Merge tag 'chrome-platform-for-linus-4.16' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / md / raid5-ppl.c
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  *
89  * If write-back cache is enabled for any of the disks in the array, its data
90  * must be flushed before next io_unit is submitted.
91  */
92
93 #define PPL_SPACE_SIZE (128 * 1024)
94
95 struct ppl_conf {
96         struct mddev *mddev;
97
98         /* array of child logs, one for each raid disk */
99         struct ppl_log *child_logs;
100         int count;
101
102         int block_size;         /* the logical block size used for data_sector
103                                  * in ppl_header_entry */
104         u32 signature;          /* raid array identifier */
105         atomic64_t seq;         /* current log write sequence number */
106
107         struct kmem_cache *io_kc;
108         mempool_t *io_pool;
109         struct bio_set *bs;
110         struct bio_set *flush_bs;
111
112         /* used only for recovery */
113         int recovered_entries;
114         int mismatch_count;
115
116         /* stripes to retry if failed to allocate io_unit */
117         struct list_head no_mem_stripes;
118         spinlock_t no_mem_stripes_lock;
119 };
120
121 struct ppl_log {
122         struct ppl_conf *ppl_conf;      /* shared between all log instances */
123
124         struct md_rdev *rdev;           /* array member disk associated with
125                                          * this log instance */
126         struct mutex io_mutex;
127         struct ppl_io_unit *current_io; /* current io_unit accepting new data
128                                          * always at the end of io_list */
129         spinlock_t io_list_lock;
130         struct list_head io_list;       /* all io_units of this log */
131
132         sector_t next_io_sector;
133         unsigned int entry_space;
134         bool use_multippl;
135         bool wb_cache_on;
136         unsigned long disk_flush_bitmap;
137 };
138
139 #define PPL_IO_INLINE_BVECS 32
140
141 struct ppl_io_unit {
142         struct ppl_log *log;
143
144         struct page *header_page;       /* for ppl_header */
145
146         unsigned int entries_count;     /* number of entries in ppl_header */
147         unsigned int pp_size;           /* total size current of partial parity */
148
149         u64 seq;                        /* sequence number of this log write */
150         struct list_head log_sibling;   /* log->io_list */
151
152         struct list_head stripe_list;   /* stripes added to the io_unit */
153         atomic_t pending_stripes;       /* how many stripes not written to raid */
154         atomic_t pending_flushes;       /* how many disk flushes are in progress */
155
156         bool submitted;                 /* true if write to log started */
157
158         /* inline bio and its biovec for submitting the iounit */
159         struct bio bio;
160         struct bio_vec biovec[PPL_IO_INLINE_BVECS];
161 };
162
163 struct dma_async_tx_descriptor *
164 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
165                        struct dma_async_tx_descriptor *tx)
166 {
167         int disks = sh->disks;
168         struct page **srcs = flex_array_get(percpu->scribble, 0);
169         int count = 0, pd_idx = sh->pd_idx, i;
170         struct async_submit_ctl submit;
171
172         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
173
174         /*
175          * Partial parity is the XOR of stripe data chunks that are not changed
176          * during the write request. Depending on available data
177          * (read-modify-write vs. reconstruct-write case) we calculate it
178          * differently.
179          */
180         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
181                 /*
182                  * rmw: xor old data and parity from updated disks
183                  * This is calculated earlier by ops_run_prexor5() so just copy
184                  * the parity dev page.
185                  */
186                 srcs[count++] = sh->dev[pd_idx].page;
187         } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
188                 /* rcw: xor data from all not updated disks */
189                 for (i = disks; i--;) {
190                         struct r5dev *dev = &sh->dev[i];
191                         if (test_bit(R5_UPTODATE, &dev->flags))
192                                 srcs[count++] = dev->page;
193                 }
194         } else {
195                 return tx;
196         }
197
198         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
199                           NULL, sh, flex_array_get(percpu->scribble, 0)
200                           + sizeof(struct page *) * (sh->disks + 2));
201
202         if (count == 1)
203                 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
204                                   &submit);
205         else
206                 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
207                                &submit);
208
209         return tx;
210 }
211
212 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
213 {
214         struct kmem_cache *kc = pool_data;
215         struct ppl_io_unit *io;
216
217         io = kmem_cache_alloc(kc, gfp_mask);
218         if (!io)
219                 return NULL;
220
221         io->header_page = alloc_page(gfp_mask);
222         if (!io->header_page) {
223                 kmem_cache_free(kc, io);
224                 return NULL;
225         }
226
227         return io;
228 }
229
230 static void ppl_io_pool_free(void *element, void *pool_data)
231 {
232         struct kmem_cache *kc = pool_data;
233         struct ppl_io_unit *io = element;
234
235         __free_page(io->header_page);
236         kmem_cache_free(kc, io);
237 }
238
239 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
240                                           struct stripe_head *sh)
241 {
242         struct ppl_conf *ppl_conf = log->ppl_conf;
243         struct ppl_io_unit *io;
244         struct ppl_header *pplhdr;
245         struct page *header_page;
246
247         io = mempool_alloc(ppl_conf->io_pool, GFP_NOWAIT);
248         if (!io)
249                 return NULL;
250
251         header_page = io->header_page;
252         memset(io, 0, sizeof(*io));
253         io->header_page = header_page;
254
255         io->log = log;
256         INIT_LIST_HEAD(&io->log_sibling);
257         INIT_LIST_HEAD(&io->stripe_list);
258         atomic_set(&io->pending_stripes, 0);
259         atomic_set(&io->pending_flushes, 0);
260         bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
261
262         pplhdr = page_address(io->header_page);
263         clear_page(pplhdr);
264         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
265         pplhdr->signature = cpu_to_le32(ppl_conf->signature);
266
267         io->seq = atomic64_add_return(1, &ppl_conf->seq);
268         pplhdr->generation = cpu_to_le64(io->seq);
269
270         return io;
271 }
272
273 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
