Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / media / cec / core / cec-pin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
4  */
5
6 #include <linux/delay.h>
7 #include <linux/slab.h>
8 #include <linux/sched/types.h>
9
10 #include <media/cec-pin.h>
11 #include "cec-pin-priv.h"
12
13 /* All timings are in microseconds */
14
15 /* start bit timings */
16 #define CEC_TIM_START_BIT_LOW           3700
17 #define CEC_TIM_START_BIT_LOW_MIN       3500
18 #define CEC_TIM_START_BIT_LOW_MAX       3900
19 #define CEC_TIM_START_BIT_TOTAL         4500
20 #define CEC_TIM_START_BIT_TOTAL_MIN     4300
21 #define CEC_TIM_START_BIT_TOTAL_MAX     4700
22
23 /* data bit timings */
24 #define CEC_TIM_DATA_BIT_0_LOW          1500
25 #define CEC_TIM_DATA_BIT_0_LOW_MIN      1300
26 #define CEC_TIM_DATA_BIT_0_LOW_MAX      1700
27 #define CEC_TIM_DATA_BIT_1_LOW          600
28 #define CEC_TIM_DATA_BIT_1_LOW_MIN      400
29 #define CEC_TIM_DATA_BIT_1_LOW_MAX      800
30 #define CEC_TIM_DATA_BIT_TOTAL          2400
31 #define CEC_TIM_DATA_BIT_TOTAL_MIN      2050
32 #define CEC_TIM_DATA_BIT_TOTAL_MAX      2750
33 /* earliest safe time to sample the bit state */
34 #define CEC_TIM_DATA_BIT_SAMPLE         850
35 /* earliest time the bit is back to 1 (T7 + 50) */
36 #define CEC_TIM_DATA_BIT_HIGH           1750
37
38 /* when idle, sample once per millisecond */
39 #define CEC_TIM_IDLE_SAMPLE             1000
40 /* when processing the start bit, sample twice per millisecond */
41 #define CEC_TIM_START_BIT_SAMPLE        500
42 /* when polling for a state change, sample once every 50 microseconds */
43 #define CEC_TIM_SAMPLE                  50
44
45 #define CEC_TIM_LOW_DRIVE_ERROR         (1.5 * CEC_TIM_DATA_BIT_TOTAL)
46
47 /*
48  * Total data bit time that is too short/long for a valid bit,
49  * used for error injection.
50  */
51 #define CEC_TIM_DATA_BIT_TOTAL_SHORT    1800
52 #define CEC_TIM_DATA_BIT_TOTAL_LONG     2900
53
54 /*
55  * Total start bit time that is too short/long for a valid bit,
56  * used for error injection.
57  */
58 #define CEC_TIM_START_BIT_TOTAL_SHORT   4100
59 #define CEC_TIM_START_BIT_TOTAL_LONG    5000
60
61 /* Data bits are 0-7, EOM is bit 8 and ACK is bit 9 */
62 #define EOM_BIT                         8
63 #define ACK_BIT                         9
64
65 struct cec_state {
66         const char * const name;
67         unsigned int usecs;
68 };
69
70 static const struct cec_state states[CEC_PIN_STATES] = {
71         { "Off",                   0 },
72         { "Idle",                  CEC_TIM_IDLE_SAMPLE },
73         { "Tx Wait",               CEC_TIM_SAMPLE },
74         { "Tx Wait for High",      CEC_TIM_IDLE_SAMPLE },
75         { "Tx Start Bit Low",      CEC_TIM_START_BIT_LOW },
76         { "Tx Start Bit High",     CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
77         { "Tx Start Bit High Short", CEC_TIM_START_BIT_TOTAL_SHORT - CEC_TIM_START_BIT_LOW },
78         { "Tx Start Bit High Long", CEC_TIM_START_BIT_TOTAL_LONG - CEC_TIM_START_BIT_LOW },
79         { "Tx Start Bit Low Custom", 0 },
80         { "Tx Start Bit High Custom", 0 },
81         { "Tx Data 0 Low",         CEC_TIM_DATA_BIT_0_LOW },
82         { "Tx Data 0 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
83         { "Tx Data 0 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_0_LOW },
84         { "Tx Data 0 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_0_LOW },
85         { "Tx Data 1 Low",         CEC_TIM_DATA_BIT_1_LOW },
86         { "Tx Data 1 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
87         { "Tx Data 1 High Short",  CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_1_LOW },
88         { "Tx Data 1 High Long",   CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_1_LOW },
89         { "Tx Data 1 High Pre Sample", CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
90         { "Tx Data 1 High Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
91         { "Tx Data 1 High Post Sample Short", CEC_TIM_DATA_BIT_TOTAL_SHORT - CEC_TIM_DATA_BIT_SAMPLE },
92         { "Tx Data 1 High Post Sample Long", CEC_TIM_DATA_BIT_TOTAL_LONG - CEC_TIM_DATA_BIT_SAMPLE },
93         { "Tx Data Bit Low Custom", 0 },
94         { "Tx Data Bit High Custom", 0 },
95         { "Tx Pulse Low Custom",   0 },
96         { "Tx Pulse High Custom",  0 },
97         { "Tx Low Drive",          CEC_TIM_LOW_DRIVE_ERROR },
98         { "Rx Start Bit Low",      CEC_TIM_SAMPLE },
99         { "Rx Start Bit High",     CEC_TIM_SAMPLE },
100         { "Rx Data Sample",        CEC_TIM_DATA_BIT_SAMPLE },
101         { "Rx Data Post Sample",   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
102         { "Rx Data Wait for Low",  CEC_TIM_SAMPLE },
103         { "Rx Ack Low",            CEC_TIM_DATA_BIT_0_LOW },
104         { "Rx Ack Low Post",       CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
105         { "Rx Ack High Post",      CEC_TIM_DATA_BIT_HIGH },
106         { "Rx Ack Finish",         CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
107         { "Rx Low Drive",          CEC_TIM_LOW_DRIVE_ERROR },
108         { "Rx Irq",                0 },
109 };
110
111 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
112 {
113         if (!force && v == pin->adap->cec_pin_is_high)
114                 return;
115
116         pin->adap->cec_pin_is_high = v;
117         if (atomic_read(&pin->work_pin_num_events) < CEC_NUM_PIN_EVENTS) {
118                 u8 ev = v;
119
120                 if (pin->work_pin_events_dropped) {
121                         pin->work_pin_events_dropped = false;
122                         ev |= CEC_PIN_EVENT_FL_DROPPED;
123                 }
124                 pin->work_pin_events[pin->work_pin_events_wr] = ev;
125                 pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
126                 pin->work_pin_events_wr =
127                         (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
128                 atomic_inc(&pin->work_pin_num_events);
129         } else {
130                 pin->work_pin_events_dropped = true;
131                 pin->work_pin_events_dropped_cnt++;
132         }
