Merge tag 'firmware_removal-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / md / raid5-ppl.c
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  */
89
90 #define PPL_SPACE_SIZE (128 * 1024)
91
92 struct ppl_conf {
93         struct mddev *mddev;
94
95         /* array of child logs, one for each raid disk */
96         struct ppl_log *child_logs;
97         int count;
98
99         int block_size;         /* the logical block size used for data_sector
100                                  * in ppl_header_entry */
101         u32 signature;          /* raid array identifier */
102         atomic64_t seq;         /* current log write sequence number */
103
104         struct kmem_cache *io_kc;
105         mempool_t *io_pool;
106         struct bio_set *bs;
107
108         /* used only for recovery */
109         int recovered_entries;
110         int mismatch_count;
111
112         /* stripes to retry if failed to allocate io_unit */
113         struct list_head no_mem_stripes;
114         spinlock_t no_mem_stripes_lock;
115 };
116
117 struct ppl_log {
118         struct ppl_conf *ppl_conf;      /* shared between all log instances */
119
120         struct md_rdev *rdev;           /* array member disk associated with
121                                          * this log instance */
122         struct mutex io_mutex;
123         struct ppl_io_unit *current_io; /* current io_unit accepting new data
124                                          * always at the end of io_list */
125         spinlock_t io_list_lock;
126         struct list_head io_list;       /* all io_units of this log */
127
128         sector_t next_io_sector;
129         unsigned int entry_space;
130         bool use_multippl;
131 };
132
133 #define PPL_IO_INLINE_BVECS 32
134
135 struct ppl_io_unit {
136         struct ppl_log *log;
137
138         struct page *header_page;       /* for ppl_header */
139
140         unsigned int entries_count;     /* number of entries in ppl_header */
141         unsigned int pp_size;           /* total size current of partial parity */
142
143         u64 seq;                        /* sequence number of this log write */
144         struct list_head log_sibling;   /* log->io_list */
145
146         struct list_head stripe_list;   /* stripes added to the io_unit */
147         atomic_t pending_stripes;       /* how many stripes not written to raid */
148
149         bool submitted;                 /* true if write to log started */
150
151         /* inline bio and its biovec for submitting the iounit */
152         struct bio bio;
153         struct bio_vec biovec[PPL_IO_INLINE_BVECS];
154 };
155
156 struct dma_async_tx_descriptor *
157 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
158                        struct dma_async_tx_descriptor *tx)
159 {
160         int disks = sh->disks;
161         struct page **srcs = flex_array_get(percpu->scribble, 0);
162         int count = 0, pd_idx = sh->pd_idx, i;
163         struct async_submit_ctl submit;
164
165         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
166
167         /*
168          * Partial parity is the XOR of stripe data chunks that are not changed
169          * during the write request. Depending on available data
170          * (read-modify-write vs. reconstruct-write case) we calculate it
171          * differently.
172          */
173         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
174                 /*
175                  * rmw: xor old data and parity from updated disks
176                  * This is calculated earlier by ops_run_prexor5() so just copy
177                  * the parity dev page.
178                  */
179                 srcs[count++] = sh->dev[pd_idx].page;
180         } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
181                 /* rcw: xor data from all not updated disks */
182                 for (i = disks; i--;) {
183                         struct r5dev *dev = &sh->dev[i];
184                         if (test_bit(R5_UPTODATE, &dev->flags))
185                                 srcs[count++] = dev->page;
186                 }
187         } else {
188                 return tx;
189         }
190
191         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
192                           NULL, sh, flex_array_get(percpu->scribble, 0)
193                           + sizeof(struct page *) * (sh->disks + 2));
194
195         if (count == 1)
196                 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197                                   &submit);
198         else
199                 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200                                &submit);
201
202         return tx;
203 }
204
205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206 {
207         struct kmem_cache *kc = pool_data;
208         struct ppl_io_unit *io;
209
210         io = kmem_cache_alloc(kc, gfp_mask);
211         if (!io)
212                 return NULL;
213
214         io->header_page = alloc_page(gfp_mask);
215         if (!io->header_page) {
216                 kmem_cache_free(kc, io);
217                 return NULL;
218         }
219
220         return io;
221 }
222
223 static void ppl_io_pool_free(void *element, void *pool_data)
224 {
225         struct kmem_cache *kc = pool_data;
226         struct ppl_io_unit *io = element;
227
228         __free_page(io->header_page);
229         kmem_cache_free(kc, io);
230 }
231
232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233                                           struct stripe_head *sh)
234 {
235         struct ppl_conf *ppl_conf = log->ppl_conf;
236         struct ppl_io_unit *io;
237         struct ppl_header *pplhdr;
238         struct page *header_page;
239
240         io = mempool_alloc(ppl_conf->io_pool, GFP_NOWAIT);
241         if (!io)
242                 return NULL;
243
244         header_page = io->header_page;
245         memset(io, 0, sizeof(*io));
246         io->header_page = header_page;
247
248         io->log = log;
249         INIT_LIST_HEAD(&io->log_sibling);
250         INIT_LIST_HEAD(&io->stripe_list);
251         atomic_set(&io->pending_stripes, 0);
252         bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
253
254         pplhdr = page_address(io->header_page);
255         clear_page(pplhdr);
256         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
257         pplhdr->signature = cpu_to_le32(ppl_conf->signature);
