_pad];
561                 pad = vsp1_entity_remote_pad(pad);
562         }
563
564         /* The last entity must be the output WPF. */
565         if (entity != &output->entity)
566                 ret = -EPIPE;
567
568 out:
569         media_entity_enum_cleanup(&ent_enum);
570
571         return ret;
572 }
573
574 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
575                                      struct vsp1_video *video)
576 {
577         struct media_graph graph;
578         struct media_entity *entity = &video->video.entity;
579         struct media_device *mdev = entity->graph_obj.mdev;
580         unsigned int i;
581         int ret;
582
583         /* Walk the graph to locate the entities and video nodes. */
584         ret = media_graph_walk_init(&graph, mdev);
585         if (ret)
586                 return ret;
587
588         media_graph_walk_start(&graph, entity);
589
590         while ((entity = media_graph_walk_next(&graph))) {
591                 struct v4l2_subdev *subdev;
592                 struct vsp1_rwpf *rwpf;
593                 struct vsp1_entity *e;
594
595                 if (!is_media_entity_v4l2_subdev(entity))
596                         continue;
597
598                 subdev = media_entity_to_v4l2_subdev(entity);
599                 e = to_vsp1_entity(subdev);
600                 list_add_tail(&e->list_pipe, &pipe->entities);
601                 e->pipe = pipe;
602
603                 switch (e->type) {
604                 case VSP1_ENTITY_RPF:
605                         rwpf = to_rwpf(subdev);
606                         pipe->inputs[rwpf->entity.index] = rwpf;
607                         rwpf->video->pipe_index = ++pipe->num_inputs;
608                         break;
609
610                 case VSP1_ENTITY_WPF:
611                         rwpf = to_rwpf(subdev);
612                         pipe->output = rwpf;
613                         rwpf->video->pipe_index = 0;
614                         break;
615
616                 case VSP1_ENTITY_LIF:
617                         pipe->lif = e;
618                         break;
619
620                 case VSP1_ENTITY_BRU:
621                 case VSP1_ENTITY_BRS:
622                         pipe->brx = e;
623                         break;
624
625                 case VSP1_ENTITY_HGO:
626                         pipe->hgo = e;
627                         break;
628
629                 case VSP1_ENTITY_HGT:
630                         pipe->hgt = e;
631                         break;
632
633                 default:
634                         break;
635                 }
636         }
637
638         media_graph_walk_cleanup(&graph);
639
640         /* We need one output and at least one input. */
641         if (pipe->num_inputs == 0 || !pipe->output)
642                 return -EPIPE;
643
644         /*
645          * Follow links downstream for each input and make sure the graph
646          * contains no loop and that all branches end at the output WPF.
647          */
648         for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
649                 if (!pipe->inputs[i])
650                         continue;
651
652                 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
653                                                        pipe->output);
654                 if (ret < 0)
655                         return ret;
656         }
657
658         return 0;
659 }
660
661 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
662                                     struct vsp1_video *video)
663 {
664         vsp1_pipeline_init(pipe);
665
666         pipe->frame_end = vsp1_video_pipeline_frame_end;
667
668         return vsp1_video_pipeline_build(pipe, video);
669 }
670
671 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
672 {
673         struct vsp1_pipeline *pipe;
674         int ret;
675
676         /*
677          * Get a pipeline object for the video node. If a pipeline has already
678          * been allocated just increment its reference count and return it.
679          * Otherwise allocate a new pipeline and initialize it, it will be freed
680          * when the last reference is released.
