block: remove the per-bio/request write hint
[linux-2.6-microblaze.git] / drivers / md / raid5-ppl.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Partial Parity Log for closing the RAID5 write hole
4  * Copyright (c) 2017, Intel Corporation.
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/crc32c.h>
11 #include <linux/async_tx.h>
12 #include <linux/raid/md_p.h>
13 #include "md.h"
14 #include "raid5.h"
15 #include "raid5-log.h"
16
17 /*
18  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19  * partial parity data. The header contains an array of entries
20  * (struct ppl_header_entry) which describe the logged write requests.
21  * Partial parity for the entries comes after the header, written in the same
22  * sequence as the entries:
23  *
24  * Header
25  *   entry0
26  *   ...
27  *   entryN
28  * PP data
29  *   PP for entry0
30  *   ...
31  *   PP for entryN
32  *
33  * An entry describes one or more consecutive stripe_heads, up to a full
34  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35  * number of stripe_heads in the entry and n is the number of modified data
36  * disks. Every stripe_head in the entry must write to the same data disks.
37  * An example of a valid case described by a single entry (writes to the first
38  * stripe of a 4 disk array, 16k chunk size):
39  *
40  * sh->sector   dd0   dd1   dd2    ppl
41  *            +-----+-----+-----+
42  * 0          | --- | --- | --- | +----+
43  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46  *            +-----+-----+-----+ +----+
47  *
48  * data_sector is the first raid sector of the modified data, data_size is the
49  * total size of modified data and pp_size is the size of partial parity for
50  * this entry. Entries for full stripe writes contain no partial parity
51  * (pp_size = 0), they only mark the stripes for which parity should be
52  * recalculated after an unclean shutdown. Every entry holds a checksum of its
53  * partial parity, the header also has a checksum of the header itself.
54  *
55  * A write request is always logged to the PPL instance stored on the parity
56  * disk of the corresponding stripe. For each member disk there is one ppl_log
57  * used to handle logging for this disk, independently from others. They are
58  * grouped in child_logs array in struct ppl_conf, which is assigned to
59  * r5conf->log_private.
60  *
61  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63  * can be appended to the last entry if it meets the conditions for a valid
64  * entry described above, otherwise a new entry is added. Checksums of entries
65  * are calculated incrementally as stripes containing partial parity are being
66  * added. ppl_submit_iounit() calculates the checksum of the header and submits
67  * a bio containing the header page and partial parity pages (sh->ppl_page) for
68  * all stripes of the io_unit. When the PPL write completes, the stripes
69  * associated with the io_unit are released and raid5d starts writing their data
70  * and parity. When all stripes are written, the io_unit is freed and the next
71  * can be submitted.
72  *
73  * An io_unit is used to gather stripes until it is submitted or becomes full
74  * (if the maximum number of entries or size of PPL is reached). Another io_unit
75  * can't be submitted until the previous has completed (PPL and stripe
76  * data+parity is written). The log->io_list tracks all io_units of a log
77  * (for a single member disk). New io_units are added to the end of the list
78  * and the first io_unit is submitted, if it is not submitted already.
79  * The current io_unit accepting new stripes is always at the end of the list.
80  *
81  * If write-back cache is enabled for any of the disks in the array, its data
82  * must be flushed before next io_unit is submitted.
83  */
84
85 #define PPL_SPACE_SIZE (128 * 1024)
86
87 struct ppl_conf {
88         struct mddev *mddev;
89
90         /* array of child logs, one for each raid disk */
91         struct ppl_log *child_logs;
92         int count;
93
94         int block_size;         /* the logical block size used for data_sector
95                                  * in ppl_header_entry */
96         u32 signature;          /* raid array identifier */
97         atomic64_t seq;         /* current log write sequence number */
98
99         struct kmem_cache *io_kc;
100         mempool_t io_pool;
101         struct bio_set bs;
102         struct bio_set flush_bs;
103
104         /* used only for recovery */
105         int recovered_entries;
106         int mismatch_count;
107
108         /* stripes to retry if failed to allocate io_unit */
109         struct list_head no_mem_stripes;
110         spinlock_t no_mem_stripes_lock;
111
112         unsigned short write_hint;
113 };
114
115 struct ppl_log {
116         struct ppl_conf *ppl_conf;      /* shared between all log instances */
117
118         struct md_rdev *rdev;           /* array member disk associated with
119                                          * this log instance */
120         struct mutex io_mutex;
121         struct ppl_io_unit *current_io; /* current io_unit accepting new data
122                                          * always at the end of io_list */
123         spinlock_t io_list_lock;
124         struct list_head io_list;       /* all io_units of this log */
125
126         sector_t next_io_sector;
127         unsigned int entry_space;
128         bool use_multippl;
129         bool wb_cache_on;
130         unsigned long disk_flush_bitmap;
131 };
132
133 #define PPL_IO_INLINE_BVECS 32
134
135 struct ppl_io_unit {
136         struct ppl_log *log;
137
138         struct page *header_page;       /* for ppl_header */
139
140         unsigned int entries_count;     /* number of entries in ppl_header */
141         unsigned int pp_size;           /* total size current of partial parity */
142
143         u64 seq;                        /* sequence number of this log write */
144         struct list_head log_sibling;   /* log->io_list */
145
146         struct list_head stripe_list;   /* stripes added to the io_unit */
147         atomic_t pending_stripes;       /* how many stripes not written to raid */
148         atomic_t pending_flushes;       /* how many disk flushes are in progress */
149
150         bool submitted;                 /* true if write to log started */
151
152         /* inline bio and its biovec for submitting the iounit */
153         struct bio bio;
154         struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155 };
156
157 struct dma_async_tx_descriptor *
158 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159                        struct dma_async_tx_descriptor *tx)
160 {
161         int disks = sh->disks;
162         struct page **srcs = percpu->scribble;
163         int count = 0, pd_idx = sh->pd_idx, i;
164         struct async_submit_ctl submit;
165
166         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167
168         /*
169          * Partial parity is the XOR of stripe data chunks that are not changed
170          * during the write request. Depending on available data
171          * (read-modify-write vs. reconstruct-write case) we calculate it
172          * differently.
