Merge tag 'docs-5.15' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / drivers / media / dvb-frontends / drxd_hard.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4  *
5  * Copyright (C) 2003-2007 Micronas
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/init.h>
12 #include <linux/delay.h>
13 #include <linux/firmware.h>
14 #include <linux/i2c.h>
15 #include <asm/div64.h>
16
17 #include <media/dvb_frontend.h>
18 #include "drxd.h"
19 #include "drxd_firm.h"
20
21 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23
24 #define CHUNK_SIZE 48
25
26 #define DRX_I2C_RMW           0x10
27 #define DRX_I2C_BROADCAST     0x20
28 #define DRX_I2C_CLEARCRC      0x80
29 #define DRX_I2C_SINGLE_MASTER 0xC0
30 #define DRX_I2C_MODEFLAGS     0xC0
31 #define DRX_I2C_FLAGS         0xF0
32
33 #define DEFAULT_LOCK_TIMEOUT    1100
34
35 #define DRX_CHANNEL_AUTO 0
36 #define DRX_CHANNEL_HIGH 1
37 #define DRX_CHANNEL_LOW  2
38
39 #define DRX_LOCK_MPEG  1
40 #define DRX_LOCK_FEC   2
41 #define DRX_LOCK_DEMOD 4
42
43 /****************************************************************************/
44
45 enum CSCDState {
46         CSCD_INIT = 0,
47         CSCD_SET,
48         CSCD_SAVED
49 };
50
51 enum CDrxdState {
52         DRXD_UNINITIALIZED = 0,
53         DRXD_STOPPED,
54         DRXD_STARTED
55 };
56
57 enum AGC_CTRL_MODE {
58         AGC_CTRL_AUTO = 0,
59         AGC_CTRL_USER,
60         AGC_CTRL_OFF
61 };
62
63 enum OperationMode {
64         OM_Default,
65         OM_DVBT_Diversity_Front,
66         OM_DVBT_Diversity_End
67 };
68
69 struct SCfgAgc {
70         enum AGC_CTRL_MODE ctrlMode;
71         u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
72         u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
73         u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
74         u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
75         u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
76
77         u16 R1;
78         u16 R2;
79         u16 R3;
80 };
81
82 struct SNoiseCal {
83         int cpOpt;
84         short cpNexpOfs;
85         short tdCal2k;
86         short tdCal8k;
87 };
88
89 enum app_env {
90         APPENV_STATIC = 0,
91         APPENV_PORTABLE = 1,
92         APPENV_MOBILE = 2
93 };
94
95 enum EIFFilter {
96         IFFILTER_SAW = 0,
97         IFFILTER_DISCRETE = 1
98 };
99
100 struct drxd_state {
101         struct dvb_frontend frontend;
102         struct dvb_frontend_ops ops;
103         struct dtv_frontend_properties props;
104
105         const struct firmware *fw;
106         struct device *dev;
107
108         struct i2c_adapter *i2c;
109         void *priv;
110         struct drxd_config config;
111
112         int i2c_access;
113         int init_done;
114         struct mutex mutex;
115
116         u8 chip_adr;
117         u16 hi_cfg_timing_div;
118         u16 hi_cfg_bridge_delay;
119         u16 hi_cfg_wakeup_key;
120         u16 hi_cfg_ctrl;
121
122         u16 intermediate_freq;
123         u16 osc_clock_freq;
124
125         enum CSCDState cscd_state;
126         enum CDrxdState drxd_state;
127
128         u16 sys_clock_freq;
129         s16 osc_clock_deviation;
130         u16 expected_sys_clock_freq;
131
132         u16 insert_rs_byte;
133         u16 enable_parallel;
134
135         int operation_mode;
136
137         struct SCfgAgc if_agc_cfg;
138         struct SCfgAgc rf_agc_cfg;
139
140         struct SNoiseCal noise_cal;
141
142         u32 fe_fs_add_incr;
143         u32 org_fe_fs_add_incr;
144         u16 current_fe_if_incr;
145
146         u16 m_FeAgRegAgPwd;
147         u16 m_FeAgRegAgAgcSio;
148
149         u16 m_EcOcRegOcModeLop;
150         u16 m_EcOcRegSncSncLvl;
151         u8 *m_InitAtomicRead;
152         u8 *m_HiI2cPatch;
153
154         u8 *m_ResetCEFR;
155         u8 *m_InitFE_1;
156         u8 *m_InitFE_2;
157         u8 *m_InitCP;
158         u8 *m_InitCE;
159         u8 *m_InitEQ;
160         u8 *m_InitSC;
161         u8 *m_InitEC;
162         u8 *m_ResetECRAM;
163         u8 *m_InitDiversityFront;
164         u8 *m_InitDiversityEnd;
165         u8 *m_DisableDiversity;
166         u8 *m_StartDiversityFront;
167         u8 *m_StartDiversityEnd;
168
169         u8 *m_DiversityDelay8MHZ;
170         u8 *m_DiversityDelay6MHZ;
171
172         u8 *microcode;
173         u32 microcode_length;
174
175         int type_A;
176         int PGA;
177         int diversity;
178         int tuner_mirrors;
179
180         enum app_env app_env_default;
181         enum app_env app_env_diversity;
182
183 };
184
185 /****************************************************************************/
186 /* I2C **********************************************************************/
187 /****************************************************************************/
188
189 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190 {
191         struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192
193         if (i2c_transfer(adap, &msg, 1) != 1)
194                 return -1;
195         return 0;
196 }
197
198 static int i2c_read(struct i2c_adapter *adap,
199                     u8 adr, u8 *msg, int len, u8 *answ, int alen)
200 {
201         struct i2c_msg msgs[2] = {
202                 {
203                         .addr = adr, .flags = 0,
204                         .buf = msg, .len = len
205                 }, {
206                         .addr = adr, .flags = I2C_M_RD,
207                         .buf = answ, .len = alen
208                 }
209         };
210         if (i2c_transfer(adap, msgs, 2) != 2)
211                 return -1;
212         return 0;
213 }
214
215 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216 {
217         u64 tmp64;
218
219         tmp64 = (u64)a * (u64)b;
220         do_div(tmp64, c);
221
222         return (u32) tmp64;
223 }
224
225 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226 {
227         u8 adr = state->config.demod_address;
228         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230         };
231         u8 mm2[2];
232         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233                 return -1;
234         if (data)
235                 *data = mm2[0] | (mm2[1] << 8);
236         return mm2[0] | (mm2[1] << 8);
237 }
238
239 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240 {
241         u8 adr = state->config.demod_address;
242         u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244         };
245         u8 mm2[4];
246
247         if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248                 return -1;
249         if (data)
250                 *data =
251                     mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252         return 0;
253 }
254
255 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256 {
257         u8 adr = state->config.demod_address;
258         u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260                 data & 0xff, (data >> 8) & 0xff
261         };
262
263         if (i2c_write(state->i2c, adr, mm, 6) < 0)
264                 return -1;
265         return 0;
266 }
267
268 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269 {
270         u8 adr = state->config.demod_address;
271         u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273                 data & 0xff, (data >> 8) & 0xff,
274                 (data >> 16) & 0xff, (data >> 24) & 0xff
275         };
276
277         if (i2c_write(state->i2c, adr, mm, 8) < 0)
278                 return -1;
279         return 0;
280 }
281
282 static int write_chunk(struct drxd_state *state,
283                        u32 reg, u8 *data, u32 len, u8 flags)
284 {
285         u8 adr = state->config.demod_address;
286         u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287                 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288         };
289         int i;
290
291         for (i = 0; i < len; i++)
292                 mm[4 + i] = data[i];
293         if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294                 printk(KERN_ERR "error in write_chunk\n");
295                 return -1;
296         }
297         return 0;
298 }
299
300 static int WriteBlock(struct drxd_state *state,
301                       u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302 {
303         while (BlockSize > 0) {
304                 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305
306                 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307                         return -1;
308                 pBlock += Chunk;
309                 Address += (Chunk >> 1);
310                 BlockSize -= Chunk;
311         }
312         return 0;
313 }
314
315 static int WriteTable(struct drxd_state *state, u8 * pTable)
316 {
317         int status = 0;
318
319         if (!pTable)
320                 return 0;
321
322         while (!status) {
323                 u16 Length;
324                 u32 Address = pTable[0] | (pTable[1] << 8) |
325                     (pTable[2] << 16) | (pTable[3] << 24);
326
327                 if (Address == 0xFFFFFFFF)
328                         break;
329                 pTable += sizeof(u32);
330
331                 Length = pTable[0] | (pTable[1] << 8);
332                 pTable += sizeof(u16);
333                 if (!Length)
334                         break;
335                 status = WriteBlock(state, Address, Length * 2, pTable, 0);
336                 pTable += (Length * 2);
337         }
338         return status;
339 }
340
341 /****************************************************************************/
342 /****************************************************************************/
343 /****************************************************************************/
344
345 static int ResetCEFR(struct drxd_state *state)
346 {
347         return WriteTable(state, state->m_ResetCEFR);
348 }
349
350 static int InitCP(struct drxd_state *state)
351 {
352         return WriteTable(state, state->m_InitCP);
353 }
354
355 static int InitCE(struct drxd_state *state)
356 {
357         int status;
358         enum app_env AppEnv = state->app_env_default;
359
360         do {
361                 status = WriteTable(state, state->m_InitCE);
362                 if (status < 0)
363                         break;
364
365                 if (state->operation_mode == OM_DVBT_Diversity_Front ||
366                     state->operation_mode == OM_DVBT_Diversity_End) {
367                         AppEnv = state->app_env_diversity;
368                 }
369                 if (AppEnv == APPENV_STATIC) {
370                         status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371                         if (status < 0)
372                                 break;
373                 } else if (AppEnv == APPENV_PORTABLE) {
374                         status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375                         if (status < 0)
376                                 break;
377                 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
378                         status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379                         if (status < 0)
380                                 break;
381                 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382                         status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383                         if (status < 0)
384                                 break;
385                 }
386
387                 /* start ce */
388                 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389                 if (status < 0)
390                         break;
391         } while (0);
392         return status;
393 }
394
395 static int StopOC(struct drxd_state *state)
396 {
397         int status = 0;
398         u16 ocSyncLvl = 0;
399         u16 ocModeLop = state->m_EcOcRegOcModeLop;
400         u16 dtoIncLop = 0;
401         u16 dtoIncHip = 0;
402
403         do {
404                 /* Store output configuration */
405                 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406                 if (status < 0)
407                         break;
408                 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409                 state->m_EcOcRegSncSncLvl = ocSyncLvl;
410                 /* m_EcOcRegOcModeLop = ocModeLop; */
411
412                 /* Flush FIFO (byte-boundary) at fixed rate */
413                 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414                 if (status < 0)
415                         break;
416                 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417                 if (status < 0)
418                         break;
419                 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420                 if (status < 0)
421                         break;
422                 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423                 if (status < 0)
424                         break;
425                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428                 if (status < 0)
429                         break;
430                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431                 if (status < 0)
432                         break;
433
434                 msleep(1);
435                 /* Output pins to '0' */
436                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437                 if (status < 0)
438                         break;
439
440                 /* Force the OC out of sync */
441                 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443                 if (status < 0)
444                         break;
445                 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446                 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447                 ocModeLop |= 0x2;       /* Magically-out-of-sync */
448                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449                 if (status < 0)
450                         break;
451                 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452                 if (status < 0)
453                         break;
454                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455                 if (status < 0)
456                         break;
457         } while (0);
458