258
259         io->seq = atomic64_add_return(1, &ppl_conf->seq);
260         pplhdr->generation = cpu_to_le64(io->seq);
261
262         return io;
263 }
264
265 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
266 {
267         struct ppl_io_unit *io = log->current_io;
268         struct ppl_header_entry *e = NULL;
269         struct ppl_header *pplhdr;
270         int i;
271         sector_t data_sector = 0;
272         int data_disks = 0;
273         struct r5conf *conf = sh->raid_conf;
274
275         pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
276
277         /* check if current io_unit is full */
278         if (io && (io->pp_size == log->entry_space ||
279                    io->entries_count == PPL_HDR_MAX_ENTRIES)) {
280                 pr_debug("%s: add io_unit blocked by seq: %llu\n",
281                          __func__, io->seq);
282                 io = NULL;
283         }
284
285         /* add a new unit if there is none or the current is full */
286         if (!io) {
287                 io = ppl_new_iounit(log, sh);
288                 if (!io)
289                         return -ENOMEM;
290                 spin_lock_irq(&log->io_list_lock);
291                 list_add_tail(&io->log_sibling, &log->io_list);
292                 spin_unlock_irq(&log->io_list_lock);
293
294                 log->current_io = io;
295         }
296
297         for (i = 0; i < sh->disks; i++) {
298                 struct r5dev *dev = &sh->dev[i];
299
300                 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
301                         if (!data_disks || dev->sector < data_sector)
302                                 data_sector = dev->sector;
303                         data_disks++;
304                 }
305         }
306         BUG_ON(!data_disks);
307
308         pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
309                  io->seq, (unsigned long long)data_sector, data_disks);
310
311         pplhdr = page_address(io->header_page);
312
313         if (io->entries_count > 0) {
314                 struct ppl_header_entry *last =
315                                 &pplhdr->entries[io->entries_count - 1];
316                 struct stripe_head *sh_last = list_last_entry(
317                                 &io->stripe_list, struct stripe_head, log_list);
318                 u64 data_sector_last = le64_to_cpu(last->data_sector);
319                 u32 data_size_last = le32_to_cpu(last->data_size);
320
321                 /*
322                  * Check if we can append the stripe to the last entry. It must
323                  * be just after the last logged stripe and write to the same
324                  * disks. Use bit shift and logarithm to avoid 64-bit division.
325                  */
326                 if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
327                     (data_sector >> ilog2(conf->chunk_sectors) ==
328                      data_sector_last >> ilog2(conf->chunk_sectors)) &&
329                     ((data_sector - data_sector_last) * data_disks ==
330                      data_size_last >> 9))
331                         e = last;
332         }
333
334         if (!e) {
335                 e = &pplhdr->entries[io->entries_count++];
336                 e->data_sector = cpu_to_le64(data_sector);
337                 e->parity_disk = cpu_to_le32(sh->pd_idx);
338                 e->checksum = cpu_to_le32(~0);
339         }
340
341         le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
342
343         /* don't write any PP if full stripe write */
344         if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
345                 le32_add_cpu(&e->pp_size, PAGE_SIZE);
346                 io->pp_size += PAGE_SIZE;
347                 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
348                                                     page_address(sh->ppl_page),
349                                                     PAGE_SIZE));
350         }
351
352         list_add_tail(&sh->log_list, &io->stripe_list);
353         atomic_inc(&io->pending_stripes);
354         sh->ppl_io = io;
355
356         return 0;
357 }
358
359 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
360 {
361         struct ppl_conf *ppl_conf = conf->log_private;
362         struct ppl_io_unit *io = sh->ppl_io;
363         struct ppl_log *log;
364
365         if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
366             !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
367             !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
368                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
369                 return -EAGAIN;
370         }
371
372         log = &ppl_conf->child_logs[sh->pd_idx];
373
374         mutex_lock(&log->io_mutex);
375
376         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
377                 mutex_unlock(&log->io_mutex);
378                 return -EAGAIN;
379         }
380
381         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
382         clear_bit(STRIPE_DELAYED, &sh->state);
383         atomic_inc(&sh->count);
384
385         if (ppl_log_stripe(log, sh)) {
386                 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
387                 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
388                 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
389         }
390
391         mutex_unlock(&log->io_mutex);
392
393         return 0;
394 }
395
396 static void ppl_log_endio(struct bio *bio)
397 {
398         struct ppl_io_unit *io = bio->bi_private;
399         struct ppl_log *log = io->log;
400         struct ppl_conf *ppl_conf = log->ppl_conf;
401         struct stripe_head *sh, *next;
402
403         pr_debug("%s: seq: %llu\n", __func__, io->seq);
404
405         if (bio->bi_status)
406                 md_error(ppl_conf->mddev, log->rdev);
407
408         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
409                 list_del_init(&sh->log_list);
410
411                 set_bit(STRIPE_HANDLE, &sh->state);
412                 raid5_release_stripe(sh);
413         }
414 }
415
416 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
417 {
418         char b[BDEVNAME_SIZE];
419
420         pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
421                  __func__, io->seq, bio->bi_iter.bi_size,
422                  (unsigned long long)bio->bi_iter.bi_sector,
