Merge tag 'icc-6.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/djakov/icc...
[linux-2.6-microblaze.git] / drivers / media / platform / renesas / vsp1 / vsp1_rpf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
4  *
5  * Copyright (C) 2013-2014 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/device.h>
11
12 #include <media/v4l2-subdev.h>
13
14 #include "vsp1.h"
15 #include "vsp1_dl.h"
16 #include "vsp1_pipe.h"
17 #include "vsp1_rwpf.h"
18 #include "vsp1_video.h"
19
20 #define RPF_MAX_WIDTH                           8190
21 #define RPF_MAX_HEIGHT                          8190
22
23 /* Pre extended display list command data structure. */
24 struct vsp1_extcmd_auto_fld_body {
25         u32 top_y0;
26         u32 bottom_y0;
27         u32 top_c0;
28         u32 bottom_c0;
29         u32 top_c1;
30         u32 bottom_c1;
31         u32 reserved0;
32         u32 reserved1;
33 } __packed;
34
35 /* -----------------------------------------------------------------------------
36  * Device Access
37  */
38
39 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
40                                   struct vsp1_dl_body *dlb, u32 reg, u32 data)
41 {
42         vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
43                                data);
44 }
45
46 /* -----------------------------------------------------------------------------
47  * VSP1 Entity Operations
48  */
49
50 static void rpf_configure_stream(struct vsp1_entity *entity,
51                                  struct vsp1_pipeline *pipe,
52                                  struct vsp1_dl_list *dl,
53                                  struct vsp1_dl_body *dlb)
54 {
55         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
56         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
57         const struct v4l2_pix_format_mplane *format = &rpf->format;
58         const struct v4l2_mbus_framefmt *source_format;
59         const struct v4l2_mbus_framefmt *sink_format;
60         unsigned int left = 0;
61         unsigned int top = 0;
62         u32 pstride;
63         u32 infmt;
64
65         /* Stride */
66         pstride = format->plane_fmt[0].bytesperline
67                 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
68         if (format->num_planes > 1)
69                 pstride |= format->plane_fmt[1].bytesperline
70                         << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
71
72         /*
73          * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
74          * of pstride by 2 is conveniently OK here as we are multiplying both
75          * values.
76          */
77         if (pipe->interlaced)
78                 pstride *= 2;
79
80         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
81
82         /* Format */
83         sink_format = vsp1_entity_get_pad_format(&rpf->entity,
84                                                  rpf->entity.config,
85                                                  RWPF_PAD_SINK);
86         source_format = vsp1_entity_get_pad_format(&rpf->entity,
87                                                    rpf->entity.config,
88                                                    RWPF_PAD_SOURCE);
89
90         infmt = VI6_RPF_INFMT_CIPM
91               | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
92
93         if (fmtinfo->swap_yc)
94                 infmt |= VI6_RPF_INFMT_SPYCS;
95         if (fmtinfo->swap_uv)
96                 infmt |= VI6_RPF_INFMT_SPUVS;
97
98         if (sink_format->code != source_format->code)
99                 infmt |= VI6_RPF_INFMT_CSC;
100
101         vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
102         vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
103
104         if (entity->vsp1->info->gen == 4) {
105                 u32 ext_infmt0;
106                 u32 ext_infmt1;
107                 u32 ext_infmt2;
108
109                 switch (fmtinfo->fourcc) {
110                 case V4L2_PIX_FMT_RGBX1010102:
111                         ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
112                         ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 0);
113                         ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 0);
114                         break;
115
116                 case V4L2_PIX_FMT_RGBA1010102:
117                         ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
118                         ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(0, 10, 20, 30);
119                         ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
120                         break;
121
122                 case V4L2_PIX_FMT_ARGB2101010:
123                         ext_infmt0 = VI6_RPF_EXT_INFMT0_BYPP_M1_RGB10;
124                         ext_infmt1 = VI6_RPF_EXT_INFMT1_PACK_CPOS(2, 12, 22, 0);
125                         ext_infmt2 = VI6_RPF_EXT_INFMT2_PACK_CLEN(10, 10, 10, 2);
126                         break;
127
128                 case V4L2_PIX_FMT_Y210:
129                         ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
130                                      VI6_RPF_EXT_INFMT0_IPBD_Y_10 |
131                                      VI6_RPF_EXT_INFMT0_IPBD_C_10;
132                         ext_infmt1 = 0x0;
133                         ext_infmt2 = 0x0;
134                         break;
135
136                 case V4L2_PIX_FMT_Y212:
137                         ext_infmt0 = VI6_RPF_EXT_INFMT0_F2B |
138                                      VI6_RPF_EXT_INFMT0_IPBD_Y_12 |
139                                      VI6_RPF_EXT_INFMT0_IPBD_C_12;
140                         ext_infmt1 = 0x0;
141                         ext_infmt2 = 0x0;
142                         break;
143
144                 default:
145                         ext_infmt0 = 0;
146                         ext_infmt1 = 0;
147                         ext_infmt2 = 0;
148                         break;
149                 }
150
151                 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT0, ext_infmt0);
152                 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT1, ext_infmt1);
153                 vsp1_rpf_write(rpf, dlb, VI6_RPF_EXT_INFMT2, ext_infmt2);
154         }
155
156         /* Output location. */
157         if (pipe->brx) {
158                 const struct v4l2_rect *compose;
159
160                 compose = vsp1_entity_get_pad_selection(pipe->brx,
161                                                         pipe->brx->config,
162                                                         rpf->brx_input,
163                                                         V4L2_SEL_TGT_COMPOSE);
164                 left = compose->left;
165                 top = compose->top;
166         }
167
168         if (pipe->interlaced)
169                 top /= 2;
170
171         vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
172                        (left << VI6_RPF_LOC_HCOORD_SHIFT) |
173                        (top << VI6_RPF_LOC_VCOORD_SHIFT));
174
175         /*
176          * On Gen2 use the alpha channel (extended to 8 bits) when available or
177          * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
178          * otherwise.
