Merge tag 'v6.9-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-microblaze.git] / drivers / media / i2c / mt9v111.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * V4L2 sensor driver for Aptina MT9V111 image sensor
4  * Copyright (C) 2018 Jacopo Mondi <jacopo@jmondi.org>
5  *
6  * Based on mt9v032 driver
7  * Copyright (C) 2010, Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8  * Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
9  *
10  * Based on mt9v011 driver
11  * Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/i2c.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/videodev2.h>
21 #include <linux/v4l2-mediabus.h>
22 #include <linux/module.h>
23
24 #include <media/v4l2-ctrls.h>
25 #include <media/v4l2-device.h>
26 #include <media/v4l2-fwnode.h>
27 #include <media/v4l2-image-sizes.h>
28 #include <media/v4l2-subdev.h>
29
30 /*
31  * MT9V111 is a 1/4-Inch CMOS digital image sensor with an integrated
32  * Image Flow Processing (IFP) engine and a sensor core loosely based on
33  * MT9V011.
34  *
35  * The IFP can produce several output image formats from the sensor core
36  * output. This driver currently supports only YUYV format permutations.
37  *
38  * The driver allows manual frame rate control through set_frame_interval subdev
39  * operation or V4L2_CID_V/HBLANK controls, but it is known that the
40  * auto-exposure algorithm might modify the programmed frame rate. While the
41  * driver initially programs the sensor with auto-exposure and
42  * auto-white-balancing enabled, it is possible to disable them and more
43  * precisely control the frame rate.
44  *
45  * While it seems possible to instruct the auto-exposure control algorithm to
46  * respect a programmed frame rate when adjusting the pixel integration time,
47  * registers controlling this feature are not documented in the public
48  * available sensor manual used to develop this driver (09005aef80e90084,
49  * MT9V111_1.fm - Rev. G 1/05 EN).
50  */
51
52 #define MT9V111_CHIP_ID_HIGH                            0x82
53 #define MT9V111_CHIP_ID_LOW                             0x3a
54
55 #define MT9V111_R01_ADDR_SPACE                          0x01
56 #define MT9V111_R01_IFP                                 0x01
57 #define MT9V111_R01_CORE                                0x04
58
59 #define MT9V111_IFP_R06_OPMODE_CTRL                     0x06
60 #define         MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN      BIT(1)
61 #define         MT9V111_IFP_R06_OPMODE_CTRL_AE_EN       BIT(14)
62 #define MT9V111_IFP_R07_IFP_RESET                       0x07
63 #define         MT9V111_IFP_R07_IFP_RESET_MASK          BIT(0)
64 #define MT9V111_IFP_R08_OUTFMT_CTRL                     0x08
65 #define         MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER     BIT(11)
66 #define         MT9V111_IFP_R08_OUTFMT_CTRL_PCLK        BIT(5)
67 #define MT9V111_IFP_R3A_OUTFMT_CTRL2                    0x3a
68 #define         MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR  BIT(0)
69 #define         MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC    BIT(1)
70 #define         MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK  GENMASK(2, 0)
71 #define MT9V111_IFP_RA5_HPAN                            0xa5
72 #define MT9V111_IFP_RA6_HZOOM                           0xa6
73 #define MT9V111_IFP_RA7_HOUT                            0xa7
74 #define MT9V111_IFP_RA8_VPAN                            0xa8
75 #define MT9V111_IFP_RA9_VZOOM                           0xa9
76 #define MT9V111_IFP_RAA_VOUT                            0xaa
77 #define MT9V111_IFP_DECIMATION_MASK                     GENMASK(9, 0)
78 #define MT9V111_IFP_DECIMATION_FREEZE                   BIT(15)
79
80 #define MT9V111_CORE_R03_WIN_HEIGHT                     0x03
81 #define         MT9V111_CORE_R03_WIN_V_OFFS             2
82 #define MT9V111_CORE_R04_WIN_WIDTH                      0x04
83 #define         MT9V111_CORE_R04_WIN_H_OFFS             114
84 #define MT9V111_CORE_R05_HBLANK                         0x05
85 #define         MT9V111_CORE_R05_MIN_HBLANK             0x09
86 #define         MT9V111_CORE_R05_MAX_HBLANK             GENMASK(9, 0)
87 #define         MT9V111_CORE_R05_DEF_HBLANK             0x26
88 #define MT9V111_CORE_R06_VBLANK                         0x06
89 #define         MT9V111_CORE_R06_MIN_VBLANK             0x03
90 #define         MT9V111_CORE_R06_MAX_VBLANK             GENMASK(11, 0)
91 #define         MT9V111_CORE_R06_DEF_VBLANK             0x04
92 #define MT9V111_CORE_R07_OUT_CTRL                       0x07
93 #define         MT9V111_CORE_R07_OUT_CTRL_SAMPLE        BIT(4)
94 #define MT9V111_CORE_R09_PIXEL_INT                      0x09
95 #define         MT9V111_CORE_R09_PIXEL_INT_MASK         GENMASK(11, 0)
96 #define MT9V111_CORE_R0D_CORE_RESET                     0x0d
97 #define         MT9V111_CORE_R0D_CORE_RESET_MASK        BIT(0)
98 #define MT9V111_CORE_RFF_CHIP_VER                       0xff
99
100 #define MT9V111_PIXEL_ARRAY_WIDTH                       640
101 #define MT9V111_PIXEL_ARRAY_HEIGHT                      480
102
103 #define MT9V111_MAX_CLKIN                               27000000
104
105 /* The default sensor configuration at startup time. */
106 static const struct v4l2_mbus_framefmt mt9v111_def_fmt = {
107         .width          = 640,
108         .height         = 480,
109         .code           = MEDIA_BUS_FMT_UYVY8_2X8,
110         .field          = V4L2_FIELD_NONE,
111         .colorspace     = V4L2_COLORSPACE_SRGB,
112         .ycbcr_enc      = V4L2_YCBCR_ENC_601,
113         .quantization   = V4L2_QUANTIZATION_LIM_RANGE,
114         .xfer_func      = V4L2_XFER_FUNC_SRGB,
115 };
116
117 struct mt9v111_dev {
118         struct device *dev;
119         struct i2c_client *client;
120
121         u8 addr_space;
122
123         struct v4l2_subdev sd;
124         struct media_pad pad;
125
126         struct v4l2_ctrl *auto_awb;
127         struct v4l2_ctrl *auto_exp;
128         struct v4l2_ctrl *hblank;
129         struct v4l2_ctrl *vblank;
130         struct v4l2_ctrl_handler ctrls;
131
132         /* Output image format and sizes. */
133         struct v4l2_mbus_framefmt fmt;
134         unsigned int fps;
135
136         /* Protects power up/down sequences. */
137         struct mutex pwr_mutex;
138         int pwr_count;
139
140         /* Protects stream on/off sequences. */
141         struct mutex stream_mutex;
142         bool streaming;
143
144         /* Flags to mark HW settings as not yet applied. */
145         bool pending;
146
147         /* Clock provider and system clock frequency. */
148         struct clk *clk;
149         u32 sysclk;
150
151         struct gpio_desc *oe;
152         struct gpio_desc *standby;
153         struct gpio_desc *reset;
154 };
155
156 #define sd_to_mt9v111(__sd) container_of((__sd), struct mt9v111_dev, sd)
157
158 /*
159  * mt9v111_mbus_fmt - List all media bus formats supported by the driver.
