Merge tag 'driver-core-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / media / cec / cec-pin.c
1 /*
2  * Copyright 2017 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
3  *
4  * This program is free software; you may redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
9  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
10  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
11  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
12  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
13  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
14  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
15  * SOFTWARE.
16  */
17
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/sched/types.h>
21
22 #include <media/cec-pin.h>
23 #include "cec-pin-priv.h"
24
25 /* All timings are in microseconds */
26
27 /* start bit timings */
28 #define CEC_TIM_START_BIT_LOW           3700
29 #define CEC_TIM_START_BIT_LOW_MIN       3500
30 #define CEC_TIM_START_BIT_LOW_MAX       3900
31 #define CEC_TIM_START_BIT_TOTAL         4500
32 #define CEC_TIM_START_BIT_TOTAL_MIN     4300
33 #define CEC_TIM_START_BIT_TOTAL_MAX     4700
34
35 /* data bit timings */
36 #define CEC_TIM_DATA_BIT_0_LOW          1500
37 #define CEC_TIM_DATA_BIT_0_LOW_MIN      1300
38 #define CEC_TIM_DATA_BIT_0_LOW_MAX      1700
39 #define CEC_TIM_DATA_BIT_1_LOW          600
40 #define CEC_TIM_DATA_BIT_1_LOW_MIN      400
41 #define CEC_TIM_DATA_BIT_1_LOW_MAX      800
42 #define CEC_TIM_DATA_BIT_TOTAL          2400
43 #define CEC_TIM_DATA_BIT_TOTAL_MIN      2050
44 #define CEC_TIM_DATA_BIT_TOTAL_MAX      2750
45 /* earliest safe time to sample the bit state */
46 #define CEC_TIM_DATA_BIT_SAMPLE         850
47 /* earliest time the bit is back to 1 (T7 + 50) */
48 #define CEC_TIM_DATA_BIT_HIGH           1750
49
50 /* when idle, sample once per millisecond */
51 #define CEC_TIM_IDLE_SAMPLE             1000
52 /* when processing the start bit, sample twice per millisecond */
53 #define CEC_TIM_START_BIT_SAMPLE        500
54 /* when polling for a state change, sample once every 50 micoseconds */
55 #define CEC_TIM_SAMPLE                  50
56
57 #define CEC_TIM_LOW_DRIVE_ERROR         (1.5 * CEC_TIM_DATA_BIT_TOTAL)
58
59 struct cec_state {
60         const char * const name;
61         unsigned int usecs;
62 };
63
64 static const struct cec_state states[CEC_PIN_STATES] = {
65         { "Off",                   0 },
66         { "Idle",                  CEC_TIM_IDLE_SAMPLE },
67         { "Tx Wait",               CEC_TIM_SAMPLE },
68         { "Tx Wait for High",      CEC_TIM_IDLE_SAMPLE },
69         { "Tx Start Bit Low",      CEC_TIM_START_BIT_LOW },
70         { "Tx Start Bit High",     CEC_TIM_START_BIT_TOTAL - CEC_TIM_START_BIT_LOW },
71         { "Tx Data 0 Low",         CEC_TIM_DATA_BIT_0_LOW },
72         { "Tx Data 0 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_0_LOW },
73         { "Tx Data 1 Low",         CEC_TIM_DATA_BIT_1_LOW },
74         { "Tx Data 1 High",        CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_1_LOW },
75         { "Tx Data 1 Pre Sample",  CEC_TIM_DATA_BIT_SAMPLE - CEC_TIM_DATA_BIT_1_LOW },
76         { "Tx Data 1 Post Sample", CEC_TIM_DATA_BIT_TOTAL - CEC_TIM_DATA_BIT_SAMPLE },
77         { "Rx Start Bit Low",      CEC_TIM_SAMPLE },
78         { "Rx Start Bit High",     CEC_TIM_SAMPLE },
79         { "Rx Data Sample",        CEC_TIM_DATA_BIT_SAMPLE },
80         { "Rx Data Post Sample",   CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_SAMPLE },
81         { "Rx Data High",          CEC_TIM_SAMPLE },
82         { "Rx Ack Low",            CEC_TIM_DATA_BIT_0_LOW },