423                  bio_devname(bio, b));
424
425         submit_bio(bio);
426 }
427
428 static void ppl_submit_iounit(struct ppl_io_unit *io)
429 {
430         struct ppl_log *log = io->log;
431         struct ppl_conf *ppl_conf = log->ppl_conf;
432         struct ppl_header *pplhdr = page_address(io->header_page);
433         struct bio *bio = &io->bio;
434         struct stripe_head *sh;
435         int i;
436
437         bio->bi_private = io;
438
439         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
440                 ppl_log_endio(bio);
441                 return;
442         }
443
444         for (i = 0; i < io->entries_count; i++) {
445                 struct ppl_header_entry *e = &pplhdr->entries[i];
446
447                 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
448                          __func__, io->seq, i, le64_to_cpu(e->data_sector),
449                          le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
450
451                 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
452                                              ilog2(ppl_conf->block_size >> 9));
453                 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
454         }
455
456         pplhdr->entries_count = cpu_to_le32(io->entries_count);
457         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
458
459         /* Rewind the buffer if current PPL is larger then remaining space */
460         if (log->use_multippl &&
461             log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
462             (PPL_HEADER_SIZE + io->pp_size) >> 9)
463                 log->next_io_sector = log->rdev->ppl.sector;
464
465
466         bio->bi_end_io = ppl_log_endio;
467         bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
468         bio_set_dev(bio, log->rdev->bdev);
469         bio->bi_iter.bi_sector = log->next_io_sector;
470         bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
471
472         pr_debug("%s: log->current_io_sector: %llu\n", __func__,
473             (unsigned long long)log->next_io_sector);
474
475         if (log->use_multippl)
476                 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
477
478         list_for_each_entry(sh, &io->stripe_list, log_list) {
479                 /* entries for full stripe writes have no partial parity */
480                 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
481                         continue;
482
483                 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
484                         struct bio *prev = bio;
485
486                         bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
487                                                ppl_conf->bs);
488                         bio->bi_opf = prev->bi_opf;
489                         bio_copy_dev(bio, prev);
490                         bio->bi_iter.bi_sector = bio_end_sector(prev);
491                         bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
492
493                         bio_chain(bio, prev);
494                         ppl_submit_iounit_bio(io, prev);
495                 }
496         }
497
498         ppl_submit_iounit_bio(io, bio);
499 }
500
501 static void ppl_submit_current_io(struct ppl_log *log)
502 {
503         struct ppl_io_unit *io;
504
505         spin_lock_irq(&log->io_list_lock);
506
507         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
508                                       log_sibling);
509         if (io && io->submitted)
510                 io = NULL;
511
512         spin_unlock_irq(&log->io_list_lock);
513
514         if (io) {
515                 io->submitted = true;
516
517                 if (io == log->current_io)
518                         log->current_io = NULL;
519
520                 ppl_submit_iounit(io);
521         }
522 }
523
524 void ppl_write_stripe_run(struct r5conf *conf)
525 {
526         struct ppl_conf *ppl_conf = conf->log_private;
527         struct ppl_log *log;
528         int i;
529
530         for (i = 0; i < ppl_conf->count; i++) {
531                 log = &ppl_conf->child_logs[i];
532
533                 mutex_lock(&log->io_mutex);
534                 ppl_submit_current_io(log);
535                 mutex_unlock(&log->io_mutex);
536         }
537 }
538
539 static void ppl_io_unit_finished(struct ppl_io_unit *io)
540 {
541         struct ppl_log *log = io->log;
542         struct ppl_conf *ppl_conf = log->ppl_conf;
543         unsigned long flags;
544
545         pr_debug("%s: seq: %llu\n", __func__, io->seq);
546
547         local_irq_save(flags);
548
549         spin_lock(&log->io_list_lock);
550         list_del(&io->log_sibling);
551         spin_unlock(&log->io_list_lock);
552
553         mempool_free(io, ppl_conf->io_pool);
554
555         spin_lock(&ppl_conf->no_mem_stripes_lock);
556         if (!list_empty(&ppl_conf->no_mem_stripes)) {
557                 struct stripe_head *sh;
558
559                 sh = list_first_entry(&ppl_conf->no_mem_stripes,
560                                       struct stripe_head, log_list);
561                 list_del_init(&sh->log_list);
562                 set_bit(STRIPE_HANDLE, &sh->state);
563                 raid5_release_stripe(sh);
564         }
565         spin_unlock(&ppl_conf->no_mem_stripes_lock);
566
567         local_irq_restore(flags);
568 }
569
570 void ppl_stripe_write_finished(struct stripe_head *sh)
571 {
572         struct ppl_io_unit *io;
573
574         io = sh->ppl_io;
575         sh->ppl_io = NULL;
576
577         if (io && atomic_dec_and_test(&io->pending_stripes))
578                 ppl_io_unit_finished(io);
579 }
580
581 static void ppl_xor(int size, struct page *page1, struct page *page2)
582 {
583         struct async_submit_ctl submit;
584         struct dma_async_tx_descriptor *tx;
585         struct page *xor_srcs[] = { page1, page2 };
586
587         init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
588                           NULL, NULL, NULL, NULL);
589         tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
590
591         async_tx_quiesce(&tx);
592 }
593
594 /*
595  * PPL recovery strategy: xor partial parity and data from all modified data
596  * disks within a stripe and write the result as the new stripe parity. If all
597  * stripe data disks are modified (full stripe write), no partial parity is
598  * available, so just xor the data disks.