274 {
275         struct ppl_io_unit *io = log->current_io;
276         struct ppl_header_entry *e = NULL;
277         struct ppl_header *pplhdr;
278         int i;
279         sector_t data_sector = 0;
280         int data_disks = 0;
281         struct r5conf *conf = sh->raid_conf;
282
283         pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
284
285         /* check if current io_unit is full */
286         if (io && (io->pp_size == log->entry_space ||
287                    io->entries_count == PPL_HDR_MAX_ENTRIES)) {
288                 pr_debug("%s: add io_unit blocked by seq: %llu\n",
289                          __func__, io->seq);
290                 io = NULL;
291         }
292
293         /* add a new unit if there is none or the current is full */
294         if (!io) {
295                 io = ppl_new_iounit(log, sh);
296                 if (!io)
297                         return -ENOMEM;
298                 spin_lock_irq(&log->io_list_lock);
299                 list_add_tail(&io->log_sibling, &log->io_list);
300                 spin_unlock_irq(&log->io_list_lock);
301
302                 log->current_io = io;
303         }
304
305         for (i = 0; i < sh->disks; i++) {
306                 struct r5dev *dev = &sh->dev[i];
307
308                 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
309                         if (!data_disks || dev->sector < data_sector)
310                                 data_sector = dev->sector;
311                         data_disks++;
312                 }
313         }
314         BUG_ON(!data_disks);
315
316         pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
317                  io->seq, (unsigned long long)data_sector, data_disks);
318
319         pplhdr = page_address(io->header_page);
320
321         if (io->entries_count > 0) {
322                 struct ppl_header_entry *last =
323                                 &pplhdr->entries[io->entries_count - 1];
324                 struct stripe_head *sh_last = list_last_entry(
325                                 &io->stripe_list, struct stripe_head, log_list);
326                 u64 data_sector_last = le64_to_cpu(last->data_sector);
327                 u32 data_size_last = le32_to_cpu(last->data_size);
328
329                 /*
330                  * Check if we can append the stripe to the last entry. It must
331                  * be just after the last logged stripe and write to the same
332                  * disks. Use bit shift and logarithm to avoid 64-bit division.
333                  */
334                 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
335                     (data_sector >> ilog2(conf->chunk_sectors) ==
336                      data_sector_last >> ilog2(conf->chunk_sectors)) &&
337                     ((data_sector - data_sector_last) * data_disks ==
338                      data_size_last >> 9))
339                         e = last;
340         }
341
342         if (!e) {
343                 e = &pplhdr->entries[io->entries_count++];
344                 e->data_sector = cpu_to_le64(data_sector);
345                 e->parity_disk = cpu_to_le32(sh->pd_idx);
346                 e->checksum = cpu_to_le32(~0);
347         }
348
349         le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
350
351         /* don't write any PP if full stripe write */
352         if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
353                 le32_add_cpu(&e->pp_size, PAGE_SIZE);
354                 io->pp_size += PAGE_SIZE;
355                 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
356                                                     page_address(sh->ppl_page),
357                                                     PAGE_SIZE));
358         }
359
360         list_add_tail(&sh->log_list, &io->stripe_list);
361         atomic_inc(&io->pending_stripes);
362         sh->ppl_io = io;
363
364         return 0;
365 }
366
367 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
368 {
369         struct ppl_conf *ppl_conf = conf->log_private;
370         struct ppl_io_unit *io = sh->ppl_io;
371         struct ppl_log *log;
372
373         if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
374             !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
375             !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
376                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
377                 return -EAGAIN;
378         }
379
380         log = &ppl_conf->child_logs[sh->pd_idx];
381
382         mutex_lock(&log->io_mutex);
383
384         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
385                 mutex_unlock(&log->io_mutex);
386                 return -EAGAIN;
387         }
388
389         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
390         clear_bit(STRIPE_DELAYED, &sh->state);
391         atomic_inc(&sh->count);
392
393         if (ppl_log_stripe(log, sh)) {
394                 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
395                 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
396                 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
397         }
398
399         mutex_unlock(&log->io_mutex);
400
401         return 0;
402 }
403
404 static void ppl_log_endio(struct bio *bio)
405 {
406         struct ppl_io_unit *io = bio->bi_private;
407         struct ppl_log *log = io->log;
408         struct ppl_conf *ppl_conf = log->ppl_conf;
409         struct stripe_head *sh, *next;
410
411         pr_debug("%s: seq: %llu\n", __func__, io->seq);
412
413         if (bio->bi_status)
414                 md_error(ppl_conf->mddev, log->rdev);
415
416         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
417                 list_del_init(&sh->log_list);
418
419                 set_bit(STRIPE_HANDLE, &sh->state);
420                 raid5_release_stripe(sh);
421         }
422 }
423
424 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
425 {
426         char b[BDEVNAME_SIZE];
427
428         pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
429                  __func__, io->seq, bio->bi_iter.bi_size,
430                  (unsigned long long)bio->bi_iter.bi_sector,
431                  bio_devname(bio, b));
432
433         submit_bio(bio);
434 }
435
436 static void ppl_submit_iounit(struct ppl_io_unit *io)
437 {
438         struct ppl_log *log = io->log;
439         struct ppl_conf *ppl_conf = log->ppl_conf;
440         struct ppl_header *pplhdr = page_address(io->header_page);
441         struct bio *bio = &io->bio;
442         struct stripe_head *sh;
443         int i;
444
445         bio->bi_private = io;
446
447         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
448                 ppl_log_endio(bio);
449                 return;
450         }
451
452         for (i = 0; i < io->entries_count; i++) {
453                 struct ppl_header_entry *e = &pplhdr->entries[i];
454
455                 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