160  *
161  * Only list the media bus code here. The image sizes are freely configurable
162  * in the pixel array sizes range.
163  *
164  * The desired frame interval, in the supported frame interval range, is
165  * obtained by configuring blanking as the sensor does not have a PLL but
166  * only a fixed clock divider that generates the output pixel clock.
167  */
168 static struct mt9v111_mbus_fmt {
169         u32     code;
170 } mt9v111_formats[] = {
171         {
172                 .code   = MEDIA_BUS_FMT_UYVY8_2X8,
173         },
174         {
175                 .code   = MEDIA_BUS_FMT_YUYV8_2X8,
176         },
177         {
178                 .code   = MEDIA_BUS_FMT_VYUY8_2X8,
179         },
180         {
181                 .code   = MEDIA_BUS_FMT_YVYU8_2X8,
182         },
183 };
184
185 static u32 mt9v111_frame_intervals[] = {5, 10, 15, 20, 30};
186
187 /*
188  * mt9v111_frame_sizes - List sensor's supported resolutions.
189  *
190  * Resolution generated through decimation in the IFP block from the
191  * full VGA pixel array.
192  */
193 static struct v4l2_rect mt9v111_frame_sizes[] = {
194         {
195                 .width  = 640,
196                 .height = 480,
197         },
198         {
199                 .width  = 352,
200                 .height = 288
201         },
202         {
203                 .width  = 320,
204                 .height = 240,
205         },
206         {
207                 .width  = 176,
208                 .height = 144,
209         },
210         {
211                 .width  = 160,
212                 .height = 120,
213         },
214 };
215
216 /* --- Device I/O access --- */
217
218 static int __mt9v111_read(struct i2c_client *c, u8 reg, u16 *val)
219 {
220         struct i2c_msg msg[2];
221         __be16 buf;
222         int ret;
223
224         msg[0].addr = c->addr;
225         msg[0].flags = 0;
226         msg[0].len = 1;
227         msg[0].buf = &reg;
228
229         msg[1].addr = c->addr;
230         msg[1].flags = I2C_M_RD;
231         msg[1].len = 2;
232         msg[1].buf = (char *)&buf;
233
234         ret = i2c_transfer(c->adapter, msg, 2);
235         if (ret < 0) {
236                 dev_err(&c->dev, "i2c read transfer error: %d\n", ret);
237                 return ret;
238         }
239
240         *val = be16_to_cpu(buf);
241
242         dev_dbg(&c->dev, "%s: %x=%x\n", __func__, reg, *val);
243
244         return 0;
245 }
246
247 static int __mt9v111_write(struct i2c_client *c, u8 reg, u16 val)
248 {
249         struct i2c_msg msg;
250         u8 buf[3] = { 0 };
251         int ret;
252
253         buf[0] = reg;
254         buf[1] = val >> 8;
255         buf[2] = val & 0xff;
256
257         msg.addr = c->addr;
258         msg.flags = 0;
259         msg.len = 3;
260         msg.buf = (char *)buf;
261
262         dev_dbg(&c->dev, "%s: %x = %x%x\n", __func__, reg, buf[1], buf[2]);
263
264         ret = i2c_transfer(c->adapter, &msg, 1);
265         if (ret < 0) {
266                 dev_err(&c->dev, "i2c write transfer error: %d\n", ret);
267                 return ret;
268         }
269
270         return 0;
271 }
272
273 static int __mt9v111_addr_space_select(struct i2c_client *c, u16 addr_space)
274 {
275         struct v4l2_subdev *sd = i2c_get_clientdata(c);
276         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
277         u16 val;
278         int ret;
279
280         if (mt9v111->addr_space == addr_space)
281                 return 0;
282
283         ret = __mt9v111_write(c, MT9V111_R01_ADDR_SPACE, addr_space);
284         if (ret)
285                 return ret;
286
287         /* Verify address space has been updated */
288         ret = __mt9v111_read(c, MT9V111_R01_ADDR_SPACE, &val);
289         if (ret)
290                 return ret;
291
292         if (val != addr_space)
293                 return -EINVAL;
294
295         mt9v111->addr_space = addr_space;
296
297         return 0;
298 }
299
300 static int mt9v111_read(struct i2c_client *c, u8 addr_space, u8 reg, u16 *val)
301 {
302         int ret;
303
304         /* Select register address space first. */
305         ret = __mt9v111_addr_space_select(c, addr_space);
306         if (ret)
307                 return ret;
308
309         ret = __mt9v111_read(c, reg, val);
310         if (ret)
311                 return ret;
312
313         return 0;
314 }
315
316 static int mt9v111_write(struct i2c_client *c, u8 addr_space, u8 reg, u16 val)
317 {
318         int ret;
319
320         /* Select register address space first. */
321         ret = __mt9v111_addr_space_select(c, addr_space);
322         if (ret)
323                 return ret;
324
325         ret = __mt9v111_write(c, reg, val);
326         if (ret)
327                 return ret;
328
329         return 0;
330 }
331
332 static int mt9v111_update(struct i2c_client *c, u8 addr_space, u8 reg,
333                           u16 mask, u16 val)
334 {
335         u16 current_val;