459         return status;
460 }
461
462 static int StartOC(struct drxd_state *state)
463 {
464         int status = 0;
465
466         do {
467                 /* Stop OC */
468                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469                 if (status < 0)
470                         break;
471
472                 /* Restore output configuration */
473                 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474                 if (status < 0)
475                         break;
476                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477                 if (status < 0)
478                         break;
479
480                 /* Output pins active again */
481                 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482                 if (status < 0)
483                         break;
484
485                 /* Start OC */
486                 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487                 if (status < 0)
488                         break;
489         } while (0);
490         return status;
491 }
492
493 static int InitEQ(struct drxd_state *state)
494 {
495         return WriteTable(state, state->m_InitEQ);
496 }
497
498 static int InitEC(struct drxd_state *state)
499 {
500         return WriteTable(state, state->m_InitEC);
501 }
502
503 static int InitSC(struct drxd_state *state)
504 {
505         return WriteTable(state, state->m_InitSC);
506 }
507
508 static int InitAtomicRead(struct drxd_state *state)
509 {
510         return WriteTable(state, state->m_InitAtomicRead);
511 }
512
513 static int CorrectSysClockDeviation(struct drxd_state *state);
514
515 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516 {
517         u16 ScRaRamLock = 0;
518         const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519                                     SC_RA_RAM_LOCK_FEC__M |
520                                     SC_RA_RAM_LOCK_DEMOD__M);
521         const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522                                    SC_RA_RAM_LOCK_DEMOD__M);
523         const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524
525         int status;
526
527         *pLockStatus = 0;
528
529         status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530         if (status < 0) {
531                 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532                 return status;
533         }
534
535         if (state->drxd_state != DRXD_STARTED)
536                 return 0;
537
538         if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539                 *pLockStatus |= DRX_LOCK_MPEG;
540                 CorrectSysClockDeviation(state);
541         }
542
543         if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544                 *pLockStatus |= DRX_LOCK_FEC;
545
546         if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547                 *pLockStatus |= DRX_LOCK_DEMOD;
548         return 0;
549 }
550
551 /****************************************************************************/
552
553 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554 {
555         int status;
556
557         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558                 return -1;
559
560         if (cfg->ctrlMode == AGC_CTRL_USER) {
561                 do {
562                         u16 FeAgRegPm1AgcWri;
563                         u16 FeAgRegAgModeLop;
564
565                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566                         if (status < 0)
567                                 break;
568                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569                         FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571                         if (status < 0)
572                                 break;
573
574                         FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575                                                   FE_AG_REG_PM1_AGC_WRI__M);
576                         status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577                         if (status < 0)
578                                 break;
579                 } while (0);
580         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581                 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582                     ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583                     ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584                     ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585                     )
586                         return -1;
587                 do {
588                         u16 FeAgRegAgModeLop;
589                         u16 FeAgRegEgcSetLvl;
590                         u16 slope, offset;
591
592                         /* == Mode == */
593
594                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595                         if (status < 0)
596                                 break;
597                         FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598                         FeAgRegAgModeLop |=
599                             FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601                         if (status < 0)
602                                 break;
603
604                         /* == Settle level == */
605
606                         FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607                                                   FE_AG_REG_EGC_SET_LVL__M);
608                         status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609                         if (status < 0)
610                                 break;
611
612                         /* == Min/Max == */
613
614                         slope = (u16) ((cfg->maxOutputLevel -
615                                         cfg->minOutputLevel) / 2);
616                         offset = (u16) ((cfg->maxOutputLevel +
617                                          cfg->minOutputLevel) / 2 - 511);
618
619                         status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620                         if (status < 0)
621                                 break;
622                         status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623                         if (status < 0)
624                                 break;
625
626                         /* == Speed == */
627                         {
628                                 const u16 maxRur = 8;
629                                 static const u16 slowIncrDecLUT[] = {
630                                         3, 4, 4, 5, 6 };
631                                 static const u16 fastIncrDecLUT[] = {
632                                         14, 15, 15, 16,
633                                         17, 18, 18, 19,
634                                         20, 21, 22, 23,
635                                         24, 26, 27, 28,
636                                         29, 31
637                                 };
638
639                                 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640                                     (maxRur + 1);
641                                 u16 fineSpeed = (u16) (cfg->speed -
642                                                        ((cfg->speed /
643                                                          fineSteps) *
644                                                         fineSteps));
645                                 u16 invRurCount = (u16) (cfg->speed /
646                                                          fineSteps);
647                                 u16 rurCount;
648                                 if (invRurCount > maxRur) {
649                                         rurCount = 0;
650                                         fineSpeed += fineSteps;
651                                 } else {
652                                         rurCount = maxRur - invRurCount;
653                                 }
654
655                                 /*
656                                    fastInc = default *
657                                    (2^(fineSpeed/fineSteps))
658                                    => range[default...2*default>
659                                    slowInc = default *
660                                    (2^(fineSpeed/fineSteps))
661                                  */
662                                 {
663                                         u16 fastIncrDec =
664                                             fastIncrDecLUT[fineSpeed /
665                                                            ((fineSteps /
666                                                              (14 + 1)) + 1)];
667                                         u16 slowIncrDec =
668                                             slowIncrDecLUT[fineSpeed /
669                                                            (fineSteps /
670                                                             (3 + 1))];
671
672                                         status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673                                         if (status < 0)
674                                                 break;
675                                         status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676                                         if (status < 0)
677                                                 break;
678                                         status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679                                         if (status < 0)
680                                                 break;
681                                         status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682                                         if (status < 0)
683                                                 break;
684                                         status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685                                         if (status < 0)
686                                                 break;
687                                 }
688                         }
689                 } while (0);
690
691         } else {
692                 /* No OFF mode for IF control */
693                 return -1;
694         }
695         return status;
696 }
697
698 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699 {
700         int status = 0;
701
702         if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703                 return -1;
704
705         if (cfg->ctrlMode == AGC_CTRL_USER) {
706                 do {
707                         u16 AgModeLop = 0;
708                         u16 level = (cfg->outputLevel);
709
710                         if (level == DRXD_FE_CTRL_MAX)
711                                 level++;
712
713                         status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714                         if (status < 0)
715                                 break;
716
717                         /*==== Mode ====*/
718
719                         /* Powerdown PD2, WRI source */
720                         state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721                         state->m_FeAgRegAgPwd |=
722                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723                         status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724                         if (status < 0)
725                                 break;
726
727                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728                         if (status < 0)
729                                 break;
730                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735                         if (status < 0)
736                                 break;
737
738                         /* enable AGC2 pin */
739                         {
740                                 u16 FeAgRegAgAgcSio = 0;
741                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742                                 if (status < 0)
743                                         break;
744                                 FeAgRegAgAgcSio &=
745                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746                                 FeAgRegAgAgcSio |=
747                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749                                 if (status < 0)
750                                         break;
751                         }
752
753                 } while (0);
754         } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755                 u16 AgModeLop = 0;
756
757                 do {
758                         u16 level;
759                         /* Automatic control */
760                         /* Powerup PD2, AGC2 as output, TGC source */
761                         (state->m_FeAgRegAgPwd) &=
762                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763                         (state->m_FeAgRegAgPwd) |=
764                             FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766                         if (status < 0)
767                                 break;
768
769                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770                         if (status < 0)
771                                 break;
772                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775                                       FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777                         if (status < 0)
778                                 break;
779                         /* Settle level */
780                         level = (((cfg->settleLevel) >> 4) &
781                                  FE_AG_REG_TGC_SET_LVL__M);
782                         status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783                         if (status < 0)
784                                 break;
785
786                         /* Min/max: don't care */
787
788                         /* Speed: TODO */
789
790                         /* enable AGC2 pin */
791                         {
792                                 u16 FeAgRegAgAgcSio = 0;
793                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794                                 if (status < 0)
