Merge tag 'tif-task_work.arch-2020-12-14' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->copies]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->copies; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         bio_endio(bio);
301         /*
302          * Wake up any possible resync thread that waits for the device
303          * to go idle.
304          */
305         allow_barrier(conf);
306
307         free_r10bio(r10_bio);
308 }
309
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315         struct r10conf *conf = r10_bio->mddev->private;
316
317         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318                 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325                          struct bio *bio, int *slotp, int *replp)
326 {
327         int slot;
328         int repl = 0;
329
330         for (slot = 0; slot < conf->copies; slot++) {
331                 if (r10_bio->devs[slot].bio == bio)
332                         break;
333                 if (r10_bio->devs[slot].repl_bio == bio) {
334                         repl = 1;
335                         break;
336                 }
337         }
338
339         BUG_ON(slot == conf->copies);
340         update_head_pos(slot, r10_bio);
341
342         if (slotp)
343                 *slotp = slot;
344         if (replp)
345                 *replp = repl;
346         return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351         int uptodate = !bio->bi_status;
352         struct r10bio *r10_bio = bio->bi_private;
353         int slot;
354         struct md_rdev *rdev;
355         struct r10conf *conf = r10_bio->mddev->private;
356
357         slot = r10_bio->read_slot;
358         rdev = r10_bio->devs[slot].rdev;
359         /*
360          * this branch is our 'one mirror IO has finished' event handler:
361          */
362         update_head_pos(slot, r10_bio);
363
364         if (uptodate) {
365                 /*
366                  * Set R10BIO_Uptodate in our master bio, so that
367                  * we will return a good error code to the higher
368                  * levels even if IO on some other mirrored buffer fails.
369                  *
370                  * The 'master' represents the composite IO operation to
371                  * user-side. So if something waits for IO, then it will
372                  * wait for the 'master' bio.
373                  */
374                 set_bit(R10BIO_Uptodate, &r10_bio->state);
375         } else {
376                 /* If all other devices that store this block have
377                  * failed, we want to return the error upwards rather
378                  * than fail the last device.  Here we redefine
379                  * "uptodate" to mean "Don't want to retry"
380                  */
381                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382                              rdev->raid_disk))
383                         uptodate = 1;
384         }
385         if (uptodate) {
386                 raid_end_bio_io(r10_bio);
387                 rdev_dec_pending(rdev, conf->mddev);
388         } else {
389                 /*
390                  * oops, read error - keep the refcount on the rdev
391                  */
392                 char b[BDEVNAME_SIZE];
393                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394                                    mdname(conf->mddev),
395                                    bdevname(rdev->bdev, b),
396                                    (unsigned long long)r10_bio->sector);
397                 set_bit(R10BIO_ReadError, &r10_bio->state);
398                 reschedule_retry(r10_bio);
399         }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404         /* clear the bitmap if all writes complete successfully */
405         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406                            r10_bio->sectors,
407                            !test_bit(R10BIO_Degraded, &r10_bio->state),
408                            0);
409         md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414         if (atomic_dec_and_test(&r10_bio->remaining)) {
415                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416                         reschedule_retry(r10_bio);
417                 else {
418                         close_write(r10_bio);
419                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420                                 reschedule_retry(r10_bio);
421                         else
422                                 raid_end_bio_io(r10_bio);
423                 }
424         }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429         struct r10bio *r10_bio = bio->bi_private;
430         int dev;
431         int dec_rdev = 1;
432         struct r10conf *conf = r10_bio->mddev->private;
433         int slot, repl;
434         struct md_rdev *rdev = NULL;
435         struct bio *to_put = NULL;
436         bool discard_error;
437
438         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442         if (repl)
443                 rdev = conf->mirrors[dev].replacement;
444         if (!rdev) {
445                 smp_rmb();
446                 repl = 0;
447                 rdev = conf->mirrors[dev].rdev;
448         }
449         /*
450          * this branch is our 'one mirror IO has finished' event handler:
451          */
452         if (bio->bi_status && !discard_error) {
453                 if (repl)
454                         /* Never record new bad blocks to replacement,
455                          * just fail it.
456                          */
457                         md_error(rdev->mddev, rdev);
458                 else {
459                         set_bit(WriteErrorSeen, &rdev->flags);
460                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
461                                 set_bit(MD_RECOVERY_NEEDED,
462                                         &rdev->mddev->recovery);
463
464                         dec_rdev = 0;
465                         if (test_bit(FailFast, &rdev->flags) &&
466                             (bio->bi_opf & MD_FAILFAST)) {
467                                 md_error(rdev->mddev, rdev);
468                         }
469
470                         /*
471                          * When the device is faulty, it is not necessary to
472                          * handle write error.
473                          * For failfast, this is the only remaining device,
474                          * We need to retry the write without FailFast.
475                          */
476                         if (!test_bit(Faulty, &rdev->flags))
477                                 set_bit(R10BIO_WriteError, &r10_bio->state);
478                         else {
479                                 r10_bio->devs[slot].bio = NULL;
480                                 to_put = bio;
481                                 dec_rdev = 1;
482                         }
483                 }
484         } else {
485                 /*
486                  * Set R10BIO_Uptodate in our master bio, so that
487                  * we will return a good error code for to the higher
488                  * levels even if IO on some other mirrored buffer fails.
489                  *
490                  * The 'master' represents the composite IO operation to
491                  * user-side. So if something waits for IO, then it will
492                  * wait for the 'master' bio.
493                  */
494                 sector_t first_bad;
495                 int bad_sectors;
496
497                 /*
498                  * Do not set R10BIO_Uptodate if the current device is
499                  * rebuilding or Faulty. This is because we cannot use
500                  * such device for properly reading the data back (we could
501                  * potentially use it, if the current write would have felt
502                  * before rdev->recovery_offset, but for simplicity we don't
503                  * check this here.
504                  */
505                 if (test_bit(In_sync, &rdev->flags) &&
506                     !test_bit(Faulty, &rdev->flags))
507                         set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509                 /* Maybe we can clear some bad blocks. */
510                 if (is_badblock(rdev,
511                                 r10_bio->devs[slot].addr,
512                                 r10_bio->sectors,
513                                 &first_bad, &bad_sectors) && !discard_error) {
514                         bio_put(bio);
515                         if (repl)
516                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517                         else
518                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519                         dec_rdev = 0;
520                         set_bit(R10BIO_MadeGood, &r10_bio->state);
521                 }
522         }
523
524         /*
525          *
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         one_write_done(r10_bio);
530         if (dec_rdev)
531                 rdev_dec_pending(rdev, conf->mddev);
532         if (to_put)
533                 bio_put(to_put);
534 }
535
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563         int n,f;
564         sector_t sector;
565         sector_t chunk;
566         sector_t stripe;
567         int dev;
568         int slot = 0;
569         int last_far_set_start, last_far_set_size;
570
571         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572         last_far_set_start *= geo->far_set_size;
573
574         last_far_set_size = geo->far_set_size;
575         last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577         /* now calculate first sector/dev */
578         chunk = r10bio->sector >> geo->chunk_shift;
579         sector = r10bio->sector & geo->chunk_mask;
580
581         chunk *= geo->near_copies;
582         stripe = chunk;
583         dev = sector_div(stripe, geo->raid_disks);
584         if (geo->far_offset)
585                 stripe *= geo->far_copies;
586
587         sector += stripe << geo->chunk_shift;
588
589         /* and calculate all the others */
590         for (n = 0; n < geo->near_copies; n++) {
591                 int d = dev;
592                 int set;
593                 sector_t s = sector;
594                 r10bio->devs[slot].devnum = d;
595                 r10bio->devs[slot].addr = s;
596                 slot++;
597
598                 for (f = 1; f < geo->far_copies; f++) {
599                         set = d / geo->far_set_size;
600                         d += geo->near_copies;
601
602                         if ((geo->raid_disks % geo->far_set_size) &&
603                             (d > last_far_set_start)) {
604                                 d -= last_far_set_start;
605                                 d %= last_far_set_size;
606                                 d += last_far_set_start;
607                         } else {
608                                 d %= geo->far_set_size;
609                                 d += geo->far_set_size * set;
610                         }
611                         s += geo->stride;
612                         r10bio->devs[slot].devnum = d;
613                         r10bio->devs[slot].addr = s;
614                         slot++;
615                 }
616                 dev++;
617                 if (dev >= geo->raid_disks) {
618                         dev = 0;
619                         sector += (geo->chunk_mask + 1);
620                 }
621         }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626         struct geom *geo = &conf->geo;
627
628         if (conf->reshape_progress != MaxSector &&
629             ((r10bio->sector >= conf->reshape_progress) !=
630              conf->mddev->reshape_backwards)) {
631                 set_bit(R10BIO_Previous, &r10bio->state);
632                 geo = &conf->prev;
633         } else
634                 clear_bit(R10BIO_Previous, &r10bio->state);
635
636         __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641         sector_t offset, chunk, vchunk;
642         /* Never use conf->prev as this is only called during resync
643          * or recovery, so reshape isn't happening
644          */
645         struct geom *geo = &conf->geo;
646         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647         int far_set_size = geo->far_set_size;
648         int last_far_set_start;
649
650         if (geo->raid_disks % geo->far_set_size) {
651                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652                 last_far_set_start *= geo->far_set_size;
653
654                 if (dev >= last_far_set_start) {
655                         far_set_size = geo->far_set_size;
656                         far_set_size += (geo->raid_disks % geo->far_set_size);
657                         far_set_start = last_far_set_start;
658                 }
659         }
660
661         offset = sector & geo->chunk_mask;
662         if (geo->far_offset) {
663                 int fc;
664                 chunk = sector >> geo->chunk_shift;
665                 fc = sector_div(chunk, geo->far_copies);
666                 dev -= fc * geo->near_copies;
667                 if (dev < far_set_start)
668                         dev += far_set_size;
669         } else {
670                 while (sector >= geo->stride) {
671                         sector -= geo->stride;
672                         if (dev < (geo->near_copies + far_set_start))
673                                 dev += far_set_size - geo->near_copies;
674                         else
675                                 dev -= geo->near_copies;
676                 }
677                 chunk = sector >> geo->chunk_shift;
678         }
679         vchunk = chunk * geo->raid_disks + dev;
680         sector_div(vchunk, geo->near_copies);
681         return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704                                     struct r10bio *r10_bio,
705                                     int *max_sectors)
706 {
707         const sector_t this_sector = r10_bio->sector;
708         int disk, slot;
709         int sectors = r10_bio->sectors;
710         int best_good_sectors;
711         sector_t new_distance, best_dist;
712         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713         int do_balance;
714         int best_dist_slot, best_pending_slot;
715         bool has_nonrot_disk = false;
716         unsigned int min_pending;
717         struct geom *geo = &conf->geo;
718
719         raid10_find_phys(conf, r10_bio);
720         rcu_read_lock();
721         best_dist_slot = -1;
722         min_pending = UINT_MAX;
723         best_dist_rdev = NULL;
724         best_pending_rdev = NULL;
725         best_dist = MaxSector;
726         best_good_sectors = 0;
727         do_balance = 1;
728         clear_bit(R10BIO_FailFast, &r10_bio->state);
729         /*
730          * Check if we can balance. We can balance on the whole
731          * device if no resync is going on (recovery is ok), or below
732          * the resync window. We take the first readable disk when
733          * above the resync window.
734          */
735         if ((conf->mddev->recovery_cp < MaxSector
736              && (this_sector + sectors >= conf->next_resync)) ||
737             (mddev_is_clustered(conf->mddev) &&
738              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739                                             this_sector + sectors)))
740                 do_balance = 0;
741
742         for (slot = 0; slot < conf->copies ; slot++) {
743                 sector_t first_bad;
744                 int bad_sectors;
745                 sector_t dev_sector;
746                 unsigned int pending;
747                 bool nonrot;
748
749                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750                         continue;
751                 disk = r10_bio->devs[slot].devnum;
752                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
756                 if (rdev == NULL ||
757                     test_bit(Faulty, &rdev->flags))
758                         continue;
759                 if (!test_bit(In_sync, &rdev->flags) &&
760                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761                         continue;
762
763                 dev_sector = r10_bio->devs[slot].addr;
764                 if (is_badblock(rdev, dev_sector, sectors,
765                                 &first_bad, &bad_sectors)) {
766                         if (best_dist < MaxSector)
767                                 /* Already have a better slot */
768                                 continue;
769                         if (first_bad <= dev_sector) {
770                                 /* Cannot read here.  If this is the
771                                  * 'primary' device, then we must not read
772                                  * beyond 'bad_sectors' from another device.
773                                  */
774                                 bad_sectors -= (dev_sector - first_bad);
775                                 if (!do_balance && sectors > bad_sectors)
776                                         sectors = bad_sectors;
777                                 if (best_good_sectors > sectors)
778                                         best_good_sectors = sectors;
779                         } else {
780                                 sector_t good_sectors =
781                                         first_bad - dev_sector;
782                                 if (good_sectors > best_good_sectors) {
783                                         best_good_sectors = good_sectors;
784                                         best_dist_slot = slot;
785                                         best_dist_rdev = rdev;
786                                 }
787                                 if (!do_balance)
788                                         /* Must read from here */
789                                         break;
790                         }
791                         continue;
792                 } else
793                         best_good_sectors = sectors;
794
795                 if (!do_balance)
796                         break;
797
798                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799                 has_nonrot_disk |= nonrot;
800                 pending = atomic_read(&rdev->nr_pending);
801                 if (min_pending > pending && nonrot) {
802                         min_pending = pending;
803                         best_pending_slot = slot;
804                         best_pending_rdev = rdev;
805                 }
806
807                 if (best_dist_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !pending)
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823
824                 if (new_distance < best_dist) {
825                         best_dist = new_distance;
826                         best_dist_slot = slot;
827                         best_dist_rdev = rdev;
828                 }
829         }
830         if (slot >= conf->copies) {
831                 if (has_nonrot_disk) {
832                         slot = best_pending_slot;
833                         rdev = best_pending_rdev;
834                 } else {
835                         slot = best_dist_slot;
836                         rdev = best_dist_rdev;
837                 }
838         }
839
840         if (slot >= 0) {
841                 atomic_inc(&rdev->nr_pending);
842                 r10_bio->read_slot = slot;
843         } else
844                 rdev = NULL;
845         rcu_read_unlock();
846         *max_sectors = best_good_sectors;
847
848         return rdev;
849 }
850
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853         /* Any writes that have been queued but are awaiting
854          * bitmap updates get flushed here.
855          */
856         spin_lock_irq(&conf->device_lock);
857
858         if (conf->pending_bio_list.head) {
859                 struct blk_plug plug;
860                 struct bio *bio;
861
862                 bio = bio_list_get(&conf->pending_bio_list);
863                 conf->pending_count = 0;
864                 spin_unlock_irq(&conf->device_lock);
865
866                 /*
867                  * As this is called in a wait_event() loop (see freeze_array),
868                  * current->state might be TASK_UNINTERRUPTIBLE which will
869                  * cause a warning when we prepare to wait again.  As it is
870                  * rare that this path is taken, it is perfectly safe to force
871                  * us to go around the wait_event() loop again, so the warning
872                  * is a false-positive. Silence the warning by resetting
873                  * thread state
874                  */
875                 __set_current_state(TASK_RUNNING);
876
877                 blk_start_plug(&plug);
878                 /* flush any pending bitmap writes to disk
879                  * before proceeding w/ I/O */
880                 md_bitmap_unplug(conf->mddev->bitmap);
881                 wake_up(&conf->wait_barrier);
882
883                 while (bio) { /* submit pending writes */
884                         struct bio *next = bio->bi_next;
885                         struct md_rdev *rdev = (void*)bio->bi_disk;
886                         bio->bi_next = NULL;
887                         bio_set_dev(bio, rdev->bdev);
888                         if (test_bit(Faulty, &rdev->flags)) {
889                                 bio_io_error(bio);
890                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891                                             !blk_queue_discard(bio->bi_disk->queue)))
892                                 /* Just ignore it */
893                                 bio_endio(bio);
894                         else
895                                 submit_bio_noacct(bio);
896                         bio = next;
897                 }
898                 blk_finish_plug(&plug);
899         } else
900                 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927         BUG_ON(force && !conf->barrier);
928         spin_lock_irq(&conf->resync_lock);
929
930         /* Wait until no block IO is waiting (unless 'force') */
931         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932                             conf->resync_lock);
933
934         /* block any new IO from starting */
935         conf->barrier++;
936
937         /* Now wait for all pending IO to complete */
938         wait_event_lock_irq(conf->wait_barrier,
939                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940                             conf->resync_lock);
941
942         spin_unlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947         unsigned long flags;
948         spin_lock_irqsave(&conf->resync_lock, flags);
949         conf->barrier--;
950         spin_unlock_irqrestore(&conf->resync_lock, flags);
951         wake_up(&conf->wait_barrier);
952 }
953
954 static void wait_barrier(struct r10conf *conf)
955 {
956         spin_lock_irq(&conf->resync_lock);
957         if (conf->barrier) {
958                 struct bio_list *bio_list = current->bio_list;
959                 conf->nr_waiting++;
960                 /* Wait for the barrier to drop.