173          */
174         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175                 /*
176                  * rmw: xor old data and parity from updated disks
177                  * This is calculated earlier by ops_run_prexor5() so just copy
178                  * the parity dev page.
179                  */
180                 srcs[count++] = sh->dev[pd_idx].page;
181         } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182                 /* rcw: xor data from all not updated disks */
183                 for (i = disks; i--;) {
184                         struct r5dev *dev = &sh->dev[i];
185                         if (test_bit(R5_UPTODATE, &dev->flags))
186                                 srcs[count++] = dev->page;
187                 }
188         } else {
189                 return tx;
190         }
191
192         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193                           NULL, sh, (void *) (srcs + sh->disks + 2));
194
195         if (count == 1)
196                 tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197                                   &submit);
198         else
199                 tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200                                &submit);
201
202         return tx;
203 }
204
205 static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206 {
207         struct kmem_cache *kc = pool_data;
208         struct ppl_io_unit *io;
209
210         io = kmem_cache_alloc(kc, gfp_mask);
211         if (!io)
212                 return NULL;
213
214         io->header_page = alloc_page(gfp_mask);
215         if (!io->header_page) {
216                 kmem_cache_free(kc, io);
217                 return NULL;
218         }
219
220         return io;
221 }
222
223 static void ppl_io_pool_free(void *element, void *pool_data)
224 {
225         struct kmem_cache *kc = pool_data;
226         struct ppl_io_unit *io = element;
227
228         __free_page(io->header_page);
229         kmem_cache_free(kc, io);
230 }
231
232 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233                                           struct stripe_head *sh)
234 {
235         struct ppl_conf *ppl_conf = log->ppl_conf;
236         struct ppl_io_unit *io;
237         struct ppl_header *pplhdr;
238         struct page *header_page;
239
240         io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241         if (!io)
242                 return NULL;
243
244         header_page = io->header_page;
245         memset(io, 0, sizeof(*io));
246         io->header_page = header_page;
247
248         io->log = log;
249         INIT_LIST_HEAD(&io->log_sibling);
250         INIT_LIST_HEAD(&io->stripe_list);
251         atomic_set(&io->pending_stripes, 0);
252         atomic_set(&io->pending_flushes, 0);
253         bio_init(&io->bio, NULL, io->biovec, PPL_IO_INLINE_BVECS, 0);
254
255         pplhdr = page_address(io->header_page);
256         clear_page(pplhdr);
257         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
258         pplhdr->signature = cpu_to_le32(ppl_conf->signature);
259
260         io->seq = atomic64_add_return(1, &ppl_conf->seq);
261         pplhdr->generation = cpu_to_le64(io->seq);
262
263         return io;
264 }
265
266 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
267 {
268         struct ppl_io_unit *io = log->current_io;
269         struct ppl_header_entry *e = NULL;
270         struct ppl_header *pplhdr;
271         int i;
272         sector_t data_sector = 0;
273         int data_disks = 0;
274         struct r5conf *conf = sh->raid_conf;
275
276         pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
277
278         /* check if current io_unit is full */
279         if (io && (io->pp_size == log->entry_space ||
280                    io->entries_count == PPL_HDR_MAX_ENTRIES)) {
281                 pr_debug("%s: add io_unit blocked by seq: %llu\n",
282                          __func__, io->seq);
283                 io = NULL;
284         }
285
286         /* add a new unit if there is none or the current is full */
287         if (!io) {
288                 io = ppl_new_iounit(log, sh);
289                 if (!io)
290                         return -ENOMEM;
291                 spin_lock_irq(&log->io_list_lock);
292                 list_add_tail(&io->log_sibling, &log->io_list);
293                 spin_unlock_irq(&log->io_list_lock);
294
295                 log->current_io = io;
296         }
297
298         for (i = 0; i < sh->disks; i++) {
299                 struct r5dev *dev = &sh->dev[i];
300
301                 if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
302                         if (!data_disks || dev->sector < data_sector)
303                                 data_sector = dev->sector;
304                         data_disks++;
305                 }
306         }
307         BUG_ON(!data_disks);
308
309         pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
310                  io->seq, (unsigned long long)data_sector, data_disks);
311
312         pplhdr = page_address(io->header_page);
313
314         if (io->entries_count > 0) {
315                 struct ppl_header_entry *last =
316                                 &pplhdr->entries[io->entries_count - 1];
317                 struct stripe_head *sh_last = list_last_entry(
318                                 &io->stripe_list, struct stripe_head, log_list);
319                 u64 data_sector_last = le64_to_cpu(last->data_sector);
320                 u32 data_size_last = le32_to_cpu(last->data_size);
321
322                 /*
323                  * Check if we can append the stripe to the last entry. It must
324                  * be just after the last logged stripe and write to the same
325                  * disks. Use bit shift and logarithm to avoid 64-bit division.