795                                         break;
796                                 FeAgRegAgAgcSio &=
797                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798                                 FeAgRegAgAgcSio |=
799                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801                                 if (status < 0)
802                                         break;
803                         }
804
805                 } while (0);
806         } else {
807                 u16 AgModeLop = 0;
808
809                 do {
810                         /* No RF AGC control */
811                         /* Powerdown PD2, AGC2 as output, WRI source */
812                         (state->m_FeAgRegAgPwd) &=
813                             ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814                         (state->m_FeAgRegAgPwd) |=
815                             FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816                         status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817                         if (status < 0)
818                                 break;
819
820                         status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821                         if (status < 0)
822                                 break;
823                         AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824                                         FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825                         AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826                                       FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827                         status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828                         if (status < 0)
829                                 break;
830
831                         /* set FeAgRegAgAgcSio AGC2 (RF) as input */
832                         {
833                                 u16 FeAgRegAgAgcSio = 0;
834                                 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835                                 if (status < 0)
836                                         break;
837                                 FeAgRegAgAgcSio &=
838                                     ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839                                 FeAgRegAgAgcSio |=
840                                     FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841                                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842                                 if (status < 0)
843                                         break;
844                         }
845                 } while (0);
846         }
847         return status;
848 }
849
850 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851 {
852         int status = 0;
853
854         *pValue = 0;
855         if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856                 u16 Value;
857                 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858                 Value &= FE_AG_REG_GC1_AGC_DAT__M;
859                 if (status >= 0) {
860                         /*           3.3V
861                            |
862                            R1
863                            |
864                            Vin - R3 - * -- Vout
865                            |
866                            R2
867                            |
868                            GND
869                          */
870                         u32 R1 = state->if_agc_cfg.R1;
871                         u32 R2 = state->if_agc_cfg.R2;
872                         u32 R3 = state->if_agc_cfg.R3;
873
874                         u32 Vmax, Rpar, Vmin, Vout;
875
876                         if (R2 == 0 && (R1 == 0 || R3 == 0))
877                                 return 0;
878
879                         Vmax = (3300 * R2) / (R1 + R2);
880                         Rpar = (R2 * R3) / (R3 + R2);
881                         Vmin = (3300 * Rpar) / (R1 + Rpar);
882                         Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883
884                         *pValue = Vout;
885                 }
886         }
887         return status;
888 }
889
890 static int load_firmware(struct drxd_state *state, const char *fw_name)
891 {
892         const struct firmware *fw;
893
894         if (request_firmware(&fw, fw_name, state->dev) < 0) {
895                 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896                 return -EIO;
897         }
898
899         state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900         if (!state->microcode) {
901                 release_firmware(fw);
902                 return -ENOMEM;
903         }
904
905         state->microcode_length = fw->size;
906         release_firmware(fw);
907         return 0;
908 }
909
910 static int DownloadMicrocode(struct drxd_state *state,
911                              const u8 *pMCImage, u32 Length)
912 {
913         u8 *pSrc;
914         u32 Address;
915         u16 nBlocks;
916         u16 BlockSize;
917         u32 offset = 0;
918         int i, status = 0;
919
920         pSrc = (u8 *) pMCImage;
921         /* We're not using Flags */
922         /* Flags = (pSrc[0] << 8) | pSrc[1]; */
923         pSrc += sizeof(u16);
924         offset += sizeof(u16);
925         nBlocks = (pSrc[0] << 8) | pSrc[1];
926         pSrc += sizeof(u16);
927         offset += sizeof(u16);
928
929         for (i = 0; i < nBlocks; i++) {
930                 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
931                     (pSrc[2] << 8) | pSrc[3];
932                 pSrc += sizeof(u32);
933                 offset += sizeof(u32);
934
935                 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
936                 pSrc += sizeof(u16);
937                 offset += sizeof(u16);
938
939                 /* We're not using Flags */
940                 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
941                 pSrc += sizeof(u16);
942                 offset += sizeof(u16);
943
944                 /* We're not using BlockCRC */
945                 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
946                 pSrc += sizeof(u16);
947                 offset += sizeof(u16);
948
949                 status = WriteBlock(state, Address, BlockSize,
950                                     pSrc, DRX_I2C_CLEARCRC);
951                 if (status < 0)
952                         break;
953                 pSrc += BlockSize;
954                 offset += BlockSize;
955         }
956
957         return status;
958 }
959
960 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
961 {
962         u32 nrRetries = 0;
963         int status;
964
965         status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
966         if (status < 0)
967                 return status;
968
969         do {
970                 nrRetries += 1;
971                 if (nrRetries > DRXD_MAX_RETRIES) {
972                         status = -1;
973                         break;
974                 }
975                 status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
976         } while (status != 0);
977
978         if (status >= 0)
979                 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
980         return status;
981 }
982
983 static int HI_CfgCommand(struct drxd_state *state)
984 {
985         int status = 0;
986
987         mutex_lock(&state->mutex);
988         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
989         Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
990         Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
991         Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
992         Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
993
994         Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
995
996         if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
997             HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
998                 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
999                                  HI_RA_RAM_SRV_CMD_CONFIG, 0);
1000         else
1001                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1002         mutex_unlock(&state->mutex);
1003         return status;
1004 }
1005
1006 static int InitHI(struct drxd_state *state)
1007 {
1008         state->hi_cfg_wakeup_key = (state->chip_adr);
1009         /* port/bridge/power down ctrl */
1010         state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1011         return HI_CfgCommand(state);
1012 }
1013
1014 static int HI_ResetCommand(struct drxd_state *state)
1015 {
1016         int status;
1017
1018         mutex_lock(&state->mutex);
1019         status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1020                          HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1021         if (status == 0)
1022                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1023         mutex_unlock(&state->mutex);
1024         msleep(1);
1025         return status;
1026 }
1027
1028 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1029 {
1030         state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1031         if (bEnableBridge)
1032                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1033         else
1034                 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1035
1036         return HI_CfgCommand(state);
1037 }
1038
1039 #define HI_TR_WRITE      0x9
1040 #define HI_TR_READ       0xA
1041 #define HI_TR_READ_WRITE 0xB
1042 #define HI_TR_BROADCAST  0x4
1043
1044 #if 0
1045 static int AtomicReadBlock(struct drxd_state *state,
1046                            u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1047 {
1048         int status;
1049         int i = 0;
1050
1051         /* Parameter check */
1052         if ((!pData) || ((DataSize & 1) != 0))
1053                 return -1;
1054
1055         mutex_lock(&state->mutex);
1056
1057         do {
1058                 /* Instruct HI to read n bytes */
1059                 /* TODO use proper names forthese egisters */
1060                 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1061                 if (status < 0)
1062                         break;
1063                 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1064                 if (status < 0)
1065                         break;
1066                 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1067                 if (status < 0)
1068                         break;
1069                 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1070                 if (status < 0)
1071                         break;
1072                 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1073                 if (status < 0)
1074                         break;
1075
1076                 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1077                 if (status < 0)
1078                         break;
1079
1080         } while (0);
1081
1082         if (status >= 0) {
1083                 for (i = 0; i < (DataSize / 2); i += 1) {
1084                         u16 word;
1085
1086                         status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1087                                         &word, 0);
1088                         if (status < 0)
1089                                 break;
1090                         pData[2 * i] = (u8) (word & 0xFF);
1091                         pData[(2 * i) + 1] = (u8) (word >> 8);
1092                 }
1093         }
1094         mutex_unlock(&state->mutex);
1095         return status;
1096 }
1097
1098 static int AtomicReadReg32(struct drxd_state *state,
1099                            u32 Addr, u32 *pData, u8 Flags)
1100 {
1101         u8 buf[sizeof(u32)];
1102         int status;
1103
1104         if (!pData)
1105                 return -1;
1106         status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1107         *pData = (((u32) buf[0]) << 0) +
1108             (((u32) buf[1]) << 8) +
1109             (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1110         return status;
1111 }
1112 #endif
1113
1114 static int StopAllProcessors(struct drxd_state *state)
1115 {
1116         return Write16(state, HI_COMM_EXEC__A,
1117                        SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1118 }
1119
1120 static int EnableAndResetMB(struct drxd_state *state)
1121 {
1122         if (state->type_A) {
1123                 /* disable? monitor bus observe @ EC_OC */
1124                 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1125         }
1126
1127         /* do inverse broadcast, followed by explicit write to HI */
1128         Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1129         Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1130         return 0;
1131 }
1132
1133 static int InitCC(struct drxd_state *state)
1134 {
1135         int status = 0;
1136
1137         if (state->osc_clock_freq == 0 ||
1138             state->osc_clock_freq > 20000 ||
1139             (state->osc_clock_freq % 4000) != 0) {
1140                 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1141                 return -1;
1142         }
1143
1144         status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1145         status |= Write16(state, CC_REG_PLL_MODE__A,
1146                                 CC_REG_PLL_MODE_BYPASS_PLL |
1147                                 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1148         status |= Write16(state, CC_REG_REF_DIVIDE__A,
1149                                 state->osc_clock_freq / 4000, 0);
1150         status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1151                                 0);
1152         status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1153
1154         return status;
1155 }
1156
1157 static int ResetECOD(struct drxd_state *state)
1158 {
1159         int status = 0;
1160
1161         if (state->type_A)
1162                 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1163         else
1164                 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1165
1166         if (!(status < 0))