961                  * However if there are already pending
962                  * requests (preventing the barrier from
963                  * rising completely), and the
964                  * pre-process bio queue isn't empty,
965                  * then don't wait, as we need to empty
966                  * that queue to get the nr_pending
967                  * count down.
968                  */
969                 raid10_log(conf->mddev, "wait barrier");
970                 wait_event_lock_irq(conf->wait_barrier,
971                                     !conf->barrier ||
972                                     (atomic_read(&conf->nr_pending) &&
973                                      bio_list &&
974                                      (!bio_list_empty(&bio_list[0]) ||
975                                       !bio_list_empty(&bio_list[1]))) ||
976                                      /* move on if recovery thread is
977                                       * blocked by us
978                                       */
979                                      (conf->mddev->thread->tsk == current &&
980                                       test_bit(MD_RECOVERY_RUNNING,
981                                                &conf->mddev->recovery) &&
982                                       conf->nr_queued > 0),
983                                     conf->resync_lock);
984                 conf->nr_waiting--;
985                 if (!conf->nr_waiting)
986                         wake_up(&conf->wait_barrier);
987         }
988         atomic_inc(&conf->nr_pending);
989         spin_unlock_irq(&conf->resync_lock);
990 }
991
992 static void allow_barrier(struct r10conf *conf)
993 {
994         if ((atomic_dec_and_test(&conf->nr_pending)) ||
995                         (conf->array_freeze_pending))
996                 wake_up(&conf->wait_barrier);
997 }
998
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001         /* stop syncio and normal IO and wait for everything to
1002          * go quiet.
1003          * We increment barrier and nr_waiting, and then
1004          * wait until nr_pending match nr_queued+extra
1005          * This is called in the context of one normal IO request
1006          * that has failed. Thus any sync request that might be pending
1007          * will be blocked by nr_pending, and we need to wait for
1008          * pending IO requests to complete or be queued for re-try.
1009          * Thus the number queued (nr_queued) plus this request (extra)
1010          * must match the number of pending IOs (nr_pending) before
1011          * we continue.
1012          */
1013         spin_lock_irq(&conf->resync_lock);
1014         conf->array_freeze_pending++;
1015         conf->barrier++;
1016         conf->nr_waiting++;
1017         wait_event_lock_irq_cmd(conf->wait_barrier,
1018                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019                                 conf->resync_lock,
1020                                 flush_pending_writes(conf));
1021
1022         conf->array_freeze_pending--;
1023         spin_unlock_irq(&conf->resync_lock);
1024 }
1025
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028         /* reverse the effect of the freeze */
1029         spin_lock_irq(&conf->resync_lock);
1030         conf->barrier--;
1031         conf->nr_waiting--;
1032         wake_up(&conf->wait_barrier);
1033         spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037                                    struct md_rdev *rdev)
1038 {
1039         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040             test_bit(R10BIO_Previous, &r10_bio->state))
1041                 return rdev->data_offset;
1042         else
1043                 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047         struct blk_plug_cb      cb;
1048         struct bio_list         pending;
1049         int                     pending_cnt;
1050 };
1051
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055                                                    cb);
1056         struct mddev *mddev = plug->cb.data;
1057         struct r10conf *conf = mddev->private;
1058         struct bio *bio;
1059
1060         if (from_schedule || current->bio_list) {
1061                 spin_lock_irq(&conf->device_lock);
1062                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063                 conf->pending_count += plug->pending_cnt;
1064                 spin_unlock_irq(&conf->device_lock);
1065                 wake_up(&conf->wait_barrier);
1066                 md_wakeup_thread(mddev->thread);
1067                 kfree(plug);
1068                 return;
1069         }
1070
1071         /* we aren't scheduling, so we can do the write-out directly. */
1072         bio = bio_list_get(&plug->pending);
1073         md_bitmap_unplug(mddev->bitmap);
1074         wake_up(&conf->wait_barrier);
1075
1076         while (bio) { /* submit pending writes */
1077                 struct bio *next = bio->bi_next;
1078                 struct md_rdev *rdev = (void*)bio->bi_disk;
1079                 bio->bi_next = NULL;
1080                 bio_set_dev(bio, rdev->bdev);
1081                 if (test_bit(Faulty, &rdev->flags)) {
1082                         bio_io_error(bio);
1083                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084                                     !blk_queue_discard(bio->bi_disk->queue)))
1085                         /* Just ignore it */
1086                         bio_endio(bio);
1087                 else
1088                         submit_bio_noacct(bio);
1089                 bio = next;
1090         }
1091         kfree(plug);
1092 }
1093
1094 /*
1095  * 1. Register the new request and wait if the reconstruction thread has put
1096  * up a bar for new requests. Continue immediately if no resync is active
1097  * currently.
1098  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099  */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101                                  struct bio *bio, sector_t sectors)
1102 {
1103         wait_barrier(conf);
1104         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105             bio->bi_iter.bi_sector < conf->reshape_progress &&
1106             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107                 raid10_log(conf->mddev, "wait reshape");
1108                 allow_barrier(conf);
1109                 wait_event(conf->wait_barrier,
1110                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1112                            sectors);
1113                 wait_barrier(conf);
1114         }
1115 }
1116
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118                                 struct r10bio *r10_bio)
1119 {
1120         struct r10conf *conf = mddev->private;
1121         struct bio *read_bio;
1122         const int op = bio_op(bio);
1123         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124         int max_sectors;
1125         struct md_rdev *rdev;
1126         char b[BDEVNAME_SIZE];
1127         int slot = r10_bio->read_slot;
1128         struct md_rdev *err_rdev = NULL;
1129         gfp_t gfp = GFP_NOIO;
1130
1131         if (r10_bio->devs[slot].rdev) {
1132                 /*
1133                  * This is an error retry, but we cannot
1134                  * safely dereference the rdev in the r10_bio,
1135                  * we must use the one in conf.
1136                  * If it has already been disconnected (unlikely)
1137                  * we lose the device name in error messages.
1138                  */
1139                 int disk;
1140                 /*
1141                  * As we are blocking raid10, it is a little safer to
1142                  * use __GFP_HIGH.
1143                  */
1144                 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146                 rcu_read_lock();
1147                 disk = r10_bio->devs[slot].devnum;
1148                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149                 if (err_rdev)
1150                         bdevname(err_rdev->bdev, b);
1151                 else {
1152                         strcpy(b, "???");
1153                         /* This never gets dereferenced */
1154                         err_rdev = r10_bio->devs[slot].rdev;
1155                 }
1156                 rcu_read_unlock();
1157         }
1158
1159         regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160         rdev = read_balance(conf, r10_bio, &max_sectors);
1161         if (!rdev) {
1162                 if (err_rdev) {
1163                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164                                             mdname(mddev), b,
1165                                             (unsigned long long)r10_bio->sector);
1166                 }
1167                 raid_end_bio_io(r10_bio);
1168                 return;
1169         }
1170         if (err_rdev)
1171                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172                                    mdname(mddev),
1173                                    bdevname(rdev->bdev, b),
1174                                    (unsigned long long)r10_bio->sector);
1175         if (max_sectors < bio_sectors(bio)) {
1176                 struct bio *split = bio_split(bio, max_sectors,
1177                                               gfp, &conf->bio_split);
1178                 bio_chain(split, bio);
1179                 allow_barrier(conf);
1180                 submit_bio_noacct(bio);
1181                 wait_barrier(conf);
1182                 bio = split;
1183                 r10_bio->master_bio = bio;
1184                 r10_bio->sectors = max_sectors;
1185         }
1186         slot = r10_bio->read_slot;
1187
1188         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190         r10_bio->devs[slot].bio = read_bio;
1191         r10_bio->devs[slot].rdev = rdev;
1192
1193         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194                 choose_data_offset(r10_bio, rdev);
1195         bio_set_dev(read_bio, rdev->bdev);
1196         read_bio->bi_end_io = raid10_end_read_request;
1197         bio_set_op_attrs(read_bio, op, do_sync);
1198         if (test_bit(FailFast, &rdev->flags) &&
1199             test_bit(R10BIO_FailFast, &r10_bio->state))
1200                 read_bio->bi_opf |= MD_FAILFAST;
1201         read_bio->bi_private = r10_bio;
1202
1203         if (mddev->gendisk)
1204                 trace_block_bio_remap(read_bio->bi_disk->queue,
1205                                       read_bio, disk_devt(mddev->gendisk),
1206                                       r10_bio->sector);
1207         submit_bio_noacct(read_bio);
1208         return;
1209 }
1210
1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1212                                   struct bio *bio, bool replacement,
1213                                   int n_copy)
1214 {
1215         const int op = bio_op(bio);
1216         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1217         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1218         unsigned long flags;
1219         struct blk_plug_cb *cb;
1220         struct raid10_plug_cb *plug = NULL;
1221         struct r10conf *conf = mddev->private;
1222         struct md_rdev *rdev;
1223         int devnum = r10_bio->devs[n_copy].devnum;
1224         struct bio *mbio;
1225
1226         if (replacement) {
1227                 rdev = conf->mirrors[devnum].replacement;
1228                 if (rdev == NULL) {
1229                         /* Replacement just got moved to main 'rdev' */
1230                         smp_mb();
1231                         rdev = conf->mirrors[devnum].rdev;
1232                 }
1233         } else
1234                 rdev = conf->mirrors[devnum].rdev;
1235
1236         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1237         if (replacement)
1238                 r10_bio->devs[n_copy].repl_bio = mbio;
1239         else
1240                 r10_bio->devs[n_copy].bio = mbio;
1241
1242         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1243                                    choose_data_offset(r10_bio, rdev));
1244         bio_set_dev(mbio, rdev->bdev);
1245         mbio->bi_end_io = raid10_end_write_request;
1246         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1247         if (!replacement && test_bit(FailFast,
1248                                      &conf->mirrors[devnum].rdev->flags)
1249                          && enough(conf, devnum))
1250                 mbio->bi_opf |= MD_FAILFAST;
1251         mbio->bi_private = r10_bio;
1252
1253         if (conf->mddev->gendisk)
1254                 trace_block_bio_remap(mbio->bi_disk->queue,
1255                                       mbio, disk_devt(conf->mddev->gendisk),
1256                                       r10_bio->sector);
1257         /* flush_pending_writes() needs access to the rdev so...*/
1258         mbio->bi_disk = (void *)rdev;
1259
1260         atomic_inc(&r10_bio->remaining);
1261
1262         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1263         if (cb)
1264                 plug = container_of(cb, struct raid10_plug_cb, cb);
1265         else
1266                 plug = NULL;
1267         if (plug) {
1268                 bio_list_add(&plug->pending, mbio);
1269                 plug->pending_cnt++;
1270         } else {
1271                 spin_lock_irqsave(&conf->device_lock, flags);
1272                 bio_list_add(&conf->pending_bio_list, mbio);
1273                 conf->pending_count++;
1274                 spin_unlock_irqrestore(&conf->device_lock, flags);
1275                 md_wakeup_thread(mddev->thread);
1276         }
1277 }
1278
1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1280                                  struct r10bio *r10_bio)
1281 {
1282         struct r10conf *conf = mddev->private;
1283         int i;
1284         struct md_rdev *blocked_rdev;
1285         sector_t sectors;
1286         int max_sectors;
1287
1288         if ((mddev_is_clustered(mddev) &&
1289              md_cluster_ops->area_resyncing(mddev, WRITE,
1290                                             bio->bi_iter.bi_sector,
1291                                             bio_end_sector(bio)))) {
1292                 DEFINE_WAIT(w);
1293                 for (;;) {
1294                         prepare_to_wait(&conf->wait_barrier,
1295                                         &w, TASK_IDLE);
1296                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1297                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1298                                 break;
1299                         schedule();
1300                 }
1301                 finish_wait(&conf->wait_barrier, &w);
1302         }
1303
1304         sectors = r10_bio->sectors;
1305         regular_request_wait(mddev, conf, bio, sectors);
1306         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1307             (mddev->reshape_backwards
1308              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1309                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1310              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1311                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1312                 /* Need to update reshape_position in metadata */
1313                 mddev->reshape_position = conf->reshape_progress;
1314                 set_mask_bits(&mddev->sb_flags, 0,
1315                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1316                 md_wakeup_thread(mddev->thread);
1317                 raid10_log(conf->mddev, "wait reshape metadata");
1318                 wait_event(mddev->sb_wait,
1319                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1320
1321                 conf->reshape_safe = mddev->reshape_position;
1322         }
1323
1324         if (conf->pending_count >= max_queued_requests) {
1325                 md_wakeup_thread(mddev->thread);
1326                 raid10_log(mddev, "wait queued");
1327                 wait_event(conf->wait_barrier,
1328                            conf->pending_count < max_queued_requests);
1329         }
1330         /* first select target devices under rcu_lock and
1331          * inc refcount on their rdev.  Record them by setting
1332          * bios[x] to bio
1333          * If there are known/acknowledged bad blocks on any device
1334          * on which we have seen a write error, we want to avoid
1335          * writing to those blocks.  This potentially requires several
1336          * writes to write around the bad blocks.  Each set of writes
1337          * gets its own r10_bio with a set of bios attached.
1338          */
1339
1340         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1341         raid10_find_phys(conf, r10_bio);
1342 retry_write:
1343         blocked_rdev = NULL;
1344         rcu_read_lock();
1345         max_sectors = r10_bio->sectors;
1346
1347         for (i = 0;  i < conf->copies; i++) {
1348                 int d = r10_bio->devs[i].devnum;
1349                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1350                 struct md_rdev *rrdev = rcu_dereference(
1351                         conf->mirrors[d].replacement);
1352                 if (rdev == rrdev)
1353                         rrdev = NULL;
1354                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1355                         atomic_inc(&rdev->nr_pending);
1356                         blocked_rdev = rdev;
1357                         break;
1358                 }
1359                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1360                         atomic_inc(&rrdev->nr_pending);
1361                         blocked_rdev = rrdev;
1362                         break;
1363                 }
1364                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1365                         rdev = NULL;
1366                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1367                         rrdev = NULL;
1368
1369                 r10_bio->devs[i].bio = NULL;
1370                 r10_bio->devs[i].repl_bio = NULL;
1371
1372                 if (!rdev && !rrdev) {
1373                         set_bit(R10BIO_Degraded, &r10_bio->state);
1374                         continue;
1375                 }
1376                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1377                         sector_t first_bad;
1378                         sector_t dev_sector = r10_bio->devs[i].addr;
1379                         int bad_sectors;
1380                         int is_bad;
1381
1382                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1383                                              &first_bad, &bad_sectors);
1384                         if (is_bad < 0) {
1385                                 /* Mustn't write here until the bad block
1386                                  * is acknowledged
1387                                  */
1388                                 atomic_inc(&rdev->nr_pending);
1389                                 set_bit(BlockedBadBlocks, &rdev->flags);
1390                                 blocked_rdev = rdev;
1391                                 break;
1392                         }
1393                         if (is_bad && first_bad <= dev_sector) {
1394                                 /* Cannot write here at all */
1395                                 bad_sectors -= (dev_sector - first_bad);
1396                                 if (bad_sectors < max_sectors)
1397                                         /* Mustn't write more than bad_sectors
1398                                          * to other devices yet
1399                                          */
1400                                         max_sectors = bad_sectors;
1401                                 /* We don't set R10BIO_Degraded as that
1402                                  * only applies if the disk is missing,
1403                                  * so it might be re-added, and we want to
1404                                  * know to recover this chunk.
1405                                  * In this case the device is here, and the
1406                                  * fact that this chunk is not in-sync is
1407                                  * recorded in the bad block log.