456                          __func__, io->seq, i, le64_to_cpu(e->data_sector),
457                          le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
458
459                 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
460                                              ilog2(ppl_conf->block_size >> 9));
461                 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
462         }
463
464         pplhdr->entries_count = cpu_to_le32(io->entries_count);
465         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
466
467         /* Rewind the buffer if current PPL is larger then remaining space */
468         if (log->use_multippl &&
469             log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
470             (PPL_HEADER_SIZE + io->pp_size) >> 9)
471                 log->next_io_sector = log->rdev->ppl.sector;
472
473
474         bio->bi_end_io = ppl_log_endio;
475         bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
476         bio_set_dev(bio, log->rdev->bdev);
477         bio->bi_iter.bi_sector = log->next_io_sector;
478         bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
479
480         pr_debug("%s: log->current_io_sector: %llu\n", __func__,
481             (unsigned long long)log->next_io_sector);
482
483         if (log->use_multippl)
484                 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
485
486         WARN_ON(log->disk_flush_bitmap != 0);
487
488         list_for_each_entry(sh, &io->stripe_list, log_list) {
489                 for (i = 0; i < sh->disks; i++) {
490                         struct r5dev *dev = &sh->dev[i];
491
492                         if ((ppl_conf->child_logs[i].wb_cache_on) &&
493                             (test_bit(R5_Wantwrite, &dev->flags))) {
494                                 set_bit(i, &log->disk_flush_bitmap);
495                         }
496                 }
497
498                 /* entries for full stripe writes have no partial parity */
499                 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
500                         continue;
501
502                 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
503                         struct bio *prev = bio;
504
505                         bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
506                                                ppl_conf->bs);
507                         bio->bi_opf = prev->bi_opf;
508                         bio_copy_dev(bio, prev);
509                         bio->bi_iter.bi_sector = bio_end_sector(prev);
510                         bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
511
512                         bio_chain(bio, prev);
513                         ppl_submit_iounit_bio(io, prev);
514                 }
515         }
516
517         ppl_submit_iounit_bio(io, bio);
518 }
519
520 static void ppl_submit_current_io(struct ppl_log *log)
521 {
522         struct ppl_io_unit *io;
523
524         spin_lock_irq(&log->io_list_lock);
525
526         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
527                                       log_sibling);
528         if (io && io->submitted)
529                 io = NULL;
530
531         spin_unlock_irq(&log->io_list_lock);
532
533         if (io) {
534                 io->submitted = true;
535
536                 if (io == log->current_io)
537                         log->current_io = NULL;
538
539                 ppl_submit_iounit(io);
540         }
541 }
542
543 void ppl_write_stripe_run(struct r5conf *conf)
544 {
545         struct ppl_conf *ppl_conf = conf->log_private;
546         struct ppl_log *log;
547         int i;
548
549         for (i = 0; i < ppl_conf->count; i++) {
550                 log = &ppl_conf->child_logs[i];
551
552                 mutex_lock(&log->io_mutex);
553                 ppl_submit_current_io(log);
554                 mutex_unlock(&log->io_mutex);
555         }
556 }
557
558 static void ppl_io_unit_finished(struct ppl_io_unit *io)
559 {
560         struct ppl_log *log = io->log;
561         struct ppl_conf *ppl_conf = log->ppl_conf;
562         struct r5conf *conf = ppl_conf->mddev->private;
563         unsigned long flags;
564
565         pr_debug("%s: seq: %llu\n", __func__, io->seq);
566
567         local_irq_save(flags);
568
569         spin_lock(&log->io_list_lock);
570         list_del(&io->log_sibling);
571         spin_unlock(&log->io_list_lock);
572
573         mempool_free(io, ppl_conf->io_pool);
574
575         spin_lock(&ppl_conf->no_mem_stripes_lock);
576         if (!list_empty(&ppl_conf->no_mem_stripes)) {
577                 struct stripe_head *sh;
578
579                 sh = list_first_entry(&ppl_conf->no_mem_stripes,
580                                       struct stripe_head, log_list);
581                 list_del_init(&sh->log_list);
582                 set_bit(STRIPE_HANDLE, &sh->state);
583                 raid5_release_stripe(sh);
584         }
585         spin_unlock(&ppl_conf->no_mem_stripes_lock);
586
587         local_irq_restore(flags);
588
589         wake_up(&conf->wait_for_quiescent);
590 }
591
592 static void ppl_flush_endio(struct bio *bio)
593 {
594         struct ppl_io_unit *io = bio->bi_private;
595         struct ppl_log *log = io->log;
596         struct ppl_conf *ppl_conf = log->ppl_conf;
597         struct r5conf *conf = ppl_conf->mddev->private;
598         char b[BDEVNAME_SIZE];
599
600         pr_debug("%s: dev: %s\n", __func__, bio_devname(bio, b));
601
602         if (bio->bi_status) {
603                 struct md_rdev *rdev;
604
605                 rcu_read_lock();
606                 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
607                 if (rdev)
608                         md_error(rdev->mddev, rdev);
609                 rcu_read_unlock();
610         }
611
612         bio_put(bio);
613
614         if (atomic_dec_and_test(&io->pending_flushes)) {
615                 ppl_io_unit_finished(io);
616                 md_wakeup_thread(conf->mddev->thread);
617         }
618 }
619
620 static void ppl_do_flush(struct ppl_io_unit *io)
621 {
622         struct ppl_log *log = io->log;
623         struct ppl_conf *ppl_conf = log->ppl_conf;
624         struct r5conf *conf = ppl_conf->mddev->private;
625         int raid_disks = conf->raid_disks;
626         int flushed_disks = 0;
627         int i;
628
629         atomic_set(&io->pending_flushes, raid_disks);
630
631         for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
632                 struct md_rdev *rdev;
633                 struct block_device *bdev = NULL;
634
635                 rcu_read_lock();
636                 rdev = rcu_dereference(conf->disks[i].rdev);
637                 if (rdev && !test_bit(Faulty, &rdev->flags))
638                         bdev = rdev->bdev;
639                 rcu_read_unlock();
640
641                 if (bdev) {
642                         struct bio *bio;
643                         char b[BDEVNAME_SIZE];
644
645                         bio = bio_alloc_bioset(GFP_NOIO, 0, ppl_conf->flush_bs);
646                         bio_set_dev(bio, bdev);