1167                 status = WriteTable(state, state->m_ResetECRAM);
1168         if (!(status < 0))
1169                 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1170         return status;
1171 }
1172
1173 /* Configure PGA switch */
1174
1175 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1176 {
1177         int status;
1178         u16 AgModeLop = 0;
1179         u16 AgModeHip = 0;
1180         do {
1181                 if (pgaSwitch) {
1182                         /* PGA on */
1183                         /* fine gain */
1184                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1185                         if (status < 0)
1186                                 break;
1187                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1188                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1189                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1190                         if (status < 0)
1191                                 break;
1192
1193                         /* coarse gain */
1194                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1195                         if (status < 0)
1196                                 break;
1197                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1198                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1199                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1200                         if (status < 0)
1201                                 break;
1202
1203                         /* enable fine and coarse gain, enable AAF,
1204                            no ext resistor */
1205                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1206                         if (status < 0)
1207                                 break;
1208                 } else {
1209                         /* PGA off, bypass */
1210
1211                         /* fine gain */
1212                         status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1213                         if (status < 0)
1214                                 break;
1215                         AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1216                         AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1217                         status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1218                         if (status < 0)
1219                                 break;
1220
1221                         /* coarse gain */
1222                         status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1223                         if (status < 0)
1224                                 break;
1225                         AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1226                         AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1227                         status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1228                         if (status < 0)
1229                                 break;
1230
1231                         /* disable fine and coarse gain, enable AAF,
1232                            no ext resistor */
1233                         status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1234                         if (status < 0)
1235                                 break;
1236                 }
1237         } while (0);
1238         return status;
1239 }
1240
1241 static int InitFE(struct drxd_state *state)
1242 {
1243         int status;
1244
1245         do {
1246                 status = WriteTable(state, state->m_InitFE_1);
1247                 if (status < 0)
1248                         break;
1249
1250                 if (state->type_A) {
1251                         status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1252                                          FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253                                          0);
1254                 } else {
1255                         if (state->PGA)
1256                                 status = SetCfgPga(state, 0);
1257                         else
1258                                 status =
1259                                     Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1260                                             B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1261                                             0);
1262                 }
1263
1264                 if (status < 0)
1265                         break;
1266                 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1267                 if (status < 0)
1268                         break;
1269                 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1270                 if (status < 0)
1271                         break;
1272
1273                 status = WriteTable(state, state->m_InitFE_2);
1274                 if (status < 0)
1275                         break;
1276
1277         } while (0);
1278
1279         return status;
1280 }
1281
1282 static int InitFT(struct drxd_state *state)
1283 {
1284         /*
1285            norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1286            SC stuff
1287          */
1288         return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1289 }
1290
1291 static int SC_WaitForReady(struct drxd_state *state)
1292 {
1293         int i;
1294
1295         for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1296                 int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1297                 if (status == 0)
1298                         return status;
1299         }
1300         return -1;
1301 }
1302
1303 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1304 {
1305         int status = 0, ret;
1306         u16 errCode;
1307
1308         status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1309         if (status < 0)
1310                 return status;
1311
1312         SC_WaitForReady(state);
1313
1314         ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1315
1316         if (ret < 0 || errCode == 0xFFFF) {
1317                 printk(KERN_ERR "Command Error\n");
1318                 status = -1;
1319         }
1320
1321         return status;
1322 }
1323
1324 static int SC_ProcStartCommand(struct drxd_state *state,
1325                                u16 subCmd, u16 param0, u16 param1)
1326 {
1327         int ret, status = 0;
1328         u16 scExec;
1329
1330         mutex_lock(&state->mutex);
1331         do {
1332                 ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1333                 if (ret < 0 || scExec != 1) {
1334                         status = -1;
1335                         break;
1336                 }
1337                 SC_WaitForReady(state);
1338                 status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1339                 status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1340                 status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1341
1342                 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1343         } while (0);
1344         mutex_unlock(&state->mutex);
1345         return status;
1346 }
1347
1348 static int SC_SetPrefParamCommand(struct drxd_state *state,
1349                                   u16 subCmd, u16 param0, u16 param1)
1350 {
1351         int status;
1352
1353         mutex_lock(&state->mutex);
1354         do {
1355                 status = SC_WaitForReady(state);
1356                 if (status < 0)
1357                         break;
1358                 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1359                 if (status < 0)
1360                         break;
1361                 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1362                 if (status < 0)
1363                         break;
1364                 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1365                 if (status < 0)
1366                         break;
1367
1368                 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1369                 if (status < 0)
1370                         break;
1371         } while (0);
1372         mutex_unlock(&state->mutex);
1373         return status;
1374 }
1375
1376 #if 0
1377 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1378 {
1379         int status = 0;
1380
1381         mutex_lock(&state->mutex);
1382         do {
1383                 status = SC_WaitForReady(state);
1384                 if (status < 0)
1385                         break;
1386                 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1387                 if (status < 0)
1388                         break;
1389                 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1390                 if (status < 0)
1391                         break;
1392         } while (0);
1393         mutex_unlock(&state->mutex);
1394         return status;
1395 }
1396 #endif
1397
1398 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1399 {
1400         int status;
1401
1402         do {
1403                 u16 EcOcRegIprInvMpg = 0;
1404                 u16 EcOcRegOcModeLop = 0;
1405                 u16 EcOcRegOcModeHip = 0;
1406                 u16 EcOcRegOcMpgSio = 0;
1407
1408                 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1409
1410                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1411                         if (bEnableOutput) {
1412                                 EcOcRegOcModeHip |=
1413                                     B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1414                         } else
1415                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1416                         EcOcRegOcModeLop |=
1417                             EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1418                 } else {
1419                         EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1420
1421                         if (bEnableOutput)
1422                                 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1423                         else
1424                                 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425
1426                         /* Don't Insert RS Byte */
1427                         if (state->insert_rs_byte) {
1428                                 EcOcRegOcModeLop &=
1429                                     (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1430                                 EcOcRegOcModeHip &=
1431                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1432                                 EcOcRegOcModeHip |=
1433                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1434                         } else {
1435                                 EcOcRegOcModeLop |=
1436                                     EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1437                                 EcOcRegOcModeHip &=
1438                                     (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1439                                 EcOcRegOcModeHip |=
1440                                     EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1441                         }
1442
1443                         /* Mode = Parallel */
1444                         if (state->enable_parallel)
1445                                 EcOcRegOcModeLop &=
1446                                     (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1447                         else
1448                                 EcOcRegOcModeLop |=
1449                                     EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1450                 }
1451                 /* Invert Data */
1452                 /* EcOcRegIprInvMpg |= 0x00FF; */
1453                 EcOcRegIprInvMpg &= (~(0x00FF));
1454
1455                 /* Invert Error ( we don't use the pin ) */
1456                 /*  EcOcRegIprInvMpg |= 0x0100; */
1457                 EcOcRegIprInvMpg &= (~(0x0100));
1458
1459                 /* Invert Start ( we don't use the pin ) */
1460                 /* EcOcRegIprInvMpg |= 0x0200; */
1461                 EcOcRegIprInvMpg &= (~(0x0200));
1462
1463                 /* Invert Valid ( we don't use the pin ) */
1464                 /* EcOcRegIprInvMpg |= 0x0400; */
1465                 EcOcRegIprInvMpg &= (~(0x0400));
1466
1467                 /* Invert Clock */
1468                 /* EcOcRegIprInvMpg |= 0x0800; */
1469                 EcOcRegIprInvMpg &= (~(0x0800));
1470
1471                 /* EcOcRegOcModeLop =0x05; */
1472                 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1473                 if (status < 0)
1474                         break;
1475                 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1476                 if (status < 0)
1477                         break;
1478                 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1479                 if (status < 0)
1480                         break;
1481                 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1482                 if (status < 0)
1483                         break;
1484         } while (0);
1485         return status;
1486 }
1487
1488 static int SetDeviceTypeId(struct drxd_state *state)
1489 {
1490         int status = 0;
1491         u16 deviceId = 0;
1492
1493         do {
1494                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1495                 if (status < 0)
1496                         break;
1497                 /* TODO: why twice? */
1498                 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1499                 if (status < 0)
1500                         break;
1501                 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1502
1503                 state->type_A = 0;
1504                 state->PGA = 0;
1505                 state->diversity = 0;
1506                 if (deviceId == 0) {    /* on A2 only 3975 available */
1507                         state->type_A = 1;
1508                         printk(KERN_INFO "DRX3975D-A2\n");
1509                 } else {
1510                         deviceId >>= 12;
1511                         printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1512                         switch (deviceId) {
1513                         case 4:
1514                                 state->diversity = 1;
1515                                 fallthrough;
1516                         case 3:
1517                         case 7:
1518                                 state->PGA = 1;
1519                                 break;
1520                         case 6:
1521                                 state->diversity = 1;
1522                                 fallthrough;
1523                         case 5:
1524                         case 8:
1525                                 break;
1526                         default:
1527                                 status = -1;
1528                                 break;
1529                         }
1530                 }
1531         } while (0);
1532
1533         if (status < 0)
1534                 return status;
1535
1536         /* Init Table selection */
1537         state->m_InitAtomicRead = DRXD_InitAtomicRead;
1538         state->m_InitSC = DRXD_InitSC;
1539         state->m_ResetECRAM = DRXD_ResetECRAM;
1540         if (state->type_A) {
1541                 state->m_ResetCEFR = DRXD_ResetCEFR;
1542                 state->m_InitFE_1 = DRXD_InitFEA2_1;
1543                 state->m_InitFE_2 = DRXD_InitFEA2_2;
1544                 state->m_InitCP = DRXD_InitCPA2;
1545                 state->m_InitCE = DRXD_InitCEA2;
1546                 state->m_InitEQ = DRXD_InitEQA2;
1547                 state->m_InitEC = DRXD_InitECA2;
1548                 if (load_firmware(state, DRX_FW_FILENAME_A2))
1549                         return -EIO;
1550         } else {
1551                 state->m_ResetCEFR = NULL;
1552                 state->m_InitFE_1 = DRXD_InitFEB1_1;
1553                 state->m_InitFE_2 = DRXD_InitFEB1_2;
1554                 state->m_InitCP = DRXD_InitCPB1;
1555                 state->m_InitCE = DRXD_InitCEB1;
1556                 state->m_InitEQ = DRXD_InitEQB1;
1557                 state->m_InitEC = DRXD_InitECB1;
1558                 if (load_firmware(state, DRX_FW_FILENAME_B1))
1559                         return -EIO;
1560         }
1561         if (state->diversity) {
1562                 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1563                 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1564                 state->m_DisableDiversity = DRXD_DisableDiversity;
1565                 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1566                 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1567                 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1568                 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1569         } else {
1570                 state->m_InitDiversityFront = NULL;
1571                 state->m_InitDiversityEnd = NULL;
1572                 state->m_DisableDiversity = NULL;
1573                 state->m_StartDiversityFront = NULL;
1574                 state->m_StartDiversityEnd = NULL;
1575                 state->m_DiversityDelay8MHZ = NULL;
1576                 state->m_DiversityDelay6MHZ = NULL;
1577         }
1578
1579         return status;
1580 }
1581
1582 static int CorrectSysClockDeviation(struct drxd_state *state)
1583 {
1584         int status;
1585         s32 incr = 0;
1586         s32 nomincr = 0;
1587         u32 bandwidth = 0;
1588         u32 sysClockInHz = 0;
1589         u32 sysClockFreq = 0;   /* in kHz */
1590         s16 oscClockDeviation;
1591         s16 Diff;
1592
1593         do {
1594                 /* Retrieve bandwidth and incr, sanity check */
1595
1596                 /* These accesses should be AtomicReadReg32, but that
1597                    causes trouble (at least for diversity */
1598                 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1599                 if (status < 0)
1600                         break;
1601                 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1602                 if (status < 0)
1603                         break;
1604
1605                 if (state->type_A) {
1606                         if ((nomincr - incr < -500) || (nomincr - incr > 500))
1607                                 break;
1608                 } else {
1609                         if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1610                                 break;
1611                 }
1612
1613                 switch (state->props.bandwidth_hz) {
1614                 case 8000000:
1615                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1616                         break;
1617                 case 7000000:
1618                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1619                         break;
1620                 case 6000000:
1621                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1622                         break;
1623                 default:
1624                         return -1;
1625                 }
1626
1627                 /* Compute new sysclock value
1628                    sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1629                 incr += (1 << 23);
1630                 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1631                 sysClockFreq = (u32) (sysClockInHz / 1000);
1632                 /* rounding */
1633                 if ((sysClockInHz % 1000) > 500)
1634                         sysClockFreq++;
1635
1636                 /* Compute clock deviation in ppm */
1637                 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1638                                              (s32)
1639                                              (state->expected_sys_clock_freq)) *
1640                                             1000000L) /
1641                                            (s32)
1642                                            (state->expected_sys_clock_freq));
1643
1644                 Diff = oscClockDeviation - state->osc_clock_deviation;
1645                 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1646                 if (Diff >= -200 && Diff <= 200) {
1647                         state->sys_clock_freq = (u16) sysClockFreq;
1648                         if (oscClockDeviation != state->osc_clock_deviation) {
1649                                 if (state->config.osc_deviation) {
1650                                         state->config.osc_deviation(state->priv,
1651                                                                     oscClockDeviation,
1652                                                                     1);
1653                                         state->osc_clock_deviation =
1654                                             oscClockDeviation;
1655                                 }
1656                         }
1657                         /* switch OFF SRMM scan in SC */
1658                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1659                         if (status < 0)
1660                                 break;
1661                         /* overrule FE_IF internal value for
1662                            proper re-locking */
1663                         status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1664                         if (status < 0)
1665                                 break;
1666                         state->cscd_state = CSCD_SAVED;
1667                 }
1668         } while (0);
1669
1670         return status;
1671 }
1672
1673 static int DRX_Stop(struct drxd_state *state)
1674 {
1675         int status;
1676
1677         if (state->drxd_state != DRXD_STARTED)
1678                 return 0;
1679
1680         do {
1681                 if (state->cscd_state != CSCD_SAVED) {
1682                         u32 lock;
1683                         status = DRX_GetLockStatus(state, &lock);
1684                         if (status < 0)
1685                                 break;
1686                 }
1687
1688                 status = StopOC(state);
1689                 if (status < 0)
1690                         break;
1691
1692                 state->drxd_state = DRXD_STOPPED;
1693
1694                 status = ConfigureMPEGOutput(state, 0);
1695                 if (status < 0)
1696                         break;
1697
1698                 if (state->type_A) {
1699                         /* Stop relevant processors off the device */
1700                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1701                         if (status < 0)
1702                                 break;
1703
1704                         status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705                         if (status < 0)
1706                                 break;
1707                         status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708                         if (status < 0)
1709                                 break;
1710                 } else {
1711                         /* Stop all processors except HI & CC & FE */
1712                         status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                         if (status < 0)
1714                                 break;
1715                         status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716                         if (status < 0)
1717                                 break;
1718                         status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1719                         if (status < 0)
1720                                 break;
1721                         status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1722                         if (status < 0)
1723                                 break;
1724                         status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725                         if (status < 0)
1726                                 break;
1727                         status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728                         if (status < 0)
1729                                 break;
1730                         status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1731                         if (status < 0)
1732                                 break;
1733                 }
1734
1735         } while (0);
1736         return status;
1737 }
1738
1739 #if 0   /* Currently unused */
1740 static int SetOperationMode(struct drxd_state *state, int oMode)
1741 {
1742         int status;
1743
1744         do {
1745                 if (state->drxd_state != DRXD_STOPPED) {
1746                         status = -1;
1747                         break;
1748                 }
1749
1750                 if (oMode == state->operation_mode) {
1751                         status = 0;
1752                         break;
1753                 }
1754
1755                 if (oMode != OM_Default && !state->diversity) {
1756                         status = -1;
1757                         break;
1758                 }
1759
1760                 switch (oMode) {
1761                 case OM_DVBT_Diversity_Front:
1762                         status = WriteTable(state, state->m_InitDiversityFront);
1763                         break;
1764                 case OM_DVBT_Diversity_End:
1765                         status = WriteTable(state, state->m_InitDiversityEnd);
1766                         break;
1767                 case OM_Default:
1768                         /* We need to check how to
1769                            get DRXD out of diversity */
1770                 default:
1771                         status = WriteTable(state, state->m_DisableDiversity);
1772                         break;
1773                 }
1774         } while (0);
1775
1776         if (!status)
1777                 state->operation_mode = oMode;
1778         return status;
1779 }
1780 #endif
1781
1782 static int StartDiversity(struct drxd_state *state)
1783 {
1784         int status = 0;
1785         u16 rcControl;
1786
1787         do {
1788                 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1789                         status = WriteTable(state, state->m_StartDiversityFront);
1790                         if (status < 0)
1791                                 break;
1792                 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1793                         status = WriteTable(state, state->m_StartDiversityEnd);
1794                         if (status < 0)
1795                                 break;
1796                         if (state->props.bandwidth_hz == 8000000) {
1797                                 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1798                                 if (status < 0)
1799                                         break;
1800                         } else {
1801                                 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1802                                 if (status < 0)
1803                                         break;
1804                         }
1805
1806                         status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1807                         if (status < 0)
1808                                 break;
1809                         rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1810                         rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1811                             /*  combining enabled */
1812                             B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1813                             B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1814                             B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1815                         status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1816                         if (status < 0)
1817                                 break;
1818                 }
1819         } while (0);
1820         return status;
1821 }
1822
1823 static int SetFrequencyShift(struct drxd_state *state,
1824                              u32 offsetFreq, int channelMirrored)
1825 {
1826         int negativeShift = (state->tuner_mirrors == channelMirrored);
1827
1828         /* Handle all mirroring
1829          *
1830          * Note: ADC mirroring (aliasing) is implictly handled by limiting
1831          * feFsRegAddInc to 28 bits below
1832          * (if the result before masking is more than 28 bits, this means
1833          *  that the ADC is mirroring.