133         wake_up_interruptible(&pin->kthread_waitq);
134 }
135
136 static bool cec_pin_read(struct cec_pin *pin)
137 {
138         bool v = pin->ops->read(pin->adap);
139
140         cec_pin_update(pin, v, false);
141         return v;
142 }
143
144 static void cec_pin_low(struct cec_pin *pin)
145 {
146         pin->ops->low(pin->adap);
147         cec_pin_update(pin, false, false);
148 }
149
150 static bool cec_pin_high(struct cec_pin *pin)
151 {
152         pin->ops->high(pin->adap);
153         return cec_pin_read(pin);
154 }
155
156 static bool rx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
157                          int arg_idx, u8 *arg)
158 {
159 #ifdef CONFIG_CEC_PIN_ERROR_INJ
160         u16 cmd = cec_pin_rx_error_inj(pin);
161         u64 e = pin->error_inj[cmd];
162         unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
163
164         if (arg_idx >= 0) {
165                 u8 pos = pin->error_inj_args[cmd][arg_idx];
166
167                 if (arg)
168                         *arg = pos;
169                 else if (pos != pin->rx_bit)
170                         return false;
171         }
172
173         switch (mode) {
174         case CEC_ERROR_INJ_MODE_ONCE:
175                 pin->error_inj[cmd] &=
176                         ~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
177                 return true;
178         case CEC_ERROR_INJ_MODE_ALWAYS:
179                 return true;
180         case CEC_ERROR_INJ_MODE_TOGGLE:
181                 return pin->rx_toggle;
182         default:
183                 return false;
184         }
185 #else
186         return false;
187 #endif
188 }
189
190 static bool rx_nack(struct cec_pin *pin)
191 {
192         return rx_error_inj(pin, CEC_ERROR_INJ_RX_NACK_OFFSET, -1, NULL);
193 }
194
195 static bool rx_low_drive(struct cec_pin *pin)
196 {
197         return rx_error_inj(pin, CEC_ERROR_INJ_RX_LOW_DRIVE_OFFSET,
198                             CEC_ERROR_INJ_RX_LOW_DRIVE_ARG_IDX, NULL);
199 }
200
201 static bool rx_add_byte(struct cec_pin *pin)
202 {
203         return rx_error_inj(pin, CEC_ERROR_INJ_RX_ADD_BYTE_OFFSET, -1, NULL);
204 }
205
206 static bool rx_remove_byte(struct cec_pin *pin)
207 {
208         return rx_error_inj(pin, CEC_ERROR_INJ_RX_REMOVE_BYTE_OFFSET, -1, NULL);
209 }
210
211 static bool rx_arb_lost(struct cec_pin *pin, u8 *poll)
212 {
213         return pin->tx_msg.len == 0 &&
214                 rx_error_inj(pin, CEC_ERROR_INJ_RX_ARB_LOST_OFFSET,
215                              CEC_ERROR_INJ_RX_ARB_LOST_ARG_IDX, poll);
216 }
217
218 static bool tx_error_inj(struct cec_pin *pin, unsigned int mode_offset,
219                          int arg_idx, u8 *arg)
220 {
221 #ifdef CONFIG_CEC_PIN_ERROR_INJ
222         u16 cmd = cec_pin_tx_error_inj(pin);
223         u64 e = pin->error_inj[cmd];
224         unsigned int mode = (e >> mode_offset) & CEC_ERROR_INJ_MODE_MASK;
225
226         if (arg_idx >= 0) {
227                 u8 pos = pin->error_inj_args[cmd][arg_idx];
228
229                 if (arg)
230                         *arg = pos;
231                 else if (pos != pin->tx_bit)
232                         return false;
233         }
234
235         switch (mode) {
236         case CEC_ERROR_INJ_MODE_ONCE:
237                 pin->error_inj[cmd] &=
238                         ~(CEC_ERROR_INJ_MODE_MASK << mode_offset);
239                 return true;
240         case CEC_ERROR_INJ_MODE_ALWAYS:
241                 return true;
242         case CEC_ERROR_INJ_MODE_TOGGLE:
243                 return pin->tx_toggle;
244         default:
245                 return false;
246         }
247 #else
248         return false;
249 #endif
250 }
251
252 static bool tx_no_eom(struct cec_pin *pin)
253 {
254         return tx_error_inj(pin, CEC_ERROR_INJ_TX_NO_EOM_OFFSET, -1, NULL);
255 }
256
257 static bool tx_early_eom(struct cec_pin *pin)
258 {
259         return tx_error_inj(pin, CEC_ERROR_INJ_TX_EARLY_EOM_OFFSET, -1, NULL);
260 }
261
262 static bool tx_short_bit(struct cec_pin *pin)
263 {
264         return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_BIT_OFFSET,
265                             CEC_ERROR_INJ_TX_SHORT_BIT_ARG_IDX, NULL);
266 }
267
268 static bool tx_long_bit(struct cec_pin *pin)
269 {
270         return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_BIT_OFFSET,
271                             CEC_ERROR_INJ_TX_LONG_BIT_ARG_IDX, NULL);
272 }
273
274 static bool tx_custom_bit(struct cec_pin *pin)
275 {
276         return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_BIT_OFFSET,
277                             CEC_ERROR_INJ_TX_CUSTOM_BIT_ARG_IDX, NULL);
278 }
279
280 static bool tx_short_start(struct cec_pin *pin)
281 {
282         return tx_error_inj(pin, CEC_ERROR_INJ_TX_SHORT_START_OFFSET, -1, NULL);
283 }
284
285 static bool tx_long_start(struct cec_pin *pin)
286 {
287         return tx_error_inj(pin, CEC_ERROR_INJ_TX_LONG_START_OFFSET, -1, NULL);
288 }
289
290 static bool tx_custom_start(struct cec_pin *pin)
291 {
292         return tx_error_inj(pin, CEC_ERROR_INJ_TX_CUSTOM_START_OFFSET,
293                             -1, NULL);
294 }
295
296 static bool tx_last_bit(struct cec_pin *pin)
297 {
298         return tx_error_inj(pin, CEC_ERROR_INJ_TX_LAST_BIT_OFFSET,
299                             CEC_ERROR_INJ_TX_LAST_BIT_ARG_IDX, NULL);
300 }
301
302 static u8 tx_add_bytes(struct cec_pin *pin)
303 {
304         u8 bytes;
305
306         if (tx_error_inj(pin, CEC_ERROR_INJ_TX_ADD_BYTES_OFFSET,
307                          CEC_ERROR_INJ_TX_ADD_BYTES_ARG_IDX, &bytes))
308                 return bytes;
309         return 0;
310 }
311
312 static bool tx_remove_byte(struct cec_pin *pin)
313 {
314         return tx_error_inj(pin, CEC_ERROR_INJ_TX_REMOVE_BYTE_OFFSET, -1, NULL);
315 }
316
317 static bool tx_low_drive(struct cec_pin *pin)
318 {
319         return tx_error_inj(pin, CEC_ERROR_INJ_TX_LOW_DRIVE_OFFSET,
320                             CEC_ERROR_INJ_TX_LOW_DRIVE_ARG_IDX, NULL);
321 }
322
323 static void cec_pin_to_idle(struct cec_pin *pin)
324 {
325         /*
326          * Reset all status fields, release the bus and
327          * go to idle state.