336         int ret;
337
338         /* Select register address space first. */
339         ret = __mt9v111_addr_space_select(c, addr_space);
340         if (ret)
341                 return ret;
342
343         /* Read the current register value, then update it. */
344         ret = __mt9v111_read(c, reg, &current_val);
345         if (ret)
346                 return ret;
347
348         current_val &= ~mask;
349         current_val |= (val & mask);
350         ret = __mt9v111_write(c, reg, current_val);
351         if (ret)
352                 return ret;
353
354         return 0;
355 }
356
357 /* --- Sensor HW operations --- */
358
359 static int __mt9v111_power_on(struct v4l2_subdev *sd)
360 {
361         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
362         int ret;
363
364         ret = clk_prepare_enable(mt9v111->clk);
365         if (ret)
366                 return ret;
367
368         clk_set_rate(mt9v111->clk, mt9v111->sysclk);
369
370         gpiod_set_value(mt9v111->standby, 0);
371         usleep_range(500, 1000);
372
373         gpiod_set_value(mt9v111->oe, 1);
374         usleep_range(500, 1000);
375
376         return 0;
377 }
378
379 static int __mt9v111_power_off(struct v4l2_subdev *sd)
380 {
381         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
382
383         gpiod_set_value(mt9v111->oe, 0);
384         usleep_range(500, 1000);
385
386         gpiod_set_value(mt9v111->standby, 1);
387         usleep_range(500, 1000);
388
389         clk_disable_unprepare(mt9v111->clk);
390
391         return 0;
392 }
393
394 static int __mt9v111_hw_reset(struct mt9v111_dev *mt9v111)
395 {
396         if (!mt9v111->reset)
397                 return -EINVAL;
398
399         gpiod_set_value(mt9v111->reset, 1);
400         usleep_range(500, 1000);
401
402         gpiod_set_value(mt9v111->reset, 0);
403         usleep_range(500, 1000);
404
405         return 0;
406 }
407
408 static int __mt9v111_sw_reset(struct mt9v111_dev *mt9v111)
409 {
410         struct i2c_client *c = mt9v111->client;
411         int ret;
412
413         /* Software reset core and IFP blocks. */
414
415         ret = mt9v111_update(c, MT9V111_R01_CORE,
416                              MT9V111_CORE_R0D_CORE_RESET,
417                              MT9V111_CORE_R0D_CORE_RESET_MASK, 1);
418         if (ret)
419                 return ret;
420         usleep_range(500, 1000);
421
422         ret = mt9v111_update(c, MT9V111_R01_CORE,
423                              MT9V111_CORE_R0D_CORE_RESET,
424                              MT9V111_CORE_R0D_CORE_RESET_MASK, 0);
425         if (ret)
426                 return ret;
427         usleep_range(500, 1000);
428
429         ret = mt9v111_update(c, MT9V111_R01_IFP,
430                              MT9V111_IFP_R07_IFP_RESET,
431                              MT9V111_IFP_R07_IFP_RESET_MASK, 1);
432         if (ret)
433                 return ret;
434         usleep_range(500, 1000);
435
436         ret = mt9v111_update(c, MT9V111_R01_IFP,
437                              MT9V111_IFP_R07_IFP_RESET,
438                              MT9V111_IFP_R07_IFP_RESET_MASK, 0);
439         if (ret)
440                 return ret;
441         usleep_range(500, 1000);
442
443         return 0;
444 }
445
446 static int mt9v111_calc_frame_rate(struct mt9v111_dev *mt9v111,
447                                    struct v4l2_fract *tpf)
448 {
449         unsigned int fps = tpf->numerator ?
450                            tpf->denominator / tpf->numerator :
451                            tpf->denominator;
452         unsigned int best_diff;
453         unsigned int frm_cols;
454         unsigned int row_pclk;
455         unsigned int best_fps;
456         unsigned int pclk;
457         unsigned int diff;
458         unsigned int idx;
459         unsigned int hb;
460         unsigned int vb;
461         unsigned int i;
462         int ret;
463
464         /* Approximate to the closest supported frame interval. */
465         best_diff = ~0L;
466         for (i = 0, idx = 0; i < ARRAY_SIZE(mt9v111_frame_intervals); i++) {
467                 diff = abs(fps - mt9v111_frame_intervals[i]);
468                 if (diff < best_diff) {
469                         idx = i;
470                         best_diff = diff;
471                 }
472         }
473         fps = mt9v111_frame_intervals[idx];
474
475         /*
476          * The sensor does not provide a PLL circuitry and pixel clock is
477          * generated dividing the master clock source by two.
478          *
479          * Trow = (W + Hblank + 114) * 2 * (1 / SYSCLK)
480          * TFrame = Trow * (H + Vblank + 2)
481          *
482          * FPS = (SYSCLK / 2) / (Trow * (H + Vblank + 2))
483          *
484          * This boils down to tune H and V blanks to best approximate the
485          * above equation.
486          *
487          * Test all available H/V blank values, until we reach the
488          * desired frame rate.