326                  */
327                 if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
328                     (data_sector >> ilog2(conf->chunk_sectors) ==
329                      data_sector_last >> ilog2(conf->chunk_sectors)) &&
330                     ((data_sector - data_sector_last) * data_disks ==
331                      data_size_last >> 9))
332                         e = last;
333         }
334
335         if (!e) {
336                 e = &pplhdr->entries[io->entries_count++];
337                 e->data_sector = cpu_to_le64(data_sector);
338                 e->parity_disk = cpu_to_le32(sh->pd_idx);
339                 e->checksum = cpu_to_le32(~0);
340         }
341
342         le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
343
344         /* don't write any PP if full stripe write */
345         if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
346                 le32_add_cpu(&e->pp_size, PAGE_SIZE);
347                 io->pp_size += PAGE_SIZE;
348                 e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
349                                                     page_address(sh->ppl_page),
350                                                     PAGE_SIZE));
351         }
352
353         list_add_tail(&sh->log_list, &io->stripe_list);
354         atomic_inc(&io->pending_stripes);
355         sh->ppl_io = io;
356
357         return 0;
358 }
359
360 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
361 {
362         struct ppl_conf *ppl_conf = conf->log_private;
363         struct ppl_io_unit *io = sh->ppl_io;
364         struct ppl_log *log;
365
366         if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
367             !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
368             !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
369                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
370                 return -EAGAIN;
371         }
372
373         log = &ppl_conf->child_logs[sh->pd_idx];
374
375         mutex_lock(&log->io_mutex);
376
377         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
378                 mutex_unlock(&log->io_mutex);
379                 return -EAGAIN;
380         }
381
382         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
383         clear_bit(STRIPE_DELAYED, &sh->state);
384         atomic_inc(&sh->count);
385
386         if (ppl_log_stripe(log, sh)) {
387                 spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
388                 list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
389                 spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
390         }
391
392         mutex_unlock(&log->io_mutex);
393
394         return 0;
395 }
396
397 static void ppl_log_endio(struct bio *bio)
398 {
399         struct ppl_io_unit *io = bio->bi_private;
400         struct ppl_log *log = io->log;
401         struct ppl_conf *ppl_conf = log->ppl_conf;
402         struct stripe_head *sh, *next;
403
404         pr_debug("%s: seq: %llu\n", __func__, io->seq);
405
406         if (bio->bi_status)
407                 md_error(ppl_conf->mddev, log->rdev);
408
409         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
410                 list_del_init(&sh->log_list);
411
412                 set_bit(STRIPE_HANDLE, &sh->state);
413                 raid5_release_stripe(sh);
414         }
415 }
416
417 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
418 {
419         pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
420                  __func__, io->seq, bio->bi_iter.bi_size,
421                  (unsigned long long)bio->bi_iter.bi_sector,
422                  bio->bi_bdev);
423
424         submit_bio(bio);
425 }
426
427 static void ppl_submit_iounit(struct ppl_io_unit *io)
428 {
429         struct ppl_log *log = io->log;
430         struct ppl_conf *ppl_conf = log->ppl_conf;
431         struct ppl_header *pplhdr = page_address(io->header_page);
432         struct bio *bio = &io->bio;
433         struct stripe_head *sh;
434         int i;
435
436         bio->bi_private = io;
437
438         if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
439                 ppl_log_endio(bio);
440                 return;
441         }
442
443         for (i = 0; i < io->entries_count; i++) {
444                 struct ppl_header_entry *e = &pplhdr->entries[i];
445
446                 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
447                          __func__, io->seq, i, le64_to_cpu(e->data_sector),
448                          le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
449
450                 e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
451                                              ilog2(ppl_conf->block_size >> 9));
452                 e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
453         }
454
455         pplhdr->entries_count = cpu_to_le32(io->entries_count);
456         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
457
458         /* Rewind the buffer if current PPL is larger then remaining space */
459         if (log->use_multippl &&
460             log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
461             (PPL_HEADER_SIZE + io->pp_size) >> 9)
462                 log->next_io_sector = log->rdev->ppl.sector;
463
464
465         bio->bi_end_io = ppl_log_endio;
466         bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
467         bio_set_dev(bio, log->rdev->bdev);
468         bio->bi_iter.bi_sector = log->next_io_sector;
469         bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
470
471         pr_debug("%s: log->current_io_sector: %llu\n", __func__,
472             (unsigned long long)log->next_io_sector);
473
474         if (log->use_multippl)
475                 log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
476
477         WARN_ON(log->disk_flush_bitmap != 0);
478
479         list_for_each_entry(sh, &io->stripe_list, log_list) {
480                 for (i = 0; i < sh->disks; i++) {
481                         struct r5dev *dev = &sh->dev[i];
482
483                         if ((ppl_conf->child_logs[i].wb_cache_on) &&
484                             (test_bit(R5_Wantwrite, &dev->flags))) {
485                                 set_bit(i, &log->disk_flush_bitmap);
486                         }
487                 }
488
489                 /* entries for full stripe writes have no partial parity */
490                 if (test_bit(STRIPE_FULL_WRITE, &sh->state))
491                         continue;
492
493                 if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
494                         struct bio *prev = bio;
495
496                         bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
497                                                prev->bi_opf, GFP_NOIO,
498                                                &ppl_conf->bs);
499                         bio->bi_iter.bi_sector = bio_end_sector(prev);
500                         bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
501
502                         bio_chain(bio, prev);
503                         ppl_submit_iounit_bio(io, prev);
504                 }
505         }
506
507         ppl_submit_iounit_bio(io, bio);
508 }
509
510 static void ppl_submit_current_io(struct ppl_log *log)
511 {
512         struct ppl_io_unit *io;
513