1834          * The masking is in fact the aliasing of the ADC)
1835          *
1836          */
1837
1838         /* Compute register value, unsigned computation */
1839         state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1840                                          offsetFreq,
1841                                          1 << 28, state->sys_clock_freq);
1842         /* Remove integer part */
1843         state->fe_fs_add_incr &= 0x0FFFFFFFL;
1844         if (negativeShift)
1845                 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1846
1847         /* Save the frequency shift without tunerOffset compensation
1848            for CtrlGetChannel. */
1849         state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1850                                              1 << 28, state->sys_clock_freq);
1851         /* Remove integer part */
1852         state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1853         if (negativeShift)
1854                 state->org_fe_fs_add_incr = ((1L << 28) -
1855                                              state->org_fe_fs_add_incr);
1856
1857         return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1858                        state->fe_fs_add_incr, 0);
1859 }
1860
1861 static int SetCfgNoiseCalibration(struct drxd_state *state,
1862                                   struct SNoiseCal *noiseCal)
1863 {
1864         u16 beOptEna;
1865         int status = 0;
1866
1867         do {
1868                 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1869                 if (status < 0)
1870                         break;
1871                 if (noiseCal->cpOpt) {
1872                         beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1873                 } else {
1874                         beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1875                         status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1876                         if (status < 0)
1877                                 break;
1878                 }
1879                 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1880                 if (status < 0)
1881                         break;
1882
1883                 if (!state->type_A) {
1884                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1885                         if (status < 0)
1886                                 break;
1887                         status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1888                         if (status < 0)
1889                                 break;
1890                 }
1891         } while (0);
1892
1893         return status;
1894 }
1895
1896 static int DRX_Start(struct drxd_state *state, s32 off)
1897 {
1898         struct dtv_frontend_properties *p = &state->props;
1899         int status;
1900
1901         u16 transmissionParams = 0;
1902         u16 operationMode = 0;
1903         u16 qpskTdTpsPwr = 0;
1904         u16 qam16TdTpsPwr = 0;
1905         u16 qam64TdTpsPwr = 0;
1906         u32 feIfIncr = 0;
1907         u32 bandwidth = 0;
1908         int mirrorFreqSpect;
1909
1910         u16 qpskSnCeGain = 0;
1911         u16 qam16SnCeGain = 0;
1912         u16 qam64SnCeGain = 0;
1913         u16 qpskIsGainMan = 0;
1914         u16 qam16IsGainMan = 0;
1915         u16 qam64IsGainMan = 0;
1916         u16 qpskIsGainExp = 0;
1917         u16 qam16IsGainExp = 0;
1918         u16 qam64IsGainExp = 0;
1919         u16 bandwidthParam = 0;
1920
1921         if (off < 0)
1922                 off = (off - 500) / 1000;
1923         else
1924                 off = (off + 500) / 1000;
1925
1926         do {
1927                 if (state->drxd_state != DRXD_STOPPED)
1928                         return -1;
1929                 status = ResetECOD(state);
1930                 if (status < 0)
1931                         break;
1932                 if (state->type_A) {
1933                         status = InitSC(state);
1934                         if (status < 0)
1935                                 break;
1936                 } else {
1937                         status = InitFT(state);
1938                         if (status < 0)
1939                                 break;
1940                         status = InitCP(state);
1941                         if (status < 0)
1942                                 break;
1943                         status = InitCE(state);
1944                         if (status < 0)
1945                                 break;
1946                         status = InitEQ(state);
1947                         if (status < 0)
1948                                 break;
1949                         status = InitSC(state);
1950                         if (status < 0)
1951                                 break;
1952                 }
1953
1954                 /* Restore current IF & RF AGC settings */
1955
1956                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1957                 if (status < 0)
1958                         break;
1959                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1960                 if (status < 0)
1961                         break;
1962
1963                 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1964
1965                 switch (p->transmission_mode) {
1966                 default:        /* Not set, detect it automatically */
1967                         operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1968                         fallthrough;    /* try first guess DRX_FFTMODE_8K */
1969                 case TRANSMISSION_MODE_8K:
1970                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1971                         if (state->type_A) {
1972                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1973                                 if (status < 0)
1974                                         break;
1975                                 qpskSnCeGain = 99;
1976                                 qam16SnCeGain = 83;
1977                                 qam64SnCeGain = 67;
1978                         }
1979                         break;
1980                 case TRANSMISSION_MODE_2K:
1981                         transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1982                         if (state->type_A) {
1983                                 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1984                                 if (status < 0)
1985                                         break;
1986                                 qpskSnCeGain = 97;
1987                                 qam16SnCeGain = 71;
1988                                 qam64SnCeGain = 65;
1989                         }
1990                         break;
1991                 }
1992
1993                 switch (p->guard_interval) {
1994                 case GUARD_INTERVAL_1_4:
1995                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1996                         break;
1997                 case GUARD_INTERVAL_1_8:
1998                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1999                         break;
2000                 case GUARD_INTERVAL_1_16:
2001                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2002                         break;
2003                 case GUARD_INTERVAL_1_32:
2004                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2005                         break;
2006                 default:        /* Not set, detect it automatically */
2007                         operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2008                         /* try first guess 1/4 */
2009                         transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2010                         break;
2011                 }
2012
2013                 switch (p->hierarchy) {
2014                 case HIERARCHY_1:
2015                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2016                         if (state->type_A) {
2017                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2018                                 if (status < 0)
2019                                         break;
2020                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2021                                 if (status < 0)
2022                                         break;
2023
2024                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2025                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2026                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2027
2028                                 qpskIsGainMan =
2029                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2030                                 qam16IsGainMan =
2031                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2032                                 qam64IsGainMan =
2033                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2034
2035                                 qpskIsGainExp =
2036                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2037                                 qam16IsGainExp =
2038                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2039                                 qam64IsGainExp =
2040                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2041                         }
2042                         break;
2043
2044                 case HIERARCHY_2:
2045                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2046                         if (state->type_A) {
2047                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2048                                 if (status < 0)
2049                                         break;
2050                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2051                                 if (status < 0)
2052                                         break;
2053
2054                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2055                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2056                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2057
2058                                 qpskIsGainMan =
2059                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2060                                 qam16IsGainMan =
2061                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2062                                 qam64IsGainMan =
2063                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2064
2065                                 qpskIsGainExp =
2066                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2067                                 qam16IsGainExp =
2068                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2069                                 qam64IsGainExp =
2070                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2071                         }
2072                         break;
2073                 case HIERARCHY_4:
2074                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2075                         if (state->type_A) {
2076                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2077                                 if (status < 0)
2078                                         break;
2079                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2080                                 if (status < 0)
2081                                         break;
2082
2083                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2084                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2085                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2086
2087                                 qpskIsGainMan =
2088                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2089                                 qam16IsGainMan =
2090                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2091                                 qam64IsGainMan =
2092                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2093
2094                                 qpskIsGainExp =
2095                                     SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2096                                 qam16IsGainExp =
2097                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2098                                 qam64IsGainExp =
2099                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2100                         }
2101                         break;
2102                 case HIERARCHY_AUTO:
2103                 default:
2104                         /* Not set, detect it automatically, start with none */
2105                         operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2106                         transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2107                         if (state->type_A) {
2108                                 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2109                                 if (status < 0)
2110                                         break;
2111                                 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2112                                 if (status < 0)
2113                                         break;
2114
2115                                 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2116                                 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2117                                 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2118
2119                                 qpskIsGainMan =
2120                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2121                                 qam16IsGainMan =
2122                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2123                                 qam64IsGainMan =
2124                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2125
2126                                 qpskIsGainExp =
2127                                     SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2128                                 qam16IsGainExp =
2129                                     SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2130                                 qam64IsGainExp =
2131                                     SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2132                         }
2133                         break;
2134                 }
2135                 if (status < 0)
2136                         break;
2137
2138                 switch (p->modulation) {
2139                 default:
2140                         operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2141                         fallthrough;    /* try first guess DRX_CONSTELLATION_QAM64 */
2142                 case QAM_64:
2143                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2144                         if (state->type_A) {
2145                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2146                                 if (status < 0)
2147                                         break;
2148                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2149                                 if (status < 0)
2150                                         break;
2151                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2152                                 if (status < 0)
2153                                         break;
2154                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2155                                 if (status < 0)
2156                                         break;
2157                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2158                                 if (status < 0)
2159                                         break;
2160
2161                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2162                                 if (status < 0)
2163                                         break;
2164                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2165                                 if (status < 0)
2166                                         break;
2167                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2168                                 if (status < 0)
2169                                         break;
2170                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2171                                 if (status < 0)
2172                                         break;
2173                         }