328          */
329         pin->rx_bit = pin->tx_bit = 0;
330         pin->rx_msg.len = 0;
331         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
332         pin->ts = ns_to_ktime(0);
333         pin->tx_generated_poll = false;
334         pin->tx_post_eom = false;
335         if (pin->state >= CEC_ST_TX_WAIT &&
336             pin->state <= CEC_ST_TX_LOW_DRIVE)
337                 pin->tx_toggle ^= 1;
338         if (pin->state >= CEC_ST_RX_START_BIT_LOW &&
339             pin->state <= CEC_ST_RX_LOW_DRIVE)
340                 pin->rx_toggle ^= 1;
341         pin->state = CEC_ST_IDLE;
342 }
343
344 /*
345  * Handle Transmit-related states
346  *
347  * Basic state changes when transmitting:
348  *
349  * Idle -> Tx Wait (waiting for the end of signal free time) ->
350  *      Tx Start Bit Low -> Tx Start Bit High ->
351  *
352  *   Regular data bits + EOM:
353  *      Tx Data 0 Low -> Tx Data 0 High ->
354  *   or:
355  *      Tx Data 1 Low -> Tx Data 1 High ->
356  *
357  *   First 4 data bits or Ack bit:
358  *      Tx Data 0 Low -> Tx Data 0 High ->
359  *   or:
360  *      Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
361  *              Tx Data 1 Post Sample ->
362  *
363  *   After the last Ack go to Idle.
364  *
365  * If it detects a Low Drive condition then:
366  *      Tx Wait For High -> Idle
367  *
368  * If it loses arbitration, then it switches to state Rx Data Post Sample.
369  */
370 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
371 {
372         bool v;
373         bool is_ack_bit, ack;
374
375         switch (pin->state) {
376         case CEC_ST_TX_WAIT_FOR_HIGH:
377                 if (cec_pin_read(pin))
378                         cec_pin_to_idle(pin);
379                 break;
380
381         case CEC_ST_TX_START_BIT_LOW:
382                 if (tx_short_start(pin)) {
383                         /*
384                          * Error Injection: send an invalid (too short)
385                          * start pulse.
386                          */
387                         pin->state = CEC_ST_TX_START_BIT_HIGH_SHORT;
388                 } else if (tx_long_start(pin)) {
389                         /*
390                          * Error Injection: send an invalid (too long)
391                          * start pulse.
392                          */
393                         pin->state = CEC_ST_TX_START_BIT_HIGH_LONG;
394                 } else {
395                         pin->state = CEC_ST_TX_START_BIT_HIGH;
396                 }
397                 /* Generate start bit */
398                 cec_pin_high(pin);
399                 break;
400
401         case CEC_ST_TX_START_BIT_LOW_CUSTOM:
402                 pin->state = CEC_ST_TX_START_BIT_HIGH_CUSTOM;
403                 /* Generate start bit */
404                 cec_pin_high(pin);
405                 break;
406
407         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
408         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
409         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
410                 if (pin->tx_nacked) {
411                         cec_pin_to_idle(pin);
412                         pin->tx_msg.len = 0;
413                         if (pin->tx_generated_poll)
414                                 break;
415                         pin->work_tx_ts = ts;
416                         pin->work_tx_status = CEC_TX_STATUS_NACK;
417                         wake_up_interruptible(&pin->kthread_waitq);
418                         break;
419                 }
420                 fallthrough;
421         case CEC_ST_TX_DATA_BIT_0_HIGH:
422         case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
423         case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
424         case CEC_ST_TX_DATA_BIT_1_HIGH:
425         case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
426         case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
427                 /*
428                  * If the read value is 1, then all is OK, otherwise we have a
429                  * low drive condition.
430                  *
431                  * Special case: when we generate a poll message due to an
432                  * Arbitration Lost error injection, then ignore this since
433                  * the pin can actually be low in that case.
434                  */
435                 if (!cec_pin_read(pin) && !pin->tx_generated_poll) {
436                         /*
437                          * It's 0, so someone detected an error and pulled the
438                          * line low for 1.5 times the nominal bit period.
439                          */
440                         pin->tx_msg.len = 0;
441                         pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
442                         pin->work_tx_ts = ts;
443                         pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
444                         pin->tx_low_drive_cnt++;
445                         wake_up_interruptible(&pin->kthread_waitq);
446                         break;
447                 }
448                 fallthrough;
449         case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
450                 if (tx_last_bit(pin)) {
451                         /* Error Injection: just stop sending after this bit */
452                         cec_pin_to_idle(pin);
453                         pin->tx_msg.len = 0;
454                         if (pin->tx_generated_poll)
455                                 break;
456                         pin->work_tx_ts = ts;
457                         pin->work_tx_status = CEC_TX_STATUS_OK;
458                         wake_up_interruptible(&pin->kthread_waitq);
459                         break;
460                 }
461                 pin->tx_bit++;
462                 fallthrough;
463         case CEC_ST_TX_START_BIT_HIGH:
464         case CEC_ST_TX_START_BIT_HIGH_SHORT:
465         case CEC_ST_TX_START_BIT_HIGH_LONG:
466         case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
467                 if (tx_low_drive(pin)) {
468                         /* Error injection: go to low drive */
469                         cec_pin_low(pin);
470                         pin->state = CEC_ST_TX_LOW_DRIVE;
471                         pin->tx_msg.len = 0;
472                         if (pin->tx_generated_poll)
473                                 break;
474                         pin->work_tx_ts = ts;
475                         pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
476                         pin->tx_low_drive_cnt++;
477                         wake_up_interruptible(&pin->kthread_waitq);
478                         break;
479                 }
480                 if (pin->tx_bit / 10 >= pin->tx_msg.len + pin->tx_extra_bytes) {
481                         cec_pin_to_idle(pin);
482                         pin->tx_msg.len = 0;
483                         if (pin->tx_generated_poll)
484                                 break;
485                         pin->work_tx_ts = ts;
486                         pin->work_tx_status = CEC_TX_STATUS_OK;
487                         wake_up_interruptible(&pin->kthread_waitq);
488                         break;
489                 }
490
491                 switch (pin->tx_bit % 10) {
492                 default: {
493                         /*
494                          * In the CEC_ERROR_INJ_TX_ADD_BYTES case we transmit
495                          * extra bytes, so pin->tx_bit / 10 can become >= 16.