83         { "Rx Ack Low Post",       CEC_TIM_DATA_BIT_HIGH - CEC_TIM_DATA_BIT_0_LOW },
84         { "Rx Ack High Post",      CEC_TIM_DATA_BIT_HIGH },
85         { "Rx Ack Finish",         CEC_TIM_DATA_BIT_TOTAL_MIN - CEC_TIM_DATA_BIT_HIGH },
86         { "Rx Low Drive",          CEC_TIM_LOW_DRIVE_ERROR },
87         { "Rx Irq",                0 },
88 };
89
90 static void cec_pin_update(struct cec_pin *pin, bool v, bool force)
91 {
92         if (!force && v == pin->adap->cec_pin_is_high)
93                 return;
94
95         pin->adap->cec_pin_is_high = v;
96         if (atomic_read(&pin->work_pin_events) < CEC_NUM_PIN_EVENTS) {
97                 pin->work_pin_is_high[pin->work_pin_events_wr] = v;
98                 pin->work_pin_ts[pin->work_pin_events_wr] = ktime_get();
99                 pin->work_pin_events_wr =
100                         (pin->work_pin_events_wr + 1) % CEC_NUM_PIN_EVENTS;
101                 atomic_inc(&pin->work_pin_events);
102         }
103         wake_up_interruptible(&pin->kthread_waitq);
104 }
105
106 static bool cec_pin_read(struct cec_pin *pin)
107 {
108         bool v = pin->ops->read(pin->adap);
109
110         cec_pin_update(pin, v, false);
111         return v;
112 }
113
114 static void cec_pin_low(struct cec_pin *pin)
115 {
116         pin->ops->low(pin->adap);
117         cec_pin_update(pin, false, false);
118 }
119
120 static bool cec_pin_high(struct cec_pin *pin)
121 {
122         pin->ops->high(pin->adap);
123         return cec_pin_read(pin);
124 }
125
126 static void cec_pin_to_idle(struct cec_pin *pin)
127 {
128         /*
129          * Reset all status fields, release the bus and
130          * go to idle state.
131          */
132         pin->rx_bit = pin->tx_bit = 0;
133         pin->rx_msg.len = 0;
134         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
135         pin->state = CEC_ST_IDLE;
136         pin->ts = ns_to_ktime(0);
137 }
138
139 /*
140  * Handle Transmit-related states
141  *
142  * Basic state changes when transmitting:
143  *
144  * Idle -> Tx Wait (waiting for the end of signal free time) ->
145  *      Tx Start Bit Low -> Tx Start Bit High ->
146  *
147  *   Regular data bits + EOM:
148  *      Tx Data 0 Low -> Tx Data 0 High ->
149  *   or:
150  *      Tx Data 1 Low -> Tx Data 1 High ->
151  *
152  *   First 4 data bits or Ack bit:
153  *      Tx Data 0 Low -> Tx Data 0 High ->
154  *   or:
155  *      Tx Data 1 Low -> Tx Data 1 High -> Tx Data 1 Pre Sample ->
156  *              Tx Data 1 Post Sample ->
157  *
158  *   After the last Ack go to Idle.
159  *
160  * If it detects a Low Drive condition then:
161  *      Tx Wait For High -> Idle
162  *
163  * If it loses arbitration, then it switches to state Rx Data Post Sample.
164  */
165 static void cec_pin_tx_states(struct cec_pin *pin, ktime_t ts)
166 {
167         bool v;
168         bool is_ack_bit, ack;
169
170         switch (pin->state) {
171         case CEC_ST_TX_WAIT_FOR_HIGH:
172                 if (cec_pin_read(pin))
173                         cec_pin_to_idle(pin);
174                 break;
175
176         case CEC_ST_TX_START_BIT_LOW:
177                 pin->state = CEC_ST_TX_START_BIT_HIGH;
178                 /* Generate start bit */
179                 cec_pin_high(pin);
180                 break;
181
182         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
183                 /* If the read value is 1, then all is OK */
184                 if (!cec_pin_read(pin)) {
185                         /*
186                          * It's 0, so someone detected an error and pulled the
187                          * line low for 1.5 times the nominal bit period.