599  *
600  * Recovery of a PPL entry shall occur only if all modified data disks are
601  * available and read from all of them succeeds.
602  *
603  * A PPL entry applies to a stripe, partial parity size for an entry is at most
604  * the size of the chunk. Examples of possible cases for a single entry:
605  *
606  * case 0: single data disk write:
607  *   data0    data1    data2     ppl        parity
608  * +--------+--------+--------+           +--------------------+
609  * | ------ | ------ | ------ | +----+    | (no change)        |
610  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
611  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
612  * | ------ | ------ | ------ | +----+    | (no change)        |
613  * +--------+--------+--------+           +--------------------+
614  * pp_size = data_size
615  *
616  * case 1: more than one data disk write:
617  *   data0    data1    data2     ppl        parity
618  * +--------+--------+--------+           +--------------------+
619  * | ------ | ------ | ------ | +----+    | (no change)        |
620  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
621  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
622  * | ------ | ------ | ------ | +----+    | (no change)        |
623  * +--------+--------+--------+           +--------------------+
624  * pp_size = data_size / modified_data_disks
625  *
626  * case 2: write to all data disks (also full stripe write):
627  *   data0    data1    data2                parity
628  * +--------+--------+--------+           +--------------------+
629  * | ------ | ------ | ------ |           | (no change)        |
630  * | -data- | -data- | -data- | --------> | xor all data       |
631  * | ------ | ------ | ------ | --------> | (no change)        |
632  * | ------ | ------ | ------ |           | (no change)        |
633  * +--------+--------+--------+           +--------------------+
634  * pp_size = 0
635  *
636  * The following cases are possible only in other implementations. The recovery
637  * code can handle them, but they are not generated at runtime because they can
638  * be reduced to cases 0, 1 and 2:
639  *
640  * case 3:
641  *   data0    data1    data2     ppl        parity
642  * +--------+--------+--------+ +----+    +--------------------+
643  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
644  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
645  * | -data- | -data- | -data- | | -- | -> | xor all data       |
646  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
647  * +--------+--------+--------+ +----+    +--------------------+
648  * pp_size = chunk_size
649  *
650  * case 4:
651  *   data0    data1    data2     ppl        parity
652  * +--------+--------+--------+ +----+    +--------------------+
653  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
654  * | ------ | ------ | ------ | | -- | -> | (no change)        |
655  * | ------ | ------ | ------ | | -- | -> | (no change)        |
656  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
657  * +--------+--------+--------+ +----+    +--------------------+
658  * pp_size = chunk_size
659  */
660 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
661                              sector_t ppl_sector)
662 {
663         struct ppl_conf *ppl_conf = log->ppl_conf;
664         struct mddev *mddev = ppl_conf->mddev;
665         struct r5conf *conf = mddev->private;
666         int block_size = ppl_conf->block_size;
667         struct page *page1;
668         struct page *page2;
669         sector_t r_sector_first;
670         sector_t r_sector_last;
671         int strip_sectors;
672         int data_disks;
673         int i;
674         int ret = 0;
675         char b[BDEVNAME_SIZE];
676         unsigned int pp_size = le32_to_cpu(e->pp_size);
677         unsigned int data_size = le32_to_cpu(e->data_size);
678
679         page1 = alloc_page(GFP_KERNEL);
680         page2 = alloc_page(GFP_KERNEL);
681
682         if (!page1 || !page2) {
683                 ret = -ENOMEM;
684                 goto out;
685         }
686
687         r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
688
689         if ((pp_size >> 9) < conf->chunk_sectors) {
690                 if (pp_size > 0) {
691                         data_disks = data_size / pp_size;
692                         strip_sectors = pp_size >> 9;
693                 } else {
694                         data_disks = conf->raid_disks - conf->max_degraded;
695                         strip_sectors = (data_size >> 9) / data_disks;
696                 }
697                 r_sector_last = r_sector_first +
698                                 (data_disks - 1) * conf->chunk_sectors +
699                                 strip_sectors;
700         } else {
701                 data_disks = conf->raid_disks - conf->max_degraded;
702                 strip_sectors = conf->chunk_sectors;
703                 r_sector_last = r_sector_first + (data_size >> 9);
704         }
705
706         pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
707                  (unsigned long long)r_sector_first,
708                  (unsigned long long)r_sector_last);
709
710         /* if start and end is 4k aligned, use a 4k block */
711         if (block_size == 512 &&
712             (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
713             (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
714                 block_size = STRIPE_SIZE;
715
716         /* iterate through blocks in strip */
717         for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
718                 bool update_parity = false;
719                 sector_t parity_sector;
720                 struct md_rdev *parity_rdev;
721                 struct stripe_head sh;
722                 int disk;
723                 int indent = 0;
724
725                 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
726                 indent += 2;
727
728                 memset(page_address(page1), 0, PAGE_SIZE);
729
730                 /* iterate through data member disks */
731                 for (disk = 0; disk < data_disks; disk++) {
732                         int dd_idx;
733                         struct md_rdev *rdev;
734                         sector_t sector;
735                         sector_t r_sector = r_sector_first + i +
736                                             (disk * conf->chunk_sectors);
737
738                         pr_debug("%s:%*s data member disk %d start\n",
739                                  __func__, indent, "", disk);
740                         indent += 2;
741
742                         if (r_sector >= r_sector_last) {
743                                 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