496                          * Generate bit values for those extra bytes instead
497                          * of reading them from the transmit buffer.
498                          */
499                         unsigned int idx = (pin->tx_bit / 10);
500                         u8 val = idx;
501
502                         if (idx < pin->tx_msg.len)
503                                 val = pin->tx_msg.msg[idx];
504                         v = val & (1 << (7 - (pin->tx_bit % 10)));
505
506                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
507                                          CEC_ST_TX_DATA_BIT_0_LOW;
508                         break;
509                 }
510                 case EOM_BIT: {
511                         unsigned int tot_len = pin->tx_msg.len +
512                                                pin->tx_extra_bytes;
513                         unsigned int tx_byte_idx = pin->tx_bit / 10;
514
515                         v = !pin->tx_post_eom && tx_byte_idx == tot_len - 1;
516                         if (tot_len > 1 && tx_byte_idx == tot_len - 2 &&
517                             tx_early_eom(pin)) {
518                                 /* Error injection: set EOM one byte early */
519                                 v = true;
520                                 pin->tx_post_eom = true;
521                         } else if (v && tx_no_eom(pin)) {
522                                 /* Error injection: no EOM */
523                                 v = false;
524                         }
525                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
526                                          CEC_ST_TX_DATA_BIT_0_LOW;
527                         break;
528                 }
529                 case ACK_BIT:
530                         pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
531                         break;
532                 }
533                 if (tx_custom_bit(pin))
534                         pin->state = CEC_ST_TX_DATA_BIT_LOW_CUSTOM;
535                 cec_pin_low(pin);
536                 break;
537
538         case CEC_ST_TX_DATA_BIT_0_LOW:
539         case CEC_ST_TX_DATA_BIT_1_LOW:
540                 v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
541                 is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
542                 if (v && (pin->tx_bit < 4 || is_ack_bit)) {
543                         pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
544                 } else if (!is_ack_bit && tx_short_bit(pin)) {
545                         /* Error Injection: send an invalid (too short) bit */
546                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_SHORT :
547                                          CEC_ST_TX_DATA_BIT_0_HIGH_SHORT;
548                 } else if (!is_ack_bit && tx_long_bit(pin)) {
549                         /* Error Injection: send an invalid (too long) bit */
550                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH_LONG :
551                                          CEC_ST_TX_DATA_BIT_0_HIGH_LONG;
552                 } else {
553                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
554                                          CEC_ST_TX_DATA_BIT_0_HIGH;
555                 }
556                 cec_pin_high(pin);
557                 break;
558
559         case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
560                 pin->state = CEC_ST_TX_DATA_BIT_HIGH_CUSTOM;
561                 cec_pin_high(pin);
562                 break;
563
564         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
565                 /* Read the CEC value at the sample time */
566                 v = cec_pin_read(pin);
567                 is_ack_bit = pin->tx_bit % 10 == ACK_BIT;
568                 /*
569                  * If v == 0 and we're within the first 4 bits
570                  * of the initiator, then someone else started
571                  * transmitting and we lost the arbitration
572                  * (i.e. the logical address of the other
573                  * transmitter has more leading 0 bits in the
574                  * initiator).
575                  */
576                 if (!v && !is_ack_bit && !pin->tx_generated_poll) {
577                         pin->tx_msg.len = 0;
578                         pin->work_tx_ts = ts;
579                         pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
580                         wake_up_interruptible(&pin->kthread_waitq);
581                         pin->rx_bit = pin->tx_bit;
582                         pin->tx_bit = 0;
583                         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
584                         pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
585                         pin->rx_msg.msg[0] &= (0xff << (8 - pin->rx_bit));
586                         pin->rx_msg.len = 0;
587                         pin->ts = ktime_sub_us(ts, CEC_TIM_DATA_BIT_SAMPLE);
588                         pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
589                         pin->rx_bit++;
590                         break;
591                 }
592                 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
593                 if (!is_ack_bit && tx_short_bit(pin)) {
594                         /* Error Injection: send an invalid (too short) bit */
595                         pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT;
596                 } else if (!is_ack_bit && tx_long_bit(pin)) {
597                         /* Error Injection: send an invalid (too long) bit */
598                         pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG;
599                 }
600                 if (!is_ack_bit)
601                         break;
602                 /* Was the message ACKed? */
603                 ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
604                 if (!ack && (!pin->tx_ignore_nack_until_eom ||
605                     pin->tx_bit / 10 == pin->tx_msg.len - 1) &&
606                     !pin->tx_post_eom) {
607                         /*
608                          * Note: the CEC spec is ambiguous regarding
609                          * what action to take when a NACK appears
610                          * before the last byte of the payload was
611                          * transmitted: either stop transmitting
612                          * immediately, or wait until the last byte
613                          * was transmitted.
614                          *
615                          * Most CEC implementations appear to stop
616                          * immediately, and that's what we do here
617                          * as well.
618                          */
619                         pin->tx_nacked = true;
620                 }
621                 break;
622
623         case CEC_ST_TX_PULSE_LOW_CUSTOM:
624                 cec_pin_high(pin);
625                 pin->state = CEC_ST_TX_PULSE_HIGH_CUSTOM;
626                 break;
627
628         case CEC_ST_TX_PULSE_HIGH_CUSTOM:
629                 cec_pin_to_idle(pin);
630                 break;
631
632         default:
633                 break;
634         }
635 }
636
637 /*
638  * Handle Receive-related states
639  *
640  * Basic state changes when receiving:
641  *
642  *      Rx Start Bit Low -> Rx Start Bit High ->
643  *   Regular data bits + EOM:
644  *      Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
645  *   Ack bit 0:
646  *      Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
647  *   Ack bit 1:
648  *      Rx Ack High Post -> Rx Data High ->
649  *   Ack bit 0 && EOM:
650  *      Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
651  */
652 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
653 {
654         s32 delta;
655         bool v;
656         bool ack;
657         bool bcast, for_us;
658         u8 dest;
659         u8 poll;
660
661         switch (pin->state) {
662         /* Receive states */
663         case CEC_ST_RX_START_BIT_LOW:
664                 v = cec_pin_read(pin);
665                 if (!v)
666                         break;
667                 pin->state = CEC_ST_RX_START_BIT_HIGH;
668                 delta = ktime_us_delta(ts, pin->ts);
669                 /* Start bit low is too short, go back to idle */
670                 if (delta < CEC_TIM_START_BIT_LOW_MIN - CEC_TIM_IDLE_SAMPLE) {
671                         if (!pin->rx_start_bit_low_too_short_cnt++) {
672                                 pin->rx_start_bit_low_too_short_ts = ktime_to_ns(pin->ts);
673                                 pin->rx_start_bit_low_too_short_delta = delta;
674                         }
675                         cec_pin_to_idle(pin);
676                         break;
677                 }
678                 if (rx_arb_lost(pin, &poll)) {
679                         cec_msg_init(&pin->tx_msg, poll >> 4, poll & 0xf);
680                         pin->tx_generated_poll = true;
681                         pin->tx_extra_bytes = 0;
682                         pin->state = CEC_ST_TX_START_BIT_HIGH;
683                         pin->ts = ts;
684                 }
685                 break;
686
687         case CEC_ST_RX_START_BIT_HIGH:
688                 v = cec_pin_read(pin);
689                 delta = ktime_us_delta(ts, pin->ts);
690                 /*
691                  * Unfortunately the spec does not specify when to give up
692                  * and go to idle. We just pick TOTAL_LONG.