179          *
180          * The Gen3+ RPF has extended alpha capability and can both multiply the
181          * alpha channel by a fixed global alpha value, and multiply the pixel
182          * components to convert the input to premultiplied alpha.
183          *
184          * As alpha premultiplication is available in the BRx for both Gen2 and
185          * Gen3+ we handle it there and use the Gen3 alpha multiplier for global
186          * alpha multiplication only. This however prevents conversion to
187          * premultiplied alpha if no BRx is present in the pipeline. If that use
188          * case turns out to be useful we will revisit the implementation (for
189          * Gen3 only).
190          *
191          * We enable alpha multiplication on Gen3+ using the fixed alpha value
192          * set through the V4L2_CID_ALPHA_COMPONENT control when the input
193          * contains an alpha channel. On Gen2 the global alpha is ignored in
194          * that case.
195          *
196          * In all cases, disable color keying.
197          */
198         vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
199                        (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
200                                        : VI6_RPF_ALPH_SEL_ASEL_FIXED));
201
202         if (entity->vsp1->info->gen >= 3) {
203                 u32 mult;
204
205                 if (fmtinfo->alpha) {
206                         /*
207                          * When the input contains an alpha channel enable the
208                          * alpha multiplier. If the input is premultiplied we
209                          * need to multiply both the alpha channel and the pixel
210                          * components by the global alpha value to keep them
211                          * premultiplied. Otherwise multiply the alpha channel
212                          * only.
213                          */
214                         bool premultiplied = format->flags
215                                            & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
216
217                         mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
218                              | (premultiplied ?
219                                 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
220                                 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
221                 } else {
222                         /*
223                          * When the input doesn't contain an alpha channel the
224                          * global alpha value is applied in the unpacking unit,
225                          * the alpha multiplier isn't needed and must be
226                          * disabled.
227                          */
228                         mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
229                              | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
230                 }
231
232                 rpf->mult_alpha = mult;
233         }
234
235         vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
236         vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
237
238 }
239
240 static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
241                                        struct vsp1_dl_list *dl)
242 {
243         const struct v4l2_pix_format_mplane *format = &rpf->format;
244         struct vsp1_dl_ext_cmd *cmd;
245         struct vsp1_extcmd_auto_fld_body *auto_fld;
246         u32 offset_y, offset_c;
247
248         cmd = vsp1_dl_get_pre_cmd(dl);
249         if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
250                 return;
251
252         /* Re-index our auto_fld to match the current RPF. */
253         auto_fld = cmd->data;
254         auto_fld = &auto_fld[rpf->entity.index];
255
256         auto_fld->top_y0 = rpf->mem.addr[0];
257         auto_fld->top_c0 = rpf->mem.addr[1];
258         auto_fld->top_c1 = rpf->mem.addr[2];
259
260         offset_y = format->plane_fmt[0].bytesperline;
261         offset_c = format->plane_fmt[1].bytesperline;
262
263         auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
264         auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
265         auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
266
267         cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
268 }
269
270 static void rpf_configure_frame(struct vsp1_entity *entity,
271                                 struct vsp1_pipeline *pipe,
272                                 struct vsp1_dl_list *dl,
273                                 struct vsp1_dl_body *dlb)
274 {
275         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
276
277         vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
278                        rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
279         vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
280                        (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
281
282         vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
283 }
284
285 static void rpf_configure_partition(struct vsp1_entity *entity,
286                                     struct vsp1_pipeline *pipe,
287                                     struct vsp1_dl_list *dl,
288                                     struct vsp1_dl_body *dlb)
289 {
290         struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
291         struct vsp1_rwpf_memory mem = rpf->mem;
292         struct vsp1_device *vsp1 = rpf->entity.vsp1;
293         const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
294         const struct v4l2_pix_format_mplane *format = &rpf->format;
295         struct v4l2_rect crop;
296
297         /*
298          * Source size and crop offsets.