514         spin_lock_irq(&log->io_list_lock);
515
516         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
517                                       log_sibling);
518         if (io && io->submitted)
519                 io = NULL;
520
521         spin_unlock_irq(&log->io_list_lock);
522
523         if (io) {
524                 io->submitted = true;
525
526                 if (io == log->current_io)
527                         log->current_io = NULL;
528
529                 ppl_submit_iounit(io);
530         }
531 }
532
533 void ppl_write_stripe_run(struct r5conf *conf)
534 {
535         struct ppl_conf *ppl_conf = conf->log_private;
536         struct ppl_log *log;
537         int i;
538
539         for (i = 0; i < ppl_conf->count; i++) {
540                 log = &ppl_conf->child_logs[i];
541
542                 mutex_lock(&log->io_mutex);
543                 ppl_submit_current_io(log);
544                 mutex_unlock(&log->io_mutex);
545         }
546 }
547
548 static void ppl_io_unit_finished(struct ppl_io_unit *io)
549 {
550         struct ppl_log *log = io->log;
551         struct ppl_conf *ppl_conf = log->ppl_conf;
552         struct r5conf *conf = ppl_conf->mddev->private;
553         unsigned long flags;
554
555         pr_debug("%s: seq: %llu\n", __func__, io->seq);
556
557         local_irq_save(flags);
558
559         spin_lock(&log->io_list_lock);
560         list_del(&io->log_sibling);
561         spin_unlock(&log->io_list_lock);
562
563         mempool_free(io, &ppl_conf->io_pool);
564
565         spin_lock(&ppl_conf->no_mem_stripes_lock);
566         if (!list_empty(&ppl_conf->no_mem_stripes)) {
567                 struct stripe_head *sh;
568
569                 sh = list_first_entry(&ppl_conf->no_mem_stripes,
570                                       struct stripe_head, log_list);
571                 list_del_init(&sh->log_list);
572                 set_bit(STRIPE_HANDLE, &sh->state);
573                 raid5_release_stripe(sh);
574         }
575         spin_unlock(&ppl_conf->no_mem_stripes_lock);
576
577         local_irq_restore(flags);
578
579         wake_up(&conf->wait_for_quiescent);
580 }
581
582 static void ppl_flush_endio(struct bio *bio)
583 {
584         struct ppl_io_unit *io = bio->bi_private;
585         struct ppl_log *log = io->log;
586         struct ppl_conf *ppl_conf = log->ppl_conf;
587         struct r5conf *conf = ppl_conf->mddev->private;
588
589         pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
590
591         if (bio->bi_status) {
592                 struct md_rdev *rdev;
593
594                 rcu_read_lock();
595                 rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
596                 if (rdev)
597                         md_error(rdev->mddev, rdev);
598                 rcu_read_unlock();
599         }
600
601         bio_put(bio);
602
603         if (atomic_dec_and_test(&io->pending_flushes)) {
604                 ppl_io_unit_finished(io);
605                 md_wakeup_thread(conf->mddev->thread);
606         }
607 }
608
609 static void ppl_do_flush(struct ppl_io_unit *io)
610 {
611         struct ppl_log *log = io->log;
612         struct ppl_conf *ppl_conf = log->ppl_conf;
613         struct r5conf *conf = ppl_conf->mddev->private;
614         int raid_disks = conf->raid_disks;
615         int flushed_disks = 0;
616         int i;
617
618         atomic_set(&io->pending_flushes, raid_disks);
619
620         for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
621                 struct md_rdev *rdev;
622                 struct block_device *bdev = NULL;
623
624                 rcu_read_lock();
625                 rdev = rcu_dereference(conf->disks[i].rdev);
626                 if (rdev && !test_bit(Faulty, &rdev->flags))
627                         bdev = rdev->bdev;
628                 rcu_read_unlock();
629
630                 if (bdev) {
631                         struct bio *bio;
632
633                         bio = bio_alloc_bioset(bdev, 0, GFP_NOIO,
634                                                REQ_OP_WRITE | REQ_PREFLUSH,
635                                                &ppl_conf->flush_bs);
636                         bio->bi_private = io;
637                         bio->bi_end_io = ppl_flush_endio;
638
639                         pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
640
641                         submit_bio(bio);
642                         flushed_disks++;
643                 }
644         }
645
646         log->disk_flush_bitmap = 0;
647
648         for (i = flushed_disks ; i < raid_disks; i++) {
649                 if (atomic_dec_and_test(&io->pending_flushes))
650                         ppl_io_unit_finished(io);
651         }
652 }
653
654 static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
655                                             struct ppl_log *log)
656 {
657         struct ppl_io_unit *io;
658
659         io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
660                                       log_sibling);
661
662         return !io || !io->submitted;
663 }
664
665 void ppl_quiesce(struct r5conf *conf, int quiesce)
666 {
667         struct ppl_conf *ppl_conf = conf->log_private;
668         int i;
669
670         if (quiesce) {
671                 for (i = 0; i < ppl_conf->count; i++) {
672                         struct ppl_log *log = &ppl_conf->child_logs[i];
673
674                         spin_lock_irq(&log->io_list_lock);
675                         wait_event_lock_irq(conf->wait_for_quiescent,
676                                             ppl_no_io_unit_submitted(conf, log),
677                                             log->io_list_lock);
678                         spin_unlock_irq(&log->io_list_lock);
679                 }
680         }
681 }
682
683 int ppl_handle_flush_request(struct r5l_log *log, struct bio *bio)
684 {
685         if (bio->bi_iter.bi_size == 0) {
686                 bio_endio(bio);
687                 return 0;
688         }
689         bio->bi_opf &= ~REQ_PREFLUSH;
690         return -EAGAIN;
691 }
692
693 void ppl_stripe_write_finished(struct stripe_head *sh)
694 {
695         struct ppl_io_unit *io;
696
697         io = sh->ppl_io;
698         sh->ppl_io = NULL;
699
700         if (io && atomic_dec_and_test(&io->pending_stripes)) {
701                 if (io->log->disk_flush_bitmap)
702                         ppl_do_flush(io);
703                 else
704                         ppl_io_unit_finished(io);
705         }
706 }
707
708 static void ppl_xor(int size, struct page *page1, struct page *page2)
709 {
710         struct async_submit_ctl submit;
711         struct dma_async_tx_descriptor *tx;
712         struct page *xor_srcs[] = { page1, page2 };
713
714         init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
715                           NULL, NULL, NULL, NULL);
716         tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
717
718         async_tx_quiesce(&tx);
719 }
720
721 /*
722  * PPL recovery strategy: xor partial parity and data from all modified data
723  * disks within a stripe and write the result as the new stripe parity. If all
724  * stripe data disks are modified (full stripe write), no partial parity is
725  * available, so just xor the data disks.
726  *
727  * Recovery of a PPL entry shall occur only if all modified data disks are
728  * available and read from all of them succeeds.