693                  */
694                 if (v && delta > CEC_TIM_START_BIT_TOTAL_LONG) {
695                         pin->rx_start_bit_too_long_cnt++;
696                         cec_pin_to_idle(pin);
697                         break;
698                 }
699                 if (v)
700                         break;
701                 /* Start bit is too short, go back to idle */
702                 if (delta < CEC_TIM_START_BIT_TOTAL_MIN - CEC_TIM_IDLE_SAMPLE) {
703                         if (!pin->rx_start_bit_too_short_cnt++) {
704                                 pin->rx_start_bit_too_short_ts = ktime_to_ns(pin->ts);
705                                 pin->rx_start_bit_too_short_delta = delta;
706                         }
707                         cec_pin_to_idle(pin);
708                         break;
709                 }
710                 if (rx_low_drive(pin)) {
711                         /* Error injection: go to low drive */
712                         cec_pin_low(pin);
713                         pin->state = CEC_ST_RX_LOW_DRIVE;
714                         pin->rx_low_drive_cnt++;
715                         break;
716                 }
717                 pin->state = CEC_ST_RX_DATA_SAMPLE;
718                 pin->ts = ts;
719                 pin->rx_eom = false;
720                 break;
721
722         case CEC_ST_RX_DATA_SAMPLE:
723                 v = cec_pin_read(pin);
724                 pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
725                 switch (pin->rx_bit % 10) {
726                 default:
727                         if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
728                                 pin->rx_msg.msg[pin->rx_bit / 10] |=
729                                         v << (7 - (pin->rx_bit % 10));
730                         break;
731                 case EOM_BIT:
732                         pin->rx_eom = v;
733                         pin->rx_msg.len = pin->rx_bit / 10 + 1;
734                         break;
735                 case ACK_BIT:
736                         break;
737                 }
738                 pin->rx_bit++;
739                 break;
740
741         case CEC_ST_RX_DATA_POST_SAMPLE:
742                 pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
743                 break;
744
745         case CEC_ST_RX_DATA_WAIT_FOR_LOW:
746                 v = cec_pin_read(pin);
747                 delta = ktime_us_delta(ts, pin->ts);
748                 /*
749                  * Unfortunately the spec does not specify when to give up
750                  * and go to idle. We just pick TOTAL_LONG.
751                  */
752                 if (v && delta > CEC_TIM_DATA_BIT_TOTAL_LONG) {
753                         pin->rx_data_bit_too_long_cnt++;
754                         cec_pin_to_idle(pin);
755                         break;
756                 }
757                 if (v)
758                         break;
759
760                 if (rx_low_drive(pin)) {
761                         /* Error injection: go to low drive */
762                         cec_pin_low(pin);
763                         pin->state = CEC_ST_RX_LOW_DRIVE;
764                         pin->rx_low_drive_cnt++;
765                         break;
766                 }
767
768                 /*
769                  * Go to low drive state when the total bit time is
770                  * too short.
771                  */
772                 if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
773                         if (!pin->rx_data_bit_too_short_cnt++) {
774                                 pin->rx_data_bit_too_short_ts = ktime_to_ns(pin->ts);
775                                 pin->rx_data_bit_too_short_delta = delta;
776                         }
777                         cec_pin_low(pin);
778                         pin->state = CEC_ST_RX_LOW_DRIVE;
779                         pin->rx_low_drive_cnt++;
780                         break;
781                 }
782                 pin->ts = ts;
783                 if (pin->rx_bit % 10 != 9) {
784                         pin->state = CEC_ST_RX_DATA_SAMPLE;
785                         break;
786                 }
787
788                 dest = cec_msg_destination(&pin->rx_msg);
789                 bcast = dest == CEC_LOG_ADDR_BROADCAST;
790                 /* for_us == broadcast or directed to us */
791                 for_us = bcast || (pin->la_mask & (1 << dest));
792                 /* ACK bit value */
793                 ack = bcast ? 1 : !for_us;
794
795                 if (for_us && rx_nack(pin)) {
796                         /* Error injection: toggle the ACK bit */
797                         ack = !ack;
798                 }
799
800                 if (ack) {
801                         /* No need to write to the bus, just wait */
802                         pin->state = CEC_ST_RX_ACK_HIGH_POST;
803                         break;
804                 }
805                 cec_pin_low(pin);
806                 pin->state = CEC_ST_RX_ACK_LOW;
807                 break;
808
809         case CEC_ST_RX_ACK_LOW:
810                 cec_pin_high(pin);
811                 pin->state = CEC_ST_RX_ACK_LOW_POST;
812                 break;
813
814         case CEC_ST_RX_ACK_LOW_POST:
815         case CEC_ST_RX_ACK_HIGH_POST:
816                 v = cec_pin_read(pin);
817                 if (v && pin->rx_eom) {
818                         pin->work_rx_msg = pin->rx_msg;
819                         pin->work_rx_msg.rx_ts = ktime_to_ns(ts);
820                         wake_up_interruptible(&pin->kthread_waitq);
821                         pin->ts = ts;
822                         pin->state = CEC_ST_RX_ACK_FINISH;
823                         break;
824                 }
825                 pin->rx_bit++;
826                 pin->state = CEC_ST_RX_DATA_WAIT_FOR_LOW;
827                 break;
828
829         case CEC_ST_RX_ACK_FINISH:
830                 cec_pin_to_idle(pin);
831                 break;
832
833         default:
834                 break;
835         }
836 }
837
838 /*
839  * Main timer function
840  *
841  */
842 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
843 {
844         struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
845         struct cec_adapter *adap = pin->adap;
846         ktime_t ts;
847         s32 delta;
848         u32 usecs;
849
850         ts = ktime_get();
851         if (ktime_to_ns(pin->timer_ts)) {
852                 delta = ktime_us_delta(ts, pin->timer_ts);
853                 pin->timer_cnt++;
854                 if (delta > 100 && pin->state != CEC_ST_IDLE) {
855                         /* Keep track of timer overruns */
856                         pin->timer_sum_overrun += delta;
857                         pin->timer_100us_overruns++;
858                         if (delta > 300)
859                                 pin->timer_300us_overruns++;
860                         if (delta > pin->timer_max_overrun)
861                                 pin->timer_max_overrun = delta;
862                 }
863         }
864         if (adap->monitor_pin_cnt)
865                 cec_pin_read(pin);
866
867         if (pin->wait_usecs) {
868                 /*
869                  * If we are monitoring the pin, then we have to
870                  * sample at regular intervals.