2174                         break;
2175                 case QPSK:
2176                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2177                         if (state->type_A) {
2178                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2179                                 if (status < 0)
2180                                         break;
2181                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2182                                 if (status < 0)
2183                                         break;
2184                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2185                                 if (status < 0)
2186                                         break;
2187                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2188                                 if (status < 0)
2189                                         break;
2190                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2191                                 if (status < 0)
2192                                         break;
2193
2194                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2195                                 if (status < 0)
2196                                         break;
2197                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2198                                 if (status < 0)
2199                                         break;
2200                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2201                                 if (status < 0)
2202                                         break;
2203                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2204                                 if (status < 0)
2205                                         break;
2206                         }
2207                         break;
2208
2209                 case QAM_16:
2210                         transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2211                         if (state->type_A) {
2212                                 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2213                                 if (status < 0)
2214                                         break;
2215                                 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2216                                 if (status < 0)
2217                                         break;
2218                                 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2219                                 if (status < 0)
2220                                         break;
2221                                 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2222                                 if (status < 0)
2223                                         break;
2224                                 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2225                                 if (status < 0)
2226                                         break;
2227
2228                                 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2229                                 if (status < 0)
2230                                         break;
2231                                 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2232                                 if (status < 0)
2233                                         break;
2234                                 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2235                                 if (status < 0)
2236                                         break;
2237                                 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2238                                 if (status < 0)
2239                                         break;
2240                         }
2241                         break;
2242
2243                 }
2244                 if (status < 0)
2245                         break;
2246
2247                 switch (DRX_CHANNEL_HIGH) {
2248                 default:
2249                 case DRX_CHANNEL_AUTO:
2250                 case DRX_CHANNEL_LOW:
2251                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2252                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2253                         break;
2254                 case DRX_CHANNEL_HIGH:
2255                         transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2256                         status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2257                         break;
2258                 }
2259
2260                 switch (p->code_rate_HP) {
2261                 case FEC_1_2:
2262                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2263                         if (state->type_A)
2264                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2265                         break;
2266                 default:
2267                         operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2268                         fallthrough;
2269                 case FEC_2_3:
2270                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2271                         if (state->type_A)
2272                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2273                         break;
2274                 case FEC_3_4:
2275                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2276                         if (state->type_A)
2277                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2278                         break;
2279                 case FEC_5_6:
2280                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2281                         if (state->type_A)
2282                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2283                         break;
2284                 case FEC_7_8:
2285                         transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2286                         if (state->type_A)
2287                                 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2288                         break;
2289                 }
2290                 if (status < 0)
2291                         break;
2292
2293                 /* First determine real bandwidth (Hz) */
2294                 /* Also set delay for impulse noise cruncher (only A2) */
2295                 /* Also set parameters for EC_OC fix, note
2296                    EC_OC_REG_TMD_HIL_MAR is changed
2297                    by SC for fix for some 8K,1/8 guard but is restored by
2298                    InitEC and ResetEC
2299                    functions */
2300                 switch (p->bandwidth_hz) {
2301                 case 0:
2302                         p->bandwidth_hz = 8000000;
2303                         fallthrough;
2304                 case 8000000:
2305                         /* (64/7)*(8/8)*1000000 */
2306                         bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2307
2308                         bandwidthParam = 0;
2309                         status = Write16(state,
2310                                          FE_AG_REG_IND_DEL__A, 50, 0x0000);
2311                         break;
2312                 case 7000000:
2313                         /* (64/7)*(7/8)*1000000 */
2314                         bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2315                         bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2316                         status = Write16(state,
2317                                          FE_AG_REG_IND_DEL__A, 59, 0x0000);
2318                         break;
2319                 case 6000000:
2320                         /* (64/7)*(6/8)*1000000 */
2321                         bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2322                         bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2323                         status = Write16(state,
2324                                          FE_AG_REG_IND_DEL__A, 71, 0x0000);
2325                         break;
2326                 default:
2327                         status = -EINVAL;
2328                 }
2329                 if (status < 0)
2330                         break;
2331
2332                 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2333                 if (status < 0)
2334                         break;
2335
2336                 {
2337                         u16 sc_config;
2338                         status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2339                         if (status < 0)
2340                                 break;
2341
2342                         /* enable SLAVE mode in 2k 1/32 to
2343                            prevent timing change glitches */
2344                         if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2345                             (p->guard_interval == GUARD_INTERVAL_1_32)) {
2346                                 /* enable slave */
2347                                 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2348                         } else {
2349                                 /* disable slave */
2350                                 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2351                         }
2352                         status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2353                         if (status < 0)
2354                                 break;
2355                 }
2356
2357                 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2358                 if (status < 0)
2359                         break;
2360
2361                 if (state->cscd_state == CSCD_INIT) {
2362                         /* switch on SRMM scan in SC */
2363                         status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2364                         if (status < 0)
2365                                 break;
2366 /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2367                         state->cscd_state = CSCD_SET;
2368                 }
2369
2370                 /* Now compute FE_IF_REG_INCR */
2371                 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2372                    ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2373                 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2374                                     (1ULL << 21), bandwidth) - (1 << 23);
2375                 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2376                 if (status < 0)
2377                         break;
2378                 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2379                 if (status < 0)
2380                         break;
2381                 /* Bandwidth setting done */
2382
2383                 /* Mirror & frequency offset */
2384                 SetFrequencyShift(state, off, mirrorFreqSpect);
2385
2386                 /* Start SC, write channel settings to SC */
2387
2388                 /* Enable SC after setting all other parameters */
2389                 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2390                 if (status < 0)
2391                         break;
2392                 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2393                 if (status < 0)
2394                         break;
2395
2396                 /* Write SC parameter registers, operation mode */
2397 #if 1
2398                 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2399                                  SC_RA_RAM_OP_AUTO_GUARD__M |
2400                                  SC_RA_RAM_OP_AUTO_CONST__M |
2401                                  SC_RA_RAM_OP_AUTO_HIER__M |
2402                                  SC_RA_RAM_OP_AUTO_RATE__M);
2403 #endif
2404                 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2405                 if (status < 0)
2406                         break;
2407
2408                 /* Start correct processes to get in lock */
2409                 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2410                 if (status < 0)
2411                         break;
2412
2413                 status = StartOC(state);
2414                 if (status < 0)
2415                         break;
2416
2417                 if (state->operation_mode != OM_Default) {
2418                         status = StartDiversity(state);
2419                         if (status < 0)
2420                                 break;
2421                 }
2422
2423                 state->drxd_state = DRXD_STARTED;
2424         } while (0);
2425
2426         return status;
2427 }
2428
2429 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2430 {
2431         u32 ulRfAgcOutputLevel = 0xffffffff;
2432         u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2433         u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2434         u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2435         u32 ulRfAgcSpeed = 0;   /* Currently unused */
2436         u32 ulRfAgcMode = 0;    /*2;   Off */
2437         u32 ulRfAgcR1 = 820;
2438         u32 ulRfAgcR2 = 2200;
2439         u32 ulRfAgcR3 = 150;
2440         u32 ulIfAgcMode = 0;    /* Auto */
2441         u32 ulIfAgcOutputLevel = 0xffffffff;
2442         u32 ulIfAgcSettleLevel = 0xffffffff;
2443         u32 ulIfAgcMinLevel = 0xffffffff;
2444         u32 ulIfAgcMaxLevel = 0xffffffff;
2445         u32 ulIfAgcSpeed = 0xffffffff;
2446         u32 ulIfAgcR1 = 820;
2447         u32 ulIfAgcR2 = 2200;
2448         u32 ulIfAgcR3 = 150;
2449         u32 ulClock = state->config.clock;
2450         u32 ulSerialMode = 0;
2451         u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2452         u32 ulHiI2cDelay = HI_I2C_DELAY;
2453         u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2454         u32 ulHiI2cPatch = 0;
2455         u32 ulEnvironment = APPENV_PORTABLE;
2456         u32 ulEnvironmentDiversity = APPENV_MOBILE;
2457         u32 ulIFFilter = IFFILTER_SAW;
2458
2459         state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2460         state->if_agc_cfg.outputLevel = 0;
2461         state->if_agc_cfg.settleLevel = 140;
2462         state->if_agc_cfg.minOutputLevel = 0;
2463         state->if_agc_cfg.maxOutputLevel = 1023;
2464         state->if_agc_cfg.speed = 904;
2465
2466         if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2467                 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2468                 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2469         }
2470
2471         if (ulIfAgcMode == 0 &&
2472             ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2473             ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2474             ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2475             ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2476                 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2477                 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2478                 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2479                 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2480                 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2481         }
2482
2483         state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2484         state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2485         state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2486
2487         state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2488         state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2489         state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2490
2491         state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2492         /* rest of the RFAgcCfg structure currently unused */
2493         if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2494                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2495                 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2496         }
2497
2498         if (ulRfAgcMode == 0 &&
2499             ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2500             ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2501             ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2502             ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2503                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2504                 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2505                 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2506                 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2507                 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2508         }