744                                          __func__, indent, "",
745                                          (unsigned long long)r_sector);
746                                 indent -= 2;
747                                 continue;
748                         }
749
750                         update_parity = true;
751
752                         /* map raid sector to member disk */
753                         sector = raid5_compute_sector(conf, r_sector, 0,
754                                                       &dd_idx, NULL);
755                         pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
756                                  __func__, indent, "",
757                                  (unsigned long long)r_sector, dd_idx,
758                                  (unsigned long long)sector);
759
760                         rdev = conf->disks[dd_idx].rdev;
761                         if (!rdev) {
762                                 pr_debug("%s:%*s data member disk %d missing\n",
763                                          __func__, indent, "", dd_idx);
764                                 update_parity = false;
765                                 break;
766                         }
767
768                         pr_debug("%s:%*s reading data member disk %s sector %llu\n",
769                                  __func__, indent, "", bdevname(rdev->bdev, b),
770                                  (unsigned long long)sector);
771                         if (!sync_page_io(rdev, sector, block_size, page2,
772                                         REQ_OP_READ, 0, false)) {
773                                 md_error(mddev, rdev);
774                                 pr_debug("%s:%*s read failed!\n", __func__,
775                                          indent, "");
776                                 ret = -EIO;
777                                 goto out;
778                         }
779
780                         ppl_xor(block_size, page1, page2);
781
782                         indent -= 2;
783                 }
784
785                 if (!update_parity)
786                         continue;
787
788                 if (pp_size > 0) {
789                         pr_debug("%s:%*s reading pp disk sector %llu\n",
790                                  __func__, indent, "",
791                                  (unsigned long long)(ppl_sector + i));
792                         if (!sync_page_io(log->rdev,
793                                         ppl_sector - log->rdev->data_offset + i,
794                                         block_size, page2, REQ_OP_READ, 0,
795                                         false)) {
796                                 pr_debug("%s:%*s read failed!\n", __func__,
797                                          indent, "");
798                                 md_error(mddev, log->rdev);
799                                 ret = -EIO;
800                                 goto out;
801                         }
802
803                         ppl_xor(block_size, page1, page2);
804                 }
805
806                 /* map raid sector to parity disk */
807                 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
808                                 0, &disk, &sh);
809                 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
810                 parity_rdev = conf->disks[sh.pd_idx].rdev;
811
812                 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
813                 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
814                          __func__, indent, "",
815                          (unsigned long long)parity_sector,
816                          bdevname(parity_rdev->bdev, b));
817                 if (!sync_page_io(parity_rdev, parity_sector, block_size,
818                                 page1, REQ_OP_WRITE, 0, false)) {
819                         pr_debug("%s:%*s parity write error!\n", __func__,
820                                  indent, "");
821                         md_error(mddev, parity_rdev);
822                         ret = -EIO;
823                         goto out;
824                 }
825         }
826 out:
827         if (page1)
828                 __free_page(page1);
829         if (page2)
830                 __free_page(page2);
831         return ret;
832 }
833
834 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
835                        sector_t offset)
836 {
837         struct ppl_conf *ppl_conf = log->ppl_conf;
838         struct md_rdev *rdev = log->rdev;
839         struct mddev *mddev = rdev->mddev;
840         sector_t ppl_sector = rdev->ppl.sector + offset +
841                               (PPL_HEADER_SIZE >> 9);
842         struct page *page;
843         int i;
844         int ret = 0;
845
846         page = alloc_page(GFP_KERNEL);
847         if (!page)
848                 return -ENOMEM;
849
850         /* iterate through all PPL entries saved */
851         for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
852                 struct ppl_header_entry *e = &pplhdr->entries[i];
853                 u32 pp_size = le32_to_cpu(e->pp_size);
854                 sector_t sector = ppl_sector;
855                 int ppl_entry_sectors = pp_size >> 9;
856                 u32 crc, crc_stored;
857
858                 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
859                          __func__, rdev->raid_disk, i,
860                          (unsigned long long)ppl_sector, pp_size);
861
862                 crc = ~0;
863                 crc_stored = le32_to_cpu(e->checksum);
864
865                 /* read parial parity for this entry and calculate its checksum */
866                 while (pp_size) {
867                         int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
868
869                         if (!sync_page_io(rdev, sector - rdev->data_offset,
870                                         s, page, REQ_OP_READ, 0, false)) {
871                                 md_error(mddev, rdev);
872                                 ret = -EIO;
873                                 goto out;
874                         }
875
876                         crc = crc32c_le(crc, page_address(page), s);
877
878                         pp_size -= s;
879                         sector += s >> 9;
880                 }
881
882                 crc = ~crc;
883
884                 if (crc != crc_stored) {
885                         /*
886                          * Don't recover this entry if the checksum does not
887                          * match, but keep going and try to recover other
888                          * entries.