647                         bio->bi_private = io;
648                         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
649                         bio->bi_end_io = ppl_flush_endio;
650
651                         pr_debug("%s: dev: %s\n", __func__,
652                                  bio_devname(bio, b));
653
654                         submit_bio(bio);
655                         flushed_disks++;
656                 }
657         }
658
659         log->disk_flush_bitmap = 0;
660
661         for (i = flushed_disks ; i < raid_disks; i++) {
662                 if (atomic_dec_and_test(&io->pending_flushes))
663                         ppl_io_unit_finished(io);
664         }
665 }
666
667 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
668                                             struct ppl_log *log)
669 {
670         struct ppl_io_unit *io;
671
672         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
673                                       log_sibling);
674
675         return !io || !io->submitted;
676 }
677
678 void ppl_quiesce(struct r5conf *conf, int quiesce)
679 {
680         struct ppl_conf *ppl_conf = conf->log_private;
681         int i;
682
683         if (quiesce) {
684                 for (i = 0; i < ppl_conf->count; i++) {
685                         struct ppl_log *log = &ppl_conf->child_logs[i];
686
687                         spin_lock_irq(&log->io_list_lock);
688                         wait_event_lock_irq(conf->wait_for_quiescent,
689                                             ppl_no_io_unit_submitted(conf, log),
690                                             log->io_list_lock);
691                         spin_unlock_irq(&log->io_list_lock);
692                 }
693         }
694 }
695
696 void ppl_stripe_write_finished(struct stripe_head *sh)
697 {
698         struct ppl_io_unit *io;
699
700         io = sh->ppl_io;
701         sh->ppl_io = NULL;
702
703         if (io && atomic_dec_and_test(&io->pending_stripes)) {
704                 if (io->log->disk_flush_bitmap)
705                         ppl_do_flush(io);
706                 else
707                         ppl_io_unit_finished(io);
708         }
709 }
710
711 static void ppl_xor(int size, struct page *page1, struct page *page2)
712 {
713         struct async_submit_ctl submit;
714         struct dma_async_tx_descriptor *tx;
715         struct page *xor_srcs[] = { page1, page2 };
716
717         init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
718                           NULL, NULL, NULL, NULL);
719         tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
720
721         async_tx_quiesce(&tx);
722 }
723
724 /*
725  * PPL recovery strategy: xor partial parity and data from all modified data
726  * disks within a stripe and write the result as the new stripe parity. If all
727  * stripe data disks are modified (full stripe write), no partial parity is
728  * available, so just xor the data disks.
729  *
730  * Recovery of a PPL entry shall occur only if all modified data disks are
731  * available and read from all of them succeeds.
732  *
733  * A PPL entry applies to a stripe, partial parity size for an entry is at most
734  * the size of the chunk. Examples of possible cases for a single entry:
735  *
736  * case 0: single data disk write:
737  *   data0    data1    data2     ppl        parity
738  * +--------+--------+--------+           +--------------------+
739  * | ------ | ------ | ------ | +----+    | (no change)        |
740  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
741  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
742  * | ------ | ------ | ------ | +----+    | (no change)        |
743  * +--------+--------+--------+           +--------------------+
744  * pp_size = data_size
745  *
746  * case 1: more than one data disk write:
747  *   data0    data1    data2     ppl        parity
748  * +--------+--------+--------+           +--------------------+
749  * | ------ | ------ | ------ | +----+    | (no change)        |
750  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
751  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
752  * | ------ | ------ | ------ | +----+    | (no change)        |
753  * +--------+--------+--------+           +--------------------+
754  * pp_size = data_size / modified_data_disks
755  *
756  * case 2: write to all data disks (also full stripe write):
757  *   data0    data1    data2                parity
758  * +--------+--------+--------+           +--------------------+
759  * | ------ | ------ | ------ |           | (no change)        |
760  * | -data- | -data- | -data- | --------> | xor all data       |
761  * | ------ | ------ | ------ | --------> | (no change)        |
762  * | ------ | ------ | ------ |           | (no change)        |
763  * +--------+--------+--------+           +--------------------+
764  * pp_size = 0
765  *
766  * The following cases are possible only in other implementations. The recovery
767  * code can handle them, but they are not generated at runtime because they can
768  * be reduced to cases 0, 1 and 2:
769  *
770  * case 3:
771  *   data0    data1    data2     ppl        parity
772  * +--------+--------+--------+ +----+    +--------------------+
773  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
774  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
775  * | -data- | -data- | -data- | | -- | -> | xor all data       |
776  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
777  * +--------+--------+--------+ +----+    +--------------------+
778  * pp_size = chunk_size
779  *
780  * case 4:
781  *   data0    data1    data2     ppl        parity
782  * +--------+--------+--------+ +----+    +--------------------+
783  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
784  * | ------ | ------ | ------ | | -- | -> | (no change)        |
785  * | ------ | ------ | ------ | | -- | -> | (no change)        |
786  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
787  * +--------+--------+--------+ +----+    +--------------------+
788  * pp_size = chunk_size
789  */
790 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
791                              sector_t ppl_sector)
792 {
793         struct ppl_conf *ppl_conf = log->ppl_conf;
794         struct mddev *mddev = ppl_conf->mddev;
795         struct r5conf *conf = mddev->private;
796         int block_size = ppl_conf->block_size;
797         struct page *page1;
798         struct page *page2;
799         sector_t r_sector_first;
800         sector_t r_sector_last;
801         int strip_sectors;
802         int data_disks;
803         int i;
804         int ret = 0;
805         char b[BDEVNAME_SIZE];
806         unsigned int pp_size = le32_to_cpu(e->pp_size);
807         unsigned int data_size = le32_to_cpu(e->data_size);
808
809         page1 = alloc_page(GFP_KERNEL);
810         page2 = alloc_page(GFP_KERNEL);
811
812         if (!page1 || !page2) {
813                 ret = -ENOMEM;
814                 goto out;
815         }
816