489          */
490         best_fps = vb = hb = 0;
491         pclk = DIV_ROUND_CLOSEST(mt9v111->sysclk, 2);
492         row_pclk = MT9V111_PIXEL_ARRAY_WIDTH + 7 + MT9V111_CORE_R04_WIN_H_OFFS;
493         frm_cols = MT9V111_PIXEL_ARRAY_HEIGHT + 7 + MT9V111_CORE_R03_WIN_V_OFFS;
494
495         best_diff = ~0L;
496         for (vb = MT9V111_CORE_R06_MIN_VBLANK;
497              vb < MT9V111_CORE_R06_MAX_VBLANK; vb++) {
498                 for (hb = MT9V111_CORE_R05_MIN_HBLANK;
499                      hb < MT9V111_CORE_R05_MAX_HBLANK; hb += 10) {
500                         unsigned int t_frame = (row_pclk + hb) *
501                                                (frm_cols + vb);
502                         unsigned int t_fps = DIV_ROUND_CLOSEST(pclk, t_frame);
503
504                         diff = abs(fps - t_fps);
505                         if (diff < best_diff) {
506                                 best_diff = diff;
507                                 best_fps = t_fps;
508
509                                 if (diff == 0)
510                                         break;
511                         }
512                 }
513
514                 if (diff == 0)
515                         break;
516         }
517
518         ret = v4l2_ctrl_s_ctrl_int64(mt9v111->hblank, hb);
519         if (ret)
520                 return ret;
521
522         ret = v4l2_ctrl_s_ctrl_int64(mt9v111->vblank, vb);
523         if (ret)
524                 return ret;
525
526         tpf->numerator = 1;
527         tpf->denominator = best_fps;
528
529         return 0;
530 }
531
532 static int mt9v111_hw_config(struct mt9v111_dev *mt9v111)
533 {
534         struct i2c_client *c = mt9v111->client;
535         unsigned int ret;
536         u16 outfmtctrl2;
537
538         /* Force device reset. */
539         ret = __mt9v111_hw_reset(mt9v111);
540         if (ret == -EINVAL)
541                 ret = __mt9v111_sw_reset(mt9v111);
542         if (ret)
543                 return ret;
544
545         /* Configure internal clock sample rate. */
546         ret = mt9v111->sysclk < DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ?
547                                 mt9v111_update(c, MT9V111_R01_CORE,
548                                         MT9V111_CORE_R07_OUT_CTRL,
549                                         MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 1) :
550                                 mt9v111_update(c, MT9V111_R01_CORE,
551                                         MT9V111_CORE_R07_OUT_CTRL,
552                                         MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 0);
553         if (ret)
554                 return ret;
555
556         /*
557          * Configure output image format components ordering.
558          *
559          * TODO: IFP block can also output several RGB permutations, we only
560          *       support YUYV permutations at the moment.
561          */
562         switch (mt9v111->fmt.code) {
563         case MEDIA_BUS_FMT_YUYV8_2X8:
564                         outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC;
565                         break;
566         case MEDIA_BUS_FMT_VYUY8_2X8:
567                         outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
568                         break;
569         case MEDIA_BUS_FMT_YVYU8_2X8:
570                         outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC |
571                                       MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
572                         break;
573         case MEDIA_BUS_FMT_UYVY8_2X8:
574         default:
575                         outfmtctrl2 = 0;
576                         break;
577         }
578
579         ret = mt9v111_update(c, MT9V111_R01_IFP, MT9V111_IFP_R3A_OUTFMT_CTRL2,
580                              MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK,
581                              outfmtctrl2);
582         if (ret)
583                 return ret;
584
585         /*
586          * Do not change default sensor's core configuration:
587          * output the whole 640x480 pixel array, skip 18 columns and 6 rows.
588          *
589          * Instead, control the output image size through IFP block.
590          *
591          * TODO: No zoom&pan support. Currently we control the output image
592          *       size only through decimation, with no zoom support.
593          */
594         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA5_HPAN,
595                             MT9V111_IFP_DECIMATION_FREEZE);
596         if (ret)
597                 return ret;
598
599         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA8_VPAN,
600                             MT9V111_IFP_DECIMATION_FREEZE);
601         if (ret)
602                 return ret;
603
604         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA6_HZOOM,
605                             MT9V111_IFP_DECIMATION_FREEZE |
606                             MT9V111_PIXEL_ARRAY_WIDTH);
607         if (ret)
608                 return ret;
609
610         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA9_VZOOM,
611                             MT9V111_IFP_DECIMATION_FREEZE |
612                             MT9V111_PIXEL_ARRAY_HEIGHT);
613         if (ret)
614                 return ret;
615
616         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA7_HOUT,
617                             MT9V111_IFP_DECIMATION_FREEZE |
618                             mt9v111->fmt.width);
619         if (ret)
620                 return ret;
621
622         ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RAA_VOUT,
623                             mt9v111->fmt.height);
624         if (ret)
625                 return ret;
626
627         /* Apply controls to set auto exp, auto awb and timings */
628         ret = v4l2_ctrl_handler_setup(&mt9v111->ctrls);
629         if (ret)
630                 return ret;
631
632         /*
633          * Set pixel integration time to the whole frame time.
634          * This value controls the shutter delay when running with AE
635          * disabled. If longer than frame time, it affects the output
636          * frame rate.
637          */
638         return mt9v111_write(c, MT9V111_R01_CORE, MT9V111_CORE_R09_PIXEL_INT,
639                              MT9V111_PIXEL_ARRAY_HEIGHT);
640 }
641
642 /* ---  V4L2 subdev operations --- */
643
644 static int mt9v111_s_power(struct v4l2_subdev *sd, int on)
645 {
646         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
647         int pwr_count;
648         int ret = 0;
649
650         mutex_lock(&mt9v111->pwr_mutex);
651
652         /*
653          * Make sure we're transitioning from 0 to 1, or viceversa,
654          * before actually changing the power state.
655          */
656         pwr_count = mt9v111->pwr_count;
657         pwr_count += on ? 1 : -1;
658         if (pwr_count == !!on) {
659                 ret = on ? __mt9v111_power_on(sd) :
660                            __mt9v111_power_off(sd);
661                 if (!ret)
662                         /* All went well, updated power counter. */
663                         mt9v111->pwr_count = pwr_count;
664
665                 mutex_unlock(&mt9v111->pwr_mutex);
666
667                 return ret;
668         }
669
670         /*
671          * Update power counter to keep track of how many nested calls we
672          * received.