2509
2510         if (ulRfAgcMode == 2)
2511                 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2512
2513         if (ulEnvironment <= 2)
2514                 state->app_env_default = (enum app_env)
2515                     (ulEnvironment);
2516         if (ulEnvironmentDiversity <= 2)
2517                 state->app_env_diversity = (enum app_env)
2518                     (ulEnvironmentDiversity);
2519
2520         if (ulIFFilter == IFFILTER_DISCRETE) {
2521                 /* discrete filter */
2522                 state->noise_cal.cpOpt = 0;
2523                 state->noise_cal.cpNexpOfs = 40;
2524                 state->noise_cal.tdCal2k = -40;
2525                 state->noise_cal.tdCal8k = -24;
2526         } else {
2527                 /* SAW filter */
2528                 state->noise_cal.cpOpt = 1;
2529                 state->noise_cal.cpNexpOfs = 0;
2530                 state->noise_cal.tdCal2k = -21;
2531                 state->noise_cal.tdCal8k = -24;
2532         }
2533         state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2534
2535         state->chip_adr = (state->config.demod_address << 1) | 1;
2536         switch (ulHiI2cPatch) {
2537         case 1:
2538                 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2539                 break;
2540         case 3:
2541                 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2542                 break;
2543         default:
2544                 state->m_HiI2cPatch = NULL;
2545         }
2546
2547         /* modify tuner and clock attributes */
2548         state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2549         /* expected system clock frequency in kHz */
2550         state->expected_sys_clock_freq = 48000;
2551         /* real system clock frequency in kHz */
2552         state->sys_clock_freq = 48000;
2553         state->osc_clock_freq = (u16) ulClock;
2554         state->osc_clock_deviation = 0;
2555         state->cscd_state = CSCD_INIT;
2556         state->drxd_state = DRXD_UNINITIALIZED;
2557
2558         state->PGA = 0;
2559         state->type_A = 0;
2560         state->tuner_mirrors = 0;
2561
2562         /* modify MPEG output attributes */
2563         state->insert_rs_byte = state->config.insert_rs_byte;
2564         state->enable_parallel = (ulSerialMode != 1);
2565
2566         /* Timing div, 250ns/Psys */
2567         /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2568
2569         state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2570                                           ulHiI2cDelay) / 1000;
2571         /* Bridge delay, uses oscilator clock */
2572         /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2573         state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2574                                             ulHiI2cBridgeDelay) / 1000;
2575
2576         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2577         /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2578         state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2579         return 0;
2580 }
2581
2582 static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2583 {
2584         int status = 0;
2585         u32 driverVersion;
2586
2587         if (state->init_done)
2588                 return 0;
2589
2590         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2591
2592         do {
2593                 state->operation_mode = OM_Default;
2594
2595                 status = SetDeviceTypeId(state);
2596                 if (status < 0)
2597                         break;
2598
2599                 /* Apply I2c address patch to B1 */
2600                 if (!state->type_A && state->m_HiI2cPatch) {
2601                         status = WriteTable(state, state->m_HiI2cPatch);
2602                         if (status < 0)
2603                                 break;
2604                 }
2605
2606                 if (state->type_A) {
2607                         /* HI firmware patch for UIO readout,
2608                            avoid clearing of result register */
2609                         status = Write16(state, 0x43012D, 0x047f, 0);
2610                         if (status < 0)
2611                                 break;
2612                 }
2613
2614                 status = HI_ResetCommand(state);
2615                 if (status < 0)
2616                         break;
2617
2618                 status = StopAllProcessors(state);
2619                 if (status < 0)
2620                         break;
2621                 status = InitCC(state);
2622                 if (status < 0)
2623                         break;
2624
2625                 state->osc_clock_deviation = 0;
2626
2627                 if (state->config.osc_deviation)
2628                         state->osc_clock_deviation =
2629                             state->config.osc_deviation(state->priv, 0, 0);
2630                 {
2631                         /* Handle clock deviation */
2632                         s32 devB;
2633                         s32 devA = (s32) (state->osc_clock_deviation) *
2634                             (s32) (state->expected_sys_clock_freq);
2635                         /* deviation in kHz */
2636                         s32 deviation = (devA / (1000000L));
2637                         /* rounding, signed */
2638                         if (devA > 0)
2639                                 devB = (2);
2640                         else
2641                                 devB = (-2);
2642                         if ((devB * (devA % 1000000L) > 1000000L)) {
2643                                 /* add +1 or -1 */
2644                                 deviation += (devB / 2);
2645                         }
2646
2647                         state->sys_clock_freq =
2648                             (u16) ((state->expected_sys_clock_freq) +
2649                                    deviation);
2650                 }
2651                 status = InitHI(state);
2652                 if (status < 0)
2653                         break;
2654                 status = InitAtomicRead(state);
2655                 if (status < 0)
2656                         break;
2657
2658                 status = EnableAndResetMB(state);
2659                 if (status < 0)
2660                         break;
2661                 if (state->type_A) {
2662                         status = ResetCEFR(state);
2663                         if (status < 0)
2664                                 break;
2665                 }
2666                 if (fw) {
2667                         status = DownloadMicrocode(state, fw, fw_size);
2668                         if (status < 0)
2669                                 break;
2670                 } else {
2671                         status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2672                         if (status < 0)
2673                                 break;
2674                 }
2675
2676                 if (state->PGA) {
2677                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2678                         SetCfgPga(state, 0);    /* PGA = 0 dB */
2679                 } else {
2680                         state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2681                 }
2682
2683                 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2684
2685                 status = InitFE(state);
2686                 if (status < 0)
2687                         break;
2688                 status = InitFT(state);
2689                 if (status < 0)
2690                         break;
2691                 status = InitCP(state);
2692                 if (status < 0)
2693                         break;
2694                 status = InitCE(state);
2695                 if (status < 0)
2696                         break;
2697                 status = InitEQ(state);
2698                 if (status < 0)
2699                         break;
2700                 status = InitEC(state);
2701                 if (status < 0)
2702                         break;
2703                 status = InitSC(state);
2704                 if (status < 0)
2705                         break;
2706
2707                 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2708                 if (status < 0)
2709                         break;
2710                 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2711                 if (status < 0)
2712                         break;
2713
2714                 state->cscd_state = CSCD_INIT;
2715                 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2716                 if (status < 0)
2717                         break;
2718                 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2719                 if (status < 0)
2720                         break;
2721
2722                 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2723                                  (VERSION_MAJOR % 10)) << 24;
2724                 driverVersion += (((VERSION_MINOR / 10) << 4) +
2725                                   (VERSION_MINOR % 10)) << 16;
2726                 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2727                     ((VERSION_PATCH / 100) << 8) +
2728                     ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2729
2730                 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2731                 if (status < 0)
2732                         break;
2733
2734                 status = StopOC(state);
2735                 if (status < 0)
2736                         break;
2737
2738                 state->drxd_state = DRXD_STOPPED;
2739                 state->init_done = 1;
2740                 status = 0;
2741         } while (0);
2742         return status;
2743 }
2744
2745 static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2746 {
2747         DRX_GetLockStatus(state, pLockStatus);
2748
2749         /*if (*pLockStatus&DRX_LOCK_MPEG) */
2750         if (*pLockStatus & DRX_LOCK_FEC) {
2751                 ConfigureMPEGOutput(state, 1);
2752                 /* Get status again, in case we have MPEG lock now */
2753                 /*DRX_GetLockStatus(state, pLockStatus); */
2754         }
2755
2756         return 0;
2757 }
2758
2759 /****************************************************************************/
2760 /****************************************************************************/
2761 /****************************************************************************/
2762
2763 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2764 {
2765         struct drxd_state *state = fe->demodulator_priv;
2766         u32 value;
2767         int res;
2768
2769         res = ReadIFAgc(state, &value);
2770         if (res < 0)
2771                 *strength = 0;
2772         else
2773                 *strength = 0xffff - (value << 4);
2774         return 0;
2775 }
2776
2777 static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2778 {
2779         struct drxd_state *state = fe->demodulator_priv;
2780         u32 lock;
2781
2782         DRXD_status(state, &lock);
2783         *status = 0;
2784         /* No MPEG lock in V255 firmware, bug ? */
2785 #if 1
2786         if (lock & DRX_LOCK_MPEG)
2787                 *status |= FE_HAS_LOCK;
2788 #else
2789         if (lock & DRX_LOCK_FEC)
2790                 *status |= FE_HAS_LOCK;
2791 #endif
2792         if (lock & DRX_LOCK_FEC)
2793                 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2794         if (lock & DRX_LOCK_DEMOD)
2795                 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2796
2797         return 0;
2798 }
2799
2800 static int drxd_init(struct dvb_frontend *fe)
2801 {
2802         struct drxd_state *state = fe->demodulator_priv;
2803
2804         return DRXD_init(state, NULL, 0);
2805 }
2806
2807 static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2808 {
2809         struct drxd_state *state = fe->demodulator_priv;
2810
2811         if (state->config.disable_i2c_gate_ctrl == 1)
2812                 return 0;
2813
2814         return DRX_ConfigureI2CBridge(state, onoff);
2815 }
2816
2817 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2818                                   struct dvb_frontend_tune_settings *sets)
2819 {
2820         sets->min_delay_ms = 10000;
2821         sets->max_drift = 0;
2822         sets->step_size = 0;
2823         return 0;
2824 }
2825
2826 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2827 {
2828         *ber = 0;
2829         return 0;
2830 }
2831
2832 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2833 {
2834         *snr = 0;
2835         return 0;
2836 }
2837
2838 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2839 {
2840         *ucblocks = 0;
2841         return 0;
2842 }
2843
2844 static int drxd_sleep(struct dvb_frontend *fe)
2845 {
2846         struct drxd_state *state = fe->demodulator_priv;
2847
2848         ConfigureMPEGOutput(state, 0);
2849         return 0;
2850 }
2851
2852 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2853 {
2854         return drxd_config_i2c(fe, enable);
2855 }
2856
2857 static int drxd_set_frontend(struct dvb_frontend *fe)
2858 {
2859         struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2860         struct drxd_state *state = fe->demodulator_priv;
2861         s32 off = 0;
2862
2863         state->props = *p;
2864         DRX_Stop(state);
2865
2866         if (fe->ops.tuner_ops.set_params) {
2867                 fe->ops.tuner_ops.set_params(fe);
2868                 if (fe->ops.i2c_gate_ctrl)
2869                         fe->ops.i2c_gate_ctrl(fe, 0);
2870         }
2871
2872         msleep(200);
2873
2874         return DRX_Start(state, off);
2875 }
2876
2877 static void drxd_release(struct dvb_frontend *fe)
2878 {
2879         struct drxd_state *state = fe->demodulator_priv;
2880
2881         kfree(state);
2882 }
2883
2884 static const struct dvb_frontend_ops drxd_ops = {
2885         .delsys = { SYS_DVBT},
2886         .info = {
2887                  .name = "Micronas DRXD DVB-T",
2888                  .frequency_min_hz =  47125 * kHz,
2889                  .frequency_max_hz = 855250 * kHz,
2890                  .frequency_stepsize_hz = 166667,
2891                  .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2892                  FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2893                  FE_CAN_FEC_AUTO |
2894                  FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2895                  FE_CAN_QAM_AUTO |
2896                  FE_CAN_TRANSMISSION_MODE_AUTO |
2897                  FE_CAN_GUARD_INTERVAL_AUTO |
2898                  FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2899
2900         .release = drxd_release,
2901         .init = drxd_init,
2902         .sleep = drxd_sleep,
2903         .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2904
2905         .set_frontend = drxd_set_frontend,
2906         .get_tune_settings = drxd_get_tune_settings,
2907
2908         .read_status = drxd_read_status,
2909         .read_ber = drxd_read_ber,
2910         .read_signal_strength = drxd_read_signal_strength,
2911         .read_snr = drxd_read_snr,
2912         .read_ucblocks = drxd_read_ucblocks,
2913 };
2914
2915 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2916                                  void *priv, struct i2c_adapter *i2c,
2917                                  struct device *dev)
2918 {
2919         struct drxd_state *state = NULL;
2920
2921         state = kzalloc(sizeof(*state), GFP_KERNEL);
2922         if (!state)
2923                 return NULL;
2924
2925         state->ops = drxd_ops;
2926         state->dev = dev;
2927         state->config = *config;
2928         state->i2c = i2c;
2929         state->priv = priv;
2930
2931         mutex_init(&state->mutex);
2932
2933         if (Read16(state, 0, NULL, 0) < 0)
2934                 goto error;
2935
2936         state->frontend.ops = drxd_ops;
2937         state->frontend.demodulator_priv = state;
2938         ConfigureMPEGOutput(state, 0);
2939         /* add few initialization to allow gate control */
2940         CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2941         InitHI(state);
2942
2943         return &state->frontend;
2944
2945 error:
2946         printk(KERN_ERR "drxd: not found\n");
2947         kfree(state);
2948         return NULL;
2949 }
2950 EXPORT_SYMBOL(drxd_attach);
2951
2952 MODULE_DESCRIPTION("DRXD driver");
2953 MODULE_AUTHOR("Micronas");
2954 MODULE_LICENSE("GPL");