817         r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
818
819         if ((pp_size >> 9) < conf->chunk_sectors) {
820                 if (pp_size > 0) {
821                         data_disks = data_size / pp_size;
822                         strip_sectors = pp_size >> 9;
823                 } else {
824                         data_disks = conf->raid_disks - conf->max_degraded;
825                         strip_sectors = (data_size >> 9) / data_disks;
826                 }
827                 r_sector_last = r_sector_first +
828                                 (data_disks - 1) * conf->chunk_sectors +
829                                 strip_sectors;
830         } else {
831                 data_disks = conf->raid_disks - conf->max_degraded;
832                 strip_sectors = conf->chunk_sectors;
833                 r_sector_last = r_sector_first + (data_size >> 9);
834         }
835
836         pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
837                  (unsigned long long)r_sector_first,
838                  (unsigned long long)r_sector_last);
839
840         /* if start and end is 4k aligned, use a 4k block */
841         if (block_size == 512 &&
842             (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
843             (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
844                 block_size = STRIPE_SIZE;
845
846         /* iterate through blocks in strip */
847         for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
848                 bool update_parity = false;
849                 sector_t parity_sector;
850                 struct md_rdev *parity_rdev;
851                 struct stripe_head sh;
852                 int disk;
853                 int indent = 0;
854
855                 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
856                 indent += 2;
857
858                 memset(page_address(page1), 0, PAGE_SIZE);
859
860                 /* iterate through data member disks */
861                 for (disk = 0; disk < data_disks; disk++) {
862                         int dd_idx;
863                         struct md_rdev *rdev;
864                         sector_t sector;
865                         sector_t r_sector = r_sector_first + i +
866                                             (disk * conf->chunk_sectors);
867
868                         pr_debug("%s:%*s data member disk %d start\n",
869                                  __func__, indent, "", disk);
870                         indent += 2;
871
872                         if (r_sector >= r_sector_last) {
873                                 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
874                                          __func__, indent, "",
875                                          (unsigned long long)r_sector);
876                                 indent -= 2;
877                                 continue;
878                         }
879
880                         update_parity = true;
881
882                         /* map raid sector to member disk */
883                         sector = raid5_compute_sector(conf, r_sector, 0,
884                                                       &dd_idx, NULL);
885                         pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
886                                  __func__, indent, "",
887                                  (unsigned long long)r_sector, dd_idx,
888                                  (unsigned long long)sector);
889
890                         rdev = conf->disks[dd_idx].rdev;
891                         if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
892                                       sector >= rdev->recovery_offset)) {
893                                 pr_debug("%s:%*s data member disk %d missing\n",
894                                          __func__, indent, "", dd_idx);
895                                 update_parity = false;
896                                 break;
897                         }
898
899                         pr_debug("%s:%*s reading data member disk %s sector %llu\n",
900                                  __func__, indent, "", bdevname(rdev->bdev, b),
901                                  (unsigned long long)sector);
902                         if (!sync_page_io(rdev, sector, block_size, page2,
903                                         REQ_OP_READ, 0, false)) {
904                                 md_error(mddev, rdev);
905                                 pr_debug("%s:%*s read failed!\n", __func__,
906                                          indent, "");
907                                 ret = -EIO;
908                                 goto out;
909                         }
910
911                         ppl_xor(block_size, page1, page2);
912
913                         indent -= 2;
914                 }
915
916                 if (!update_parity)
917                         continue;
918
919                 if (pp_size > 0) {
920                         pr_debug("%s:%*s reading pp disk sector %llu\n",
921                                  __func__, indent, "",
922                                  (unsigned long long)(ppl_sector + i));
923                         if (!sync_page_io(log->rdev,
924                                         ppl_sector - log->rdev->data_offset + i,
925                                         block_size, page2, REQ_OP_READ, 0,
926                                         false)) {
927                                 pr_debug("%s:%*s read failed!\n", __func__,
928                                          indent, "");
929                                 md_error(mddev, log->rdev);
930                                 ret = -EIO;
931                                 goto out;
932                         }
933
934                         ppl_xor(block_size, page1, page2);
935                 }
936
937                 /* map raid sector to parity disk */
938                 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
939                                 0, &disk, &sh);
940                 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
941                 parity_rdev = conf->disks[sh.pd_idx].rdev;
942
943                 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
944                 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
945                          __func__, indent, "",
946                          (unsigned long long)parity_sector,
947                          bdevname(parity_rdev->bdev, b));
948                 if (!sync_page_io(parity_rdev, parity_sector, block_size,
949                                 page1, REQ_OP_WRITE, 0, false)) {
950                         pr_debug("%s:%*s parity write error!\n", __func__,
951                                  indent, "");
952                         md_error(mddev, parity_rdev);
953                         ret = -EIO;
954                         goto out;
955                 }
956         }
957 out:
958         if (page1)
959                 __free_page(page1);
960         if (page2)
961                 __free_page(page2);