673          */
674         WARN_ON(pwr_count < 0 || pwr_count > 1);
675         mt9v111->pwr_count = pwr_count;
676
677         mutex_unlock(&mt9v111->pwr_mutex);
678
679         return ret;
680 }
681
682 static int mt9v111_s_stream(struct v4l2_subdev *subdev, int enable)
683 {
684         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
685         int ret;
686
687         mutex_lock(&mt9v111->stream_mutex);
688
689         if (mt9v111->streaming == enable) {
690                 mutex_unlock(&mt9v111->stream_mutex);
691                 return 0;
692         }
693
694         ret = mt9v111_s_power(subdev, enable);
695         if (ret)
696                 goto error_unlock;
697
698         if (enable && mt9v111->pending) {
699                 ret = mt9v111_hw_config(mt9v111);
700                 if (ret)
701                         goto error_unlock;
702
703                 /*
704                  * No need to update control here as far as only H/VBLANK are
705                  * supported and immediately programmed to registers in .s_ctrl
706                  */
707
708                 mt9v111->pending = false;
709         }
710
711         mt9v111->streaming = enable ? true : false;
712         mutex_unlock(&mt9v111->stream_mutex);
713
714         return 0;
715
716 error_unlock:
717         mutex_unlock(&mt9v111->stream_mutex);
718
719         return ret;
720 }
721
722 static int mt9v111_set_frame_interval(struct v4l2_subdev *sd,
723                                       struct v4l2_subdev_state *sd_state,
724                                       struct v4l2_subdev_frame_interval *ival)
725 {
726         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
727         struct v4l2_fract *tpf = &ival->interval;
728         unsigned int fps = tpf->numerator ?
729                            tpf->denominator / tpf->numerator :
730                            tpf->denominator;
731         unsigned int max_fps;
732
733         /*
734          * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
735          * subdev active state API.
736          */
737         if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
738                 return -EINVAL;
739
740         if (!tpf->numerator)
741                 tpf->numerator = 1;
742
743         mutex_lock(&mt9v111->stream_mutex);
744
745         if (mt9v111->streaming) {
746                 mutex_unlock(&mt9v111->stream_mutex);
747                 return -EBUSY;
748         }
749
750         if (mt9v111->fps == fps) {
751                 mutex_unlock(&mt9v111->stream_mutex);
752                 return 0;
753         }
754
755         /* Make sure frame rate/image sizes constraints are respected. */
756         if (mt9v111->fmt.width < QVGA_WIDTH &&
757             mt9v111->fmt.height < QVGA_HEIGHT)
758                 max_fps = 90;
759         else if (mt9v111->fmt.width < CIF_WIDTH &&
760                  mt9v111->fmt.height < CIF_HEIGHT)
761                 max_fps = 60;
762         else
763                 max_fps = mt9v111->sysclk <
764                                 DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 15 :
765                                                                           30;
766
767         if (fps > max_fps) {
768                 mutex_unlock(&mt9v111->stream_mutex);
769                 return -EINVAL;
770         }
771
772         mt9v111_calc_frame_rate(mt9v111, tpf);
773
774         mt9v111->fps = fps;
775         mt9v111->pending = true;
776
777         mutex_unlock(&mt9v111->stream_mutex);
778
779         return 0;
780 }
781
782 static int mt9v111_get_frame_interval(struct v4l2_subdev *sd,
783                                       struct v4l2_subdev_state *sd_state,
784                                       struct v4l2_subdev_frame_interval *ival)
785 {
786         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
787         struct v4l2_fract *tpf = &ival->interval;
788
789         /*
790          * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2
791          * subdev active state API.
792          */
793         if (ival->which != V4L2_SUBDEV_FORMAT_ACTIVE)
794                 return -EINVAL;
795
796         mutex_lock(&mt9v111->stream_mutex);
797
798         tpf->numerator = 1;
799         tpf->denominator = mt9v111->fps;
800
801         mutex_unlock(&mt9v111->stream_mutex);
802
803         return 0;
804 }
805
806 static struct v4l2_mbus_framefmt *__mt9v111_get_pad_format(
807                                         struct mt9v111_dev *mt9v111,
808                                         struct v4l2_subdev_state *sd_state,
809                                         unsigned int pad,
810                                         enum v4l2_subdev_format_whence which)
811 {
812         switch (which) {
813         case V4L2_SUBDEV_FORMAT_TRY:
814                 return v4l2_subdev_state_get_format(sd_state, pad);
815         case V4L2_SUBDEV_FORMAT_ACTIVE:
816                 return &mt9v111->fmt;
817         default:
818                 return NULL;
819         }
820 }
821
822 static int mt9v111_enum_mbus_code(struct v4l2_subdev *subdev,
823                                   struct v4l2_subdev_state *sd_state,
824                                   struct v4l2_subdev_mbus_code_enum *code)
825 {
826         if (code->pad || code->index > ARRAY_SIZE(mt9v111_formats) - 1)
827                 return -EINVAL;
828
829         code->code = mt9v111_formats[code->index].code;
830
831         return 0;
832 }
833
834 static int mt9v111_enum_frame_interval(struct v4l2_subdev *sd,
835                                 struct v4l2_subdev_state *sd_state,
836                                 struct v4l2_subdev_frame_interval_enum *fie)
837 {
838         unsigned int i;
839
840         if (fie->pad || fie->index >= ARRAY_SIZE(mt9v111_frame_intervals))
841                 return -EINVAL;
842
843         for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++)
844                 if (fie->width == mt9v111_frame_sizes[i].width &&
845                     fie->height == mt9v111_frame_sizes[i].height)
846                         break;
847
848         if (i == ARRAY_SIZE(mt9v111_frame_sizes))
849                 return -EINVAL;
850
851         fie->interval.numerator = 1;
852         fie->interval.denominator = mt9v111_frame_intervals[fie->index];
853
854         return 0;
855 }
856