889                          */
890                         pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
891                                  __func__, crc_stored, crc);
892                         ppl_conf->mismatch_count++;
893                 } else {
894                         ret = ppl_recover_entry(log, e, ppl_sector);
895                         if (ret)
896                                 goto out;
897                         ppl_conf->recovered_entries++;
898                 }
899
900                 ppl_sector += ppl_entry_sectors;
901         }
902
903         /* flush the disk cache after recovery if necessary */
904         ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
905 out:
906         __free_page(page);
907         return ret;
908 }
909
910 static int ppl_write_empty_header(struct ppl_log *log)
911 {
912         struct page *page;
913         struct ppl_header *pplhdr;
914         struct md_rdev *rdev = log->rdev;
915         int ret = 0;
916
917         pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
918                  rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
919
920         page = alloc_page(GFP_NOIO | __GFP_ZERO);
921         if (!page)
922                 return -ENOMEM;
923
924         pplhdr = page_address(page);
925         /* zero out PPL space to avoid collision with old PPLs */
926         blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
927                             log->rdev->ppl.size, GFP_NOIO, 0);
928         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
929         pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
930         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
931
932         if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
933                           PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
934                           REQ_FUA, 0, false)) {
935                 md_error(rdev->mddev, rdev);
936                 ret = -EIO;
937         }
938
939         __free_page(page);
940         return ret;
941 }
942
943 static int ppl_load_distributed(struct ppl_log *log)
944 {
945         struct ppl_conf *ppl_conf = log->ppl_conf;
946         struct md_rdev *rdev = log->rdev;
947         struct mddev *mddev = rdev->mddev;
948         struct page *page, *page2, *tmp;
949         struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
950         u32 crc, crc_stored;
951         u32 signature;
952         int ret = 0, i;
953         sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
954
955         pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
956         /* read PPL headers, find the recent one */
957         page = alloc_page(GFP_KERNEL);
958         if (!page)
959                 return -ENOMEM;
960
961         page2 = alloc_page(GFP_KERNEL);
962         if (!page2) {
963                 __free_page(page);
964                 return -ENOMEM;
965         }
966
967         /* searching ppl area for latest ppl */
968         while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
969                 if (!sync_page_io(rdev,
970                                   rdev->ppl.sector - rdev->data_offset +
971                                   pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
972                                   0, false)) {
973                         md_error(mddev, rdev);
974                         ret = -EIO;
975                         /* if not able to read - don't recover any PPL */
976                         pplhdr = NULL;
977                         break;
978                 }
979                 pplhdr = page_address(page);
980
981                 /* check header validity */
982                 crc_stored = le32_to_cpu(pplhdr->checksum);
983                 pplhdr->checksum = 0;
984                 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
985
986                 if (crc_stored != crc) {
987                         pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
988                                  __func__, crc_stored, crc,
989                                  (unsigned long long)pplhdr_offset);
990                         pplhdr = prev_pplhdr;
991                         pplhdr_offset = prev_pplhdr_offset;
992                         break;
993                 }
994
995                 signature = le32_to_cpu(pplhdr->signature);
996
997                 if (mddev->external) {
998                         /*
999                          * For external metadata the header signature is set and
1000                          * validated in userspace.