871                  */
872                 if (pin->wait_usecs > 150) {
873                         pin->wait_usecs -= 100;
874                         pin->timer_ts = ktime_add_us(ts, 100);
875                         hrtimer_forward_now(timer, ns_to_ktime(100000));
876                         return HRTIMER_RESTART;
877                 }
878                 if (pin->wait_usecs > 100) {
879                         pin->wait_usecs /= 2;
880                         pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
881                         hrtimer_forward_now(timer,
882                                         ns_to_ktime(pin->wait_usecs * 1000));
883                         return HRTIMER_RESTART;
884                 }
885                 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
886                 hrtimer_forward_now(timer,
887                                     ns_to_ktime(pin->wait_usecs * 1000));
888                 pin->wait_usecs = 0;
889                 return HRTIMER_RESTART;
890         }
891
892         switch (pin->state) {
893         /* Transmit states */
894         case CEC_ST_TX_WAIT_FOR_HIGH:
895         case CEC_ST_TX_START_BIT_LOW:
896         case CEC_ST_TX_START_BIT_HIGH:
897         case CEC_ST_TX_START_BIT_HIGH_SHORT:
898         case CEC_ST_TX_START_BIT_HIGH_LONG:
899         case CEC_ST_TX_START_BIT_LOW_CUSTOM:
900         case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
901         case CEC_ST_TX_DATA_BIT_0_LOW:
902         case CEC_ST_TX_DATA_BIT_0_HIGH:
903         case CEC_ST_TX_DATA_BIT_0_HIGH_SHORT:
904         case CEC_ST_TX_DATA_BIT_0_HIGH_LONG:
905         case CEC_ST_TX_DATA_BIT_1_LOW:
906         case CEC_ST_TX_DATA_BIT_1_HIGH:
907         case CEC_ST_TX_DATA_BIT_1_HIGH_SHORT:
908         case CEC_ST_TX_DATA_BIT_1_HIGH_LONG:
909         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
910         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
911         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_SHORT:
912         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE_LONG:
913         case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
914         case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
915         case CEC_ST_TX_PULSE_LOW_CUSTOM:
916         case CEC_ST_TX_PULSE_HIGH_CUSTOM:
917                 cec_pin_tx_states(pin, ts);
918                 break;
919
920         /* Receive states */
921         case CEC_ST_RX_START_BIT_LOW:
922         case CEC_ST_RX_START_BIT_HIGH:
923         case CEC_ST_RX_DATA_SAMPLE:
924         case CEC_ST_RX_DATA_POST_SAMPLE:
925         case CEC_ST_RX_DATA_WAIT_FOR_LOW:
926         case CEC_ST_RX_ACK_LOW:
927         case CEC_ST_RX_ACK_LOW_POST:
928         case CEC_ST_RX_ACK_HIGH_POST:
929         case CEC_ST_RX_ACK_FINISH:
930                 cec_pin_rx_states(pin, ts);
931                 break;
932
933         case CEC_ST_IDLE:
934         case CEC_ST_TX_WAIT:
935                 if (!cec_pin_high(pin)) {
936                         /* Start bit, switch to receive state */
937                         pin->ts = ts;
938                         pin->state = CEC_ST_RX_START_BIT_LOW;
939                         /*
940                          * If a transmit is pending, then that transmit should
941                          * use a signal free time of no more than
942                          * CEC_SIGNAL_FREE_TIME_NEW_INITIATOR since it will
943                          * have a new initiator due to the receive that is now
944                          * starting.
945                          */
946                         if (pin->tx_msg.len && pin->tx_signal_free_time >
947                             CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
948                                 pin->tx_signal_free_time =
949                                         CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
950                         break;
951                 }
952                 if (ktime_to_ns(pin->ts) == 0)
953                         pin->ts = ts;
954                 if (pin->tx_msg.len) {
955                         /*
956                          * Check if the bus has been free for long enough
957                          * so we can kick off the pending transmit.
958                          */
959                         delta = ktime_us_delta(ts, pin->ts);
960                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
961                             pin->tx_signal_free_time) {
962                                 pin->tx_nacked = false;
963                                 if (tx_custom_start(pin))
964                                         pin->state = CEC_ST_TX_START_BIT_LOW_CUSTOM;
965                                 else
966                                         pin->state = CEC_ST_TX_START_BIT_LOW;
967                                 /* Generate start bit */
968                                 cec_pin_low(pin);
969                                 break;
970                         }
971                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
972                             pin->tx_signal_free_time - 1)
973                                 pin->state = CEC_ST_TX_WAIT;
974                         break;
975                 }
976                 if (pin->tx_custom_pulse && pin->state == CEC_ST_IDLE) {
977                         pin->tx_custom_pulse = false;
978                         /* Generate custom pulse */
979                         cec_pin_low(pin);
980                         pin->state = CEC_ST_TX_PULSE_LOW_CUSTOM;
981                         break;
982                 }
983                 if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
984                     pin->enable_irq_failed || adap->is_configuring ||
985                     adap->is_configured || adap->monitor_all_cnt)
986                         break;
987                 /* Switch to interrupt mode */
988                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
989                 pin->state = CEC_ST_RX_IRQ;
990                 wake_up_interruptible(&pin->kthread_waitq);
991                 return HRTIMER_NORESTART;
992
993         case CEC_ST_TX_LOW_DRIVE:
994         case CEC_ST_RX_LOW_DRIVE:
995                 cec_pin_high(pin);
996                 cec_pin_to_idle(pin);
997                 break;
998
999         default:
1000                 break;
1001         }
1002
1003         switch (pin->state) {
1004         case CEC_ST_TX_START_BIT_LOW_CUSTOM:
1005         case CEC_ST_TX_DATA_BIT_LOW_CUSTOM:
1006         case CEC_ST_TX_PULSE_LOW_CUSTOM:
1007                 usecs = pin->tx_custom_low_usecs;
1008                 break;
1009         case CEC_ST_TX_START_BIT_HIGH_CUSTOM:
1010         case CEC_ST_TX_DATA_BIT_HIGH_CUSTOM:
1011         case CEC_ST_TX_PULSE_HIGH_CUSTOM:
1012                 usecs = pin->tx_custom_high_usecs;
1013                 break;
1014         default:
1015                 usecs = states[pin->state].usecs;
1016                 break;