857 static int mt9v111_enum_frame_size(struct v4l2_subdev *subdev,
858                                    struct v4l2_subdev_state *sd_state,
859                                    struct v4l2_subdev_frame_size_enum *fse)
860 {
861         if (fse->pad || fse->index >= ARRAY_SIZE(mt9v111_frame_sizes))
862                 return -EINVAL;
863
864         fse->min_width = mt9v111_frame_sizes[fse->index].width;
865         fse->max_width = mt9v111_frame_sizes[fse->index].width;
866         fse->min_height = mt9v111_frame_sizes[fse->index].height;
867         fse->max_height = mt9v111_frame_sizes[fse->index].height;
868
869         return 0;
870 }
871
872 static int mt9v111_get_format(struct v4l2_subdev *subdev,
873                               struct v4l2_subdev_state *sd_state,
874                               struct v4l2_subdev_format *format)
875 {
876         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
877
878         if (format->pad)
879                 return -EINVAL;
880
881         mutex_lock(&mt9v111->stream_mutex);
882         format->format = *__mt9v111_get_pad_format(mt9v111, sd_state,
883                                                    format->pad,
884                                                    format->which);
885         mutex_unlock(&mt9v111->stream_mutex);
886
887         return 0;
888 }
889
890 static int mt9v111_set_format(struct v4l2_subdev *subdev,
891                               struct v4l2_subdev_state *sd_state,
892                               struct v4l2_subdev_format *format)
893 {
894         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
895         struct v4l2_mbus_framefmt new_fmt;
896         struct v4l2_mbus_framefmt *__fmt;
897         unsigned int best_fit = ~0L;
898         unsigned int idx = 0;
899         unsigned int i;
900
901         mutex_lock(&mt9v111->stream_mutex);
902         if (mt9v111->streaming) {
903                 mutex_unlock(&mt9v111->stream_mutex);
904                 return -EBUSY;
905         }
906
907         if (format->pad) {
908                 mutex_unlock(&mt9v111->stream_mutex);
909                 return -EINVAL;
910         }
911
912         /* Update mbus format code and sizes. */
913         for (i = 0; i < ARRAY_SIZE(mt9v111_formats); i++) {
914                 if (format->format.code == mt9v111_formats[i].code) {
915                         new_fmt.code = mt9v111_formats[i].code;
916                         break;
917                 }
918         }
919         if (i == ARRAY_SIZE(mt9v111_formats))
920                 new_fmt.code = mt9v111_formats[0].code;
921
922         for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) {
923                 unsigned int fit = abs(mt9v111_frame_sizes[i].width -
924                                        format->format.width) +
925                                    abs(mt9v111_frame_sizes[i].height -
926                                        format->format.height);
927                 if (fit < best_fit) {
928                         best_fit = fit;
929                         idx = i;
930
931                         if (fit == 0)
932                                 break;
933                 }
934         }
935         new_fmt.width = mt9v111_frame_sizes[idx].width;
936         new_fmt.height = mt9v111_frame_sizes[idx].height;
937
938         /* Update the device (or pad) format if it has changed. */
939         __fmt = __mt9v111_get_pad_format(mt9v111, sd_state, format->pad,
940                                          format->which);
941
942         /* Format hasn't changed, stop here. */
943         if (__fmt->code == new_fmt.code &&
944             __fmt->width == new_fmt.width &&
945             __fmt->height == new_fmt.height)
946                 goto done;
947
948         /* Update the format and sizes, then  mark changes as pending. */
949         __fmt->code = new_fmt.code;
950         __fmt->width = new_fmt.width;
951         __fmt->height = new_fmt.height;
952
953         if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
954                 mt9v111->pending = true;
955
956         dev_dbg(mt9v111->dev, "%s: mbus_code: %x - (%ux%u)\n",
957                 __func__, __fmt->code, __fmt->width, __fmt->height);
958
959 done:
960         format->format = *__fmt;
961
962         mutex_unlock(&mt9v111->stream_mutex);
963
964         return 0;
965 }
966
967 static int mt9v111_init_state(struct v4l2_subdev *subdev,
968                               struct v4l2_subdev_state *sd_state)
969 {
970         *v4l2_subdev_state_get_format(sd_state, 0) = mt9v111_def_fmt;
971
972         return 0;
973 }
974
975 static const struct v4l2_subdev_core_ops mt9v111_core_ops = {
976         .s_power                = mt9v111_s_power,
977 };
978
979 static const struct v4l2_subdev_video_ops mt9v111_video_ops = {
980         .s_stream               = mt9v111_s_stream,
981 };
982
983 static const struct v4l2_subdev_pad_ops mt9v111_pad_ops = {
984         .enum_mbus_code         = mt9v111_enum_mbus_code,
985         .enum_frame_size        = mt9v111_enum_frame_size,
986         .enum_frame_interval    = mt9v111_enum_frame_interval,
987         .get_fmt                = mt9v111_get_format,
988         .set_fmt                = mt9v111_set_format,
989         .get_frame_interval     = mt9v111_get_frame_interval,
990         .set_frame_interval     = mt9v111_set_frame_interval,
991 };
992
993 static const struct v4l2_subdev_ops mt9v111_ops = {
994         .core   = &mt9v111_core_ops,
995         .video  = &mt9v111_video_ops,
996         .pad    = &mt9v111_pad_ops,
997 };
998
999 static const struct v4l2_subdev_internal_ops mt9v111_internal_ops = {
1000         .init_state             = mt9v111_init_state,
1001 };
1002
1003 static const struct media_entity_operations mt9v111_subdev_entity_ops = {
1004         .link_validate = v4l2_subdev_link_validate,
1005 };
1006
1007 /* --- V4L2 ctrl --- */
1008 static int mt9v111_s_ctrl(struct v4l2_ctrl *ctrl)
1009 {
1010         struct mt9v111_dev *mt9v111 = container_of(ctrl->handler,
1011                                                    struct mt9v111_dev,
1012                                                    ctrls);
1013         int ret;
1014
1015         mutex_lock(&mt9v111->pwr_mutex);
1016         /*
1017          * If sensor is powered down, just cache new control values,
1018          * no actual register access.