188                          */
189                         pin->tx_msg.len = 0;
190                         pin->work_tx_ts = ts;
191                         pin->work_tx_status = CEC_TX_STATUS_LOW_DRIVE;
192                         pin->state = CEC_ST_TX_WAIT_FOR_HIGH;
193                         wake_up_interruptible(&pin->kthread_waitq);
194                         break;
195                 }
196                 if (pin->tx_nacked) {
197                         cec_pin_to_idle(pin);
198                         pin->tx_msg.len = 0;
199                         pin->work_tx_ts = ts;
200                         pin->work_tx_status = CEC_TX_STATUS_NACK;
201                         wake_up_interruptible(&pin->kthread_waitq);
202                         break;
203                 }
204                 /* fall through */
205         case CEC_ST_TX_DATA_BIT_0_HIGH:
206         case CEC_ST_TX_DATA_BIT_1_HIGH:
207                 pin->tx_bit++;
208                 /* fall through */
209         case CEC_ST_TX_START_BIT_HIGH:
210                 if (pin->tx_bit / 10 >= pin->tx_msg.len) {
211                         cec_pin_to_idle(pin);
212                         pin->tx_msg.len = 0;
213                         pin->work_tx_ts = ts;
214                         pin->work_tx_status = CEC_TX_STATUS_OK;
215                         wake_up_interruptible(&pin->kthread_waitq);
216                         break;
217                 }
218
219                 switch (pin->tx_bit % 10) {
220                 default:
221                         v = pin->tx_msg.msg[pin->tx_bit / 10] &
222                                 (1 << (7 - (pin->tx_bit % 10)));
223                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
224                                 CEC_ST_TX_DATA_BIT_0_LOW;
225                         break;
226                 case 8:
227                         v = pin->tx_bit / 10 == pin->tx_msg.len - 1;
228                         pin->state = v ? CEC_ST_TX_DATA_BIT_1_LOW :
229                                 CEC_ST_TX_DATA_BIT_0_LOW;
230                         break;
231                 case 9:
232                         pin->state = CEC_ST_TX_DATA_BIT_1_LOW;
233                         break;
234                 }
235                 cec_pin_low(pin);
236                 break;
237
238         case CEC_ST_TX_DATA_BIT_0_LOW:
239         case CEC_ST_TX_DATA_BIT_1_LOW:
240                 v = pin->state == CEC_ST_TX_DATA_BIT_1_LOW;
241                 pin->state = v ? CEC_ST_TX_DATA_BIT_1_HIGH :
242                         CEC_ST_TX_DATA_BIT_0_HIGH;
243                 is_ack_bit = pin->tx_bit % 10 == 9;
244                 if (v && (pin->tx_bit < 4 || is_ack_bit))
245                         pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE;
246                 cec_pin_high(pin);
247                 break;
248
249         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
250                 /* Read the CEC value at the sample time */
251                 v = cec_pin_read(pin);
252                 is_ack_bit = pin->tx_bit % 10 == 9;
253                 /*
254                  * If v == 0 and we're within the first 4 bits
255                  * of the initiator, then someone else started
256                  * transmitting and we lost the arbitration
257                  * (i.e. the logical address of the other
258                  * transmitter has more leading 0 bits in the
259                  * initiator).
260                  */
261                 if (!v && !is_ack_bit) {
262                         pin->tx_msg.len = 0;
263                         pin->work_tx_ts = ts;
264                         pin->work_tx_status = CEC_TX_STATUS_ARB_LOST;
265                         wake_up_interruptible(&pin->kthread_waitq);
266                         pin->rx_bit = pin->tx_bit;
267                         pin->tx_bit = 0;
268                         memset(pin->rx_msg.msg, 0, sizeof(pin->rx_msg.msg));
269                         pin->rx_msg.msg[0] = pin->tx_msg.msg[0];
270                         pin->rx_msg.msg[0] &= ~(1 << (7 - pin->rx_bit));
271                         pin->rx_msg.len = 0;
272                         pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
273                         pin->rx_bit++;
274                         break;
275                 }
276                 pin->state = CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE;
277                 if (!is_ack_bit)
278                         break;
279                 /* Was the message ACKed? */
280                 ack = cec_msg_is_broadcast(&pin->tx_msg) ? v : !v;
281                 if (!ack) {
282                         /*
283                          * Note: the CEC spec is ambiguous regarding
284                          * what action to take when a NACK appears
285                          * before the last byte of the payload was
286                          * transmitted: either stop transmitting
287                          * immediately, or wait until the last byte
288                          * was transmitted.