1001                          */
1002                         ppl_conf->signature = signature;
1003                 } else if (ppl_conf->signature != signature) {
1004                         pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1005                                  __func__, signature, ppl_conf->signature,
1006                                  (unsigned long long)pplhdr_offset);
1007                         pplhdr = prev_pplhdr;
1008                         pplhdr_offset = prev_pplhdr_offset;
1009                         break;
1010                 }
1011
1012                 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1013                     le64_to_cpu(pplhdr->generation)) {
1014                         /* previous was newest */
1015                         pplhdr = prev_pplhdr;
1016                         pplhdr_offset = prev_pplhdr_offset;
1017                         break;
1018                 }
1019
1020                 prev_pplhdr_offset = pplhdr_offset;
1021                 prev_pplhdr = pplhdr;
1022
1023                 tmp = page;
1024                 page = page2;
1025                 page2 = tmp;
1026
1027                 /* calculate next potential ppl offset */
1028                 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1029                         pplhdr_offset +=
1030                             le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1031                 pplhdr_offset += PPL_HEADER_SIZE >> 9;
1032         }
1033
1034         /* no valid ppl found */
1035         if (!pplhdr)
1036                 ppl_conf->mismatch_count++;
1037         else
1038                 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1039                     __func__, (unsigned long long)pplhdr_offset,
1040                     le64_to_cpu(pplhdr->generation));
1041
1042         /* attempt to recover from log if we are starting a dirty array */
1043         if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1044                 ret = ppl_recover(log, pplhdr, pplhdr_offset);
1045
1046         /* write empty header if we are starting the array */
1047         if (!ret && !mddev->pers)
1048                 ret = ppl_write_empty_header(log);
1049
1050         __free_page(page);
1051         __free_page(page2);
1052
1053         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1054                  __func__, ret, ppl_conf->mismatch_count,
1055                  ppl_conf->recovered_entries);
1056         return ret;
1057 }
1058
1059 static int ppl_load(struct ppl_conf *ppl_conf)
1060 {
1061         int ret = 0;
1062         u32 signature = 0;
1063         bool signature_set = false;
1064         int i;
1065
1066         for (i = 0; i < ppl_conf->count; i++) {
1067                 struct ppl_log *log = &ppl_conf->child_logs[i];
1068
1069                 /* skip missing drive */
1070                 if (!log->rdev)
1071                         continue;
1072
1073                 ret = ppl_load_distributed(log);
1074                 if (ret)
1075                         break;
1076
1077                 /*
1078                  * For external metadata we can't check if the signature is
1079                  * correct on a single drive, but we can check if it is the same
1080                  * on all drives.
1081                  */
1082                 if (ppl_conf->mddev->external) {
1083                         if (!signature_set) {
1084                                 signature = ppl_conf->signature;
1085                                 signature_set = true;
1086                         } else if (signature != ppl_conf->signature) {
1087                                 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1088                                         mdname(ppl_conf->mddev));
1089                                 ret = -EINVAL;
1090                                 break;
1091                         }
1092                 }
1093         }
1094
1095         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1096                  __func__, ret, ppl_conf->mismatch_count,
1097                  ppl_conf->recovered_entries);
1098         return ret;
1099 }
1100
1101 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1102 {
1103         clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1104         clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1105
1106         kfree(ppl_conf->child_logs);
1107
1108         if (ppl_conf->bs)
1109                 bioset_free(ppl_conf->bs);
1110         mempool_destroy(ppl_conf->io_pool);
1111         kmem_cache_destroy(ppl_conf->io_kc);
1112
1113         kfree(ppl_conf);
1114 }
1115
1116 void ppl_exit_log(struct r5conf *conf)
1117 {
1118         struct ppl_conf *ppl_conf = conf->log_private;
1119
1120         if (ppl_conf) {
1121                 __ppl_exit_log(ppl_conf);
1122                 conf->log_private = NULL;
1123         }
1124 }
1125
1126 static int ppl_validate_rdev(struct md_rdev *rdev)
1127 {
1128         char b[BDEVNAME_SIZE];
1129         int ppl_data_sectors;
1130         int ppl_size_new;
1131
1132         /*
1133          * The configured PPL size must be enough to store
1134          * the header and (at the very least) partial parity
1135          * for one stripe. Round it down to ensure the data
1136          * space is cleanly divisible by stripe size.
1137          */
1138         ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1139
1140         if (ppl_data_sectors > 0)
1141                 ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1142
1143         if (ppl_data_sectors <= 0) {
1144                 pr_warn("md/raid:%s: PPL space too small on %s\n",
1145                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1146                 return -ENOSPC;
1147         }
1148
1149         ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1150
1151         if ((rdev->ppl.sector < rdev->data_offset &&
1152              rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1153             (rdev->ppl.sector >= rdev->data_offset &&
1154              rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1155                 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1156                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1157                 return -EINVAL;
1158         }
1159
1160         if (!rdev->mddev->external &&
1161             ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1162              (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1163                 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1164                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1165                 return -EINVAL;
1166         }
1167
1168         rdev->ppl.size = ppl_size_new;
1169
1170         return 0;
1171 }
1172
1173 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1174 {
