Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[linux-2.6-microblaze.git] / drivers / media / platform / vsp1 / vsp1_rpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define RPF_MAX_WIDTH                           8190
21 #define RPF_MAX_HEIGHT                          8190
22
23 /* -----------------------------------------------------------------------------
24  * Device Access
25  */
26
27 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
28                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
29 {
30         vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
31                                data);
32 }
33
34 /* -----------------------------------------------------------------------------
35  * V4L2 Subdevice Operations
36  */
37
38 static const struct v4l2_subdev_ops rpf_ops = {
39         .pad    = &vsp1_rwpf_pad_ops,
40 };
41
42 /* -----------------------------------------------------------------------------
43  * VSP1 Entity Operations
44  */
45
46 static void rpf_configure_stream(struct vsp1_entity *entity,
47                                  struct vsp1_pipeline *pipe,
48                                  struct vsp1_dl_body *dlb)
49 {
50         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
51         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
52         const struct v4l2_pix_format_mplane *format = &rpf->format;
53         const struct v4l2_mbus_framefmt *source_format;
54         const struct v4l2_mbus_framefmt *sink_format;
55         unsigned int left = 0;
56         unsigned int top = 0;
57         u32 pstride;
58         u32 infmt;
59
60         /* Stride */
61         pstride = format->plane_fmt[0].bytesperline
62                 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
63         if (format->num_planes > 1)
64                 pstride |= format->plane_fmt[1].bytesperline
65                         << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
66
67         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
68
69         /* Format */
70         sink_format = vsp1_entity_get_pad_format(&rpf->entity,
71                                                  rpf->entity.config,
72                                                  RWPF_PAD_SINK);
73         source_format = vsp1_entity_get_pad_format(&rpf->entity,
74                                                    rpf->entity.config,
75                                                    RWPF_PAD_SOURCE);
76
77         infmt = VI6_RPF_INFMT_CIPM
78               | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
79
80         if (fmtinfo->swap_yc)
81                 infmt |= VI6_RPF_INFMT_SPYCS;
82         if (fmtinfo->swap_uv)
83                 infmt |= VI6_RPF_INFMT_SPUVS;
84
85         if (sink_format->code != source_format->code)
86                 infmt |= VI6_RPF_INFMT_CSC;
87
88         vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
89         vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
90
91         /* Output location */
92         if (pipe->brx) {
93                 const struct v4l2_rect *compose;
94
95                 compose = vsp1_entity_get_pad_selection(pipe->brx,
96                                                         pipe->brx->config,
97                                                         rpf->brx_input,
98                                                         V4L2_SEL_TGT_COMPOSE);
99                 left = compose->left;
100                 top = compose->top;
101         }
102
103         vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
104                        (left << VI6_RPF_LOC_HCOORD_SHIFT) |
105                        (top << VI6_RPF_LOC_VCOORD_SHIFT));
106
107         /*
108          * On Gen2 use the alpha channel (extended to 8 bits) when available or
109          * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
110          * otherwise.
111          *
112          * The Gen3 RPF has extended alpha capability and can both multiply the
113          * alpha channel by a fixed global alpha value, and multiply the pixel
114          * components to convert the input to premultiplied alpha.
115          *
116          * As alpha premultiplication is available in the BRx for both Gen2 and
117          * Gen3 we handle it there and use the Gen3 alpha multiplier for global
118          * alpha multiplication only. This however prevents conversion to
119          * premultiplied alpha if no BRx is present in the pipeline. If that use
120          * case turns out to be useful we will revisit the implementation (for
121          * Gen3 only).
122          *
123          * We enable alpha multiplication on Gen3 using the fixed alpha value
124          * set through the V4L2_CID_ALPHA_COMPONENT control when the input
125          * contains an alpha channel. On Gen2 the global alpha is ignored in
126          * that case.
127          *
128          * In all cases, disable color keying.
129          */
130         vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
131                        (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
132                                        : VI6_RPF_ALPH_SEL_ASEL_FIXED));
133
134         if (entity->vsp1->info->gen == 3) {
135                 u32 mult;
136
137                 if (fmtinfo->alpha) {
138                         /*
139                          * When the input contains an alpha channel enable the
140                          * alpha multiplier. If the input is premultiplied we
141                          * need to multiply both the alpha channel and the pixel
142                          * components by the global alpha value to keep them
143                          * premultiplied. Otherwise multiply the alpha channel
144                          * only.
145                          */
146                         bool premultiplied = format->flags
147                                            & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
148
149                         mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
150                              | (premultiplied ?