681          */
682         if (!video->rwpf->entity.pipe) {
683                 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
684                 if (!pipe)
685                         return ERR_PTR(-ENOMEM);
686
687                 ret = vsp1_video_pipeline_init(pipe, video);
688                 if (ret < 0) {
689                         vsp1_pipeline_reset(pipe);
690                         kfree(pipe);
691                         return ERR_PTR(ret);
692                 }
693         } else {
694                 pipe = video->rwpf->entity.pipe;
695                 kref_get(&pipe->kref);
696         }
697
698         return pipe;
699 }
700
701 static void vsp1_video_pipeline_release(struct kref *kref)
702 {
703         struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
704
705         vsp1_pipeline_reset(pipe);
706         kfree(pipe);
707 }
708
709 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
710 {
711         struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
712
713         mutex_lock(&mdev->graph_mutex);
714         kref_put(&pipe->kref, vsp1_video_pipeline_release);
715         mutex_unlock(&mdev->graph_mutex);
716 }
717
718 /* -----------------------------------------------------------------------------
719  * videobuf2 Queue Operations
720  */
721
722 static int
723 vsp1_video_queue_setup(struct vb2_queue *vq,
724                        unsigned int *nbuffers, unsigned int *nplanes,
725                        unsigned int sizes[], struct device *alloc_devs[])
726 {
727         struct vsp1_video *video = vb2_get_drv_priv(vq);
728         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
729         unsigned int i;
730
731         if (*nplanes) {
732                 if (*nplanes != format->num_planes)
733                         return -EINVAL;
734
735                 for (i = 0; i < *nplanes; i++)
736                         if (sizes[i] < format->plane_fmt[i].sizeimage)
737                                 return -EINVAL;
738                 return 0;
739         }
740
741         *nplanes = format->num_planes;
742
743         for (i = 0; i < format->num_planes; ++i)
744                 sizes[i] = format->plane_fmt[i].sizeimage;
745
746         return 0;
747 }
748
749 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
750 {
751         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
752         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
753         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
754         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
755         unsigned int i;
756
757         if (vb->num_planes < format->num_planes)
758                 return -EINVAL;
759
760         for (i = 0; i < vb->num_planes; ++i) {
761                 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
762
763                 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
764                         return -EINVAL;
765         }
766
767         for ( ; i < 3; ++i)
768                 buf->mem.addr[i] = 0;
769
770         return 0;
771 }
772
773 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
774 {
775         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
776         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
777         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
778         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
779         unsigned long flags;
780         bool empty;
781
782         spin_lock_irqsave(&video->irqlock, flags);
783         empty = list_empty(&video->irqqueue);
784         list_add_tail(&buf->queue, &video->irqqueue);
785         spin_unlock_irqrestore(&video->irqlock, flags);
786
787         if (!empty)
788                 return;
789
790         spin_lock_irqsave(&pipe->irqlock, flags);
791
792         video->rwpf->mem = buf->mem;
793         pipe->buffers_ready |= 1 << video->pipe_index;
794
795         if (vb2_is_streaming(&video->queue) &&
796             vsp1_pipeline_ready(pipe))
797                 vsp1_video_pipeline_run(pipe);
798
799         spin_unlock_irqrestore(&pipe->irqlock, flags);
800 }
801
802 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
803 {
804         struct vsp1_entity *entity;
805         int ret;
806
807         /* Determine this pipelines sizes for image partitioning support. */
808         ret = vsp1_video_pipeline_setup_partitions(pipe);
809         if (ret < 0)
810                 return ret;
811
812         /* Prepare the display list. */
813         pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
814         if (!pipe->dl)
815                 return -ENOMEM;
816
817         if (pipe->uds) {
818                 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
819
820                 /*
821                  * If a BRU or BRS is present in the pipeline before the UDS,
822                  * the alpha component doesn't need to be scaled as the BRU and
823                  * BRS output alpha value is fixed to 255. Otherwise we need to
824                  * scale the alpha component only when available at the input
825                  * RPF.