1408                                  */
1409                                 continue;
1410                         }
1411                         if (is_bad) {
1412                                 int good_sectors = first_bad - dev_sector;
1413                                 if (good_sectors < max_sectors)
1414                                         max_sectors = good_sectors;
1415                         }
1416                 }
1417                 if (rdev) {
1418                         r10_bio->devs[i].bio = bio;
1419                         atomic_inc(&rdev->nr_pending);
1420                 }
1421                 if (rrdev) {
1422                         r10_bio->devs[i].repl_bio = bio;
1423                         atomic_inc(&rrdev->nr_pending);
1424                 }
1425         }
1426         rcu_read_unlock();
1427
1428         if (unlikely(blocked_rdev)) {
1429                 /* Have to wait for this device to get unblocked, then retry */
1430                 int j;
1431                 int d;
1432
1433                 for (j = 0; j < i; j++) {
1434                         if (r10_bio->devs[j].bio) {
1435                                 d = r10_bio->devs[j].devnum;
1436                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1437                         }
1438                         if (r10_bio->devs[j].repl_bio) {
1439                                 struct md_rdev *rdev;
1440                                 d = r10_bio->devs[j].devnum;
1441                                 rdev = conf->mirrors[d].replacement;
1442                                 if (!rdev) {
1443                                         /* Race with remove_disk */
1444                                         smp_mb();
1445                                         rdev = conf->mirrors[d].rdev;
1446                                 }
1447                                 rdev_dec_pending(rdev, mddev);
1448                         }
1449                 }
1450                 allow_barrier(conf);
1451                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453                 wait_barrier(conf);
1454                 goto retry_write;
1455         }
1456
1457         if (max_sectors < r10_bio->sectors)
1458                 r10_bio->sectors = max_sectors;
1459
1460         if (r10_bio->sectors < bio_sectors(bio)) {
1461                 struct bio *split = bio_split(bio, r10_bio->sectors,
1462                                               GFP_NOIO, &conf->bio_split);
1463                 bio_chain(split, bio);
1464                 allow_barrier(conf);
1465                 submit_bio_noacct(bio);
1466                 wait_barrier(conf);
1467                 bio = split;
1468                 r10_bio->master_bio = bio;
1469         }
1470
1471         atomic_set(&r10_bio->remaining, 1);
1472         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1473
1474         for (i = 0; i < conf->copies; i++) {
1475                 if (r10_bio->devs[i].bio)
1476                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1477                 if (r10_bio->devs[i].repl_bio)
1478                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1479         }
1480         one_write_done(r10_bio);
1481 }
1482
1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1484 {
1485         struct r10conf *conf = mddev->private;
1486         struct r10bio *r10_bio;
1487
1488         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1489
1490         r10_bio->master_bio = bio;
1491         r10_bio->sectors = sectors;
1492
1493         r10_bio->mddev = mddev;
1494         r10_bio->sector = bio->bi_iter.bi_sector;
1495         r10_bio->state = 0;
1496         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1497
1498         if (bio_data_dir(bio) == READ)
1499                 raid10_read_request(mddev, bio, r10_bio);
1500         else
1501                 raid10_write_request(mddev, bio, r10_bio);
1502 }
1503
1504 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1505 {
1506         struct r10conf *conf = mddev->private;
1507         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1508         int chunk_sects = chunk_mask + 1;
1509         int sectors = bio_sectors(bio);
1510
1511         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1512             && md_flush_request(mddev, bio))
1513                 return true;
1514
1515         if (!md_write_start(mddev, bio))
1516                 return false;
1517
1518         /*
1519          * If this request crosses a chunk boundary, we need to split
1520          * it.
1521          */
1522         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1523                      sectors > chunk_sects
1524                      && (conf->geo.near_copies < conf->geo.raid_disks
1525                          || conf->prev.near_copies <
1526                          conf->prev.raid_disks)))
1527                 sectors = chunk_sects -
1528                         (bio->bi_iter.bi_sector &
1529                          (chunk_sects - 1));
1530         __make_request(mddev, bio, sectors);
1531
1532         /* In case raid10d snuck in to freeze_array */
1533         wake_up(&conf->wait_barrier);
1534         return true;
1535 }
1536
1537 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1538 {
1539         struct r10conf *conf = mddev->private;
1540         int i;
1541
1542         if (conf->geo.near_copies < conf->geo.raid_disks)
1543                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544         if (conf->geo.near_copies > 1)
1545                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546         if (conf->geo.far_copies > 1) {
1547                 if (conf->geo.far_offset)
1548                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549                 else
1550                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1552                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1553         }
1554         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1555                                         conf->geo.raid_disks - mddev->degraded);
1556         rcu_read_lock();
1557         for (i = 0; i < conf->geo.raid_disks; i++) {
1558                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1560         }
1561         rcu_read_unlock();
1562         seq_printf(seq, "]");
1563 }
1564
1565 /* check if there are enough drives for
1566  * every block to appear on atleast one.
1567  * Don't consider the device numbered 'ignore'
1568  * as we might be about to remove it.
1569  */
1570 static int _enough(struct r10conf *conf, int previous, int ignore)
1571 {
1572         int first = 0;
1573         int has_enough = 0;
1574         int disks, ncopies;
1575         if (previous) {
1576                 disks = conf->prev.raid_disks;
1577                 ncopies = conf->prev.near_copies;
1578         } else {
1579                 disks = conf->geo.raid_disks;
1580                 ncopies = conf->geo.near_copies;
1581         }
1582
1583         rcu_read_lock();
1584         do {
1585                 int n = conf->copies;
1586                 int cnt = 0;
1587                 int this = first;
1588                 while (n--) {
1589                         struct md_rdev *rdev;
1590                         if (this != ignore &&
1591                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1592                             test_bit(In_sync, &rdev->flags))
1593                                 cnt++;
1594                         this = (this+1) % disks;
1595                 }
1596                 if (cnt == 0)
1597                         goto out;
1598                 first = (first + ncopies) % disks;
1599         } while (first != 0);
1600         has_enough = 1;
1601 out:
1602         rcu_read_unlock();
1603         return has_enough;
1604 }
1605
1606 static int enough(struct r10conf *conf, int ignore)
1607 {
1608         /* when calling 'enough', both 'prev' and 'geo' must
1609          * be stable.
1610          * This is ensured if ->reconfig_mutex or ->device_lock
1611          * is held.
1612          */
1613         return _enough(conf, 0, ignore) &&
1614                 _enough(conf, 1, ignore);
1615 }
1616
1617 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1618 {
1619         char b[BDEVNAME_SIZE];
1620         struct r10conf *conf = mddev->private;
1621         unsigned long flags;
1622
1623         /*
1624          * If it is not operational, then we have already marked it as dead
1625          * else if it is the last working disks with "fail_last_dev == false",
1626          * ignore the error, let the next level up know.
1627          * else mark the drive as failed
1628          */
1629         spin_lock_irqsave(&conf->device_lock, flags);
1630         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1631             && !enough(conf, rdev->raid_disk)) {
1632                 /*
1633                  * Don't fail the drive, just return an IO error.
1634                  */
1635                 spin_unlock_irqrestore(&conf->device_lock, flags);
1636                 return;
1637         }
1638         if (test_and_clear_bit(In_sync, &rdev->flags))
1639                 mddev->degraded++;
1640         /*
1641          * If recovery is running, make sure it aborts.
1642          */
1643         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1644         set_bit(Blocked, &rdev->flags);
1645         set_bit(Faulty, &rdev->flags);
1646         set_mask_bits(&mddev->sb_flags, 0,
1647                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1648         spin_unlock_irqrestore(&conf->device_lock, flags);
1649         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1650                 "md/raid10:%s: Operation continuing on %d devices.\n",
1651                 mdname(mddev), bdevname(rdev->bdev, b),
1652                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1653 }
1654
1655 static void print_conf(struct r10conf *conf)
1656 {
1657         int i;
1658         struct md_rdev *rdev;
1659
1660         pr_debug("RAID10 conf printout:\n");
1661         if (!conf) {
1662                 pr_debug("(!conf)\n");
1663                 return;
1664         }
1665         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1666                  conf->geo.raid_disks);
1667
1668         /* This is only called with ->reconfix_mutex held, so
1669          * rcu protection of rdev is not needed */
1670         for (i = 0; i < conf->geo.raid_disks; i++) {
1671                 char b[BDEVNAME_SIZE];
1672                 rdev = conf->mirrors[i].rdev;
1673                 if (rdev)
1674                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1675                                  i, !test_bit(In_sync, &rdev->flags),
1676                                  !test_bit(Faulty, &rdev->flags),
1677                                  bdevname(rdev->bdev,b));
1678         }
1679 }
1680
1681 static void close_sync(struct r10conf *conf)
1682 {
1683         wait_barrier(conf);
1684         allow_barrier(conf);
1685
1686         mempool_exit(&conf->r10buf_pool);
1687 }
1688
1689 static int raid10_spare_active(struct mddev *mddev)
1690 {
1691         int i;
1692         struct r10conf *conf = mddev->private;
1693         struct raid10_info *tmp;
1694         int count = 0;
1695         unsigned long flags;
1696
1697         /*
1698          * Find all non-in_sync disks within the RAID10 configuration
1699          * and mark them in_sync
1700          */
1701         for (i = 0; i < conf->geo.raid_disks; i++) {
1702                 tmp = conf->mirrors + i;
1703                 if (tmp->replacement
1704                     && tmp->replacement->recovery_offset == MaxSector
1705                     && !test_bit(Faulty, &tmp->replacement->flags)
1706                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1707                         /* Replacement has just become active */
1708                         if (!tmp->rdev
1709                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1710                                 count++;
1711                         if (tmp->rdev) {
1712                                 /* Replaced device not technically faulty,
1713                                  * but we need to be sure it gets removed
1714                                  * and never re-added.
1715                                  */
1716                                 set_bit(Faulty, &tmp->rdev->flags);
1717                                 sysfs_notify_dirent_safe(
1718                                         tmp->rdev->sysfs_state);
1719                         }
1720                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1721                 } else if (tmp->rdev
1722                            && tmp->rdev->recovery_offset == MaxSector
1723                            && !test_bit(Faulty, &tmp->rdev->flags)
1724                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1725                         count++;
1726                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1727                 }
1728         }
1729         spin_lock_irqsave(&conf->device_lock, flags);
1730         mddev->degraded -= count;
1731         spin_unlock_irqrestore(&conf->device_lock, flags);
1732
1733         print_conf(conf);
1734         return count;
1735 }
1736
1737 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738 {
1739         struct r10conf *conf = mddev->private;
1740         int err = -EEXIST;
1741         int mirror;
1742         int first = 0;
1743         int last = conf->geo.raid_disks - 1;
1744
1745         if (mddev->recovery_cp < MaxSector)
1746                 /* only hot-add to in-sync arrays, as recovery is
1747                  * very different from resync
1748                  */
1749                 return -EBUSY;
1750         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1751                 return -EINVAL;
1752
1753         if (md_integrity_add_rdev(rdev, mddev))
1754                 return -ENXIO;
1755
1756         if (rdev->raid_disk >= 0)
1757                 first = last = rdev->raid_disk;
1758
1759         if (rdev->saved_raid_disk >= first &&
1760             rdev->saved_raid_disk < conf->geo.raid_disks &&
1761             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762                 mirror = rdev->saved_raid_disk;
1763         else
1764                 mirror = first;
1765         for ( ; mirror <= last ; mirror++) {
1766                 struct raid10_info *p = &conf->mirrors[mirror];
1767                 if (p->recovery_disabled == mddev->recovery_disabled)
1768                         continue;
1769                 if (p->rdev) {
1770                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1771                             p->replacement != NULL)
1772                                 continue;
1773                         clear_bit(In_sync, &rdev->flags);
1774                         set_bit(Replacement, &rdev->flags);
1775                         rdev->raid_disk = mirror;
1776                         err = 0;
1777                         if (mddev->gendisk)
1778                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1779                                                   rdev->data_offset << 9);
1780                         conf->fullsync = 1;
1781                         rcu_assign_pointer(p->replacement, rdev);
1782                         break;
1783                 }
1784
1785                 if (mddev->gendisk)
1786                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1787                                           rdev->data_offset << 9);
1788
1789                 p->head_position = 0;
1790                 p->recovery_disabled = mddev->recovery_disabled - 1;
1791                 rdev->raid_disk = mirror;
1792                 err = 0;
1793                 if (rdev->saved_raid_disk != mirror)
1794                         conf->fullsync = 1;
1795                 rcu_assign_pointer(p->rdev, rdev);
1796                 break;
1797         }
1798         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1799                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1800
1801         print_conf(conf);
1802         return err;
1803 }
1804
1805 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807         struct r10conf *conf = mddev->private;
1808         int err = 0;
1809         int number = rdev->raid_disk;
1810         struct md_rdev **rdevp;
1811         struct raid10_info *p = conf->mirrors + number;
1812
1813         print_conf(conf);
1814         if (rdev == p->rdev)
1815                 rdevp = &p->rdev;
1816         else if (rdev == p->replacement)
1817                 rdevp = &p->replacement;
1818         else
1819                 return 0;
1820
1821         if (test_bit(In_sync, &rdev->flags) ||
1822             atomic_read(&rdev->nr_pending)) {
1823                 err = -EBUSY;
1824                 goto abort;
1825         }
1826         /* Only remove non-faulty devices if recovery
1827          * is not possible.
1828          */
1829         if (!test_bit(Faulty, &rdev->flags) &&
1830             mddev->recovery_disabled != p->recovery_disabled &&
1831             (!p->replacement || p->replacement == rdev) &&
1832             number < conf->geo.raid_disks &&
1833             enough(conf, -1)) {
1834                 err = -EBUSY;
1835                 goto abort;
1836         }
1837         *rdevp = NULL;
1838         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1839                 synchronize_rcu();
1840                 if (atomic_read(&rdev->nr_pending)) {
1841                         /* lost the race, try later */
1842                         err = -EBUSY;
1843                         *rdevp = rdev;
1844                         goto abort;
1845                 }
1846         }
1847         if (p->replacement) {
1848                 /* We must have just cleared 'rdev' */
1849                 p->rdev = p->replacement;
1850                 clear_bit(Replacement, &p->replacement->flags);
1851                 smp_mb(); /* Make sure other CPUs may see both as identical
1852                            * but will never see neither -- if they are careful.
1853                            */
1854                 p->replacement = NULL;
1855         }
1856
1857         clear_bit(WantReplacement, &rdev->flags);
1858         err = md_integrity_register(mddev);
1859
1860 abort:
1861
1862         print_conf(conf);
1863         return err;
1864 }
1865
1866 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1867 {
1868         struct r10conf *conf = r10_bio->mddev->private;
1869
1870         if (!bio->bi_status)
1871                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1872         else
1873                 /* The write handler will notice the lack of
1874                  * R10BIO_Uptodate and record any errors etc
1875                  */
1876                 atomic_add(r10_bio->sectors,
1877                            &conf->mirrors[d].rdev->corrected_errors);
1878
1879         /* for reconstruct, we always reschedule after a read.
1880          * for resync, only after all reads
1881          */
1882         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1883         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1884             atomic_dec_and_test(&r10_bio->remaining)) {
1885                 /* we have read all the blocks,
1886                  * do the comparison in process context in raid10d
1887                  */
1888                 reschedule_retry(r10_bio);
1889         }
1890 }
1891
1892 static void end_sync_read(struct bio *bio)
1893 {
1894         struct r10bio *r10_bio = get_resync_r10bio(bio);
1895         struct r10conf *conf = r10_bio->mddev->private;
1896         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1897
1898         __end_sync_read(r10_bio, bio, d);
1899 }
1900
1901 static void end_reshape_read(struct bio *bio)
1902 {
1903         /* reshape read bio isn't allocated from r10buf_pool */
1904         struct r10bio *r10_bio = bio->bi_private;
1905
1906         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1907 }
1908
1909 static void end_sync_request(struct r10bio *r10_bio)
1910 {
1911         struct mddev *mddev = r10_bio->mddev;
1912
1913         while (atomic_dec_and_test(&r10_bio->remaining)) {
1914                 if (r10_bio->master_bio == NULL) {
1915                         /* the primary of several recovery bios */
1916                         sector_t s = r10_bio->sectors;
1917                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1918                             test_bit(R10BIO_WriteError, &r10_bio->state))
1919                                 reschedule_retry(r10_bio);
1920                         else
1921                                 put_buf(r10_bio);
1922                         md_done_sync(mddev, s, 1);
1923                         break;
1924                 } else {
1925                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1926                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1927                             test_bit(R10BIO_WriteError, &r10_bio->state))
1928                                 reschedule_retry(r10_bio);
1929                         else
1930                                 put_buf(r10_bio);
1931                         r10_bio = r10_bio2;
1932                 }
1933         }
1934 }
1935
1936 static void end_sync_write(struct bio *bio)
1937 {
1938         struct r10bio *r10_bio = get_resync_r10bio(bio);
1939         struct mddev *mddev = r10_bio->mddev;
1940         struct r10conf *conf = mddev->private;
1941         int d;
1942         sector_t first_bad;
1943         int bad_sectors;
1944         int slot;
1945         int repl;
1946         struct md_rdev *rdev = NULL;
1947
1948         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1949         if (repl)
1950                 rdev = conf->mirrors[d].replacement;
1951         else
1952                 rdev = conf->mirrors[d].rdev;
1953
1954         if (bio->bi_status) {
1955                 if (repl)
1956                         md_error(mddev, rdev);
1957                 else {
1958                         set_bit(WriteErrorSeen, &rdev->flags);
1959                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1960                                 set_bit(MD_RECOVERY_NEEDED,
1961                                         &rdev->mddev->recovery);
1962                         set_bit(R10BIO_WriteError, &r10_bio->state);
1963                 }
1964         } else if (is_badblock(rdev,
1965                              r10_bio->devs[slot].addr,
1966                              r10_bio->sectors,
1967                              &first_bad, &bad_sectors))
1968                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1969
1970         rdev_dec_pending(rdev, mddev);
1971
1972         end_sync_request(r10_bio);
1973 }
1974
1975 /*
1976  * Note: sync and recover and handled very differently for raid10
1977  * This code is for resync.