1017         }
1018
1019         if (!adap->monitor_pin_cnt || usecs <= 150) {
1020                 pin->wait_usecs = 0;
1021                 pin->timer_ts = ktime_add_us(ts, usecs);
1022                 hrtimer_forward_now(timer,
1023                                 ns_to_ktime(usecs * 1000));
1024                 return HRTIMER_RESTART;
1025         }
1026         pin->wait_usecs = usecs - 100;
1027         pin->timer_ts = ktime_add_us(ts, 100);
1028         hrtimer_forward_now(timer, ns_to_ktime(100000));
1029         return HRTIMER_RESTART;
1030 }
1031
1032 static int cec_pin_thread_func(void *_adap)
1033 {
1034         struct cec_adapter *adap = _adap;
1035         struct cec_pin *pin = adap->pin;
1036
1037         for (;;) {
1038                 wait_event_interruptible(pin->kthread_waitq,
1039                         kthread_should_stop() ||
1040                         pin->work_rx_msg.len ||
1041                         pin->work_tx_status ||
1042                         atomic_read(&pin->work_irq_change) ||
1043                         atomic_read(&pin->work_pin_num_events));
1044
1045                 if (pin->work_rx_msg.len) {
1046                         struct cec_msg *msg = &pin->work_rx_msg;
1047
1048                         if (msg->len > 1 && msg->len < CEC_MAX_MSG_SIZE &&
1049                             rx_add_byte(pin)) {
1050                                 /* Error injection: add byte to the message */
1051                                 msg->msg[msg->len++] = 0x55;
1052                         }
1053                         if (msg->len > 2 && rx_remove_byte(pin)) {
1054                                 /* Error injection: remove byte from message */
1055                                 msg->len--;
1056                         }
1057                         if (msg->len > CEC_MAX_MSG_SIZE)
1058                                 msg->len = CEC_MAX_MSG_SIZE;
1059                         cec_received_msg_ts(adap, msg,
1060                                 ns_to_ktime(pin->work_rx_msg.rx_ts));
1061                         msg->len = 0;
1062                 }
1063                 if (pin->work_tx_status) {
1064                         unsigned int tx_status = pin->work_tx_status;
1065
1066                         pin->work_tx_status = 0;
1067                         cec_transmit_attempt_done_ts(adap, tx_status,
1068                                                      pin->work_tx_ts);
1069                 }
1070
1071                 while (atomic_read(&pin->work_pin_num_events)) {
1072                         unsigned int idx = pin->work_pin_events_rd;
1073                         u8 v = pin->work_pin_events[idx];
1074
1075                         cec_queue_pin_cec_event(adap,
1076                                                 v & CEC_PIN_EVENT_FL_IS_HIGH,
1077                                                 v & CEC_PIN_EVENT_FL_DROPPED,
1078                                                 pin->work_pin_ts[idx]);
1079                         pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
1080                         atomic_dec(&pin->work_pin_num_events);
1081                 }
1082
1083                 switch (atomic_xchg(&pin->work_irq_change,
1084                                     CEC_PIN_IRQ_UNCHANGED)) {
1085                 case CEC_PIN_IRQ_DISABLE:
1086                         pin->ops->disable_irq(adap);
1087                         cec_pin_high(pin);
1088                         cec_pin_to_idle(pin);
1089                         hrtimer_start(&pin->timer, ns_to_ktime(0),
1090                                       HRTIMER_MODE_REL);
1091                         break;
1092                 case CEC_PIN_IRQ_ENABLE:
1093                         pin->enable_irq_failed = !pin->ops->enable_irq(adap);
1094                         if (pin->enable_irq_failed) {
1095                                 cec_pin_to_idle(pin);
1096                                 hrtimer_start(&pin->timer, ns_to_ktime(0),
1097                                               HRTIMER_MODE_REL);
1098                         }
1099                         break;
1100                 default:
1101                         break;
1102                 }
1103
1104                 if (kthread_should_stop())
1105                         break;
1106         }
1107         return 0;
1108 }
1109
1110 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
1111 {
1112         struct cec_pin *pin = adap->pin;
1113
1114         pin->enabled = enable;
1115         if (enable) {
1116                 atomic_set(&pin->work_pin_num_events, 0);
1117                 pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
1118                 pin->work_pin_events_dropped = false;
1119                 cec_pin_read(pin);
1120                 cec_pin_to_idle(pin);
1121                 pin->tx_msg.len = 0;
1122                 pin->timer_ts = ns_to_ktime(0);
1123                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
1124                 pin->kthread = kthread_run(cec_pin_thread_func, adap,
1125                                            "cec-pin");
1126                 if (IS_ERR(pin->kthread)) {
1127                         pr_err("cec-pin: kernel_thread() failed\n");
1128                         return PTR_ERR(pin->kthread);
1129                 }
1130                 hrtimer_start(&pin->timer, ns_to_ktime(0),
1131                               HRTIMER_MODE_REL);
1132         } else {
1133                 if (pin->ops->disable_irq)
1134                         pin->ops->disable_irq(adap);
1135                 hrtimer_cancel(&pin->timer);
1136                 kthread_stop(pin->kthread);
1137                 cec_pin_read(pin);
1138                 cec_pin_to_idle(pin);
1139                 pin->state = CEC_ST_OFF;
1140         }
1141         return 0;
1142 }
1143
1144 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
1145 {
1146         struct cec_pin *pin = adap->pin;
1147
1148         if (log_addr == CEC_LOG_ADDR_INVALID)
1149                 pin->la_mask = 0;
1150         else
1151                 pin->la_mask |= (1 << log_addr);
1152         return 0;
1153 }
1154
1155 void cec_pin_start_timer(struct cec_pin *pin)
1156 {
1157         if (pin->state != CEC_ST_RX_IRQ)
1158                 return;
1159
1160         atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
1161         pin->ops->disable_irq(pin->adap);
1162         cec_pin_high(pin);
1163         cec_pin_to_idle(pin);
1164         hrtimer_start(&pin->timer, ns_to_ktime(0), HRTIMER_MODE_REL);
1165 }
1166
1167 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
1168                                       u32 signal_free_time, struct cec_msg *msg)
1169 {
1170         struct cec_pin *pin = adap->pin;
1171
1172         /*
1173          * If a receive is in progress, then this transmit should use
1174          * a signal free time of max CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
1175          * since when it starts transmitting it will have a new initiator.