729  *
730  * A PPL entry applies to a stripe, partial parity size for an entry is at most
731  * the size of the chunk. Examples of possible cases for a single entry:
732  *
733  * case 0: single data disk write:
734  *   data0    data1    data2     ppl        parity
735  * +--------+--------+--------+           +--------------------+
736  * | ------ | ------ | ------ | +----+    | (no change)        |
737  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
738  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
739  * | ------ | ------ | ------ | +----+    | (no change)        |
740  * +--------+--------+--------+           +--------------------+
741  * pp_size = data_size
742  *
743  * case 1: more than one data disk write:
744  *   data0    data1    data2     ppl        parity
745  * +--------+--------+--------+           +--------------------+
746  * | ------ | ------ | ------ | +----+    | (no change)        |
747  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
748  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
749  * | ------ | ------ | ------ | +----+    | (no change)        |
750  * +--------+--------+--------+           +--------------------+
751  * pp_size = data_size / modified_data_disks
752  *
753  * case 2: write to all data disks (also full stripe write):
754  *   data0    data1    data2                parity
755  * +--------+--------+--------+           +--------------------+
756  * | ------ | ------ | ------ |           | (no change)        |
757  * | -data- | -data- | -data- | --------> | xor all data       |
758  * | ------ | ------ | ------ | --------> | (no change)        |
759  * | ------ | ------ | ------ |           | (no change)        |
760  * +--------+--------+--------+           +--------------------+
761  * pp_size = 0
762  *
763  * The following cases are possible only in other implementations. The recovery
764  * code can handle them, but they are not generated at runtime because they can
765  * be reduced to cases 0, 1 and 2:
766  *
767  * case 3:
768  *   data0    data1    data2     ppl        parity
769  * +--------+--------+--------+ +----+    +--------------------+
770  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
771  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
772  * | -data- | -data- | -data- | | -- | -> | xor all data       |
773  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
774  * +--------+--------+--------+ +----+    +--------------------+
775  * pp_size = chunk_size
776  *
777  * case 4:
778  *   data0    data1    data2     ppl        parity
779  * +--------+--------+--------+ +----+    +--------------------+
780  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
781  * | ------ | ------ | ------ | | -- | -> | (no change)        |
782  * | ------ | ------ | ------ | | -- | -> | (no change)        |
783  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
784  * +--------+--------+--------+ +----+    +--------------------+
785  * pp_size = chunk_size
786  */
787 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
788                              sector_t ppl_sector)
789 {
790         struct ppl_conf *ppl_conf = log->ppl_conf;
791         struct mddev *mddev = ppl_conf->mddev;
792         struct r5conf *conf = mddev->private;
793         int block_size = ppl_conf->block_size;
794         struct page *page1;
795         struct page *page2;
796         sector_t r_sector_first;
797         sector_t r_sector_last;
798         int strip_sectors;
799         int data_disks;
800         int i;
801         int ret = 0;
802         char b[BDEVNAME_SIZE];
803         unsigned int pp_size = le32_to_cpu(e->pp_size);
804         unsigned int data_size = le32_to_cpu(e->data_size);
805
806         page1 = alloc_page(GFP_KERNEL);
807         page2 = alloc_page(GFP_KERNEL);
808
809         if (!page1 || !page2) {
810                 ret = -ENOMEM;
811                 goto out;
812         }
813
814         r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
815
816         if ((pp_size >> 9) < conf->chunk_sectors) {
817                 if (pp_size > 0) {
818                         data_disks = data_size / pp_size;
819                         strip_sectors = pp_size >> 9;
820                 } else {
821                         data_disks = conf->raid_disks - conf->max_degraded;
822                         strip_sectors = (data_size >> 9) / data_disks;
823                 }
824                 r_sector_last = r_sector_first +
825                                 (data_disks - 1) * conf->chunk_sectors +
826                                 strip_sectors;
827         } else {
828                 data_disks = conf->raid_disks - conf->max_degraded;
829                 strip_sectors = conf->chunk_sectors;
830                 r_sector_last = r_sector_first + (data_size >> 9);
831         }
832
833         pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
834                  (unsigned long long)r_sector_first,
835                  (unsigned long long)r_sector_last);
836
837         /* if start and end is 4k aligned, use a 4k block */
838         if (block_size == 512 &&
839             (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
840             (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
841                 block_size = RAID5_STRIPE_SIZE(conf);
842
843         /* iterate through blocks in strip */
844         for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
845                 bool update_parity = false;
846                 sector_t parity_sector;
847                 struct md_rdev *parity_rdev;
848                 struct stripe_head sh;
849                 int disk;
850                 int indent = 0;
851
852                 pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
853                 indent += 2;
854
855                 memset(page_address(page1), 0, PAGE_SIZE);
856
857                 /* iterate through data member disks */
858                 for (disk = 0; disk < data_disks; disk++) {
859                         int dd_idx;
860                         struct md_rdev *rdev;
861                         sector_t sector;
862                         sector_t r_sector = r_sector_first + i +
863                                             (disk * conf->chunk_sectors);
864
865                         pr_debug("%s:%*s data member disk %d start\n",
866                                  __func__, indent, "", disk);
867                         indent += 2;
868
869                         if (r_sector >= r_sector_last) {
870                                 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
871                                          __func__, indent, "",
872                                          (unsigned long long)r_sector);
873                                 indent -= 2;
874                                 continue;
875                         }
876
877                         update_parity = true;
878
879                         /* map raid sector to member disk */
880                         sector = raid5_compute_sector(conf, r_sector, 0,
881                                                       &dd_idx, NULL);
882                         pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
883                                  __func__, indent, "",
884                                  (unsigned long long)r_sector, dd_idx,
885                                  (unsigned long long)sector);
886
887                         rdev = conf->disks[dd_idx].rdev;
888                         if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
889                                       sector >= rdev->recovery_offset)) {
890                                 pr_debug("%s:%*s data member disk %d missing\n",
891                                          __func__, indent, "", dd_idx);
892                                 update_parity = false;
893                                 break;
894                         }
895
896                         pr_debug("%s:%*s reading data member disk %s sector %llu\n",
897                                  __func__, indent, "", bdevname(rdev->bdev, b),
898                                  (unsigned long long)sector);
899                         if (!sync_page_io(rdev, sector, block_size, page2,
900                                         REQ_OP_READ, 0, false)) {
901                                 md_error(mddev, rdev);
902                                 pr_debug("%s:%*s read failed!\n", __func__,
903                                          indent, "");
904                                 ret = -EIO;
905                                 goto out;
906                         }
907
908                         ppl_xor(block_size, page1, page2);
909
910                         indent -= 2;
911                 }
912
913                 if (!update_parity)
914                         continue;
915
916                 if (pp_size > 0) {
917                         pr_debug("%s:%*s reading pp disk sector %llu\n",
918                                  __func__, indent, "",