1978  * For resync, we read through virtual addresses and read all blocks.
1979  * If there is any error, we schedule a write.  The lowest numbered
1980  * drive is authoritative.
1981  * However requests come for physical address, so we need to map.
1982  * For every physical address there are raid_disks/copies virtual addresses,
1983  * which is always are least one, but is not necessarly an integer.
1984  * This means that a physical address can span multiple chunks, so we may
1985  * have to submit multiple io requests for a single sync request.
1986  */
1987 /*
1988  * We check if all blocks are in-sync and only write to blocks that
1989  * aren't in sync
1990  */
1991 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1992 {
1993         struct r10conf *conf = mddev->private;
1994         int i, first;
1995         struct bio *tbio, *fbio;
1996         int vcnt;
1997         struct page **tpages, **fpages;
1998
1999         atomic_set(&r10_bio->remaining, 1);
2000
2001         /* find the first device with a block */
2002         for (i=0; i<conf->copies; i++)
2003                 if (!r10_bio->devs[i].bio->bi_status)
2004                         break;
2005
2006         if (i == conf->copies)
2007                 goto done;
2008
2009         first = i;
2010         fbio = r10_bio->devs[i].bio;
2011         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2012         fbio->bi_iter.bi_idx = 0;
2013         fpages = get_resync_pages(fbio)->pages;
2014
2015         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2016         /* now find blocks with errors */
2017         for (i=0 ; i < conf->copies ; i++) {
2018                 int  j, d;
2019                 struct md_rdev *rdev;
2020                 struct resync_pages *rp;
2021
2022                 tbio = r10_bio->devs[i].bio;
2023
2024                 if (tbio->bi_end_io != end_sync_read)
2025                         continue;
2026                 if (i == first)
2027                         continue;
2028
2029                 tpages = get_resync_pages(tbio)->pages;
2030                 d = r10_bio->devs[i].devnum;
2031                 rdev = conf->mirrors[d].rdev;
2032                 if (!r10_bio->devs[i].bio->bi_status) {
2033                         /* We know that the bi_io_vec layout is the same for
2034                          * both 'first' and 'i', so we just compare them.
2035                          * All vec entries are PAGE_SIZE;
2036                          */
2037                         int sectors = r10_bio->sectors;
2038                         for (j = 0; j < vcnt; j++) {
2039                                 int len = PAGE_SIZE;
2040                                 if (sectors < (len / 512))
2041                                         len = sectors * 512;
2042                                 if (memcmp(page_address(fpages[j]),
2043                                            page_address(tpages[j]),
2044                                            len))
2045                                         break;
2046                                 sectors -= len/512;
2047                         }
2048                         if (j == vcnt)
2049                                 continue;
2050                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2051                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2052                                 /* Don't fix anything. */
2053                                 continue;
2054                 } else if (test_bit(FailFast, &rdev->flags)) {
2055                         /* Just give up on this device */
2056                         md_error(rdev->mddev, rdev);
2057                         continue;
2058                 }
2059                 /* Ok, we need to write this bio, either to correct an
2060                  * inconsistency or to correct an unreadable block.
2061                  * First we need to fixup bv_offset, bv_len and
2062                  * bi_vecs, as the read request might have corrupted these
2063                  */
2064                 rp = get_resync_pages(tbio);
2065                 bio_reset(tbio);
2066
2067                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2068
2069                 rp->raid_bio = r10_bio;
2070                 tbio->bi_private = rp;
2071                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2072                 tbio->bi_end_io = end_sync_write;
2073                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2074
2075                 bio_copy_data(tbio, fbio);
2076
2077                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2078                 atomic_inc(&r10_bio->remaining);
2079                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2080
2081                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2082                         tbio->bi_opf |= MD_FAILFAST;
2083                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2084                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2085                 submit_bio_noacct(tbio);
2086         }
2087
2088         /* Now write out to any replacement devices
2089          * that are active
2090          */
2091         for (i = 0; i < conf->copies; i++) {
2092                 int d;
2093
2094                 tbio = r10_bio->devs[i].repl_bio;
2095                 if (!tbio || !tbio->bi_end_io)
2096                         continue;
2097                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2098                     && r10_bio->devs[i].bio != fbio)
2099                         bio_copy_data(tbio, fbio);
2100                 d = r10_bio->devs[i].devnum;
2101                 atomic_inc(&r10_bio->remaining);
2102                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2103                              bio_sectors(tbio));
2104                 submit_bio_noacct(tbio);
2105         }
2106
2107 done:
2108         if (atomic_dec_and_test(&r10_bio->remaining)) {
2109                 md_done_sync(mddev, r10_bio->sectors, 1);
2110                 put_buf(r10_bio);
2111         }
2112 }
2113
2114 /*
2115  * Now for the recovery code.
2116  * Recovery happens across physical sectors.
2117  * We recover all non-is_sync drives by finding the virtual address of
2118  * each, and then choose a working drive that also has that virt address.
2119  * There is a separate r10_bio for each non-in_sync drive.
2120  * Only the first two slots are in use. The first for reading,
2121  * The second for writing.
2122  *
2123  */
2124 static void fix_recovery_read_error(struct r10bio *r10_bio)
2125 {
2126         /* We got a read error during recovery.
2127          * We repeat the read in smaller page-sized sections.
2128          * If a read succeeds, write it to the new device or record
2129          * a bad block if we cannot.
2130          * If a read fails, record a bad block on both old and
2131          * new devices.
2132          */
2133         struct mddev *mddev = r10_bio->mddev;
2134         struct r10conf *conf = mddev->private;
2135         struct bio *bio = r10_bio->devs[0].bio;
2136         sector_t sect = 0;
2137         int sectors = r10_bio->sectors;
2138         int idx = 0;
2139         int dr = r10_bio->devs[0].devnum;
2140         int dw = r10_bio->devs[1].devnum;
2141         struct page **pages = get_resync_pages(bio)->pages;
2142
2143         while (sectors) {
2144                 int s = sectors;
2145                 struct md_rdev *rdev;
2146                 sector_t addr;
2147                 int ok;
2148
2149                 if (s > (PAGE_SIZE>>9))
2150                         s = PAGE_SIZE >> 9;
2151
2152                 rdev = conf->mirrors[dr].rdev;
2153                 addr = r10_bio->devs[0].addr + sect,
2154                 ok = sync_page_io(rdev,
2155                                   addr,
2156                                   s << 9,
2157                                   pages[idx],
2158                                   REQ_OP_READ, 0, false);
2159                 if (ok) {
2160                         rdev = conf->mirrors[dw].rdev;
2161                         addr = r10_bio->devs[1].addr + sect;
2162                         ok = sync_page_io(rdev,
2163                                           addr,
2164                                           s << 9,
2165                                           pages[idx],
2166                                           REQ_OP_WRITE, 0, false);
2167                         if (!ok) {
2168                                 set_bit(WriteErrorSeen, &rdev->flags);
2169                                 if (!test_and_set_bit(WantReplacement,
2170                                                       &rdev->flags))
2171                                         set_bit(MD_RECOVERY_NEEDED,
2172                                                 &rdev->mddev->recovery);
2173                         }
2174                 }
2175                 if (!ok) {
2176                         /* We don't worry if we cannot set a bad block -
2177                          * it really is bad so there is no loss in not
2178                          * recording it yet
2179                          */
2180                         rdev_set_badblocks(rdev, addr, s, 0);
2181
2182                         if (rdev != conf->mirrors[dw].rdev) {
2183                                 /* need bad block on destination too */
2184                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2185                                 addr = r10_bio->devs[1].addr + sect;
2186                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2187                                 if (!ok) {
2188                                         /* just abort the recovery */
2189                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2190                                                   mdname(mddev));
2191
2192                                         conf->mirrors[dw].recovery_disabled
2193                                                 = mddev->recovery_disabled;
2194                                         set_bit(MD_RECOVERY_INTR,
2195                                                 &mddev->recovery);
2196                                         break;
2197                                 }
2198                         }
2199                 }
2200
2201                 sectors -= s;
2202                 sect += s;
2203                 idx++;
2204         }
2205 }
2206
2207 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2208 {
2209         struct r10conf *conf = mddev->private;
2210         int d;
2211         struct bio *wbio, *wbio2;
2212
2213         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2214                 fix_recovery_read_error(r10_bio);
2215                 end_sync_request(r10_bio);
2216                 return;
2217         }
2218
2219         /*
2220          * share the pages with the first bio
2221          * and submit the write request
2222          */
2223         d = r10_bio->devs[1].devnum;
2224         wbio = r10_bio->devs[1].bio;
2225         wbio2 = r10_bio->devs[1].repl_bio;
2226         /* Need to test wbio2->bi_end_io before we call
2227          * submit_bio_noacct as if the former is NULL,
2228          * the latter is free to free wbio2.
2229          */
2230         if (wbio2 && !wbio2->bi_end_io)
2231                 wbio2 = NULL;
2232         if (wbio->bi_end_io) {
2233                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2234                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2235                 submit_bio_noacct(wbio);
2236         }
2237         if (wbio2) {
2238                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2239                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2240                              bio_sectors(wbio2));
2241                 submit_bio_noacct(wbio2);
2242         }
2243 }
2244
2245 /*
2246  * Used by fix_read_error() to decay the per rdev read_errors.
2247  * We halve the read error count for every hour that has elapsed
2248  * since the last recorded read error.
2249  *
2250  */
2251 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2252 {
2253         long cur_time_mon;
2254         unsigned long hours_since_last;
2255         unsigned int read_errors = atomic_read(&rdev->read_errors);
2256
2257         cur_time_mon = ktime_get_seconds();
2258
2259         if (rdev->last_read_error == 0) {
2260                 /* first time we've seen a read error */
2261                 rdev->last_read_error = cur_time_mon;
2262                 return;
2263         }
2264
2265         hours_since_last = (long)(cur_time_mon -
2266                             rdev->last_read_error) / 3600;
2267
2268         rdev->last_read_error = cur_time_mon;
2269
2270         /*
2271          * if hours_since_last is > the number of bits in read_errors
2272          * just set read errors to 0. We do this to avoid
2273          * overflowing the shift of read_errors by hours_since_last.
2274          */
2275         if (hours_since_last >= 8 * sizeof(read_errors))
2276                 atomic_set(&rdev->read_errors, 0);
2277         else
2278                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2279 }
2280
2281 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2282                             int sectors, struct page *page, int rw)
2283 {
2284         sector_t first_bad;
2285         int bad_sectors;
2286
2287         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2288             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2289                 return -1;
2290         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2291                 /* success */
2292                 return 1;
2293         if (rw == WRITE) {
2294                 set_bit(WriteErrorSeen, &rdev->flags);
2295                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2296                         set_bit(MD_RECOVERY_NEEDED,
2297                                 &rdev->mddev->recovery);
2298         }
2299         /* need to record an error - either for the block or the device */
2300         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2301                 md_error(rdev->mddev, rdev);
2302         return 0;
2303 }
2304
2305 /*
2306  * This is a kernel thread which:
2307  *
2308  *      1.      Retries failed read operations on working mirrors.
2309  *      2.      Updates the raid superblock when problems encounter.
2310  *      3.      Performs writes following reads for array synchronising.
2311  */
2312
2313 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2314 {
2315         int sect = 0; /* Offset from r10_bio->sector */
2316         int sectors = r10_bio->sectors;
2317         struct md_rdev *rdev;
2318         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2319         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2320
2321         /* still own a reference to this rdev, so it cannot
2322          * have been cleared recently.
2323          */
2324         rdev = conf->mirrors[d].rdev;
2325
2326         if (test_bit(Faulty, &rdev->flags))
2327                 /* drive has already been failed, just ignore any
2328                    more fix_read_error() attempts */
2329                 return;
2330
2331         check_decay_read_errors(mddev, rdev);
2332         atomic_inc(&rdev->read_errors);
2333         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2334                 char b[BDEVNAME_SIZE];
2335                 bdevname(rdev->bdev, b);
2336
2337                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2338                           mdname(mddev), b,
2339                           atomic_read(&rdev->read_errors), max_read_errors);
2340                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2341                           mdname(mddev), b);
2342                 md_error(mddev, rdev);
2343                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2344                 return;
2345         }
2346
2347         while(sectors) {
2348                 int s = sectors;
2349                 int sl = r10_bio->read_slot;
2350                 int success = 0;
2351                 int start;
2352
2353                 if (s > (PAGE_SIZE>>9))
2354                         s = PAGE_SIZE >> 9;
2355
2356                 rcu_read_lock();
2357                 do {
2358                         sector_t first_bad;
2359                         int bad_sectors;
2360
2361                         d = r10_bio->devs[sl].devnum;
2362                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2363                         if (rdev &&
2364                             test_bit(In_sync, &rdev->flags) &&
2365                             !test_bit(Faulty, &rdev->flags) &&
2366                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2367                                         &first_bad, &bad_sectors) == 0) {
2368                                 atomic_inc(&rdev->nr_pending);
2369                                 rcu_read_unlock();
2370                                 success = sync_page_io(rdev,
2371                                                        r10_bio->devs[sl].addr +
2372                                                        sect,
2373                                                        s<<9,
2374                                                        conf->tmppage,
2375                                                        REQ_OP_READ, 0, false);
2376                                 rdev_dec_pending(rdev, mddev);
2377                                 rcu_read_lock();
2378                                 if (success)
2379                                         break;
2380                         }
2381                         sl++;
2382                         if (sl == conf->copies)
2383                                 sl = 0;
2384                 } while (!success && sl != r10_bio->read_slot);
2385                 rcu_read_unlock();
2386
2387                 if (!success) {
2388                         /* Cannot read from anywhere, just mark the block
2389                          * as bad on the first device to discourage future
2390                          * reads.