1176          */
1177         if (pin->state != CEC_ST_IDLE &&
1178             signal_free_time > CEC_SIGNAL_FREE_TIME_NEW_INITIATOR)
1179                 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
1180
1181         pin->tx_signal_free_time = signal_free_time;
1182         pin->tx_extra_bytes = 0;
1183         pin->tx_msg = *msg;
1184         if (msg->len > 1) {
1185                 /* Error injection: add byte to the message */
1186                 pin->tx_extra_bytes = tx_add_bytes(pin);
1187         }
1188         if (msg->len > 2 && tx_remove_byte(pin)) {
1189                 /* Error injection: remove byte from the message */
1190                 pin->tx_msg.len--;
1191         }
1192         pin->work_tx_status = 0;
1193         pin->tx_bit = 0;
1194         cec_pin_start_timer(pin);
1195         return 0;
1196 }
1197
1198 static void cec_pin_adap_status(struct cec_adapter *adap,
1199                                        struct seq_file *file)
1200 {
1201         struct cec_pin *pin = adap->pin;
1202
1203         seq_printf(file, "state: %s\n", states[pin->state].name);
1204         seq_printf(file, "tx_bit: %d\n", pin->tx_bit);
1205         seq_printf(file, "rx_bit: %d\n", pin->rx_bit);
1206         seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
1207         seq_printf(file, "cec pin events dropped: %u\n",
1208                    pin->work_pin_events_dropped_cnt);
1209         seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
1210         if (pin->timer_100us_overruns) {
1211                 seq_printf(file, "timer overruns > 100us: %u of %u\n",
1212                            pin->timer_100us_overruns, pin->timer_cnt);
1213                 seq_printf(file, "timer overruns > 300us: %u of %u\n",
1214                            pin->timer_300us_overruns, pin->timer_cnt);
1215                 seq_printf(file, "max timer overrun: %u usecs\n",
1216                            pin->timer_max_overrun);
1217                 seq_printf(file, "avg timer overrun: %u usecs\n",
1218                            pin->timer_sum_overrun / pin->timer_100us_overruns);
1219         }
1220         if (pin->rx_start_bit_low_too_short_cnt)
1221                 seq_printf(file,
1222                            "rx start bit low too short: %u (delta %u, ts %llu)\n",
1223                            pin->rx_start_bit_low_too_short_cnt,
1224                            pin->rx_start_bit_low_too_short_delta,
1225                            pin->rx_start_bit_low_too_short_ts);
1226         if (pin->rx_start_bit_too_short_cnt)
1227                 seq_printf(file,
1228                            "rx start bit too short: %u (delta %u, ts %llu)\n",
1229                            pin->rx_start_bit_too_short_cnt,
1230                            pin->rx_start_bit_too_short_delta,
1231                            pin->rx_start_bit_too_short_ts);
1232         if (pin->rx_start_bit_too_long_cnt)
1233                 seq_printf(file, "rx start bit too long: %u\n",
1234                            pin->rx_start_bit_too_long_cnt);
1235         if (pin->rx_data_bit_too_short_cnt)
1236                 seq_printf(file,
1237                            "rx data bit too short: %u (delta %u, ts %llu)\n",
1238                            pin->rx_data_bit_too_short_cnt,
1239                            pin->rx_data_bit_too_short_delta,
1240                            pin->rx_data_bit_too_short_ts);
1241         if (pin->rx_data_bit_too_long_cnt)
1242                 seq_printf(file, "rx data bit too long: %u\n",
1243                            pin->rx_data_bit_too_long_cnt);
1244         seq_printf(file, "rx initiated low drive: %u\n", pin->rx_low_drive_cnt);
1245         seq_printf(file, "tx detected low drive: %u\n", pin->tx_low_drive_cnt);
1246         pin->work_pin_events_dropped_cnt = 0;
1247         pin->timer_cnt = 0;
1248         pin->timer_100us_overruns = 0;
1249         pin->timer_300us_overruns = 0;
1250         pin->timer_max_overrun = 0;
1251         pin->timer_sum_overrun = 0;
1252         pin->rx_start_bit_low_too_short_cnt = 0;
1253         pin->rx_start_bit_too_short_cnt = 0;
1254         pin->rx_start_bit_too_long_cnt = 0;
1255         pin->rx_data_bit_too_short_cnt = 0;
1256         pin->rx_data_bit_too_long_cnt = 0;
1257         pin->rx_low_drive_cnt = 0;
1258         pin->tx_low_drive_cnt = 0;
1259         if (pin->ops->status)
1260                 pin->ops->status(adap, file);
1261 }
1262
1263 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
1264                                                   bool enable)
1265 {
1266         struct cec_pin *pin = adap->pin;
1267
1268         pin->monitor_all = enable;
1269         return 0;
1270 }
1271
1272 static void cec_pin_adap_free(struct cec_adapter *adap)
1273 {
1274         struct cec_pin *pin = adap->pin;
1275
1276         if (pin->ops->free)
1277                 pin->ops->free(adap);
1278         adap->pin = NULL;
1279         kfree(pin);
1280 }
1281
1282 static int cec_pin_received(struct cec_adapter *adap, struct cec_msg *msg)
1283 {
1284         struct cec_pin *pin = adap->pin;
1285
1286         if (pin->ops->received)
1287                 return pin->ops->received(adap, msg);
1288         return -ENOMSG;
1289 }
1290
1291 void cec_pin_changed(struct cec_adapter *adap, bool value)
1292 {
1293         struct cec_pin *pin = adap->pin;
1294
1295         cec_pin_update(pin, value, false);
1296         if (!value && (adap->is_configuring || adap->is_configured ||
1297                        adap->monitor_all_cnt))
1298                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
1299 }
1300 EXPORT_SYMBOL_GPL(cec_pin_changed);
1301
1302 static const struct cec_adap_ops cec_pin_adap_ops = {
1303         .adap_enable = cec_pin_adap_enable,
1304         .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
1305         .adap_log_addr = cec_pin_adap_log_addr,
1306         .adap_transmit = cec_pin_adap_transmit,
1307         .adap_status = cec_pin_adap_status,
1308         .adap_free = cec_pin_adap_free,
1309 #ifdef CONFIG_CEC_PIN_ERROR_INJ
1310         .error_inj_parse_line = cec_pin_error_inj_parse_line,
1311         .error_inj_show = cec_pin_error_inj_show,
1312 #endif
1313         .received = cec_pin_received,
1314 };
1315
1316 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
1317                                         void *priv, const char *name, u32 caps)
1318 {
1319         struct cec_adapter *adap;
1320         struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
1321
1322         if (pin == NULL)
1323                 return ERR_PTR(-ENOMEM);
1324         pin->ops = pin_ops;
1325         hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1326         pin->timer.function = cec_pin_timer;
1327         init_waitqueue_head(&pin->kthread_waitq);
1328         pin->tx_custom_low_usecs = CEC_TIM_CUSTOM_DEFAULT;
1329         pin->tx_custom_high_usecs = CEC_TIM_CUSTOM_DEFAULT;
1330
1331         adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
1332                             caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
1333                             CEC_MAX_LOG_ADDRS);
1334
1335         if (IS_ERR(adap)) {
1336                 kfree(pin);
1337                 return adap;
1338         }
1339
1340         adap->pin = pin;
1341         pin->adap = adap;
1342         cec_pin_update(pin, cec_pin_high(pin), true);
1343         return adap;
1344 }
1345 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);