919                                  (unsigned long long)(ppl_sector + i));
920                         if (!sync_page_io(log->rdev,
921                                         ppl_sector - log->rdev->data_offset + i,
922                                         block_size, page2, REQ_OP_READ, 0,
923                                         false)) {
924                                 pr_debug("%s:%*s read failed!\n", __func__,
925                                          indent, "");
926                                 md_error(mddev, log->rdev);
927                                 ret = -EIO;
928                                 goto out;
929                         }
930
931                         ppl_xor(block_size, page1, page2);
932                 }
933
934                 /* map raid sector to parity disk */
935                 parity_sector = raid5_compute_sector(conf, r_sector_first + i,
936                                 0, &disk, &sh);
937                 BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
938                 parity_rdev = conf->disks[sh.pd_idx].rdev;
939
940                 BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
941                 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
942                          __func__, indent, "",
943                          (unsigned long long)parity_sector,
944                          bdevname(parity_rdev->bdev, b));
945                 if (!sync_page_io(parity_rdev, parity_sector, block_size,
946                                 page1, REQ_OP_WRITE, 0, false)) {
947                         pr_debug("%s:%*s parity write error!\n", __func__,
948                                  indent, "");
949                         md_error(mddev, parity_rdev);
950                         ret = -EIO;
951                         goto out;
952                 }
953         }
954 out:
955         if (page1)
956                 __free_page(page1);
957         if (page2)
958                 __free_page(page2);
959         return ret;
960 }
961
962 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
963                        sector_t offset)
964 {
965         struct ppl_conf *ppl_conf = log->ppl_conf;
966         struct md_rdev *rdev = log->rdev;
967         struct mddev *mddev = rdev->mddev;
968         sector_t ppl_sector = rdev->ppl.sector + offset +
969                               (PPL_HEADER_SIZE >> 9);
970         struct page *page;
971         int i;
972         int ret = 0;
973
974         page = alloc_page(GFP_KERNEL);
975         if (!page)
976                 return -ENOMEM;
977
978         /* iterate through all PPL entries saved */
979         for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
980                 struct ppl_header_entry *e = &pplhdr->entries[i];
981                 u32 pp_size = le32_to_cpu(e->pp_size);
982                 sector_t sector = ppl_sector;
983                 int ppl_entry_sectors = pp_size >> 9;
984                 u32 crc, crc_stored;
985
986                 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
987                          __func__, rdev->raid_disk, i,
988                          (unsigned long long)ppl_sector, pp_size);
989
990                 crc = ~0;
991                 crc_stored = le32_to_cpu(e->checksum);
992
993                 /* read parial parity for this entry and calculate its checksum */
994                 while (pp_size) {
995                         int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
996
997                         if (!sync_page_io(rdev, sector - rdev->data_offset,
998                                         s, page, REQ_OP_READ, 0, false)) {
999                                 md_error(mddev, rdev);
1000                                 ret = -EIO;
1001                                 goto out;
1002                         }
1003
1004                         crc = crc32c_le(crc, page_address(page), s);
1005
1006                         pp_size -= s;
1007                         sector += s >> 9;
1008                 }
1009
1010                 crc = ~crc;
1011
1012                 if (crc != crc_stored) {
1013                         /*
1014                          * Don't recover this entry if the checksum does not
1015                          * match, but keep going and try to recover other
1016                          * entries.
1017                          */
1018                         pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1019                                  __func__, crc_stored, crc);
1020                         ppl_conf->mismatch_count++;
1021                 } else {
1022                         ret = ppl_recover_entry(log, e, ppl_sector);
1023                         if (ret)
1024                                 goto out;
1025                         ppl_conf->recovered_entries++;
1026                 }
1027
1028                 ppl_sector += ppl_entry_sectors;
1029         }
1030
1031         /* flush the disk cache after recovery if necessary */
1032         ret = blkdev_issue_flush(rdev->bdev);
1033 out:
1034         __free_page(page);
1035         return ret;
1036 }
1037
1038 static int ppl_write_empty_header(struct ppl_log *log)
1039 {
1040         struct page *page;
1041         struct ppl_header *pplhdr;
1042         struct md_rdev *rdev = log->rdev;
1043         int ret = 0;
1044
1045         pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1046                  rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1047
1048         page = alloc_page(GFP_NOIO | __GFP_ZERO);
1049         if (!page)
1050                 return -ENOMEM;
1051
1052         pplhdr = page_address(page);
1053         /* zero out PPL space to avoid collision with old PPLs */
1054         blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1055                             log->rdev->ppl.size, GFP_NOIO, 0);
1056         memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1057         pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1058         pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1059
1060         if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1061                           PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1062                           REQ_FUA, 0, false)) {
1063                 md_error(rdev->mddev, rdev);
1064                 ret = -EIO;
1065         }
1066
1067         __free_page(page);
1068         return ret;
1069 }
1070
1071 static int ppl_load_distributed(struct ppl_log *log)
1072 {
1073         struct ppl_conf *ppl_conf = log->ppl_conf;
1074         struct md_rdev *rdev = log->rdev;
1075         struct mddev *mddev = rdev->mddev;
1076         struct page *page, *page2;
1077         struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1078         u32 crc, crc_stored;
1079         u32 signature;
1080         int ret = 0, i;
1081         sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1082
1083         pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1084         /* read PPL headers, find the recent one */
1085         page = alloc_page(GFP_KERNEL);
1086         if (!page)
1087                 return -ENOMEM;
1088
1089         page2 = alloc_page(GFP_KERNEL);
1090         if (!page2) {
1091                 __free_page(page);
1092                 return -ENOMEM;
1093         }
1094
1095         /* searching ppl area for latest ppl */
1096         while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1097                 if (!sync_page_io(rdev,
1098                                   rdev->ppl.sector - rdev->data_offset +
1099                                   pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1100                                   0, false)) {
1101                         md_error(mddev, rdev);
1102                         ret = -EIO;
1103                         /* if not able to read - don't recover any PPL */
1104                         pplhdr = NULL;
1105                         break;
1106                 }
1107                 pplhdr = page_address(page);
1108
1109                 /* check header validity */
1110                 crc_stored = le32_to_cpu(pplhdr->checksum);
1111                 pplhdr->checksum = 0;
1112                 crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1113
1114                 if (crc_stored != crc) {
1115                         pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1116                                  __func__, crc_stored, crc,
1117                                  (unsigned long long)pplhdr_offset);
1118                         pplhdr = prev_pplhdr;
1119                         pplhdr_offset = prev_pplhdr_offset;
1120                         break;
1121                 }
1122
1123                 signature = le32_to_cpu(pplhdr->signature);
1124
1125                 if (mddev->external) {
1126                         /*
1127                          * For external metadata the header signature is set and
1128                          * validated in userspace.