1019          */
1020         if (!mt9v111->pwr_count) {
1021                 mt9v111->pending = true;
1022                 mutex_unlock(&mt9v111->pwr_mutex);
1023                 return 0;
1024         }
1025         mutex_unlock(&mt9v111->pwr_mutex);
1026
1027         /*
1028          * Flickering control gets disabled if both auto exp and auto awb
1029          * are disabled too. If any of the two is enabled, enable it.
1030          *
1031          * Disabling flickering when ae and awb are off allows a more precise
1032          * control of the programmed frame rate.
1033          */
1034         if (mt9v111->auto_exp->is_new || mt9v111->auto_awb->is_new) {
1035                 if (mt9v111->auto_exp->val == V4L2_EXPOSURE_MANUAL &&
1036                     mt9v111->auto_awb->val == V4L2_WHITE_BALANCE_MANUAL)
1037                         ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1038                                              MT9V111_IFP_R08_OUTFMT_CTRL,
1039                                              MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1040                                              0);
1041                 else
1042                         ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1043                                              MT9V111_IFP_R08_OUTFMT_CTRL,
1044                                              MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1045                                              1);
1046                 if (ret)
1047                         return ret;
1048         }
1049
1050         ret = -EINVAL;
1051         switch (ctrl->id) {
1052         case V4L2_CID_AUTO_WHITE_BALANCE:
1053                 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1054                                      MT9V111_IFP_R06_OPMODE_CTRL,
1055                                      MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN,
1056                                      ctrl->val == V4L2_WHITE_BALANCE_AUTO ?
1057                                      MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN : 0);
1058                 break;
1059         case V4L2_CID_EXPOSURE_AUTO:
1060                 ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
1061                                      MT9V111_IFP_R06_OPMODE_CTRL,
1062                                      MT9V111_IFP_R06_OPMODE_CTRL_AE_EN,
1063                                      ctrl->val == V4L2_EXPOSURE_AUTO ?
1064                                      MT9V111_IFP_R06_OPMODE_CTRL_AE_EN : 0);
1065                 break;
1066         case V4L2_CID_HBLANK:
1067                 ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1068                                      MT9V111_CORE_R05_HBLANK,
1069                                      MT9V111_CORE_R05_MAX_HBLANK,
1070                                      mt9v111->hblank->val);
1071                 break;
1072         case V4L2_CID_VBLANK:
1073                 ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
1074                                      MT9V111_CORE_R06_VBLANK,
1075                                      MT9V111_CORE_R06_MAX_VBLANK,
1076                                      mt9v111->vblank->val);
1077                 break;
1078         }
1079
1080         return ret;
1081 }
1082
1083 static const struct v4l2_ctrl_ops mt9v111_ctrl_ops = {
1084         .s_ctrl = mt9v111_s_ctrl,
1085 };
1086
1087 static int mt9v111_chip_probe(struct mt9v111_dev *mt9v111)
1088 {
1089         int ret;
1090         u16 val;
1091
1092         ret = __mt9v111_power_on(&mt9v111->sd);
1093         if (ret)
1094                 return ret;
1095
1096         ret = mt9v111_read(mt9v111->client, MT9V111_R01_CORE,
1097                            MT9V111_CORE_RFF_CHIP_VER, &val);
1098         if (ret)
1099                 goto power_off;
1100
1101         if ((val >> 8) != MT9V111_CHIP_ID_HIGH &&
1102             (val & 0xff) != MT9V111_CHIP_ID_LOW) {
1103                 dev_err(mt9v111->dev,
1104                         "Unable to identify MT9V111 chip: 0x%2x%2x\n",
1105                         val >> 8, val & 0xff);
1106                 ret = -EIO;
1107                 goto power_off;
1108         }
1109
1110         dev_dbg(mt9v111->dev, "Chip identified: 0x%2x%2x\n",
1111                 val >> 8, val & 0xff);
1112
1113 power_off:
1114         __mt9v111_power_off(&mt9v111->sd);
1115
1116         return ret;
1117 }
1118
1119 static int mt9v111_probe(struct i2c_client *client)
1120 {
1121         struct mt9v111_dev *mt9v111;
1122         struct v4l2_fract tpf;
1123         int ret;
1124
1125         mt9v111 = devm_kzalloc(&client->dev, sizeof(*mt9v111), GFP_KERNEL);
1126         if (!mt9v111)
1127                 return -ENOMEM;
1128
1129         mt9v111->dev = &client->dev;
1130         mt9v111->client = client;
1131
1132         mt9v111->clk = devm_clk_get(&client->dev, NULL);
1133         if (IS_ERR(mt9v111->clk))
1134                 return PTR_ERR(mt9v111->clk);
1135
1136         mt9v111->sysclk = clk_get_rate(mt9v111->clk);
1137         if (mt9v111->sysclk > MT9V111_MAX_CLKIN)
1138                 return -EINVAL;
1139
1140         mt9v111->oe = devm_gpiod_get_optional(&client->dev, "enable",
1141                                               GPIOD_OUT_LOW);
1142         if (IS_ERR(mt9v111->oe)) {
1143                 dev_err(&client->dev, "Unable to get GPIO \"enable\": %ld\n",
1144                         PTR_ERR(mt9v111->oe));
1145                 return PTR_ERR(mt9v111->oe);
1146         }
1147
1148         mt9v111->standby = devm_gpiod_get_optional(&client->dev, "standby",
1149                                                    GPIOD_OUT_HIGH);