2391                          */
2392                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2393                         rdev = conf->mirrors[dn].rdev;
2394
2395                         if (!rdev_set_badblocks(
2396                                     rdev,
2397                                     r10_bio->devs[r10_bio->read_slot].addr
2398                                     + sect,
2399                                     s, 0)) {
2400                                 md_error(mddev, rdev);
2401                                 r10_bio->devs[r10_bio->read_slot].bio
2402                                         = IO_BLOCKED;
2403                         }
2404                         break;
2405                 }
2406
2407                 start = sl;
2408                 /* write it back and re-read */
2409                 rcu_read_lock();
2410                 while (sl != r10_bio->read_slot) {
2411                         char b[BDEVNAME_SIZE];
2412
2413                         if (sl==0)
2414                                 sl = conf->copies;
2415                         sl--;
2416                         d = r10_bio->devs[sl].devnum;
2417                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2418                         if (!rdev ||
2419                             test_bit(Faulty, &rdev->flags) ||
2420                             !test_bit(In_sync, &rdev->flags))
2421                                 continue;
2422
2423                         atomic_inc(&rdev->nr_pending);
2424                         rcu_read_unlock();
2425                         if (r10_sync_page_io(rdev,
2426                                              r10_bio->devs[sl].addr +
2427                                              sect,
2428                                              s, conf->tmppage, WRITE)
2429                             == 0) {
2430                                 /* Well, this device is dead */
2431                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2432                                           mdname(mddev), s,
2433                                           (unsigned long long)(
2434                                                   sect +
2435                                                   choose_data_offset(r10_bio,
2436                                                                      rdev)),
2437                                           bdevname(rdev->bdev, b));
2438                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2439                                           mdname(mddev),
2440                                           bdevname(rdev->bdev, b));
2441                         }
2442                         rdev_dec_pending(rdev, mddev);
2443                         rcu_read_lock();
2444                 }
2445                 sl = start;
2446                 while (sl != r10_bio->read_slot) {
2447                         char b[BDEVNAME_SIZE];
2448
2449                         if (sl==0)
2450                                 sl = conf->copies;
2451                         sl--;
2452                         d = r10_bio->devs[sl].devnum;
2453                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2454                         if (!rdev ||
2455                             test_bit(Faulty, &rdev->flags) ||
2456                             !test_bit(In_sync, &rdev->flags))
2457                                 continue;
2458
2459                         atomic_inc(&rdev->nr_pending);
2460                         rcu_read_unlock();
2461                         switch (r10_sync_page_io(rdev,
2462                                              r10_bio->devs[sl].addr +
2463                                              sect,
2464                                              s, conf->tmppage,
2465                                                  READ)) {
2466                         case 0:
2467                                 /* Well, this device is dead */
2468                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2469                                        mdname(mddev), s,
2470                                        (unsigned long long)(
2471                                                sect +
2472                                                choose_data_offset(r10_bio, rdev)),
2473                                        bdevname(rdev->bdev, b));
2474                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2475                                        mdname(mddev),
2476                                        bdevname(rdev->bdev, b));
2477                                 break;
2478                         case 1:
2479                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2480                                        mdname(mddev), s,
2481                                        (unsigned long long)(
2482                                                sect +
2483                                                choose_data_offset(r10_bio, rdev)),
2484                                        bdevname(rdev->bdev, b));
2485                                 atomic_add(s, &rdev->corrected_errors);
2486                         }
2487
2488                         rdev_dec_pending(rdev, mddev);
2489                         rcu_read_lock();
2490                 }
2491                 rcu_read_unlock();
2492
2493                 sectors -= s;
2494                 sect += s;
2495         }
2496 }
2497
2498 static int narrow_write_error(struct r10bio *r10_bio, int i)
2499 {
2500         struct bio *bio = r10_bio->master_bio;
2501         struct mddev *mddev = r10_bio->mddev;
2502         struct r10conf *conf = mddev->private;
2503         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2504         /* bio has the data to be written to slot 'i' where
2505          * we just recently had a write error.
2506          * We repeatedly clone the bio and trim down to one block,
2507          * then try the write.  Where the write fails we record
2508          * a bad block.
2509          * It is conceivable that the bio doesn't exactly align with
2510          * blocks.  We must handle this.
2511          *
2512          * We currently own a reference to the rdev.
2513          */
2514
2515         int block_sectors;
2516         sector_t sector;
2517         int sectors;
2518         int sect_to_write = r10_bio->sectors;
2519         int ok = 1;
2520
2521         if (rdev->badblocks.shift < 0)
2522                 return 0;
2523
2524         block_sectors = roundup(1 << rdev->badblocks.shift,
2525                                 bdev_logical_block_size(rdev->bdev) >> 9);
2526         sector = r10_bio->sector;
2527         sectors = ((r10_bio->sector + block_sectors)
2528                    & ~(sector_t)(block_sectors - 1))
2529                 - sector;
2530
2531         while (sect_to_write) {
2532                 struct bio *wbio;
2533                 sector_t wsector;
2534                 if (sectors > sect_to_write)
2535                         sectors = sect_to_write;
2536                 /* Write at 'sector' for 'sectors' */
2537                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2538                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2539                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2540                 wbio->bi_iter.bi_sector = wsector +
2541                                    choose_data_offset(r10_bio, rdev);
2542                 bio_set_dev(wbio, rdev->bdev);
2543                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2544
2545                 if (submit_bio_wait(wbio) < 0)
2546                         /* Failure! */
2547                         ok = rdev_set_badblocks(rdev, wsector,
2548                                                 sectors, 0)
2549                                 && ok;
2550
2551                 bio_put(wbio);
2552                 sect_to_write -= sectors;
2553                 sector += sectors;
2554                 sectors = block_sectors;
2555         }
2556         return ok;
2557 }
2558
2559 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2560 {
2561         int slot = r10_bio->read_slot;
2562         struct bio *bio;
2563         struct r10conf *conf = mddev->private;
2564         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2565
2566         /* we got a read error. Maybe the drive is bad.  Maybe just
2567          * the block and we can fix it.
2568          * We freeze all other IO, and try reading the block from
2569          * other devices.  When we find one, we re-write
2570          * and check it that fixes the read error.
2571          * This is all done synchronously while the array is
2572          * frozen.
2573          */
2574         bio = r10_bio->devs[slot].bio;
2575         bio_put(bio);
2576         r10_bio->devs[slot].bio = NULL;
2577
2578         if (mddev->ro)
2579                 r10_bio->devs[slot].bio = IO_BLOCKED;
2580         else if (!test_bit(FailFast, &rdev->flags)) {
2581                 freeze_array(conf, 1);
2582                 fix_read_error(conf, mddev, r10_bio);
2583                 unfreeze_array(conf);
2584         } else
2585                 md_error(mddev, rdev);
2586
2587         rdev_dec_pending(rdev, mddev);
2588         allow_barrier(conf);
2589         r10_bio->state = 0;
2590         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2591 }
2592
2593 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2594 {
2595         /* Some sort of write request has finished and it
2596          * succeeded in writing where we thought there was a
2597          * bad block.  So forget the bad block.
2598          * Or possibly if failed and we need to record
2599          * a bad block.
2600          */
2601         int m;
2602         struct md_rdev *rdev;
2603
2604         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2605             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2606                 for (m = 0; m < conf->copies; m++) {
2607                         int dev = r10_bio->devs[m].devnum;
2608                         rdev = conf->mirrors[dev].rdev;
2609                         if (r10_bio->devs[m].bio == NULL ||
2610                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2611                                 continue;
2612                         if (!r10_bio->devs[m].bio->bi_status) {
2613                                 rdev_clear_badblocks(
2614                                         rdev,
2615                                         r10_bio->devs[m].addr,
2616                                         r10_bio->sectors, 0);
2617                         } else {
2618                                 if (!rdev_set_badblocks(
2619                                             rdev,
2620                                             r10_bio->devs[m].addr,
2621                                             r10_bio->sectors, 0))
2622                                         md_error(conf->mddev, rdev);
2623                         }
2624                         rdev = conf->mirrors[dev].replacement;
2625                         if (r10_bio->devs[m].repl_bio == NULL ||
2626                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2627                                 continue;
2628
2629                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2630                                 rdev_clear_badblocks(
2631                                         rdev,
2632                                         r10_bio->devs[m].addr,
2633                                         r10_bio->sectors, 0);
2634                         } else {
2635                                 if (!rdev_set_badblocks(
2636                                             rdev,
2637                                             r10_bio->devs[m].addr,
2638                                             r10_bio->sectors, 0))
2639                                         md_error(conf->mddev, rdev);
2640                         }
2641                 }
2642                 put_buf(r10_bio);
2643         } else {
2644                 bool fail = false;
2645                 for (m = 0; m < conf->copies; m++) {
2646                         int dev = r10_bio->devs[m].devnum;
2647                         struct bio *bio = r10_bio->devs[m].bio;
2648                         rdev = conf->mirrors[dev].rdev;
2649                         if (bio == IO_MADE_GOOD) {
2650                                 rdev_clear_badblocks(
2651                                         rdev,
2652                                         r10_bio->devs[m].addr,
2653                                         r10_bio->sectors, 0);
2654                                 rdev_dec_pending(rdev, conf->mddev);
2655                         } else if (bio != NULL && bio->bi_status) {
2656                                 fail = true;
2657                                 if (!narrow_write_error(r10_bio, m)) {
2658                                         md_error(conf->mddev, rdev);
2659                                         set_bit(R10BIO_Degraded,
2660                                                 &r10_bio->state);
2661                                 }
2662                                 rdev_dec_pending(rdev, conf->mddev);
2663                         }
2664                         bio = r10_bio->devs[m].repl_bio;
2665                         rdev = conf->mirrors[dev].replacement;
2666                         if (rdev && bio == IO_MADE_GOOD) {
2667                                 rdev_clear_badblocks(
2668                                         rdev,
2669                                         r10_bio->devs[m].addr,
2670                                         r10_bio->sectors, 0);
2671                                 rdev_dec_pending(rdev, conf->mddev);
2672                         }
2673                 }
2674                 if (fail) {
2675                         spin_lock_irq(&conf->device_lock);
2676                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2677                         conf->nr_queued++;
2678                         spin_unlock_irq(&conf->device_lock);
2679                         /*
2680                          * In case freeze_array() is waiting for condition
2681                          * nr_pending == nr_queued + extra to be true.
2682                          */
2683                         wake_up(&conf->wait_barrier);
2684                         md_wakeup_thread(conf->mddev->thread);
2685                 } else {
2686                         if (test_bit(R10BIO_WriteError,
2687                                      &r10_bio->state))
2688                                 close_write(r10_bio);
2689                         raid_end_bio_io(r10_bio);
2690                 }
2691         }
2692 }
2693
2694 static void raid10d(struct md_thread *thread)
2695 {
2696         struct mddev *mddev = thread->mddev;
2697         struct r10bio *r10_bio;
2698         unsigned long flags;
2699         struct r10conf *conf = mddev->private;
2700         struct list_head *head = &conf->retry_list;
2701         struct blk_plug plug;
2702
2703         md_check_recovery(mddev);
2704
2705         if (!list_empty_careful(&conf->bio_end_io_list) &&
2706             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2707                 LIST_HEAD(tmp);
2708                 spin_lock_irqsave(&conf->device_lock, flags);
2709                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2710                         while (!list_empty(&conf->bio_end_io_list)) {
2711                                 list_move(conf->bio_end_io_list.prev, &tmp);
2712                                 conf->nr_queued--;
2713                         }
2714                 }
2715                 spin_unlock_irqrestore(&conf->device_lock, flags);
2716                 while (!list_empty(&tmp)) {
2717                         r10_bio = list_first_entry(&tmp, struct r10bio,
2718                                                    retry_list);
2719                         list_del(&r10_bio->retry_list);
2720                         if (mddev->degraded)
2721                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2722
2723                         if (test_bit(R10BIO_WriteError,
2724                                      &r10_bio->state))
2725                                 close_write(r10_bio);
2726                         raid_end_bio_io(r10_bio);
2727                 }
2728         }
2729
2730         blk_start_plug(&plug);
2731         for (;;) {
2732
2733                 flush_pending_writes(conf);
2734
2735                 spin_lock_irqsave(&conf->device_lock, flags);
2736                 if (list_empty(head)) {
2737                         spin_unlock_irqrestore(&conf->device_lock, flags);
2738                         break;
2739                 }
2740                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2741                 list_del(head->prev);
2742                 conf->nr_queued--;
2743                 spin_unlock_irqrestore(&conf->device_lock, flags);
2744
2745                 mddev = r10_bio->mddev;
2746                 conf = mddev->private;
2747                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2748                     test_bit(R10BIO_WriteError, &r10_bio->state))
2749                         handle_write_completed(conf, r10_bio);
2750                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2751                         reshape_request_write(mddev, r10_bio);
2752                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2753                         sync_request_write(mddev, r10_bio);
2754                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2755                         recovery_request_write(mddev, r10_bio);
2756                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2757                         handle_read_error(mddev, r10_bio);
2758                 else
2759                         WARN_ON_ONCE(1);
2760
2761                 cond_resched();
2762                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2763                         md_check_recovery(mddev);
2764         }
2765         blk_finish_plug(&plug);
2766 }
2767
2768 static int init_resync(struct r10conf *conf)
2769 {
2770         int ret, buffs, i;
2771
2772         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2773         BUG_ON(mempool_initialized(&conf->r10buf_pool));
2774         conf->have_replacement = 0;
2775         for (i = 0; i < conf->geo.raid_disks; i++)
2776                 if (conf->mirrors[i].replacement)
2777                         conf->have_replacement = 1;
2778         ret = mempool_init(&conf->r10buf_pool, buffs,
2779                            r10buf_pool_alloc, r10buf_pool_free, conf);
2780         if (ret)
2781                 return ret;
2782         conf->next_resync = 0;
2783         return 0;
2784 }
2785
2786 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2787 {
2788         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2789         struct rsync_pages *rp;
2790         struct bio *bio;
2791         int nalloc;
2792         int i;
2793
2794         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2795             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2796                 nalloc = conf->copies; /* resync */
2797         else
2798                 nalloc = 2; /* recovery */
2799
2800         for (i = 0; i < nalloc; i++) {
2801                 bio = r10bio->devs[i].bio;
2802                 rp = bio->bi_private;
2803                 bio_reset(bio);
2804                 bio->bi_private = rp;
2805                 bio = r10bio->devs[i].repl_bio;
2806                 if (bio) {
2807                         rp = bio->bi_private;
2808                         bio_reset(bio);
2809                         bio->bi_private = rp;
2810                 }
2811         }
2812         return r10bio;
2813 }
2814
2815 /*
2816  * Set cluster_sync_high since we need other nodes to add the
2817  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2818  */
2819 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2820 {
2821         sector_t window_size;
2822         int extra_chunk, chunks;
2823
2824         /*
2825          * First, here we define "stripe" as a unit which across
2826          * all member devices one time, so we get chunks by use
2827          * raid_disks / near_copies. Otherwise, if near_copies is
2828          * close to raid_disks, then resync window could increases
2829          * linearly with the increase of raid_disks, which means
2830          * we will suspend a really large IO window while it is not
2831          * necessary. If raid_disks is not divisible by near_copies,
2832          * an extra chunk is needed to ensure the whole "stripe" is
2833          * covered.
2834          */
2835
2836         chunks = conf->geo.raid_disks / conf->geo.near_copies;
2837         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2838                 extra_chunk = 0;
2839         else
2840                 extra_chunk = 1;
2841         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2842
2843         /*
2844          * At least use a 32M window to align with raid1's resync window
2845          */
2846         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2847                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2848
2849         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2850 }
2851
2852 /*
2853  * perform a "sync" on one "block"
2854  *
2855  * We need to make sure that no normal I/O request - particularly write
2856  * requests - conflict with active sync requests.
2857  *
2858  * This is achieved by tracking pending requests and a 'barrier' concept
2859  * that can be installed to exclude normal IO requests.
2860  *
2861  * Resync and recovery are handled very differently.
2862  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2863  *
2864  * For resync, we iterate over virtual addresses, read all copies,
2865  * and update if there are differences.  If only one copy is live,
2866  * skip it.
2867  * For recovery, we iterate over physical addresses, read a good
2868  * value for each non-in_sync drive, and over-write.
2869  *
2870  * So, for recovery we may have several outstanding complex requests for a
2871  * given address, one for each out-of-sync device.  We model this by allocating
2872  * a number of r10_bio structures, one for each out-of-sync device.
2873  * As we setup these structures, we collect all bio's together into a list
2874  * which we then process collectively to add pages, and then process again
2875  * to pass to submit_bio_noacct.
2876  *
2877  * The r10_bio structures are linked using a borrowed master_bio pointer.
2878  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2879  * has its remaining count decremented to 0, the whole complex operation
2880  * is complete.
2881  *
2882  */
2883
2884 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2885                              int *skipped)
2886 {
2887         struct r10conf *conf = mddev->private;
2888         struct r10bio *r10_bio;
2889         struct bio *biolist = NULL, *bio;
2890         sector_t max_sector, nr_sectors;
2891         int i;
2892         int max_sync;
2893         sector_t sync_blocks;
2894         sector_t sectors_skipped = 0;
2895         int chunks_skipped = 0;
2896         sector_t chunk_mask = conf->geo.chunk_mask;
2897         int page_idx = 0;
2898
2899         if (!mempool_initialized(&conf->r10buf_pool))
2900                 if (init_resync(conf))
2901                         return 0;
2902
2903         /*
2904          * Allow skipping a full rebuild for incremental assembly
2905          * of a clean array, like RAID1 does.
2906          */
2907         if (mddev->bitmap == NULL &&
2908             mddev->recovery_cp == MaxSector &&
2909             mddev->reshape_position == MaxSector &&
2910             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2911             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2912             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2913             conf->fullsync == 0) {
2914                 *skipped = 1;
2915                 return mddev->dev_sectors - sector_nr;
2916         }
2917
2918  skipped:
2919         max_sector = mddev->dev_sectors;
2920         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2921             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2922                 max_sector = mddev->resync_max_sectors;
2923         if (sector_nr >= max_sector) {
2924                 conf->cluster_sync_low = 0;
2925                 conf->cluster_sync_high = 0;
2926
2927                 /* If we aborted, we need to abort the
2928                  * sync on the 'current' bitmap chucks (there can
2929                  * be several when recovering multiple devices).