1129                          */
1130                         ppl_conf->signature = signature;
1131                 } else if (ppl_conf->signature != signature) {
1132                         pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1133                                  __func__, signature, ppl_conf->signature,
1134                                  (unsigned long long)pplhdr_offset);
1135                         pplhdr = prev_pplhdr;
1136                         pplhdr_offset = prev_pplhdr_offset;
1137                         break;
1138                 }
1139
1140                 if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1141                     le64_to_cpu(pplhdr->generation)) {
1142                         /* previous was newest */
1143                         pplhdr = prev_pplhdr;
1144                         pplhdr_offset = prev_pplhdr_offset;
1145                         break;
1146                 }
1147
1148                 prev_pplhdr_offset = pplhdr_offset;
1149                 prev_pplhdr = pplhdr;
1150
1151                 swap(page, page2);
1152
1153                 /* calculate next potential ppl offset */
1154                 for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1155                         pplhdr_offset +=
1156                             le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1157                 pplhdr_offset += PPL_HEADER_SIZE >> 9;
1158         }
1159
1160         /* no valid ppl found */
1161         if (!pplhdr)
1162                 ppl_conf->mismatch_count++;
1163         else
1164                 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1165                     __func__, (unsigned long long)pplhdr_offset,
1166                     le64_to_cpu(pplhdr->generation));
1167
1168         /* attempt to recover from log if we are starting a dirty array */
1169         if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1170                 ret = ppl_recover(log, pplhdr, pplhdr_offset);
1171
1172         /* write empty header if we are starting the array */
1173         if (!ret && !mddev->pers)
1174                 ret = ppl_write_empty_header(log);
1175
1176         __free_page(page);
1177         __free_page(page2);
1178
1179         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1180                  __func__, ret, ppl_conf->mismatch_count,
1181                  ppl_conf->recovered_entries);
1182         return ret;
1183 }
1184
1185 static int ppl_load(struct ppl_conf *ppl_conf)
1186 {
1187         int ret = 0;
1188         u32 signature = 0;
1189         bool signature_set = false;
1190         int i;
1191
1192         for (i = 0; i < ppl_conf->count; i++) {
1193                 struct ppl_log *log = &ppl_conf->child_logs[i];
1194
1195                 /* skip missing drive */
1196                 if (!log->rdev)
1197                         continue;
1198
1199                 ret = ppl_load_distributed(log);
1200                 if (ret)
1201                         break;
1202
1203                 /*
1204                  * For external metadata we can't check if the signature is
1205                  * correct on a single drive, but we can check if it is the same
1206                  * on all drives.
1207                  */
1208                 if (ppl_conf->mddev->external) {
1209                         if (!signature_set) {
1210                                 signature = ppl_conf->signature;
1211                                 signature_set = true;
1212                         } else if (signature != ppl_conf->signature) {
1213                                 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1214                                         mdname(ppl_conf->mddev));
1215                                 ret = -EINVAL;
1216                                 break;
1217                         }
1218                 }
1219         }
1220
1221         pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1222                  __func__, ret, ppl_conf->mismatch_count,
1223                  ppl_conf->recovered_entries);
1224         return ret;
1225 }
1226
1227 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1228 {
1229         clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1230         clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1231
1232         kfree(ppl_conf->child_logs);
1233
1234         bioset_exit(&ppl_conf->bs);
1235         bioset_exit(&ppl_conf->flush_bs);
1236         mempool_exit(&ppl_conf->io_pool);
1237         kmem_cache_destroy(ppl_conf->io_kc);
1238
1239         kfree(ppl_conf);
1240 }
1241
1242 void ppl_exit_log(struct r5conf *conf)
1243 {
1244         struct ppl_conf *ppl_conf = conf->log_private;
1245
1246         if (ppl_conf) {
1247                 __ppl_exit_log(ppl_conf);
1248                 conf->log_private = NULL;
1249         }
1250 }
1251
1252 static int ppl_validate_rdev(struct md_rdev *rdev)
1253 {
1254         char b[BDEVNAME_SIZE];
1255         int ppl_data_sectors;
1256         int ppl_size_new;
1257
1258         /*
1259          * The configured PPL size must be enough to store
1260          * the header and (at the very least) partial parity
1261          * for one stripe. Round it down to ensure the data
1262          * space is cleanly divisible by stripe size.