289                          *
290                          * Most CEC implementations appear to stop
291                          * immediately, and that's what we do here
292                          * as well.
293                          */
294                         pin->tx_nacked = true;
295                 }
296                 break;
297
298         default:
299                 break;
300         }
301 }
302
303 /*
304  * Handle Receive-related states
305  *
306  * Basic state changes when receiving:
307  *
308  *      Rx Start Bit Low -> Rx Start Bit High ->
309  *   Regular data bits + EOM:
310  *      Rx Data Sample -> Rx Data Post Sample -> Rx Data High ->
311  *   Ack bit 0:
312  *      Rx Ack Low -> Rx Ack Low Post -> Rx Data High ->
313  *   Ack bit 1:
314  *      Rx Ack High Post -> Rx Data High ->
315  *   Ack bit 0 && EOM:
316  *      Rx Ack Low -> Rx Ack Low Post -> Rx Ack Finish -> Idle
317  */
318 static void cec_pin_rx_states(struct cec_pin *pin, ktime_t ts)
319 {
320         s32 delta;
321         bool v;
322         bool ack;
323         bool bcast, for_us;
324         u8 dest;
325
326         switch (pin->state) {
327         /* Receive states */
328         case CEC_ST_RX_START_BIT_LOW:
329                 v = cec_pin_read(pin);
330                 if (!v)
331                         break;
332                 pin->state = CEC_ST_RX_START_BIT_HIGH;
333                 delta = ktime_us_delta(ts, pin->ts);
334                 pin->ts = ts;
335                 /* Start bit low is too short, go back to idle */
336                 if (delta < CEC_TIM_START_BIT_LOW_MIN -
337                             CEC_TIM_IDLE_SAMPLE) {
338                         cec_pin_to_idle(pin);
339                 }
340                 break;
341
342         case CEC_ST_RX_START_BIT_HIGH:
343                 v = cec_pin_read(pin);
344                 delta = ktime_us_delta(ts, pin->ts);
345                 if (v && delta > CEC_TIM_START_BIT_TOTAL_MAX -
346                                  CEC_TIM_START_BIT_LOW_MIN) {
347                         cec_pin_to_idle(pin);
348                         break;
349                 }
350                 if (v)
351                         break;
352                 pin->state = CEC_ST_RX_DATA_SAMPLE;
353                 pin->ts = ts;
354                 pin->rx_eom = false;
355                 break;
356
357         case CEC_ST_RX_DATA_SAMPLE:
358                 v = cec_pin_read(pin);
359                 pin->state = CEC_ST_RX_DATA_POST_SAMPLE;
360                 switch (pin->rx_bit % 10) {
361                 default:
362                         if (pin->rx_bit / 10 < CEC_MAX_MSG_SIZE)
363                                 pin->rx_msg.msg[pin->rx_bit / 10] |=
364                                         v << (7 - (pin->rx_bit % 10));
365                         break;
366                 case 8:
367                         pin->rx_eom = v;
368                         pin->rx_msg.len = pin->rx_bit / 10 + 1;
369                         break;
370                 case 9:
371                         break;
372                 }
373                 pin->rx_bit++;
374                 break;
375
376         case CEC_ST_RX_DATA_POST_SAMPLE:
377                 pin->state = CEC_ST_RX_DATA_HIGH;
378                 break;
379
380         case CEC_ST_RX_DATA_HIGH:
381                 v = cec_pin_read(pin);
382                 delta = ktime_us_delta(ts, pin->ts);
383                 if (v && delta > CEC_TIM_DATA_BIT_TOTAL_MAX) {
384                         cec_pin_to_idle(pin);
385                         break;
386                 }
387                 if (v)
388                         break;
389                 /*
390                  * Go to low drive state when the total bit time is
391                  * too short.