2930                  * as we may have started syncing it but not finished.
2931                  * We can find the current address in
2932                  * mddev->curr_resync, but for recovery,
2933                  * we need to convert that to several
2934                  * virtual addresses.
2935                  */
2936                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2937                         end_reshape(conf);
2938                         close_sync(conf);
2939                         return 0;
2940                 }
2941
2942                 if (mddev->curr_resync < max_sector) { /* aborted */
2943                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2944                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2945                                                    &sync_blocks, 1);
2946                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2947                                 sector_t sect =
2948                                         raid10_find_virt(conf, mddev->curr_resync, i);
2949                                 md_bitmap_end_sync(mddev->bitmap, sect,
2950                                                    &sync_blocks, 1);
2951                         }
2952                 } else {
2953                         /* completed sync */
2954                         if ((!mddev->bitmap || conf->fullsync)
2955                             && conf->have_replacement
2956                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2957                                 /* Completed a full sync so the replacements
2958                                  * are now fully recovered.
2959                                  */
2960                                 rcu_read_lock();
2961                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2962                                         struct md_rdev *rdev =
2963                                                 rcu_dereference(conf->mirrors[i].replacement);
2964                                         if (rdev)
2965                                                 rdev->recovery_offset = MaxSector;
2966                                 }
2967                                 rcu_read_unlock();
2968                         }
2969                         conf->fullsync = 0;
2970                 }
2971                 md_bitmap_close_sync(mddev->bitmap);
2972                 close_sync(conf);
2973                 *skipped = 1;
2974                 return sectors_skipped;
2975         }
2976
2977         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2978                 return reshape_request(mddev, sector_nr, skipped);
2979
2980         if (chunks_skipped >= conf->geo.raid_disks) {
2981                 /* if there has been nothing to do on any drive,
2982                  * then there is nothing to do at all..
2983                  */
2984                 *skipped = 1;
2985                 return (max_sector - sector_nr) + sectors_skipped;
2986         }
2987
2988         if (max_sector > mddev->resync_max)
2989                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2990
2991         /* make sure whole request will fit in a chunk - if chunks
2992          * are meaningful
2993          */
2994         if (conf->geo.near_copies < conf->geo.raid_disks &&
2995             max_sector > (sector_nr | chunk_mask))
2996                 max_sector = (sector_nr | chunk_mask) + 1;
2997
2998         /*
2999          * If there is non-resync activity waiting for a turn, then let it
3000          * though before starting on this new sync request.
3001          */
3002         if (conf->nr_waiting)
3003                 schedule_timeout_uninterruptible(1);
3004
3005         /* Again, very different code for resync and recovery.
3006          * Both must result in an r10bio with a list of bios that
3007          * have bi_end_io, bi_sector, bi_disk set,
3008          * and bi_private set to the r10bio.
3009          * For recovery, we may actually create several r10bios
3010          * with 2 bios in each, that correspond to the bios in the main one.
3011          * In this case, the subordinate r10bios link back through a
3012          * borrowed master_bio pointer, and the counter in the master
3013          * includes a ref from each subordinate.
3014          */
3015         /* First, we decide what to do and set ->bi_end_io
3016          * To end_sync_read if we want to read, and
3017          * end_sync_write if we will want to write.
3018          */
3019
3020         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3021         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3022                 /* recovery... the complicated one */
3023                 int j;
3024                 r10_bio = NULL;
3025
3026                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3027                         int still_degraded;
3028                         struct r10bio *rb2;
3029                         sector_t sect;
3030                         int must_sync;
3031                         int any_working;
3032                         int need_recover = 0;
3033                         int need_replace = 0;
3034                         struct raid10_info *mirror = &conf->mirrors[i];
3035                         struct md_rdev *mrdev, *mreplace;
3036
3037                         rcu_read_lock();
3038                         mrdev = rcu_dereference(mirror->rdev);
3039                         mreplace = rcu_dereference(mirror->replacement);
3040
3041                         if (mrdev != NULL &&
3042                             !test_bit(Faulty, &mrdev->flags) &&
3043                             !test_bit(In_sync, &mrdev->flags))
3044                                 need_recover = 1;
3045                         if (mreplace != NULL &&
3046                             !test_bit(Faulty, &mreplace->flags))
3047                                 need_replace = 1;
3048
3049                         if (!need_recover && !need_replace) {
3050                                 rcu_read_unlock();
3051                                 continue;
3052                         }
3053
3054                         still_degraded = 0;
3055                         /* want to reconstruct this device */
3056                         rb2 = r10_bio;
3057                         sect = raid10_find_virt(conf, sector_nr, i);
3058                         if (sect >= mddev->resync_max_sectors) {
3059                                 /* last stripe is not complete - don't
3060                                  * try to recover this sector.
3061                                  */
3062                                 rcu_read_unlock();
3063                                 continue;
3064                         }
3065                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3066                                 mreplace = NULL;
3067                         /* Unless we are doing a full sync, or a replacement
3068                          * we only need to recover the block if it is set in
3069                          * the bitmap
3070                          */
3071                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3072                                                          &sync_blocks, 1);
3073                         if (sync_blocks < max_sync)
3074                                 max_sync = sync_blocks;
3075                         if (!must_sync &&
3076                             mreplace == NULL &&
3077                             !conf->fullsync) {
3078                                 /* yep, skip the sync_blocks here, but don't assume
3079                                  * that there will never be anything to do here
3080                                  */
3081                                 chunks_skipped = -1;
3082                                 rcu_read_unlock();
3083                                 continue;
3084                         }
3085                         atomic_inc(&mrdev->nr_pending);
3086                         if (mreplace)
3087                                 atomic_inc(&mreplace->nr_pending);
3088                         rcu_read_unlock();
3089
3090                         r10_bio = raid10_alloc_init_r10buf(conf);
3091                         r10_bio->state = 0;
3092                         raise_barrier(conf, rb2 != NULL);
3093                         atomic_set(&r10_bio->remaining, 0);
3094
3095                         r10_bio->master_bio = (struct bio*)rb2;
3096                         if (rb2)
3097                                 atomic_inc(&rb2->remaining);
3098                         r10_bio->mddev = mddev;
3099                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3100                         r10_bio->sector = sect;
3101
3102                         raid10_find_phys(conf, r10_bio);
3103
3104                         /* Need to check if the array will still be
3105                          * degraded
3106                          */
3107                         rcu_read_lock();
3108                         for (j = 0; j < conf->geo.raid_disks; j++) {
3109                                 struct md_rdev *rdev = rcu_dereference(
3110                                         conf->mirrors[j].rdev);
3111                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3112                                         still_degraded = 1;
3113                                         break;
3114                                 }
3115                         }
3116
3117                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3118                                                          &sync_blocks, still_degraded);
3119
3120                         any_working = 0;
3121                         for (j=0; j<conf->copies;j++) {
3122                                 int k;
3123                                 int d = r10_bio->devs[j].devnum;
3124                                 sector_t from_addr, to_addr;
3125                                 struct md_rdev *rdev =
3126                                         rcu_dereference(conf->mirrors[d].rdev);
3127                                 sector_t sector, first_bad;
3128                                 int bad_sectors;
3129                                 if (!rdev ||
3130                                     !test_bit(In_sync, &rdev->flags))
3131                                         continue;
3132                                 /* This is where we read from */
3133                                 any_working = 1;
3134                                 sector = r10_bio->devs[j].addr;
3135
3136                                 if (is_badblock(rdev, sector, max_sync,
3137                                                 &first_bad, &bad_sectors)) {
3138                                         if (first_bad > sector)
3139                                                 max_sync = first_bad - sector;
3140                                         else {
3141                                                 bad_sectors -= (sector
3142                                                                 - first_bad);
3143                                                 if (max_sync > bad_sectors)
3144                                                         max_sync = bad_sectors;
3145                                                 continue;
3146                                         }
3147                                 }
3148                                 bio = r10_bio->devs[0].bio;
3149                                 bio->bi_next = biolist;
3150                                 biolist = bio;
3151                                 bio->bi_end_io = end_sync_read;
3152                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3153                                 if (test_bit(FailFast, &rdev->flags))
3154                                         bio->bi_opf |= MD_FAILFAST;
3155                                 from_addr = r10_bio->devs[j].addr;
3156                                 bio->bi_iter.bi_sector = from_addr +
3157                                         rdev->data_offset;
3158                                 bio_set_dev(bio, rdev->bdev);
3159                                 atomic_inc(&rdev->nr_pending);
3160                                 /* and we write to 'i' (if not in_sync) */
3161
3162                                 for (k=0; k<conf->copies; k++)
3163                                         if (r10_bio->devs[k].devnum == i)
3164                                                 break;
3165                                 BUG_ON(k == conf->copies);
3166                                 to_addr = r10_bio->devs[k].addr;
3167                                 r10_bio->devs[0].devnum = d;
3168                                 r10_bio->devs[0].addr = from_addr;
3169                                 r10_bio->devs[1].devnum = i;
3170                                 r10_bio->devs[1].addr = to_addr;
3171
3172                                 if (need_recover) {
3173                                         bio = r10_bio->devs[1].bio;
3174                                         bio->bi_next = biolist;
3175                                         biolist = bio;
3176                                         bio->bi_end_io = end_sync_write;
3177                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3178                                         bio->bi_iter.bi_sector = to_addr
3179                                                 + mrdev->data_offset;
3180                                         bio_set_dev(bio, mrdev->bdev);
3181                                         atomic_inc(&r10_bio->remaining);
3182                                 } else
3183                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3184
3185                                 /* and maybe write to replacement */
3186                                 bio = r10_bio->devs[1].repl_bio;
3187                                 if (bio)
3188                                         bio->bi_end_io = NULL;
3189                                 /* Note: if need_replace, then bio
3190                                  * cannot be NULL as r10buf_pool_alloc will
3191                                  * have allocated it.
3192                                  */
3193                                 if (!need_replace)
3194                                         break;
3195                                 bio->bi_next = biolist;
3196                                 biolist = bio;
3197                                 bio->bi_end_io = end_sync_write;
3198                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3199                                 bio->bi_iter.bi_sector = to_addr +
3200                                         mreplace->data_offset;
3201                                 bio_set_dev(bio, mreplace->bdev);
3202                                 atomic_inc(&r10_bio->remaining);
3203                                 break;
3204                         }
3205                         rcu_read_unlock();
3206                         if (j == conf->copies) {
3207                                 /* Cannot recover, so abort the recovery or
3208                                  * record a bad block */
3209                                 if (any_working) {
3210                                         /* problem is that there are bad blocks
3211                                          * on other device(s)
3212                                          */
3213                                         int k;
3214                                         for (k = 0; k < conf->copies; k++)
3215                                                 if (r10_bio->devs[k].devnum == i)
3216                                                         break;
3217                                         if (!test_bit(In_sync,
3218                                                       &mrdev->flags)
3219                                             && !rdev_set_badblocks(
3220                                                     mrdev,
3221                                                     r10_bio->devs[k].addr,
3222                                                     max_sync, 0))
3223                                                 any_working = 0;
3224                                         if (mreplace &&
3225                                             !rdev_set_badblocks(
3226                                                     mreplace,
3227                                                     r10_bio->devs[k].addr,
3228                                                     max_sync, 0))
3229                                                 any_working = 0;
3230                                 }
3231                                 if (!any_working)  {
3232                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3233                                                               &mddev->recovery))
3234                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3235                                                        mdname(mddev));
3236                                         mirror->recovery_disabled
3237                                                 = mddev->recovery_disabled;
3238                                 }
3239                                 put_buf(r10_bio);
3240                                 if (rb2)
3241                                         atomic_dec(&rb2->remaining);
3242                                 r10_bio = rb2;
3243                                 rdev_dec_pending(mrdev, mddev);
3244                                 if (mreplace)
3245                                         rdev_dec_pending(mreplace, mddev);
3246                                 break;
3247                         }
3248                         rdev_dec_pending(mrdev, mddev);
3249                         if (mreplace)
3250                                 rdev_dec_pending(mreplace, mddev);
3251                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3252                                 /* Only want this if there is elsewhere to
3253                                  * read from. 'j' is currently the first
3254                                  * readable copy.
3255                                  */
3256                                 int targets = 1;
3257                                 for (; j < conf->copies; j++) {
3258                                         int d = r10_bio->devs[j].devnum;
3259                                         if (conf->mirrors[d].rdev &&
3260                                             test_bit(In_sync,
3261                                                       &conf->mirrors[d].rdev->flags))
3262                                                 targets++;
3263                                 }
3264                                 if (targets == 1)
3265                                         r10_bio->devs[0].bio->bi_opf
3266                                                 &= ~MD_FAILFAST;
3267                         }
3268                 }
3269                 if (biolist == NULL) {
3270                         while (r10_bio) {
3271                                 struct r10bio *rb2 = r10_bio;
3272                                 r10_bio = (struct r10bio*) rb2->master_bio;
3273                                 rb2->master_bio = NULL;
3274                                 put_buf(rb2);
3275                         }
3276                         goto giveup;
3277                 }
3278         } else {
3279                 /* resync. Schedule a read for every block at this virt offset */
3280                 int count = 0;
3281
3282                 /*
3283                  * Since curr_resync_completed could probably not update in
3284                  * time, and we will set cluster_sync_low based on it.
3285                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3286                  * safety reason, which ensures curr_resync_completed is
3287                  * updated in bitmap_cond_end_sync.
3288                  */
3289                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3290                                         mddev_is_clustered(mddev) &&
3291                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3292
3293                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3294                                           &sync_blocks, mddev->degraded) &&
3295                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3296                                                  &mddev->recovery)) {
3297                         /* We can skip this block */
3298                         *skipped = 1;
3299                         return sync_blocks + sectors_skipped;
3300                 }
3301                 if (sync_blocks < max_sync)
3302                         max_sync = sync_blocks;
3303                 r10_bio = raid10_alloc_init_r10buf(conf);
3304                 r10_bio->state = 0;
3305
3306                 r10_bio->mddev = mddev;
3307                 atomic_set(&r10_bio->remaining, 0);
3308                 raise_barrier(conf, 0);
3309                 conf->next_resync = sector_nr;
3310
3311                 r10_bio->master_bio = NULL;
3312                 r10_bio->sector = sector_nr;
3313                 set_bit(R10BIO_IsSync, &r10_bio->state);
3314                 raid10_find_phys(conf, r10_bio);
3315                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3316
3317                 for (i = 0; i < conf->copies; i++) {
3318                         int d = r10_bio->devs[i].devnum;
3319                         sector_t first_bad, sector;
3320                         int bad_sectors;
3321                         struct md_rdev *rdev;
3322
3323                         if (r10_bio->devs[i].repl_bio)
3324                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3325
3326                         bio = r10_bio->devs[i].bio;
3327                         bio->bi_status = BLK_STS_IOERR;
3328                         rcu_read_lock();
3329                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3330                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3331                                 rcu_read_unlock();
3332                                 continue;
3333                         }
3334                         sector = r10_bio->devs[i].addr;
3335                         if (is_badblock(rdev, sector, max_sync,
3336                                         &first_bad, &bad_sectors)) {
3337                                 if (first_bad > sector)
3338                                         max_sync = first_bad - sector;
3339                                 else {
3340                                         bad_sectors -= (sector - first_bad);
3341                                         if (max_sync > bad_sectors)
3342                                                 max_sync = bad_sectors;
3343                                         rcu_read_unlock();
3344                                         continue;
3345                                 }
3346                         }
3347                         atomic_inc(&rdev->nr_pending);
3348                         atomic_inc(&r10_bio->remaining);
3349                         bio->bi_next = biolist;
3350                         biolist = bio;
3351                         bio->bi_end_io = end_sync_read;
3352                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3353                         if (test_bit(FailFast, &rdev->flags))
3354                                 bio->bi_opf |= MD_FAILFAST;
3355                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3356                         bio_set_dev(bio, rdev->bdev);
3357                         count++;
3358
3359                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3360                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3361                                 rcu_read_unlock();
3362                                 continue;
3363                         }
3364                         atomic_inc(&rdev->nr_pending);
3365
3366                         /* Need to set up for writing to the replacement */
3367                         bio = r10_bio->devs[i].repl_bio;
3368                         bio->bi_status = BLK_STS_IOERR;
3369
3370                         sector = r10_bio->devs[i].addr;
3371                         bio->bi_next = biolist;
3372                         biolist = bio;
3373                         bio->bi_end_io = end_sync_write;
3374                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3375                         if (test_bit(FailFast, &rdev->flags))
3376                                 bio->bi_opf |= MD_FAILFAST;
3377                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3378                         bio_set_dev(bio, rdev->bdev);
3379                         count++;
3380                         rcu_read_unlock();
3381                 }
3382
3383                 if (count < 2) {
3384                         for (i=0; i<conf->copies; i++) {
3385                                 int d = r10_bio->devs[i].devnum;
3386                                 if (r10_bio->devs[i].bio->bi_end_io)
3387                                         rdev_dec_pending(conf->mirrors[d].rdev,
3388                                                          mddev);
3389                                 if (r10_bio->devs[i].repl_bio &&
3390                                     r10_bio->devs[i].repl_bio->bi_end_io)
3391                                         rdev_dec_pending(
3392                                                 conf->mirrors[d].replacement,
3393                                                 mddev);
3394                         }
3395                         put_buf(r10_bio);
3396                         biolist = NULL;
3397                         goto giveup;
3398                 }
3399         }
3400
3401         nr_sectors = 0;
3402         if (sector_nr + max_sync < max_sector)
3403                 max_sector = sector_nr + max_sync;
3404         do {
3405                 struct page *page;
3406                 int len = PAGE_SIZE;
3407                 if (sector_nr + (len>>9) > max_sector)
3408                         len = (max_sector - sector_nr) << 9;
3409                 if (len == 0)
3410                         break;
3411                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3412                         struct resync_pages *rp = get_resync_pages(bio);
3413                         page = resync_fetch_page(rp, page_idx);
3414                         /*
3415                          * won't fail because the vec table is big enough
3416                          * to hold all these pages
3417                          */
3418                         bio_add_page(bio, page, len, 0);
3419                 }
3420                 nr_sectors += len>>9;
3421                 sector_nr += len>>9;
3422         } while (++page_idx < RESYNC_PAGES);
3423         r10_bio->sectors = nr_sectors;
3424
3425         if (mddev_is_clustered(mddev) &&
3426             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3427                 /* It is resync not recovery */
3428                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3429                         conf->cluster_sync_low = mddev->curr_resync_completed;
3430                         raid10_set_cluster_sync_high(conf);
3431                         /* Send resync message */
3432                         md_cluster_ops->resync_info_update(mddev,
3433                                                 conf->cluster_sync_low,
3434                                                 conf->cluster_sync_high);
3435                 }
3436         } else if (mddev_is_clustered(mddev)) {
3437                 /* This is recovery not resync */
3438                 sector_t sect_va1, sect_va2;
3439                 bool broadcast_msg = false;
3440
3441                 for (i = 0; i < conf->geo.raid_disks; i++) {
3442                         /*
3443                          * sector_nr is a device address for recovery, so we
3444                          * need translate it to array address before compare
3445                          * with cluster_sync_high.