1263          */
1264         ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1265
1266         if (ppl_data_sectors > 0)
1267                 ppl_data_sectors = rounddown(ppl_data_sectors,
1268                                 RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1269
1270         if (ppl_data_sectors <= 0) {
1271                 pr_warn("md/raid:%s: PPL space too small on %s\n",
1272                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1273                 return -ENOSPC;
1274         }
1275
1276         ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1277
1278         if ((rdev->ppl.sector < rdev->data_offset &&
1279              rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1280             (rdev->ppl.sector >= rdev->data_offset &&
1281              rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1282                 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1283                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1284                 return -EINVAL;
1285         }
1286
1287         if (!rdev->mddev->external &&
1288             ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1289              (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1290                 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1291                         mdname(rdev->mddev), bdevname(rdev->bdev, b));
1292                 return -EINVAL;
1293         }
1294
1295         rdev->ppl.size = ppl_size_new;
1296
1297         return 0;
1298 }
1299
1300 static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1301 {
1302         struct request_queue *q;
1303
1304         if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1305                                       PPL_HEADER_SIZE) * 2) {
1306                 log->use_multippl = true;
1307                 set_bit(MD_HAS_MULTIPLE_PPLS,
1308                         &log->ppl_conf->mddev->flags);
1309                 log->entry_space = PPL_SPACE_SIZE;
1310         } else {
1311                 log->use_multippl = false;
1312                 log->entry_space = (log->rdev->ppl.size << 9) -
1313                                    PPL_HEADER_SIZE;
1314         }
1315         log->next_io_sector = rdev->ppl.sector;
1316
1317         q = bdev_get_queue(rdev->bdev);
1318         if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1319                 log->wb_cache_on = true;
1320 }
1321
1322 int ppl_init_log(struct r5conf *conf)
1323 {
1324         struct ppl_conf *ppl_conf;
1325         struct mddev *mddev = conf->mddev;
1326         int ret = 0;
1327         int max_disks;
1328         int i;
1329
1330         pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1331                  mdname(conf->mddev));
1332
1333         if (PAGE_SIZE != 4096)
1334                 return -EINVAL;
1335
1336         if (mddev->level != 5) {
1337                 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1338                         mdname(mddev), mddev->level);
1339                 return -EINVAL;
1340         }
1341
1342         if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1343                 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1344                         mdname(mddev));
1345                 return -EINVAL;
1346         }
1347
1348         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1349                 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1350                         mdname(mddev));
1351                 return -EINVAL;
1352         }
1353
1354         max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1355                 BITS_PER_BYTE;
1356         if (conf->raid_disks > max_disks) {
1357                 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1358                         mdname(mddev), max_disks);
1359                 return -EINVAL;
1360         }
1361
1362         ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1363         if (!ppl_conf)
1364                 return -ENOMEM;
1365
1366         ppl_conf->mddev = mddev;
1367
1368         ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1369         if (!ppl_conf->io_kc) {
1370                 ret = -ENOMEM;
1371                 goto err;
1372         }
1373
1374         ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1375                            ppl_io_pool_free, ppl_conf->io_kc);
1376         if (ret)
1377                 goto err;
1378
1379         ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1380         if (ret)
1381                 goto err;
1382
1383         ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1384         if (ret)
1385                 goto err;
1386
1387         ppl_conf->count = conf->raid_disks;
1388         ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1389                                        GFP_KERNEL);
1390         if (!ppl_conf->child_logs) {
1391                 ret = -ENOMEM;
1392                 goto err;
1393         }
1394
1395         atomic64_set(&ppl_conf->seq, 0);
1396         INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1397         spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1398
1399         if (!mddev->external) {
1400                 ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1401                 ppl_conf->block_size = 512;
1402         } else {
1403                 ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1404         }
1405
1406         for (i = 0; i < ppl_conf->count; i++) {
1407                 struct ppl_log *log = &ppl_conf->child_logs[i];
1408                 struct md_rdev *rdev = conf->disks[i].rdev;
1409
1410                 mutex_init(&log->io_mutex);
1411                 spin_lock_init(&log->io_list_lock);
1412                 INIT_LIST_HEAD(&log->io_list);
1413
1414                 log->ppl_conf = ppl_conf;
1415                 log->rdev = rdev;
1416
1417                 if (rdev) {
1418                         ret = ppl_validate_rdev(rdev);
1419                         if (ret)
1420                                 goto err;
1421
1422                         ppl_init_child_log(log, rdev);
1423                 }
1424         }
1425
1426         /* load and possibly recover the logs from the member disks */
1427         ret = ppl_load(ppl_conf);
1428
1429         if (ret) {
1430                 goto err;
1431         } else if (!mddev->pers && mddev->recovery_cp == 0 &&
1432                    ppl_conf->recovered_entries > 0 &&
1433                    ppl_conf->mismatch_count == 0) {
1434                 /*
1435                  * If we are starting a dirty array and the recovery succeeds
1436                  * without any issues, set the array as clean.
1437                  */
1438                 mddev->recovery_cp = MaxSector;
1439                 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1440         } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1441                 /* no mismatch allowed when enabling PPL for a running array */
1442                 ret = -EINVAL;
1443                 goto err;
1444         }
1445
1446         conf->log_private = ppl_conf;
1447         set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1448
1449         return 0;
1450 err:
1451         __ppl_exit_log(ppl_conf);
1452         return ret;
1453 }
1454
1455 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1456 {
1457         struct ppl_conf *ppl_conf = conf->log_private;
1458         struct ppl_log *log;
1459         int ret = 0;
1460         char b[BDEVNAME_SIZE];
1461
1462         if (!rdev)
1463                 return -EINVAL;
1464
1465         pr_debug("%s: disk: %d operation: %s dev: %s\n",
1466                  __func__, rdev->raid_disk, add ? "add" : "remove",
1467                  bdevname(rdev->bdev, b));
1468
1469         if (rdev->raid_disk < 0)
1470                 return 0;
1471
1472         if (rdev->raid_disk >= ppl_conf->count)
1473                 return -ENODEV;
1474
1475         log = &ppl_conf->child_logs[rdev->raid_disk];
1476
1477         mutex_lock(&log->io_mutex);
1478         if (add) {
1479                 ret = ppl_validate_rdev(rdev);
1480                 if (!ret) {
1481                         log->rdev = rdev;
1482                         ret = ppl_write_empty_header(log);
1483                         ppl_init_child_log(log, rdev);
1484                 }
1485         } else {
1486                 log->rdev = NULL;
1487         }
1488         mutex_unlock(&log->io_mutex);
1489
1490         return ret;
1491 }
1492
1493 static ssize_t
1494 ppl_write_hint_show(struct mddev *mddev, char *buf)
1495 {
1496         return sprintf(buf, "%d\n", 0);
1497 }
1498
1499 static ssize_t
1500 ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1501 {
1502         struct r5conf *conf;
1503         int err = 0;
1504         unsigned short new;
1505
1506         if (len >= PAGE_SIZE)
1507                 return -EINVAL;
1508         if (kstrtou16(page, 10, &new))
1509                 return -EINVAL;
1510
1511         err = mddev_lock(mddev);
1512         if (err)
1513                 return err;
1514
1515         conf = mddev->private;
1516         if (!conf)
1517                 err = -ENODEV;
1518         else if (!raid5_has_ppl(conf) || !conf->log_private)
1519                 err = -EINVAL;
1520
1521         mddev_unlock(mddev);
1522
1523         return err ?: len;
1524 }
1525
1526 struct md_sysfs_entry
1527 ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1528                         ppl_write_hint_show,
1529                         ppl_write_hint_store);