299          *
300          * The crop offsets correspond to the location of the crop
301          * rectangle top left corner in the plane buffer. Only two
302          * offsets are needed, as planes 2 and 3 always have identical
303          * strides.
304          */
305         crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
306
307         /*
308          * Partition Algorithm Control
309          *
310          * The partition algorithm can split this frame into multiple
311          * slices. We must scale our partition window based on the pipe
312          * configuration to match the destination partition window.
313          * To achieve this, we adjust our crop to provide a 'sub-crop'
314          * matching the expected partition window. Only 'left' and
315          * 'width' need to be adjusted.
316          */
317         if (pipe->partitions > 1) {
318                 crop.width = pipe->partition->rpf.width;
319                 crop.left += pipe->partition->rpf.left;
320         }
321
322         if (pipe->interlaced) {
323                 crop.height = round_down(crop.height / 2, fmtinfo->vsub);
324                 crop.top = round_down(crop.top / 2, fmtinfo->vsub);
325         }
326
327         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
328                        (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
329                        (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
330         vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
331                        (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
332                        (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
333
334         mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
335                      + crop.left * fmtinfo->bpp[0] / 8;
336
337         if (format->num_planes > 1) {
338                 unsigned int bpl = format->plane_fmt[1].bytesperline;
339                 unsigned int offset;
340
341                 offset = crop.top / fmtinfo->vsub * bpl
342                        + crop.left / fmtinfo->hsub * fmtinfo->bpp[1] / 8;
343                 mem.addr[1] += offset;
344                 mem.addr[2] += offset;
345         }
346
347         /*
348          * On Gen3+ hardware the SPUVS bit has no effect on 3-planar
349          * formats. Swap the U and V planes manually in that case.
350          */
351         if (vsp1->info->gen >= 3 && format->num_planes == 3 &&
352             fmtinfo->swap_uv)
353                 swap(mem.addr[1], mem.addr[2]);
354
355         /*
356          * Interlaced pipelines will use the extended pre-cmd to process
357          * SRCM_ADDR_{Y,C0,C1}.
358          */
359         if (pipe->interlaced) {
360                 vsp1_rpf_configure_autofld(rpf, dl);
361         } else {
362                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
363                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
364                 vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
365         }
366 }
367
368 static void rpf_partition(struct vsp1_entity *entity,
369                           struct vsp1_pipeline *pipe,
370                           struct vsp1_partition *partition,
371                           unsigned int partition_idx,
372                           struct vsp1_partition_window *window)
373 {
374         partition->rpf = *window;
375 }
376
377 static const struct vsp1_entity_operations rpf_entity_ops = {
378         .configure_stream = rpf_configure_stream,
379         .configure_frame = rpf_configure_frame,
380         .configure_partition = rpf_configure_partition,
381         .partition = rpf_partition,
382 };
383
384 /* -----------------------------------------------------------------------------
385  * Initialization and Cleanup
386  */
387
388 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
389 {
390         struct vsp1_rwpf *rpf;
391         char name[6];
392         int ret;
393
394         rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
395         if (rpf == NULL)
396                 return ERR_PTR(-ENOMEM);
397
398         rpf->max_width = RPF_MAX_WIDTH;
399         rpf->max_height = RPF_MAX_HEIGHT;
400
401         rpf->entity.ops = &rpf_entity_ops;
402         rpf->entity.type = VSP1_ENTITY_RPF;
403         rpf->entity.index = index;
404
405         sprintf(name, "rpf.%u", index);
406         ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &vsp1_rwpf_subdev_ops,
407                                MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
408         if (ret < 0)
409                 return ERR_PTR(ret);
410
411         /* Initialize the control handler. */
412         ret = vsp1_rwpf_init_ctrls(rpf, 0);
413         if (ret < 0) {
414                 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
415                         index);
416                 goto error;
417         }
418
419         v4l2_ctrl_handler_setup(&rpf->ctrls);
420
421         return rpf;
422
423 error:
424         vsp1_entity_destroy(&rpf->entity);
425         return ERR_PTR(ret);
426 }