962         return ret;
963 }
964
965 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
966                        sector_t offset)
967 {
968         struct ppl_conf *ppl_conf = log->ppl_conf;
969         struct md_rdev *rdev = log->rdev;
970         struct mddev *mddev = rdev->mddev;
971         sector_t ppl_sector = rdev->ppl.sector + offset +
972                               (PPL_HEADER_SIZE >> 9);
973         struct page *page;
974         int i;
975         int ret = 0;
976
977         page = alloc_page(GFP_KERNEL);
978         if (!page)
979                 return -ENOMEM;
980
981         /* iterate through all PPL entries saved */
982         for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
983                 struct ppl_header_entry *e = &pplhdr->entries[i];
984                 u32 pp_size = le32_to_cpu(e->pp_size);
985                 sector_t sector = ppl_sector;
986                 int ppl_entry_sectors = pp_size >> 9;
987                 u32 crc, crc_stored;
988
989                 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
990                          __func__, rdev->raid_disk, i,
991                          (unsigned long long)ppl_sector, pp_size);
992
993                 crc = ~0;
994                 crc_stored = le32_to_cpu(e->checksum);
995
996                 /* read parial parity for this entry and calculate its checksum */
997                 while (pp_size) {
998                         int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
999
1000                         if (!sync_page_io(rdev, sector - rdev->data_offset,
1001                                         s, page, REQ_OP_READ, 0, false)) {
1002                                 md_error(mddev, rdev);
1003                                 ret = -EIO;
1004                                 goto out;
1005                         }
1006
1007                         crc = crc32c_le(crc, page_address(page), s);
1008
1009                         pp_size -= s;
1010                         sector += s >> 9;
1011                 }
1012
1013                 crc = ~crc;
1014
1015                 if (crc != crc_stored) {
1016                         /*
1017                          * Don't recover this entry if the checksum does not
1018                          * match, but keep going and try to recover other
1019                          * entries.
1020                          */
1021                         pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1022                                  __func__, crc_stored, crc);
1023                         ppl_conf->mismatch_count++;
1024                 } else {
1025                         ret = ppl_recover_entry(log, e, ppl_sector);
1026                         if (ret)
1027                                 goto out;
1028                         ppl_conf->recovered_entries++;
1029                 }
1030
1031                 ppl_sector += ppl_entry_sectors;
1032         }
1033
1034         /* flush the disk cache after recovery if necessary */
1035         ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
1036 out:
1037         __free_page(page);
1038         return ret;
1039 }
1040
1041 static int ppl_write_empty_header(struct ppl_log *log)
1042 {
1043         struct page *page;
1044         struct ppl_header *pplhdr;
1045         struct md_rdev *rdev = log->rdev;
1046         int ret = 0;
1047
1048         pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1049                  rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1050
1051         page = alloc_page(GFP_NOIO | __GFP_ZERO);
1052         if (!page)
1053                 return -ENOMEM;
1054
1055         pplhdr = page_address(page);
1056         /* zero out PPL space to avoid collision with old PPLs */
1057         blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1058                             log->rdev->ppl.size, GFP_NOIO, 0);
1059         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1060         pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1061         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1062
1063         if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1064                           PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1065                           REQ_FUA, 0, false)) {
1066                 md_error(rdev->mddev, rdev);
1067                 ret = -EIO;
1068         }
1069
1070         __free_page(page);
1071         return ret;
1072 }
1073
1074 static int ppl_load_distributed(struct ppl_log *log)
1075 {
1076         struct ppl_conf *ppl_conf = log->ppl_conf;
1077         struct md_rdev *rdev = log->rdev;
1078         struct mddev *mddev = rdev->mddev;
1079         struct page *page, *page2, *tmp;
1080         struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1081         u32 crc, crc_stored;
1082         u32 signature;
1083         int ret = 0, i;
1084         sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1085
1086         pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1087         /* read PPL headers, find the recent one */
1088         page = alloc_page(GFP_KERNEL);
1089         if (!page)
1090                 return -ENOMEM;
1091
1092         page2 = alloc_page(GFP_KERNEL);
1093         if (!page2) {
1094                 __free_page(page);
1095                 return -ENOMEM;
1096         }
1097
1098         /* searching ppl area for latest ppl */
1099         while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1100                 if (!sync_page_io(rdev,
1101                                   rdev->ppl.sector - rdev->data_offset +
1102                                   pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1103                                   0, false)) {
1104                         md_error(mddev, rdev);
1105                         ret = -EIO;
1106                         /* if not able to read - don't recover any PPL */
1107                         pplhdr = NULL;
1108                         break;
1109                 }
1110                 pplhdr = page_address(page);
1111
1112                 /* check header validity */
1113                 crc_stored = le32_to_cpu(pplhdr->checksum);
1114                 pplhdr->checksum = 0;
1115                 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1116
1117                 if (crc_stored != crc) {
1118                         pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1119                                  __func__, crc_stored, crc,
1120                                  (unsigned long long)pplhdr_offset);
1121                         pplhdr = prev_pplhdr;
1122                         pplhdr_offset = prev_pplhdr_offset;
1123                         break;
1124                 }
1125
1126                 signature = le32_to_cpu(pplhdr->signature);
1127
1128                 if (mddev->external) {
1129                         /*
1130                          * For external metadata the header signature is set and
1131                          * validated in userspace.