826                  */
827                 if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
828                     pipe->uds_input->type == VSP1_ENTITY_BRS) {
829                         uds->scale_alpha = false;
830                 } else {
831                         struct vsp1_rwpf *rpf =
832                                 to_rwpf(&pipe->uds_input->subdev);
833
834                         uds->scale_alpha = rpf->fmtinfo->alpha;
835                 }
836         }
837
838         list_for_each_entry(entity, &pipe->entities, list_pipe) {
839                 vsp1_entity_route_setup(entity, pipe, pipe->dl);
840
841                 if (entity->ops->configure)
842                         entity->ops->configure(entity, pipe, pipe->dl,
843                                                VSP1_ENTITY_PARAMS_INIT);
844         }
845
846         return 0;
847 }
848
849 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
850 {
851         struct vsp1_video *video = pipe->output->video;
852         struct vsp1_vb2_buffer *buffer;
853         unsigned long flags;
854
855         /* Remove all buffers from the IRQ queue. */
856         spin_lock_irqsave(&video->irqlock, flags);
857         list_for_each_entry(buffer, &video->irqqueue, queue)
858                 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
859         INIT_LIST_HEAD(&video->irqqueue);
860         spin_unlock_irqrestore(&video->irqlock, flags);
861
862         /* Release our partition table allocation */
863         mutex_lock(&pipe->lock);
864         kfree(pipe->part_table);
865         pipe->part_table = NULL;
866         mutex_unlock(&pipe->lock);
867 }
868
869 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
870 {
871         struct vsp1_video *video = vb2_get_drv_priv(vq);
872         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
873         bool start_pipeline = false;
874         unsigned long flags;
875         int ret;
876
877         mutex_lock(&pipe->lock);
878         if (pipe->stream_count == pipe->num_inputs) {
879                 ret = vsp1_video_setup_pipeline(pipe);
880                 if (ret < 0) {
881                         mutex_unlock(&pipe->lock);
882                         vsp1_video_cleanup_pipeline(pipe);
883                         return ret;
884                 }
885
886                 start_pipeline = true;
887         }
888
889         pipe->stream_count++;
890         mutex_unlock(&pipe->lock);
891
892         /*
893          * vsp1_pipeline_ready() is not sufficient to establish that all streams
894          * are prepared and the pipeline is configured, as multiple streams
895          * can race through streamon with buffers already queued; Therefore we
896          * don't even attempt to start the pipeline until the last stream has
897          * called through here.
898          */
899         if (!start_pipeline)
900                 return 0;
901
902         spin_lock_irqsave(&pipe->irqlock, flags);
903         if (vsp1_pipeline_ready(pipe))
904                 vsp1_video_pipeline_run(pipe);
905         spin_unlock_irqrestore(&pipe->irqlock, flags);
906
907         return 0;
908 }
909
910 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
911 {
912         struct vsp1_video *video = vb2_get_drv_priv(vq);
913         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
914         unsigned long flags;
915         int ret;
916
917         /*
918          * Clear the buffers ready flag to make sure the device won't be started
919          * by a QBUF on the video node on the other side of the pipeline.
920          */
921         spin_lock_irqsave(&video->irqlock, flags);
922         pipe->buffers_ready &= ~(1 << video->pipe_index);
923         spin_unlock_irqrestore(&video->irqlock, flags);
924
925         mutex_lock(&pipe->lock);
926         if (--pipe->stream_count == pipe->num_inputs) {
927                 /* Stop the pipeline. */
928                 ret = vsp1_pipeline_stop(pipe);
929                 if (ret == -ETIMEDOUT)
930                         dev_err(video->vsp1->dev, "pipeline stop timeout\n");
931
932                 vsp1_dl_list_put(pipe->dl);
933                 pipe->dl = NULL;
934         }
935         mutex_unlock(&pipe->lock);
936
937         media_pipeline_stop(&video->video.entity);
938         vsp1_video_cleanup_pipeline(pipe);
939         vsp1_video_pipeline_put(pipe);
940 }
941
942 static const struct vb2_ops vsp1_video_queue_qops = {
943         .queue_setup = vsp1_video_queue_setup,
944         .buf_prepare = vsp1_video_buffer_prepare,
945         .buf_queue = vsp1_video_buffer_queue,
946         .wait_prepare = vb2_ops_wait_prepare,
947         .wait_finish = vb2_ops_wait_finish,
948         .start_streaming = vsp1_video_start_streaming,
949         .stop_streaming = vsp1_video_stop_streaming,
950 };
951
952 /* -----------------------------------------------------------------------------
953  * V4L2 ioctls
954  */
955
956 static int
957 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
958 {
959         struct v4l2_fh *vfh = file->private_data;
960         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
961
962         cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
963                           | V4L2_CAP_VIDEO_CAPTURE_MPLANE
964                           | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
965
966         if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