392                  */
393                 if (delta < CEC_TIM_DATA_BIT_TOTAL_MIN) {
394                         cec_pin_low(pin);
395                         pin->state = CEC_ST_LOW_DRIVE;
396                         break;
397                 }
398                 pin->ts = ts;
399                 if (pin->rx_bit % 10 != 9) {
400                         pin->state = CEC_ST_RX_DATA_SAMPLE;
401                         break;
402                 }
403
404                 dest = cec_msg_destination(&pin->rx_msg);
405                 bcast = dest == CEC_LOG_ADDR_BROADCAST;
406                 /* for_us == broadcast or directed to us */
407                 for_us = bcast || (pin->la_mask & (1 << dest));
408                 /* ACK bit value */
409                 ack = bcast ? 1 : !for_us;
410
411                 if (ack) {
412                         /* No need to write to the bus, just wait */
413                         pin->state = CEC_ST_RX_ACK_HIGH_POST;
414                         break;
415                 }
416                 cec_pin_low(pin);
417                 pin->state = CEC_ST_RX_ACK_LOW;
418                 break;
419
420         case CEC_ST_RX_ACK_LOW:
421                 cec_pin_high(pin);
422                 pin->state = CEC_ST_RX_ACK_LOW_POST;
423                 break;
424
425         case CEC_ST_RX_ACK_LOW_POST:
426         case CEC_ST_RX_ACK_HIGH_POST:
427                 v = cec_pin_read(pin);
428                 if (v && pin->rx_eom) {
429                         pin->work_rx_msg = pin->rx_msg;
430                         pin->work_rx_msg.rx_ts = ktime_to_ns(ts);
431                         wake_up_interruptible(&pin->kthread_waitq);
432                         pin->ts = ts;
433                         pin->state = CEC_ST_RX_ACK_FINISH;
434                         break;
435                 }
436                 pin->rx_bit++;
437                 pin->state = CEC_ST_RX_DATA_HIGH;
438                 break;
439
440         case CEC_ST_RX_ACK_FINISH:
441                 cec_pin_to_idle(pin);
442                 break;
443
444         default:
445                 break;
446         }
447 }
448
449 /*
450  * Main timer function
451  *
452  */
453 static enum hrtimer_restart cec_pin_timer(struct hrtimer *timer)
454 {
455         struct cec_pin *pin = container_of(timer, struct cec_pin, timer);
456         struct cec_adapter *adap = pin->adap;
457         ktime_t ts;
458         s32 delta;
459
460         ts = ktime_get();
461         if (ktime_to_ns(pin->timer_ts)) {
462                 delta = ktime_us_delta(ts, pin->timer_ts);
463                 pin->timer_cnt++;
464                 if (delta > 100 && pin->state != CEC_ST_IDLE) {
465                         /* Keep track of timer overruns */
466                         pin->timer_sum_overrun += delta;
467                         pin->timer_100ms_overruns++;
468                         if (delta > 300)
469                                 pin->timer_300ms_overruns++;
470                         if (delta > pin->timer_max_overrun)
471                                 pin->timer_max_overrun = delta;
472                 }
473         }
474         if (adap->monitor_pin_cnt)
475                 cec_pin_read(pin);
476
477         if (pin->wait_usecs) {
478                 /*
479                  * If we are monitoring the pin, then we have to
480                  * sample at regular intervals.