1132                          */
1133                         ppl_conf->signature = signature;
1134                 } else if (ppl_conf->signature != signature) {
1135                         pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1136                                  __func__, signature, ppl_conf->signature,
1137                                  (unsigned long long)pplhdr_offset);
1138                         pplhdr = prev_pplhdr;
1139                         pplhdr_offset = prev_pplhdr_offset;
1140                         break;
1141                 }
1142
1143                 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1144                     le64_to_cpu(pplhdr->generation)) {
1145                         /* previous was newest */
1146                         pplhdr = prev_pplhdr;
1147                         pplhdr_offset = prev_pplhdr_offset;
1148                         break;
1149                 }
1150
1151                 prev_pplhdr_offset = pplhdr_offset;
1152                 prev_pplhdr = pplhdr;
1153
1154                 tmp = page;
1155                 page = page2;
1156                 page2 = tmp;
1157
1158                 /* calculate next potential ppl offset */
1159                 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1160                         pplhdr_offset +=
1161                             le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1162                 pplhdr_offset += PPL_HEADER_SIZE >> 9;
1163         }
1164
1165         /* no valid ppl found */
1166         if (!pplhdr)
1167                 ppl_conf->mismatch_count++;
1168         else
1169                 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1170                     __func__, (unsigned long long)pplhdr_offset,
1171                     le64_to_cpu(pplhdr->generation));
1172
1173         /* attempt to recover from log if we are starting a dirty array */
1174         if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1175                 ret = ppl_recover(log, pplhdr, pplhdr_offset);
1176
1177         /* write empty header if we are starting the array */
1178         if (!ret && !mddev->pers)
1179                 ret = ppl_write_empty_header(log);
1180
1181         __free_page(page);
1182         __free_page(page2);
1183
1184         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1185                  __func__, ret, ppl_conf->mismatch_count,
1186                  ppl_conf->recovered_entries);
1187         return ret;
1188 }
1189
1190 static int ppl_load(struct ppl_conf *ppl_conf)
1191 {
1192         int ret = 0;
1193         u32 signature = 0;
1194         bool signature_set = false;
1195         int i;
1196
1197         for (i = 0; i < ppl_conf->count; i++) {
1198                 struct ppl_log *log = &ppl_conf->child_logs[i];
1199
1200                 /* skip missing drive */
1201                 if (!log->rdev)
1202                         continue;
1203
1204                 ret = ppl_load_distributed(log);
1205                 if (ret)
1206                         break;
1207
1208                 /*
1209                  * For external metadata we can't check if the signature is
1210                  * correct on a single drive, but we can check if it is the same
1211                  * on all drives.
1212                  */
1213                 if (ppl_conf->mddev->external) {
1214                         if (!signature_set) {
1215                                 signature = ppl_conf->signature;
1216                                 signature_set = true;
1217                         } else if (signature != ppl_conf->signature) {
1218                                 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1219                                         mdname(ppl_conf->mddev));
1220                                 ret = -EINVAL;
1221                                 break;
1222                         }
1223                 }
1224         }
1225
1226         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1227                  __func__, ret, ppl_conf->mismatch_count,
1228                  ppl_conf->recovered_entries);
1229         return ret;
1230 }
1231
1232 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1233 {
1234         clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1235         clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1236
1237         kfree(ppl_conf->child_logs);
1238
1239         if (ppl_conf->bs)
1240                 bioset_free(ppl_conf->bs);
1241         if (ppl_conf->flush_bs)
1242                 bioset_free(ppl_conf->flush_bs);
1243         mempool_destroy(ppl_conf->io_pool);
1244         kmem_cache_destroy(ppl_conf->io_kc);
1245
1246         kfree(ppl_conf);
1247 }
1248
1249 void ppl_exit_log(struct r5conf *conf)
1250 {
1251         struct ppl_conf *ppl_conf = conf->log_private;
1252
1253         if (ppl_conf) {
1254                 __ppl_exit_log(ppl_conf);
1255                 conf->log_private = NULL;
1256         }
1257 }
1258
1259 static int ppl_validate_rdev(struct md_rdev *rdev)
1260 {
1261         char b[BDEVNAME_SIZE];
1262         int ppl_data_sectors;
1263         int ppl_size_new;
1264
1265         /*
1266          * The configured PPL size must be enough to store
1267          * the header and (at the very least) partial parity
1268          * for one stripe. Round it down to ensure the data
1269          * space is cleanly divisible by stripe size.