3446                          */
3447                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3448
3449                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3450                                 broadcast_msg = true;
3451                                 /*
3452                                  * curr_resync_completed is similar as
3453                                  * sector_nr, so make the translation too.
3454                                  */
3455                                 sect_va2 = raid10_find_virt(conf,
3456                                         mddev->curr_resync_completed, i);
3457
3458                                 if (conf->cluster_sync_low == 0 ||
3459                                     conf->cluster_sync_low > sect_va2)
3460                                         conf->cluster_sync_low = sect_va2;
3461                         }
3462                 }
3463                 if (broadcast_msg) {
3464                         raid10_set_cluster_sync_high(conf);
3465                         md_cluster_ops->resync_info_update(mddev,
3466                                                 conf->cluster_sync_low,
3467                                                 conf->cluster_sync_high);
3468                 }
3469         }
3470
3471         while (biolist) {
3472                 bio = biolist;
3473                 biolist = biolist->bi_next;
3474
3475                 bio->bi_next = NULL;
3476                 r10_bio = get_resync_r10bio(bio);
3477                 r10_bio->sectors = nr_sectors;
3478
3479                 if (bio->bi_end_io == end_sync_read) {
3480                         md_sync_acct_bio(bio, nr_sectors);
3481                         bio->bi_status = 0;
3482                         submit_bio_noacct(bio);
3483                 }
3484         }
3485
3486         if (sectors_skipped)
3487                 /* pretend they weren't skipped, it makes
3488                  * no important difference in this case
3489                  */
3490                 md_done_sync(mddev, sectors_skipped, 1);
3491
3492         return sectors_skipped + nr_sectors;
3493  giveup:
3494         /* There is nowhere to write, so all non-sync
3495          * drives must be failed or in resync, all drives
3496          * have a bad block, so try the next chunk...
3497          */
3498         if (sector_nr + max_sync < max_sector)
3499                 max_sector = sector_nr + max_sync;
3500
3501         sectors_skipped += (max_sector - sector_nr);
3502         chunks_skipped ++;
3503         sector_nr = max_sector;
3504         goto skipped;
3505 }
3506
3507 static sector_t
3508 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3509 {
3510         sector_t size;
3511         struct r10conf *conf = mddev->private;
3512
3513         if (!raid_disks)
3514                 raid_disks = min(conf->geo.raid_disks,
3515                                  conf->prev.raid_disks);
3516         if (!sectors)
3517                 sectors = conf->dev_sectors;
3518
3519         size = sectors >> conf->geo.chunk_shift;
3520         sector_div(size, conf->geo.far_copies);
3521         size = size * raid_disks;
3522         sector_div(size, conf->geo.near_copies);
3523
3524         return size << conf->geo.chunk_shift;
3525 }
3526
3527 static void calc_sectors(struct r10conf *conf, sector_t size)
3528 {
3529         /* Calculate the number of sectors-per-device that will
3530          * actually be used, and set conf->dev_sectors and
3531          * conf->stride
3532          */
3533
3534         size = size >> conf->geo.chunk_shift;
3535         sector_div(size, conf->geo.far_copies);
3536         size = size * conf->geo.raid_disks;
3537         sector_div(size, conf->geo.near_copies);
3538         /* 'size' is now the number of chunks in the array */
3539         /* calculate "used chunks per device" */
3540         size = size * conf->copies;
3541
3542         /* We need to round up when dividing by raid_disks to
3543          * get the stride size.
3544          */
3545         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3546
3547         conf->dev_sectors = size << conf->geo.chunk_shift;
3548
3549         if (conf->geo.far_offset)
3550                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3551         else {
3552                 sector_div(size, conf->geo.far_copies);
3553                 conf->geo.stride = size << conf->geo.chunk_shift;
3554         }
3555 }
3556
3557 enum geo_type {geo_new, geo_old, geo_start};
3558 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3559 {
3560         int nc, fc, fo;
3561         int layout, chunk, disks;
3562         switch (new) {
3563         case geo_old:
3564                 layout = mddev->layout;
3565                 chunk = mddev->chunk_sectors;
3566                 disks = mddev->raid_disks - mddev->delta_disks;
3567                 break;
3568         case geo_new:
3569                 layout = mddev->new_layout;
3570                 chunk = mddev->new_chunk_sectors;
3571                 disks = mddev->raid_disks;
3572                 break;
3573         default: /* avoid 'may be unused' warnings */
3574         case geo_start: /* new when starting reshape - raid_disks not
3575                          * updated yet. */
3576                 layout = mddev->new_layout;
3577                 chunk = mddev->new_chunk_sectors;
3578                 disks = mddev->raid_disks + mddev->delta_disks;
3579                 break;
3580         }
3581         if (layout >> 19)
3582                 return -1;
3583         if (chunk < (PAGE_SIZE >> 9) ||
3584             !is_power_of_2(chunk))
3585                 return -2;
3586         nc = layout & 255;
3587         fc = (layout >> 8) & 255;
3588         fo = layout & (1<<16);
3589         geo->raid_disks = disks;
3590         geo->near_copies = nc;
3591         geo->far_copies = fc;
3592         geo->far_offset = fo;
3593         switch (layout >> 17) {
3594         case 0: /* original layout.  simple but not always optimal */
3595                 geo->far_set_size = disks;
3596                 break;
3597         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3598                  * actually using this, but leave code here just in case.*/
3599                 geo->far_set_size = disks/fc;
3600                 WARN(geo->far_set_size < fc,
3601                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3602                 break;
3603         case 2: /* "improved" layout fixed to match documentation */
3604                 geo->far_set_size = fc * nc;
3605                 break;
3606         default: /* Not a valid layout */
3607                 return -1;
3608         }
3609         geo->chunk_mask = chunk - 1;
3610         geo->chunk_shift = ffz(~chunk);
3611         return nc*fc;
3612 }
3613
3614 static struct r10conf *setup_conf(struct mddev *mddev)
3615 {
3616         struct r10conf *conf = NULL;
3617         int err = -EINVAL;
3618         struct geom geo;
3619         int copies;
3620
3621         copies = setup_geo(&geo, mddev, geo_new);
3622
3623         if (copies == -2) {
3624                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3625                         mdname(mddev), PAGE_SIZE);
3626                 goto out;
3627         }
3628
3629         if (copies < 2 || copies > mddev->raid_disks) {
3630                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3631                         mdname(mddev), mddev->new_layout);
3632                 goto out;
3633         }
3634
3635         err = -ENOMEM;
3636         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3637         if (!conf)
3638                 goto out;
3639
3640         /* FIXME calc properly */
3641         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3642                                 sizeof(struct raid10_info),
3643                                 GFP_KERNEL);
3644         if (!conf->mirrors)
3645                 goto out;
3646
3647         conf->tmppage = alloc_page(GFP_KERNEL);
3648         if (!conf->tmppage)
3649                 goto out;
3650
3651         conf->geo = geo;
3652         conf->copies = copies;
3653         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3654                            rbio_pool_free, conf);
3655         if (err)
3656                 goto out;
3657
3658         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3659         if (err)
3660                 goto out;
3661
3662         calc_sectors(conf, mddev->dev_sectors);
3663         if (mddev->reshape_position == MaxSector) {
3664                 conf->prev = conf->geo;
3665                 conf->reshape_progress = MaxSector;
3666         } else {
3667                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3668                         err = -EINVAL;
3669                         goto out;
3670                 }
3671                 conf->reshape_progress = mddev->reshape_position;
3672                 if (conf->prev.far_offset)
3673                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3674                 else
3675                         /* far_copies must be 1 */
3676                         conf->prev.stride = conf->dev_sectors;
3677         }
3678         conf->reshape_safe = conf->reshape_progress;
3679         spin_lock_init(&conf->device_lock);
3680         INIT_LIST_HEAD(&conf->retry_list);
3681         INIT_LIST_HEAD(&conf->bio_end_io_list);
3682
3683         spin_lock_init(&conf->resync_lock);
3684         init_waitqueue_head(&conf->wait_barrier);
3685         atomic_set(&conf->nr_pending, 0);
3686
3687         err = -ENOMEM;
3688         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3689         if (!conf->thread)
3690                 goto out;
3691
3692         conf->mddev = mddev;
3693         return conf;
3694
3695  out:
3696         if (conf) {
3697                 mempool_exit(&conf->r10bio_pool);
3698                 kfree(conf->mirrors);
3699                 safe_put_page(conf->tmppage);
3700                 bioset_exit(&conf->bio_split);
3701                 kfree(conf);
3702         }
3703         return ERR_PTR(err);
3704 }
3705
3706 static void raid10_set_io_opt(struct r10conf *conf)
3707 {
3708         int raid_disks = conf->geo.raid_disks;
3709
3710         if (!(conf->geo.raid_disks % conf->geo.near_copies))
3711                 raid_disks /= conf->geo.near_copies;
3712         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3713                          raid_disks);
3714 }
3715
3716 static int raid10_run(struct mddev *mddev)
3717 {
3718         struct r10conf *conf;
3719         int i, disk_idx;
3720         struct raid10_info *disk;
3721         struct md_rdev *rdev;
3722         sector_t size;
3723         sector_t min_offset_diff = 0;
3724         int first = 1;
3725         bool discard_supported = false;
3726
3727         if (mddev_init_writes_pending(mddev) < 0)
3728                 return -ENOMEM;
3729
3730         if (mddev->private == NULL) {
3731                 conf = setup_conf(mddev);
3732                 if (IS_ERR(conf))
3733                         return PTR_ERR(conf);
3734                 mddev->private = conf;
3735         }
3736         conf = mddev->private;
3737         if (!conf)
3738                 goto out;
3739
3740         if (mddev_is_clustered(conf->mddev)) {
3741                 int fc, fo;
3742
3743                 fc = (mddev->layout >> 8) & 255;
3744                 fo = mddev->layout & (1<<16);
3745                 if (fc > 1 || fo > 0) {
3746                         pr_err("only near layout is supported by clustered"
3747                                 " raid10\n");
3748                         goto out_free_conf;
3749                 }
3750         }
3751
3752         mddev->thread = conf->thread;
3753         conf->thread = NULL;
3754
3755         if (mddev->queue) {
3756                 blk_queue_max_discard_sectors(mddev->queue,
3757                                               mddev->chunk_sectors);
3758                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3759                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3760                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3761                 raid10_set_io_opt(conf);
3762         }
3763
3764         rdev_for_each(rdev, mddev) {
3765                 long long diff;
3766
3767                 disk_idx = rdev->raid_disk;
3768                 if (disk_idx < 0)
3769                         continue;
3770                 if (disk_idx >= conf->geo.raid_disks &&
3771                     disk_idx >= conf->prev.raid_disks)
3772                         continue;
3773                 disk = conf->mirrors + disk_idx;
3774
3775                 if (test_bit(Replacement, &rdev->flags)) {
3776                         if (disk->replacement)
3777                                 goto out_free_conf;
3778                         disk->replacement = rdev;
3779                 } else {
3780                         if (disk->rdev)
3781                                 goto out_free_conf;
3782                         disk->rdev = rdev;
3783                 }
3784                 diff = (rdev->new_data_offset - rdev->data_offset);
3785                 if (!mddev->reshape_backwards)
3786                         diff = -diff;
3787                 if (diff < 0)
3788                         diff = 0;
3789                 if (first || diff < min_offset_diff)
3790                         min_offset_diff = diff;
3791
3792                 if (mddev->gendisk)
3793                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3794                                           rdev->data_offset << 9);
3795
3796                 disk->head_position = 0;
3797
3798                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3799                         discard_supported = true;
3800                 first = 0;
3801         }
3802
3803         if (mddev->queue) {
3804                 if (discard_supported)
3805                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3806                                                 mddev->queue);
3807                 else
3808                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3809                                                   mddev->queue);
3810         }
3811         /* need to check that every block has at least one working mirror */
3812         if (!enough(conf, -1)) {
3813                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3814                        mdname(mddev));
3815                 goto out_free_conf;
3816         }
3817
3818         if (conf->reshape_progress != MaxSector) {
3819                 /* must ensure that shape change is supported */
3820                 if (conf->geo.far_copies != 1 &&
3821                     conf->geo.far_offset == 0)
3822                         goto out_free_conf;
3823                 if (conf->prev.far_copies != 1 &&
3824                     conf->prev.far_offset == 0)
3825                         goto out_free_conf;
3826         }
3827
3828         mddev->degraded = 0;
3829         for (i = 0;
3830              i < conf->geo.raid_disks
3831                      || i < conf->prev.raid_disks;
3832              i++) {
3833
3834                 disk = conf->mirrors + i;
3835
3836                 if (!disk->rdev && disk->replacement) {
3837                         /* The replacement is all we have - use it */
3838                         disk->rdev = disk->replacement;
3839                         disk->replacement = NULL;
3840                         clear_bit(Replacement, &disk->rdev->flags);
3841                 }
3842
3843                 if (!disk->rdev ||
3844                     !test_bit(In_sync, &disk->rdev->flags)) {
3845                         disk->head_position = 0;
3846                         mddev->degraded++;
3847                         if (disk->rdev &&
3848                             disk->rdev->saved_raid_disk < 0)
3849                                 conf->fullsync = 1;
3850                 }
3851
3852                 if (disk->replacement &&
3853                     !test_bit(In_sync, &disk->replacement->flags) &&
3854                     disk->replacement->saved_raid_disk < 0) {
3855                         conf->fullsync = 1;
3856                 }
3857
3858                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3859         }
3860
3861         if (mddev->recovery_cp != MaxSector)
3862                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3863                           mdname(mddev));
3864         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3865                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3866                 conf->geo.raid_disks);
3867         /*
3868          * Ok, everything is just fine now
3869          */
3870         mddev->dev_sectors = conf->dev_sectors;
3871         size = raid10_size(mddev, 0, 0);
3872         md_set_array_sectors(mddev, size);
3873         mddev->resync_max_sectors = size;
3874         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3875
3876         if (md_integrity_register(mddev))
3877                 goto out_free_conf;
3878
3879         if (conf->reshape_progress != MaxSector) {
3880                 unsigned long before_length, after_length;
3881
3882                 before_length = ((1 << conf->prev.chunk_shift) *
3883                                  conf->prev.far_copies);
3884                 after_length = ((1 << conf->geo.chunk_shift) *
3885                                 conf->geo.far_copies);
3886
3887                 if (max(before_length, after_length) > min_offset_diff) {
3888                         /* This cannot work */
3889                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3890                         goto out_free_conf;
3891                 }
3892                 conf->offset_diff = min_offset_diff;
3893
3894                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3895                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3896                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3897                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3898                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3899                                                         "reshape");
3900                 if (!mddev->sync_thread)
3901                         goto out_free_conf;
3902         }
3903
3904         return 0;
3905
3906 out_free_conf:
3907         md_unregister_thread(&mddev->thread);
3908         mempool_exit(&conf->r10bio_pool);
3909         safe_put_page(conf->tmppage);
3910         kfree(conf->mirrors);
3911         kfree(conf);
3912         mddev->private = NULL;
3913 out:
3914         return -EIO;
3915 }
3916
3917 static void raid10_free(struct mddev *mddev, void *priv)
3918 {
3919         struct r10conf *conf = priv;
3920
3921         mempool_exit(&conf->r10bio_pool);
3922         safe_put_page(conf->tmppage);
3923         kfree(conf->mirrors);
3924         kfree(conf->mirrors_old);
3925         kfree(conf->mirrors_new);
3926         bioset_exit(&conf->bio_split);
3927         kfree(conf);
3928 }
3929
3930 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3931 {
3932         struct r10conf *conf = mddev->private;
3933
3934         if (quiesce)
3935                 raise_barrier(conf, 0);
3936         else
3937                 lower_barrier(conf);
3938 }
3939
3940 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3941 {
3942         /* Resize of 'far' arrays is not supported.