151                                 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
152                                 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
153                 } else {
154                         /*
155                          * When the input doesn't contain an alpha channel the
156                          * global alpha value is applied in the unpacking unit,
157                          * the alpha multiplier isn't needed and must be
158                          * disabled.
159                          */
160                         mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
161                              | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
162                 }
163
164                 rpf->mult_alpha = mult;
165         }
166
167         vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
168         vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
169
170 }
171
172 static void rpf_configure_frame(struct vsp1_entity *entity,
173                                 struct vsp1_pipeline *pipe,
174                                 struct vsp1_dl_list *dl,
175                                 struct vsp1_dl_body *dlb)
176 {
177         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
178
179         vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
180                        rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
181         vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
182                        (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
183
184         vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
185 }
186
187 static void rpf_configure_partition(struct vsp1_entity *entity,
188                                     struct vsp1_pipeline *pipe,
189                                     struct vsp1_dl_list *dl,
190                                     struct vsp1_dl_body *dlb)
191 {
192         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
193         struct vsp1_rwpf_memory mem = rpf->mem;
194         struct vsp1_device *vsp1 = rpf->entity.vsp1;
195         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
196         const struct v4l2_pix_format_mplane *format = &rpf->format;
197         struct v4l2_rect crop;
198
199         /*
200          * Source size and crop offsets.
201          *
202          * The crop offsets correspond to the location of the crop
203          * rectangle top left corner in the plane buffer. Only two
204          * offsets are needed, as planes 2 and 3 always have identical
205          * strides.
206          */
207         crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
208
209         /*
210          * Partition Algorithm Control
211          *
212          * The partition algorithm can split this frame into multiple
213          * slices. We must scale our partition window based on the pipe
214          * configuration to match the destination partition window.
215          * To achieve this, we adjust our crop to provide a 'sub-crop'
216          * matching the expected partition window. Only 'left' and
217          * 'width' need to be adjusted.
218          */
219         if (pipe->partitions > 1) {
220                 crop.width = pipe->partition->rpf.width;
221                 crop.left += pipe->partition->rpf.left;
222         }
223
224         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
225                        (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
226                        (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
227         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
228                        (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
229                        (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
230
231         mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
232                      + crop.left * fmtinfo->bpp[0] / 8;
233
234         if (format->num_planes > 1) {
235                 unsigned int offset;
236
237                 offset = crop.top * format->plane_fmt[1].bytesperline
238                        + crop.left / fmtinfo->hsub
239                        * fmtinfo->bpp[1] / 8;
240                 mem.addr[1] += offset;
241                 mem.addr[2] += offset;
242         }
243
244         /*
245          * On Gen3 hardware the SPUVS bit has no effect on 3-planar
246          * formats. Swap the U and V planes manually in that case.
247          */
248         if (vsp1->info->gen == 3 && format->num_planes == 3 &&
249             fmtinfo->swap_uv)
250                 swap(mem.addr[1], mem.addr[2]);
251
252         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
253         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
254         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
255 }
256
257 static void rpf_partition(struct vsp1_entity *entity,
258                           struct vsp1_pipeline *pipe,
259                           struct vsp1_partition *partition,
260                           unsigned int partition_idx,
261                           struct vsp1_partition_window *window)
262 {
263         partition->rpf = *window;
264 }
265
266 static const struct vsp1_entity_operations rpf_entity_ops = {
267         .configure_stream = rpf_configure_stream,
268         .configure_frame = rpf_configure_frame,
269         .configure_partition = rpf_configure_partition,
270         .partition = rpf_partition,
271 };
272
273 /* -----------------------------------------------------------------------------
274  * Initialization and Cleanup
275  */
276
277 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
278 {
279         struct vsp1_rwpf *rpf;
280         char name[6];
281         int ret;
282
283         rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
284         if (rpf == NULL)
285                 return ERR_PTR(-ENOMEM);
286
287         rpf->max_width = RPF_MAX_WIDTH;
288         rpf->max_height = RPF_MAX_HEIGHT;
289
290         rpf->entity.ops = &rpf_entity_ops;
291         rpf->entity.type = VSP1_ENTITY_RPF;
292         rpf->entity.index = index;
293
294         sprintf(name, "rpf.%u", index);
295         ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
296                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
297         if (ret < 0)
298                 return ERR_PTR(ret);
299
300         /* Initialize the control handler. */
301         ret = vsp1_rwpf_init_ctrls(rpf, 0);
302         if (ret < 0) {
303                 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
304                         index);
305                 goto error;
306         }
307
308         v4l2_ctrl_handler_setup(&rpf->ctrls);
309
310         return rpf;
311
312 error:
313         vsp1_entity_destroy(&rpf->entity);
314         return ERR_PTR(ret);
315 }