967                 cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE
968                                  | V4L2_CAP_STREAMING;
969         else
970                 cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE
971                                  | V4L2_CAP_STREAMING;
972
973         strlcpy(cap->driver, "vsp1", sizeof(cap->driver));
974         strlcpy(cap->card, video->video.name, sizeof(cap->card));
975         snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
976                  dev_name(video->vsp1->dev));
977
978         return 0;
979 }
980
981 static int
982 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
983 {
984         struct v4l2_fh *vfh = file->private_data;
985         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
986
987         if (format->type != video->queue.type)
988                 return -EINVAL;
989
990         mutex_lock(&video->lock);
991         format->fmt.pix_mp = video->rwpf->format;
992         mutex_unlock(&video->lock);
993
994         return 0;
995 }
996
997 static int
998 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
999 {
1000         struct v4l2_fh *vfh = file->private_data;
1001         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1002
1003         if (format->type != video->queue.type)
1004                 return -EINVAL;
1005
1006         return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
1007 }
1008
1009 static int
1010 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
1011 {
1012         struct v4l2_fh *vfh = file->private_data;
1013         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1014         const struct vsp1_format_info *info;
1015         int ret;
1016
1017         if (format->type != video->queue.type)
1018                 return -EINVAL;
1019
1020         ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1021         if (ret < 0)
1022                 return ret;
1023
1024         mutex_lock(&video->lock);
1025
1026         if (vb2_is_busy(&video->queue)) {
1027                 ret = -EBUSY;
1028                 goto done;
1029         }
1030
1031         video->rwpf->format = format->fmt.pix_mp;
1032         video->rwpf->fmtinfo = info;
1033
1034 done:
1035         mutex_unlock(&video->lock);
1036         return ret;
1037 }
1038
1039 static int
1040 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1041 {
1042         struct v4l2_fh *vfh = file->private_data;
1043         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1044         struct media_device *mdev = &video->vsp1->media_dev;
1045         struct vsp1_pipeline *pipe;
1046         int ret;
1047
1048         if (video->queue.owner && video->queue.owner != file->private_data)
1049                 return -EBUSY;
1050
1051         /*
1052          * Get a pipeline for the video node and start streaming on it. No link
1053          * touching an entity in the pipeline can be activated or deactivated
1054          * once streaming is started.
1055          */
1056         mutex_lock(&mdev->graph_mutex);
1057
1058         pipe = vsp1_video_pipeline_get(video);
1059         if (IS_ERR(pipe)) {
1060                 mutex_unlock(&mdev->graph_mutex);
1061                 return PTR_ERR(pipe);
1062         }
1063
1064         ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1065         if (ret < 0) {
1066                 mutex_unlock(&mdev->graph_mutex);
1067                 goto err_pipe;
1068         }
1069
1070         mutex_unlock(&mdev->graph_mutex);
1071
1072         /*
1073          * Verify that the configured format matches the output of the connected
1074          * subdev.
1075          */
1076         ret = vsp1_video_verify_format(video);
1077         if (ret < 0)
1078                 goto err_stop;
1079
1080         /* Start the queue. */
1081         ret = vb2_streamon(&video->queue, type);
1082         if (ret < 0)
1083                 goto err_stop;
1084
1085         return 0;
1086
1087 err_stop:
1088         media_pipeline_stop(&video->video.entity);
1089 err_pipe:
1090         vsp1_video_pipeline_put(pipe);
1091         return ret;
1092 }
1093
1094 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1095         .vidioc_querycap                = vsp1_video_querycap,
1096         .vidioc_g_fmt_vid_cap_mplane    = vsp1_video_get_format,
1097         .vidioc_s_fmt_vid_cap_mplane    = vsp1_video_set_format,
1098         .vidioc_try_fmt_vid_cap_mplane  = vsp1_video_try_format,
1099         .vidioc_g_fmt_vid_out_mplane    = vsp1_video_get_format,
1100         .vidioc_s_fmt_vid_out_mplane    = vsp1_video_set_format,
1101         .vidioc_try_fmt_vid_out_mplane  = vsp1_video_try_format,
1102         .vidioc_reqbufs                 = vb2_ioctl_reqbufs,
1103         .vidioc_querybuf                = vb2_ioctl_querybuf,
1104         .vidioc_qbuf                    = vb2_ioctl_qbuf,
1105         .vidioc_dqbuf                   = vb2_ioctl_dqbuf,
1106         .vidioc_expbuf                  = vb2_ioctl_expbuf,
1107         .vidioc_create_bufs             = vb2_ioctl_create_bufs,
1108         .vidioc_prepare_buf             = vb2_ioctl_prepare_buf,
1109         .vidioc_streamon                = vsp1_video_streamon,
1110         .vidioc_streamoff               = vb2_ioctl_streamoff,
1111 };
1112
1113 /* -----------------------------------------------------------------------------
1114  * V4L2 File Operations
1115  */
1116