1270          */
1271         ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1272
1273         if (ppl_data_sectors > 0)
1274                 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1275
1276         if (ppl_data_sectors <= 0) {
1277                 pr_warn("md/raid:%s: PPL space too small on %s\n",
1278                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1279                 return -ENOSPC;
1280         }
1281
1282         ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1283
1284         if ((rdev->ppl.sector < rdev->data_offset &&
1285              rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1286             (rdev->ppl.sector >= rdev->data_offset &&
1287              rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1288                 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1289                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1290                 return -EINVAL;
1291         }
1292
1293         if (!rdev->mddev->external &&
1294             ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1295              (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1296                 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1297                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1298                 return -EINVAL;
1299         }
1300
1301         rdev->ppl.size = ppl_size_new;
1302
1303         return 0;
1304 }
1305
1306 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1307 {
1308         struct request_queue *q;
1309
1310         if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1311                                       PPL_HEADER_SIZE) * 2) {
1312                 log->use_multippl = true;
1313                 set_bit(MD_HAS_MULTIPLE_PPLS,
1314                         &log->ppl_conf->mddev->flags);
1315                 log->entry_space = PPL_SPACE_SIZE;
1316         } else {
1317                 log->use_multippl = false;
1318                 log->entry_space = (log->rdev->ppl.size << 9) -
1319                                    PPL_HEADER_SIZE;
1320         }
1321         log->next_io_sector = rdev->ppl.sector;
1322
1323         q = bdev_get_queue(rdev->bdev);
1324         if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1325                 log->wb_cache_on = true;
1326 }
1327
1328 int ppl_init_log(struct r5conf *conf)
1329 {
1330         struct ppl_conf *ppl_conf;
1331         struct mddev *mddev = conf->mddev;
1332         int ret = 0;
1333         int max_disks;
1334         int i;
1335
1336         pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1337                  mdname(conf->mddev));
1338
1339         if (PAGE_SIZE != 4096)
1340                 return -EINVAL;
1341
1342         if (mddev->level != 5) {
1343                 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1344                         mdname(mddev), mddev->level);
1345                 return -EINVAL;
1346         }
1347
1348         if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1349                 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1350                         mdname(mddev));
1351                 return -EINVAL;
1352         }
1353
1354         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1355                 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1356                         mdname(mddev));
1357                 return -EINVAL;
1358         }
1359
1360         max_disks = FIELD_SIZEOF(struct ppl_log, disk_flush_bitmap) *
1361                 BITS_PER_BYTE;
1362         if (conf->raid_disks > max_disks) {
1363                 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1364                         mdname(mddev), max_disks);
1365                 return -EINVAL;
1366         }
1367
1368         ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1369         if (!ppl_conf)
1370                 return -ENOMEM;
1371
1372         ppl_conf->mddev = mddev;
1373
1374         ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1375         if (!ppl_conf->io_kc) {
1376                 ret = -ENOMEM;
1377                 goto err;
1378         }
1379
1380         ppl_conf->io_pool = mempool_create(conf->raid_disks, ppl_io_pool_alloc,
1381                                            ppl_io_pool_free, ppl_conf->io_kc);
1382         if (!ppl_conf->io_pool) {
1383                 ret = -ENOMEM;
1384                 goto err;
1385         }
1386
1387         ppl_conf->bs = bioset_create(conf->raid_disks, 0, BIOSET_NEED_BVECS);
1388         if (!ppl_conf->bs) {
1389                 ret = -ENOMEM;
1390                 goto err;
1391         }
1392
1393         ppl_conf->flush_bs = bioset_create(conf->raid_disks, 0, 0);
1394         if (!ppl_conf->flush_bs) {
1395                 ret = -ENOMEM;
1396                 goto err;
1397         }
1398
1399         ppl_conf->count = conf->raid_disks;
1400         ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1401                                        GFP_KERNEL);
1402         if (!ppl_conf->child_logs) {
1403                 ret = -ENOMEM;
1404                 goto err;
1405         }
1406
1407         atomic64_set(&ppl_conf->seq, 0);
1408         INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1409         spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1410
1411         if (!mddev->external) {
1412                 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1413                 ppl_conf->block_size = 512;
1414         } else {
1415                 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1416         }
1417
1418         for (i = 0; i < ppl_conf->count; i++) {
1419                 struct ppl_log *log = &ppl_conf->child_logs[i];
1420                 struct md_rdev *rdev = conf->disks[i].rdev;
1421
1422                 mutex_init(&log->io_mutex);
1423                 spin_lock_init(&log->io_list_lock);
1424                 INIT_LIST_HEAD(&log->io_list);
1425
1426                 log->ppl_conf = ppl_conf;
1427                 log->rdev = rdev;
1428
1429                 if (rdev) {
1430                         ret = ppl_validate_rdev(rdev);
1431                         if (ret)
1432                                 goto err;
1433
1434                         ppl_init_child_log(log, rdev);
1435                 }
1436         }
1437
1438         /* load and possibly recover the logs from the member disks */
1439         ret = ppl_load(ppl_conf);
1440
1441         if (ret) {
1442                 goto err;
1443         } else if (!mddev->pers && mddev->recovery_cp == 0 &&
1444                    ppl_conf->recovered_entries > 0 &&
1445                    ppl_conf->mismatch_count == 0) {
1446                 /*
1447                  * If we are starting a dirty array and the recovery succeeds
1448                  * without any issues, set the array as clean.
1449                  */
1450                 mddev->recovery_cp = MaxSector;
1451                 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1452         } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1453                 /* no mismatch allowed when enabling PPL for a running array */
1454                 ret = -EINVAL;
1455                 goto err;
1456         }
1457
1458         conf->log_private = ppl_conf;
1459         set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1460
1461         return 0;
1462 err:
1463         __ppl_exit_log(ppl_conf);
1464         return ret;
1465 }
1466
1467 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1468 {
1469         struct ppl_conf *ppl_conf = conf->log_private;
1470         struct ppl_log *log;
1471         int ret = 0;
1472         char b[BDEVNAME_SIZE];
1473
1474         if (!rdev)
1475                 return -EINVAL;
1476
1477         pr_debug("%s: disk: %d operation: %s dev: %s\n",
1478                  __func__, rdev->raid_disk, add ? "add" : "remove",
1479                  bdevname(rdev->bdev, b));
1480
1481         if (rdev->raid_disk < 0)
1482                 return 0;
1483
1484         if (rdev->raid_disk >= ppl_conf->count)
1485                 return -ENODEV;
1486
1487         log = &ppl_conf->child_logs[rdev->raid_disk];
1488
1489         mutex_lock(&log->io_mutex);
1490         if (add) {
1491                 ret = ppl_validate_rdev(rdev);
1492                 if (!ret) {
1493                         log->rdev = rdev;
1494                         ret = ppl_write_empty_header(log);
1495                         ppl_init_child_log(log, rdev);
1496                 }
1497         } else {
1498                 log->rdev = NULL;
1499         }
1500         mutex_unlock(&log->io_mutex);
1501
1502         return ret;
1503 }