481                  */
482                 if (pin->wait_usecs > 150) {
483                         pin->wait_usecs -= 100;
484                         pin->timer_ts = ktime_add_us(ts, 100);
485                         hrtimer_forward_now(timer, ns_to_ktime(100000));
486                         return HRTIMER_RESTART;
487                 }
488                 if (pin->wait_usecs > 100) {
489                         pin->wait_usecs /= 2;
490                         pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
491                         hrtimer_forward_now(timer,
492                                         ns_to_ktime(pin->wait_usecs * 1000));
493                         return HRTIMER_RESTART;
494                 }
495                 pin->timer_ts = ktime_add_us(ts, pin->wait_usecs);
496                 hrtimer_forward_now(timer,
497                                     ns_to_ktime(pin->wait_usecs * 1000));
498                 pin->wait_usecs = 0;
499                 return HRTIMER_RESTART;
500         }
501
502         switch (pin->state) {
503         /* Transmit states */
504         case CEC_ST_TX_WAIT_FOR_HIGH:
505         case CEC_ST_TX_START_BIT_LOW:
506         case CEC_ST_TX_DATA_BIT_1_HIGH_POST_SAMPLE:
507         case CEC_ST_TX_DATA_BIT_0_HIGH:
508         case CEC_ST_TX_DATA_BIT_1_HIGH:
509         case CEC_ST_TX_START_BIT_HIGH:
510         case CEC_ST_TX_DATA_BIT_0_LOW:
511         case CEC_ST_TX_DATA_BIT_1_LOW:
512         case CEC_ST_TX_DATA_BIT_1_HIGH_PRE_SAMPLE:
513                 cec_pin_tx_states(pin, ts);
514                 break;
515
516         /* Receive states */
517         case CEC_ST_RX_START_BIT_LOW:
518         case CEC_ST_RX_START_BIT_HIGH:
519         case CEC_ST_RX_DATA_SAMPLE:
520         case CEC_ST_RX_DATA_POST_SAMPLE:
521         case CEC_ST_RX_DATA_HIGH:
522         case CEC_ST_RX_ACK_LOW:
523         case CEC_ST_RX_ACK_LOW_POST:
524         case CEC_ST_RX_ACK_HIGH_POST:
525         case CEC_ST_RX_ACK_FINISH:
526                 cec_pin_rx_states(pin, ts);
527                 break;
528
529         case CEC_ST_IDLE:
530         case CEC_ST_TX_WAIT:
531                 if (!cec_pin_high(pin)) {
532                         /* Start bit, switch to receive state */
533                         pin->ts = ts;
534                         pin->state = CEC_ST_RX_START_BIT_LOW;
535                         break;
536                 }
537                 if (ktime_to_ns(pin->ts) == 0)
538                         pin->ts = ts;
539                 if (pin->tx_msg.len) {
540                         /*
541                          * Check if the bus has been free for long enough
542                          * so we can kick off the pending transmit.
543                          */
544                         delta = ktime_us_delta(ts, pin->ts);
545                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
546                             pin->tx_signal_free_time) {
547                                 pin->tx_nacked = false;
548                                 pin->state = CEC_ST_TX_START_BIT_LOW;
549                                 /* Generate start bit */
550                                 cec_pin_low(pin);
551                                 break;
552                         }
553                         if (delta / CEC_TIM_DATA_BIT_TOTAL >
554                             pin->tx_signal_free_time - 1)
555                                 pin->state = CEC_ST_TX_WAIT;
556                         break;
557                 }
558                 if (pin->state != CEC_ST_IDLE || pin->ops->enable_irq == NULL ||
559                     pin->enable_irq_failed || adap->is_configuring ||
560                     adap->is_configured || adap->monitor_all_cnt)
561                         break;
562                 /* Switch to interrupt mode */
563                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_ENABLE);
564                 pin->state = CEC_ST_RX_IRQ;
565                 wake_up_interruptible(&pin->kthread_waitq);
566                 return HRTIMER_NORESTART;
567
568         case CEC_ST_LOW_DRIVE:
569                 cec_pin_to_idle(pin);
570                 break;
571
572         default:
573                 break;
574         }
575         if (!adap->monitor_pin_cnt || states[pin->state].usecs <= 150) {
576                 pin->wait_usecs = 0;
577                 pin->timer_ts = ktime_add_us(ts, states[pin->state].usecs);
578                 hrtimer_forward_now(timer,
579                                 ns_to_ktime(states[pin->state].usecs * 1000));
580                 return HRTIMER_RESTART;
581         }
582         pin->wait_usecs = states[pin->state].usecs - 100;