1150         if (IS_ERR(mt9v111->standby)) {
1151                 dev_err(&client->dev, "Unable to get GPIO \"standby\": %ld\n",
1152                         PTR_ERR(mt9v111->standby));
1153                 return PTR_ERR(mt9v111->standby);
1154         }
1155
1156         mt9v111->reset = devm_gpiod_get_optional(&client->dev, "reset",
1157                                                  GPIOD_OUT_LOW);
1158         if (IS_ERR(mt9v111->reset)) {
1159                 dev_err(&client->dev, "Unable to get GPIO \"reset\": %ld\n",
1160                         PTR_ERR(mt9v111->reset));
1161                 return PTR_ERR(mt9v111->reset);
1162         }
1163
1164         mutex_init(&mt9v111->pwr_mutex);
1165         mutex_init(&mt9v111->stream_mutex);
1166
1167         v4l2_ctrl_handler_init(&mt9v111->ctrls, 5);
1168
1169         mt9v111->auto_awb = v4l2_ctrl_new_std(&mt9v111->ctrls,
1170                                               &mt9v111_ctrl_ops,
1171                                               V4L2_CID_AUTO_WHITE_BALANCE,
1172                                               0, 1, 1,
1173                                               V4L2_WHITE_BALANCE_AUTO);
1174         mt9v111->auto_exp = v4l2_ctrl_new_std_menu(&mt9v111->ctrls,
1175                                                    &mt9v111_ctrl_ops,
1176                                                    V4L2_CID_EXPOSURE_AUTO,
1177                                                    V4L2_EXPOSURE_MANUAL,
1178                                                    0, V4L2_EXPOSURE_AUTO);
1179         mt9v111->hblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1180                                             V4L2_CID_HBLANK,
1181                                             MT9V111_CORE_R05_MIN_HBLANK,
1182                                             MT9V111_CORE_R05_MAX_HBLANK, 1,
1183                                             MT9V111_CORE_R05_DEF_HBLANK);
1184         mt9v111->vblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1185                                             V4L2_CID_VBLANK,
1186                                             MT9V111_CORE_R06_MIN_VBLANK,
1187                                             MT9V111_CORE_R06_MAX_VBLANK, 1,
1188                                             MT9V111_CORE_R06_DEF_VBLANK);
1189
1190         /* PIXEL_RATE is fixed: just expose it to user space. */
1191         v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
1192                           V4L2_CID_PIXEL_RATE, 0,
1193                           DIV_ROUND_CLOSEST(mt9v111->sysclk, 2), 1,
1194                           DIV_ROUND_CLOSEST(mt9v111->sysclk, 2));
1195
1196         if (mt9v111->ctrls.error) {
1197                 ret = mt9v111->ctrls.error;
1198                 goto error_free_ctrls;
1199         }
1200         mt9v111->sd.ctrl_handler = &mt9v111->ctrls;
1201
1202         /* Start with default configuration: 640x480 UYVY. */
1203         mt9v111->fmt    = mt9v111_def_fmt;
1204
1205         /* Re-calculate blankings for 640x480@15fps. */
1206         mt9v111->fps            = 15;
1207         tpf.numerator           = 1;
1208         tpf.denominator         = mt9v111->fps;
1209         mt9v111_calc_frame_rate(mt9v111, &tpf);
1210
1211         mt9v111->pwr_count      = 0;
1212         mt9v111->addr_space     = MT9V111_R01_IFP;
1213         mt9v111->pending        = true;
1214
1215         v4l2_i2c_subdev_init(&mt9v111->sd, client, &mt9v111_ops);
1216         mt9v111->sd.internal_ops = &mt9v111_internal_ops;
1217
1218         mt9v111->sd.flags       |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1219         mt9v111->sd.entity.ops  = &mt9v111_subdev_entity_ops;
1220         mt9v111->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
1221
1222         mt9v111->pad.flags      = MEDIA_PAD_FL_SOURCE;
1223         ret = media_entity_pads_init(&mt9v111->sd.entity, 1, &mt9v111->pad);
1224         if (ret)
1225                 goto error_free_entity;
1226
1227         ret = mt9v111_chip_probe(mt9v111);
1228         if (ret)
1229                 goto error_free_entity;
1230
1231         ret = v4l2_async_register_subdev(&mt9v111->sd);
1232         if (ret)
1233                 goto error_free_entity;
1234
1235         return 0;
1236
1237 error_free_entity:
1238         media_entity_cleanup(&mt9v111->sd.entity);
1239
1240 error_free_ctrls:
1241         v4l2_ctrl_handler_free(&mt9v111->ctrls);
1242
1243         mutex_destroy(&mt9v111->pwr_mutex);
1244         mutex_destroy(&mt9v111->stream_mutex);
1245
1246         return ret;
1247 }
1248
1249 static void mt9v111_remove(struct i2c_client *client)
1250 {
1251         struct v4l2_subdev *sd = i2c_get_clientdata(client);
1252         struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
1253
1254         v4l2_async_unregister_subdev(sd);
1255
1256         media_entity_cleanup(&sd->entity);
1257
1258         v4l2_ctrl_handler_free(&mt9v111->ctrls);
1259
1260         mutex_destroy(&mt9v111->pwr_mutex);
1261         mutex_destroy(&mt9v111->stream_mutex);
1262 }
1263
1264 static const struct of_device_id mt9v111_of_match[] = {
1265         { .compatible = "aptina,mt9v111", },
1266         { /* sentinel */ },
1267 };
1268
1269 static struct i2c_driver mt9v111_driver = {
1270         .driver = {
1271                 .name = "mt9v111",
1272                 .of_match_table = mt9v111_of_match,
1273         },
1274         .probe          = mt9v111_probe,
1275         .remove         = mt9v111_remove,
1276 };
1277
1278 module_i2c_driver(mt9v111_driver);
1279
1280 MODULE_DESCRIPTION("V4L2 sensor driver for Aptina MT9V111");
1281 MODULE_AUTHOR("Jacopo Mondi <jacopo@jmondi.org>");
1282 MODULE_LICENSE("GPL v2");