1117 static int vsp1_video_open(struct file *file)
1118 {
1119         struct vsp1_video *video = video_drvdata(file);
1120         struct v4l2_fh *vfh;
1121         int ret = 0;
1122
1123         vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1124         if (vfh == NULL)
1125                 return -ENOMEM;
1126
1127         v4l2_fh_init(vfh, &video->video);
1128         v4l2_fh_add(vfh);
1129
1130         file->private_data = vfh;
1131
1132         ret = vsp1_device_get(video->vsp1);
1133         if (ret < 0) {
1134                 v4l2_fh_del(vfh);
1135                 v4l2_fh_exit(vfh);
1136                 kfree(vfh);
1137         }
1138
1139         return ret;
1140 }
1141
1142 static int vsp1_video_release(struct file *file)
1143 {
1144         struct vsp1_video *video = video_drvdata(file);
1145         struct v4l2_fh *vfh = file->private_data;
1146
1147         mutex_lock(&video->lock);
1148         if (video->queue.owner == vfh) {
1149                 vb2_queue_release(&video->queue);
1150                 video->queue.owner = NULL;
1151         }
1152         mutex_unlock(&video->lock);
1153
1154         vsp1_device_put(video->vsp1);
1155
1156         v4l2_fh_release(file);
1157
1158         file->private_data = NULL;
1159
1160         return 0;
1161 }
1162
1163 static const struct v4l2_file_operations vsp1_video_fops = {
1164         .owner = THIS_MODULE,
1165         .unlocked_ioctl = video_ioctl2,
1166         .open = vsp1_video_open,
1167         .release = vsp1_video_release,
1168         .poll = vb2_fop_poll,
1169         .mmap = vb2_fop_mmap,
1170 };
1171
1172 /* -----------------------------------------------------------------------------
1173  * Initialization and Cleanup
1174  */
1175
1176 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1177                                      struct vsp1_rwpf *rwpf)
1178 {
1179         struct vsp1_video *video;
1180         const char *direction;
1181         int ret;
1182
1183         video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1184         if (!video)
1185                 return ERR_PTR(-ENOMEM);
1186
1187         rwpf->video = video;
1188
1189         video->vsp1 = vsp1;
1190         video->rwpf = rwpf;
1191
1192         if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1193                 direction = "input";
1194                 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1195                 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1196                 video->video.vfl_dir = VFL_DIR_TX;
1197         } else {
1198                 direction = "output";
1199                 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1200                 video->pad.flags = MEDIA_PAD_FL_SINK;
1201                 video->video.vfl_dir = VFL_DIR_RX;
1202         }
1203
1204         mutex_init(&video->lock);
1205         spin_lock_init(&video->irqlock);
1206         INIT_LIST_HEAD(&video->irqqueue);
1207
1208         /* Initialize the media entity... */
1209         ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1210         if (ret < 0)
1211                 return ERR_PTR(ret);
1212
1213         /* ... and the format ... */
1214         rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1215         rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1216         rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1217         __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1218
1219         /* ... and the video node... */
1220         video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1221         video->video.fops = &vsp1_video_fops;
1222         snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1223                  rwpf->entity.subdev.name, direction);
1224         video->video.vfl_type = VFL_TYPE_GRABBER;
1225         video->video.release = video_device_release_empty;
1226         video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1227
1228         video_set_drvdata(&video->video, video);
1229
1230         video->queue.type = video->type;
1231         video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1232         video->queue.lock = &video->lock;
1233         video->queue.drv_priv = video;
1234         video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1235         video->queue.ops = &vsp1_video_queue_qops;
1236         video->queue.mem_ops = &vb2_dma_contig_memops;
1237         video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1238         video->queue.dev = video->vsp1->bus_master;
1239         ret = vb2_queue_init(&video->queue);
1240         if (ret < 0) {
1241                 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1242                 goto error;
1243         }
1244
1245         /* ... and register the video device. */
1246         video->video.queue = &video->queue;
1247         ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1248         if (ret < 0) {
1249                 dev_err(video->vsp1->dev, "failed to register video device\n");
1250                 goto error;
1251         }
1252
1253         return video;
1254
1255 error:
1256         vsp1_video_cleanup(video);
1257         return ERR_PTR(ret);
1258 }
1259
1260 void vsp1_video_cleanup(struct vsp1_video *video)
1261 {
1262         if (video_is_registered(&video->video))
1263                 video_unregister_device(&video->video);
1264
1265         media_entity_cleanup(&video->video.entity);
1266 }