583         pin->timer_ts = ktime_add_us(ts, 100);
584         hrtimer_forward_now(timer, ns_to_ktime(100000));
585         return HRTIMER_RESTART;
586 }
587
588 static int cec_pin_thread_func(void *_adap)
589 {
590         struct cec_adapter *adap = _adap;
591         struct cec_pin *pin = adap->pin;
592
593         for (;;) {
594                 wait_event_interruptible(pin->kthread_waitq,
595                         kthread_should_stop() ||
596                         pin->work_rx_msg.len ||
597                         pin->work_tx_status ||
598                         atomic_read(&pin->work_irq_change) ||
599                         atomic_read(&pin->work_pin_events));
600
601                 if (pin->work_rx_msg.len) {
602                         cec_received_msg_ts(adap, &pin->work_rx_msg,
603                                 ns_to_ktime(pin->work_rx_msg.rx_ts));
604                         pin->work_rx_msg.len = 0;
605                 }
606                 if (pin->work_tx_status) {
607                         unsigned int tx_status = pin->work_tx_status;
608
609                         pin->work_tx_status = 0;
610                         cec_transmit_attempt_done_ts(adap, tx_status,
611                                                      pin->work_tx_ts);
612                 }
613
614                 while (atomic_read(&pin->work_pin_events)) {
615                         unsigned int idx = pin->work_pin_events_rd;
616
617                         cec_queue_pin_cec_event(adap,
618                                                 pin->work_pin_is_high[idx],
619                                                 pin->work_pin_ts[idx]);
620                         pin->work_pin_events_rd = (idx + 1) % CEC_NUM_PIN_EVENTS;
621                         atomic_dec(&pin->work_pin_events);
622                 }
623
624                 switch (atomic_xchg(&pin->work_irq_change,
625                                     CEC_PIN_IRQ_UNCHANGED)) {
626                 case CEC_PIN_IRQ_DISABLE:
627                         pin->ops->disable_irq(adap);
628                         cec_pin_high(pin);
629                         cec_pin_to_idle(pin);
630                         hrtimer_start(&pin->timer, ns_to_ktime(0),
631                                       HRTIMER_MODE_REL);
632                         break;
633                 case CEC_PIN_IRQ_ENABLE:
634                         pin->enable_irq_failed = !pin->ops->enable_irq(adap);
635                         if (pin->enable_irq_failed) {
636                                 cec_pin_to_idle(pin);
637                                 hrtimer_start(&pin->timer, ns_to_ktime(0),
638                                               HRTIMER_MODE_REL);
639                         }
640                         break;
641                 default:
642                         break;
643                 }
644
645                 if (kthread_should_stop())
646                         break;
647         }
648         return 0;
649 }
650
651 static int cec_pin_adap_enable(struct cec_adapter *adap, bool enable)
652 {
653         struct cec_pin *pin = adap->pin;
654
655         pin->enabled = enable;
656         if (enable) {
657                 atomic_set(&pin->work_pin_events, 0);
658                 pin->work_pin_events_rd = pin->work_pin_events_wr = 0;
659                 cec_pin_read(pin);
660                 cec_pin_to_idle(pin);
661                 pin->tx_msg.len = 0;
662                 pin->timer_ts = ns_to_ktime(0);
663                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
664                 pin->kthread = kthread_run(cec_pin_thread_func, adap,
665                                            "cec-pin");
666                 if (IS_ERR(pin->kthread)) {
667                         pr_err("cec-pin: kernel_thread() failed\n");
668                         return PTR_ERR(pin->kthread);
669                 }
670                 hrtimer_start(&pin->timer, ns_to_ktime(0),
671                               HRTIMER_MODE_REL);
672         } else {
673                 if (pin->ops->disable_irq)
674                         pin->ops->disable_irq(adap);
675                 hrtimer_cancel(&pin->timer);
676                 kthread_stop(pin->kthread);
677                 cec_pin_read(pin);
678                 cec_pin_to_idle(pin);
679                 pin->state = CEC_ST_OFF;
680         }
681         return 0;
682 }
683
684 static int cec_pin_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
685 {
686         struct cec_pin *pin = adap->pin;
687
688         if (log_addr == CEC_LOG_ADDR_INVALID)
689                 pin->la_mask = 0;
690         else
691                 pin->la_mask |= (1 << log_addr);