1175         if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1176                                       PPL_HEADER_SIZE) * 2) {
1177                 log->use_multippl = true;
1178                 set_bit(MD_HAS_MULTIPLE_PPLS,
1179                         &log->ppl_conf->mddev->flags);
1180                 log->entry_space = PPL_SPACE_SIZE;
1181         } else {
1182                 log->use_multippl = false;
1183                 log->entry_space = (log->rdev->ppl.size << 9) -
1184                                    PPL_HEADER_SIZE;
1185         }
1186         log->next_io_sector = rdev->ppl.sector;
1187 }
1188
1189 int ppl_init_log(struct r5conf *conf)
1190 {
1191         struct ppl_conf *ppl_conf;
1192         struct mddev *mddev = conf->mddev;
1193         int ret = 0;
1194         int i;
1195         bool need_cache_flush = false;
1196
1197         pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1198                  mdname(conf->mddev));
1199
1200         if (PAGE_SIZE != 4096)
1201                 return -EINVAL;
1202
1203         if (mddev->level != 5) {
1204                 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1205                         mdname(mddev), mddev->level);
1206                 return -EINVAL;
1207         }
1208
1209         if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1210                 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1211                         mdname(mddev));
1212                 return -EINVAL;
1213         }
1214
1215         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1216                 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1217                         mdname(mddev));
1218                 return -EINVAL;
1219         }
1220
1221         ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1222         if (!ppl_conf)
1223                 return -ENOMEM;
1224
1225         ppl_conf->mddev = mddev;
1226
1227         ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1228         if (!ppl_conf->io_kc) {
1229                 ret = -ENOMEM;
1230                 goto err;
1231         }
1232
1233         ppl_conf->io_pool = mempool_create(conf->raid_disks, ppl_io_pool_alloc,
1234                                            ppl_io_pool_free, ppl_conf->io_kc);
1235         if (!ppl_conf->io_pool) {
1236                 ret = -ENOMEM;
1237                 goto err;
1238         }
1239
1240         ppl_conf->bs = bioset_create(conf->raid_disks, 0, BIOSET_NEED_BVECS);
1241         if (!ppl_conf->bs) {
1242                 ret = -ENOMEM;
1243                 goto err;
1244         }
1245
1246         ppl_conf->count = conf->raid_disks;
1247         ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1248                                        GFP_KERNEL);
1249         if (!ppl_conf->child_logs) {
1250                 ret = -ENOMEM;
1251                 goto err;
1252         }
1253
1254         atomic64_set(&ppl_conf->seq, 0);
1255         INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1256         spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1257
1258         if (!mddev->external) {
1259                 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1260                 ppl_conf->block_size = 512;
1261         } else {
1262                 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1263         }
1264
1265         for (i = 0; i < ppl_conf->count; i++) {
1266                 struct ppl_log *log = &ppl_conf->child_logs[i];
1267                 struct md_rdev *rdev = conf->disks[i].rdev;
1268
1269                 mutex_init(&log->io_mutex);
1270                 spin_lock_init(&log->io_list_lock);
1271                 INIT_LIST_HEAD(&log->io_list);
1272
1273                 log->ppl_conf = ppl_conf;
1274                 log->rdev = rdev;
1275
1276                 if (rdev) {
1277                         struct request_queue *q;
1278
1279                         ret = ppl_validate_rdev(rdev);
1280                         if (ret)
1281                                 goto err;
1282
1283                         q = bdev_get_queue(rdev->bdev);
1284                         if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1285                                 need_cache_flush = true;
1286                         ppl_init_child_log(log, rdev);
1287                 }
1288         }
1289
1290         if (need_cache_flush)
1291                 pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n",
1292                         mdname(mddev));
1293
1294         /* load and possibly recover the logs from the member disks */
1295         ret = ppl_load(ppl_conf);
1296
1297         if (ret) {
1298                 goto err;
1299         } else if (!mddev->pers &&
1300                    mddev->recovery_cp == 0 && !mddev->degraded &&
1301                    ppl_conf->recovered_entries > 0 &&
1302                    ppl_conf->mismatch_count == 0) {
1303                 /*
1304                  * If we are starting a dirty array and the recovery succeeds
1305                  * without any issues, set the array as clean.
1306                  */
1307                 mddev->recovery_cp = MaxSector;
1308                 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1309         } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1310                 /* no mismatch allowed when enabling PPL for a running array */
1311                 ret = -EINVAL;
1312                 goto err;
1313         }
1314
1315         conf->log_private = ppl_conf;
1316         set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1317
1318         return 0;
1319 err:
1320         __ppl_exit_log(ppl_conf);
1321         return ret;
1322 }
1323
1324 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1325 {
1326         struct ppl_conf *ppl_conf = conf->log_private;
1327         struct ppl_log *log;
1328         int ret = 0;
1329         char b[BDEVNAME_SIZE];
1330
1331         if (!rdev)
1332                 return -EINVAL;
1333
1334         pr_debug("%s: disk: %d operation: %s dev: %s\n",
1335                  __func__, rdev->raid_disk, add ? "add" : "remove",
1336                  bdevname(rdev->bdev, b));
1337
1338         if (rdev->raid_disk < 0)
1339                 return 0;
1340
1341         if (rdev->raid_disk >= ppl_conf->count)
1342                 return -ENODEV;
1343
1344         log = &ppl_conf->child_logs[rdev->raid_disk];
1345
1346         mutex_lock(&log->io_mutex);
1347         if (add) {
1348                 ret = ppl_validate_rdev(rdev);
1349                 if (!ret) {
1350                         log->rdev = rdev;
1351                         ret = ppl_write_empty_header(log);
1352                         ppl_init_child_log(log, rdev);
1353                 }
1354         } else {
1355                 log->rdev = NULL;
1356         }
1357         mutex_unlock(&log->io_mutex);
1358
1359         return ret;
1360 }