692         return 0;
693 }
694
695 static int cec_pin_adap_transmit(struct cec_adapter *adap, u8 attempts,
696                                       u32 signal_free_time, struct cec_msg *msg)
697 {
698         struct cec_pin *pin = adap->pin;
699
700         pin->tx_signal_free_time = signal_free_time;
701         pin->tx_msg = *msg;
702         pin->work_tx_status = 0;
703         pin->tx_bit = 0;
704         if (pin->state == CEC_ST_RX_IRQ) {
705                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_UNCHANGED);
706                 pin->ops->disable_irq(adap);
707                 cec_pin_high(pin);
708                 cec_pin_to_idle(pin);
709                 hrtimer_start(&pin->timer, ns_to_ktime(0),
710                               HRTIMER_MODE_REL);
711         }
712         return 0;
713 }
714
715 static void cec_pin_adap_status(struct cec_adapter *adap,
716                                        struct seq_file *file)
717 {
718         struct cec_pin *pin = adap->pin;
719
720         seq_printf(file, "state:   %s\n", states[pin->state].name);
721         seq_printf(file, "tx_bit:  %d\n", pin->tx_bit);
722         seq_printf(file, "rx_bit:  %d\n", pin->rx_bit);
723         seq_printf(file, "cec pin: %d\n", pin->ops->read(adap));
724         seq_printf(file, "irq failed: %d\n", pin->enable_irq_failed);
725         if (pin->timer_100ms_overruns) {
726                 seq_printf(file, "timer overruns > 100ms: %u of %u\n",
727                            pin->timer_100ms_overruns, pin->timer_cnt);
728                 seq_printf(file, "timer overruns > 300ms: %u of %u\n",
729                            pin->timer_300ms_overruns, pin->timer_cnt);
730                 seq_printf(file, "max timer overrun: %u usecs\n",
731                            pin->timer_max_overrun);
732                 seq_printf(file, "avg timer overrun: %u usecs\n",
733                            pin->timer_sum_overrun / pin->timer_100ms_overruns);
734         }
735         pin->timer_cnt = 0;
736         pin->timer_100ms_overruns = 0;
737         pin->timer_300ms_overruns = 0;
738         pin->timer_max_overrun = 0;
739         pin->timer_sum_overrun = 0;
740         if (pin->ops->status)
741                 pin->ops->status(adap, file);
742 }
743
744 static int cec_pin_adap_monitor_all_enable(struct cec_adapter *adap,
745                                                   bool enable)
746 {
747         struct cec_pin *pin = adap->pin;
748
749         pin->monitor_all = enable;
750         return 0;
751 }
752
753 static void cec_pin_adap_free(struct cec_adapter *adap)
754 {
755         struct cec_pin *pin = adap->pin;
756
757         if (pin->ops->free)
758                 pin->ops->free(adap);
759         adap->pin = NULL;
760         kfree(pin);
761 }
762
763 void cec_pin_changed(struct cec_adapter *adap, bool value)
764 {
765         struct cec_pin *pin = adap->pin;
766
767         cec_pin_update(pin, value, false);
768         if (!value && (adap->is_configuring || adap->is_configured ||
769                        adap->monitor_all_cnt))
770                 atomic_set(&pin->work_irq_change, CEC_PIN_IRQ_DISABLE);
771 }
772 EXPORT_SYMBOL_GPL(cec_pin_changed);
773
774 static const struct cec_adap_ops cec_pin_adap_ops = {
775         .adap_enable = cec_pin_adap_enable,
776         .adap_monitor_all_enable = cec_pin_adap_monitor_all_enable,
777         .adap_log_addr = cec_pin_adap_log_addr,
778         .adap_transmit = cec_pin_adap_transmit,
779         .adap_status = cec_pin_adap_status,
780         .adap_free = cec_pin_adap_free,
781 };
782
783 struct cec_adapter *cec_pin_allocate_adapter(const struct cec_pin_ops *pin_ops,
784                                         void *priv, const char *name, u32 caps)
785 {
786         struct cec_adapter *adap;
787         struct cec_pin *pin = kzalloc(sizeof(*pin), GFP_KERNEL);
788
789         if (pin == NULL)
790                 return ERR_PTR(-ENOMEM);
791         pin->ops = pin_ops;
792         hrtimer_init(&pin->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
793         pin->timer.function = cec_pin_timer;
794         init_waitqueue_head(&pin->kthread_waitq);
795
796         adap = cec_allocate_adapter(&cec_pin_adap_ops, priv, name,
797                             caps | CEC_CAP_MONITOR_ALL | CEC_CAP_MONITOR_PIN,
798                             CEC_MAX_LOG_ADDRS);
799
800         if (IS_ERR(adap)) {
801                 kfree(pin);
802                 return adap;
803         }
804
805         adap->pin = pin;
806         pin->adap = adap;
807         cec_pin_update(pin, cec_pin_high(pin), true);
808         return adap;
809 }
810 EXPORT_SYMBOL_GPL(cec_pin_allocate_adapter);