3943          * For 'near' and 'offset' arrays we can set the
3944          * number of sectors used to be an appropriate multiple
3945          * of the chunk size.
3946          * For 'offset', this is far_copies*chunksize.
3947          * For 'near' the multiplier is the LCM of
3948          * near_copies and raid_disks.
3949          * So if far_copies > 1 && !far_offset, fail.
3950          * Else find LCM(raid_disks, near_copy)*far_copies and
3951          * multiply by chunk_size.  Then round to this number.
3952          * This is mostly done by raid10_size()
3953          */
3954         struct r10conf *conf = mddev->private;
3955         sector_t oldsize, size;
3956
3957         if (mddev->reshape_position != MaxSector)
3958                 return -EBUSY;
3959
3960         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3961                 return -EINVAL;
3962
3963         oldsize = raid10_size(mddev, 0, 0);
3964         size = raid10_size(mddev, sectors, 0);
3965         if (mddev->external_size &&
3966             mddev->array_sectors > size)
3967                 return -EINVAL;
3968         if (mddev->bitmap) {
3969                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3970                 if (ret)
3971                         return ret;
3972         }
3973         md_set_array_sectors(mddev, size);
3974         if (sectors > mddev->dev_sectors &&
3975             mddev->recovery_cp > oldsize) {
3976                 mddev->recovery_cp = oldsize;
3977                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3978         }
3979         calc_sectors(conf, sectors);
3980         mddev->dev_sectors = conf->dev_sectors;
3981         mddev->resync_max_sectors = size;
3982         return 0;
3983 }
3984
3985 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3986 {
3987         struct md_rdev *rdev;
3988         struct r10conf *conf;
3989
3990         if (mddev->degraded > 0) {
3991                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3992                         mdname(mddev));
3993                 return ERR_PTR(-EINVAL);
3994         }
3995         sector_div(size, devs);
3996
3997         /* Set new parameters */
3998         mddev->new_level = 10;
3999         /* new layout: far_copies = 1, near_copies = 2 */
4000         mddev->new_layout = (1<<8) + 2;
4001         mddev->new_chunk_sectors = mddev->chunk_sectors;
4002         mddev->delta_disks = mddev->raid_disks;
4003         mddev->raid_disks *= 2;
4004         /* make sure it will be not marked as dirty */
4005         mddev->recovery_cp = MaxSector;
4006         mddev->dev_sectors = size;
4007
4008         conf = setup_conf(mddev);
4009         if (!IS_ERR(conf)) {
4010                 rdev_for_each(rdev, mddev)
4011                         if (rdev->raid_disk >= 0) {
4012                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4013                                 rdev->sectors = size;
4014                         }
4015                 conf->barrier = 1;
4016         }
4017
4018         return conf;
4019 }
4020
4021 static void *raid10_takeover(struct mddev *mddev)
4022 {
4023         struct r0conf *raid0_conf;
4024
4025         /* raid10 can take over:
4026          *  raid0 - providing it has only two drives
4027          */
4028         if (mddev->level == 0) {
4029                 /* for raid0 takeover only one zone is supported */
4030                 raid0_conf = mddev->private;
4031                 if (raid0_conf->nr_strip_zones > 1) {
4032                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4033                                 mdname(mddev));
4034                         return ERR_PTR(-EINVAL);
4035                 }
4036                 return raid10_takeover_raid0(mddev,
4037                         raid0_conf->strip_zone->zone_end,
4038                         raid0_conf->strip_zone->nb_dev);
4039         }
4040         return ERR_PTR(-EINVAL);
4041 }
4042
4043 static int raid10_check_reshape(struct mddev *mddev)
4044 {
4045         /* Called when there is a request to change
4046          * - layout (to ->new_layout)
4047          * - chunk size (to ->new_chunk_sectors)
4048          * - raid_disks (by delta_disks)
4049          * or when trying to restart a reshape that was ongoing.
4050          *
4051          * We need to validate the request and possibly allocate
4052          * space if that might be an issue later.
4053          *
4054          * Currently we reject any reshape of a 'far' mode array,
4055          * allow chunk size to change if new is generally acceptable,
4056          * allow raid_disks to increase, and allow
4057          * a switch between 'near' mode and 'offset' mode.
4058          */
4059         struct r10conf *conf = mddev->private;
4060         struct geom geo;
4061
4062         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4063                 return -EINVAL;
4064
4065         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4066                 /* mustn't change number of copies */
4067                 return -EINVAL;
4068         if (geo.far_copies > 1 && !geo.far_offset)
4069                 /* Cannot switch to 'far' mode */
4070                 return -EINVAL;
4071
4072         if (mddev->array_sectors & geo.chunk_mask)
4073                         /* not factor of array size */
4074                         return -EINVAL;
4075
4076         if (!enough(conf, -1))
4077                 return -EINVAL;
4078
4079         kfree(conf->mirrors_new);
4080         conf->mirrors_new = NULL;
4081         if (mddev->delta_disks > 0) {
4082                 /* allocate new 'mirrors' list */
4083                 conf->mirrors_new =
4084                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4085                                 sizeof(struct raid10_info),
4086                                 GFP_KERNEL);
4087                 if (!conf->mirrors_new)
4088                         return -ENOMEM;
4089         }
4090         return 0;
4091 }
4092
4093 /*
4094  * Need to check if array has failed when deciding whether to:
4095  *  - start an array
4096  *  - remove non-faulty devices
4097  *  - add a spare
4098  *  - allow a reshape
4099  * This determination is simple when no reshape is happening.
4100  * However if there is a reshape, we need to carefully check
4101  * both the before and after sections.
4102  * This is because some failed devices may only affect one
4103  * of the two sections, and some non-in_sync devices may
4104  * be insync in the section most affected by failed devices.
4105  */
4106 static int calc_degraded(struct r10conf *conf)
4107 {
4108         int degraded, degraded2;
4109         int i;
4110
4111         rcu_read_lock();
4112         degraded = 0;
4113         /* 'prev' section first */
4114         for (i = 0; i < conf->prev.raid_disks; i++) {
4115                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4116                 if (!rdev || test_bit(Faulty, &rdev->flags))
4117                         degraded++;
4118                 else if (!test_bit(In_sync, &rdev->flags))
4119                         /* When we can reduce the number of devices in
4120                          * an array, this might not contribute to
4121                          * 'degraded'.  It does now.
4122                          */
4123                         degraded++;
4124         }
4125         rcu_read_unlock();
4126         if (conf->geo.raid_disks == conf->prev.raid_disks)
4127                 return degraded;
4128         rcu_read_lock();
4129         degraded2 = 0;
4130         for (i = 0; i < conf->geo.raid_disks; i++) {
4131                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4132                 if (!rdev || test_bit(Faulty, &rdev->flags))
4133                         degraded2++;
4134                 else if (!test_bit(In_sync, &rdev->flags)) {
4135                         /* If reshape is increasing the number of devices,
4136                          * this section has already been recovered, so
4137                          * it doesn't contribute to degraded.
4138                          * else it does.
4139                          */
4140                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4141                                 degraded2++;
4142                 }
4143         }
4144         rcu_read_unlock();
4145         if (degraded2 > degraded)
4146                 return degraded2;
4147         return degraded;
4148 }
4149
4150 static int raid10_start_reshape(struct mddev *mddev)
4151 {
4152         /* A 'reshape' has been requested. This commits
4153          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4154          * This also checks if there are enough spares and adds them
4155          * to the array.
4156          * We currently require enough spares to make the final
4157          * array non-degraded.  We also require that the difference
4158          * between old and new data_offset - on each device - is
4159          * enough that we never risk over-writing.
4160          */
4161
4162         unsigned long before_length, after_length;
4163         sector_t min_offset_diff = 0;
4164         int first = 1;
4165         struct geom new;
4166         struct r10conf *conf = mddev->private;
4167         struct md_rdev *rdev;
4168         int spares = 0;
4169         int ret;
4170
4171         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4172                 return -EBUSY;
4173
4174         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4175                 return -EINVAL;
4176
4177         before_length = ((1 << conf->prev.chunk_shift) *
4178                          conf->prev.far_copies);
4179         after_length = ((1 << conf->geo.chunk_shift) *
4180                         conf->geo.far_copies);
4181
4182         rdev_for_each(rdev, mddev) {
4183                 if (!test_bit(In_sync, &rdev->flags)
4184                     && !test_bit(Faulty, &rdev->flags))
4185                         spares++;
4186                 if (rdev->raid_disk >= 0) {
4187                         long long diff = (rdev->new_data_offset
4188                                           - rdev->data_offset);
4189                         if (!mddev->reshape_backwards)
4190                                 diff = -diff;
4191                         if (diff < 0)
4192                                 diff = 0;
4193                         if (first || diff < min_offset_diff)
4194                                 min_offset_diff = diff;
4195                         first = 0;
4196                 }
4197         }
4198
4199         if (max(before_length, after_length) > min_offset_diff)
4200                 return -EINVAL;
4201
4202         if (spares < mddev->delta_disks)
4203                 return -EINVAL;
4204
4205         conf->offset_diff = min_offset_diff;
4206         spin_lock_irq(&conf->device_lock);
4207         if (conf->mirrors_new) {
4208                 memcpy(conf->mirrors_new, conf->mirrors,
4209                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4210                 smp_mb();
4211                 kfree(conf->mirrors_old);
4212                 conf->mirrors_old = conf->mirrors;
4213                 conf->mirrors = conf->mirrors_new;
4214                 conf->mirrors_new = NULL;
4215         }
4216         setup_geo(&conf->geo, mddev, geo_start);
4217         smp_mb();
4218         if (mddev->reshape_backwards) {
4219                 sector_t size = raid10_size(mddev, 0, 0);
4220                 if (size < mddev->array_sectors) {
4221                         spin_unlock_irq(&conf->device_lock);
4222                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4223                                 mdname(mddev));
4224                         return -EINVAL;
4225                 }
4226                 mddev->resync_max_sectors = size;
4227                 conf->reshape_progress = size;
4228         } else
4229                 conf->reshape_progress = 0;
4230         conf->reshape_safe = conf->reshape_progress;
4231         spin_unlock_irq(&conf->device_lock);
4232
4233         if (mddev->delta_disks && mddev->bitmap) {
4234                 struct mdp_superblock_1 *sb = NULL;
4235                 sector_t oldsize, newsize;
4236
4237                 oldsize = raid10_size(mddev, 0, 0);
4238                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4239
4240                 if (!mddev_is_clustered(mddev)) {
4241                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4242                         if (ret)
4243                                 goto abort;
4244                         else
4245                                 goto out;
4246                 }
4247
4248                 rdev_for_each(rdev, mddev) {
4249                         if (rdev->raid_disk > -1 &&
4250                             !test_bit(Faulty, &rdev->flags))
4251                                 sb = page_address(rdev->sb_page);
4252                 }
4253
4254                 /*
4255                  * some node is already performing reshape, and no need to
4256                  * call md_bitmap_resize again since it should be called when
4257                  * receiving BITMAP_RESIZE msg
4258                  */
4259                 if ((sb && (le32_to_cpu(sb->feature_map) &
4260                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4261                         goto out;
4262
4263                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4264                 if (ret)
4265                         goto abort;
4266
4267                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4268                 if (ret) {
4269                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4270                         goto abort;
4271                 }
4272         }
4273 out:
4274         if (mddev->delta_disks > 0) {
4275                 rdev_for_each(rdev, mddev)
4276                         if (rdev->raid_disk < 0 &&
4277                             !test_bit(Faulty, &rdev->flags)) {
4278                                 if (raid10_add_disk(mddev, rdev) == 0) {
4279                                         if (rdev->raid_disk >=
4280                                             conf->prev.raid_disks)
4281                                                 set_bit(In_sync, &rdev->flags);
4282                                         else
4283                                                 rdev->recovery_offset = 0;
4284
4285                                         /* Failure here is OK */
4286                                         sysfs_link_rdev(mddev, rdev);
4287                                 }
4288                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4289                                    && !test_bit(Faulty, &rdev->flags)) {
4290                                 /* This is a spare that was manually added */
4291                                 set_bit(In_sync, &rdev->flags);
4292                         }
4293         }
4294         /* When a reshape changes the number of devices,
4295          * ->degraded is measured against the larger of the
4296          * pre and  post numbers.
4297          */
4298         spin_lock_irq(&conf->device_lock);
4299         mddev->degraded = calc_degraded(conf);
4300         spin_unlock_irq(&conf->device_lock);
4301         mddev->raid_disks = conf->geo.raid_disks;
4302         mddev->reshape_position = conf->reshape_progress;
4303         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4304
4305         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4306         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4307         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4308         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4309         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4310
4311         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4312                                                 "reshape");
4313         if (!mddev->sync_thread) {
4314                 ret = -EAGAIN;
4315                 goto abort;
4316         }
4317         conf->reshape_checkpoint = jiffies;
4318         md_wakeup_thread(mddev->sync_thread);
4319         md_new_event(mddev);
4320         return 0;
4321
4322 abort:
4323         mddev->recovery = 0;
4324         spin_lock_irq(&conf->device_lock);
4325         conf->geo = conf->prev;
4326         mddev->raid_disks = conf->geo.raid_disks;
4327         rdev_for_each(rdev, mddev)
4328                 rdev->new_data_offset = rdev->data_offset;
4329         smp_wmb();
4330         conf->reshape_progress = MaxSector;
4331         conf->reshape_safe = MaxSector;
4332         mddev->reshape_position = MaxSector;
4333         spin_unlock_irq(&conf->device_lock);
4334         return ret;
4335 }
4336
4337 /* Calculate the last device-address that could contain
4338  * any block from the chunk that includes the array-address 's'
4339  * and report the next address.
4340  * i.e. the address returned will be chunk-aligned and after
4341  * any data that is in the chunk containing 's'.
4342  */
4343 static sector_t last_dev_address(sector_t s, struct geom *geo)
4344 {
4345         s = (s | geo->chunk_mask) + 1;
4346         s >>= geo->chunk_shift;
4347         s *= geo->near_copies;
4348         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4349         s *= geo->far_copies;
4350         s <<= geo->chunk_shift;
4351         return s;
4352 }
4353
4354 /* Calculate the first device-address that could contain
4355  * any block from the chunk that includes the array-address 's'.
4356  * This too will be the start of a chunk
4357  */
4358 static sector_t first_dev_address(sector_t s, struct geom *geo)
4359 {
4360         s >>= geo->chunk_shift;
4361         s *= geo->near_copies;
4362         sector_div(s, geo->raid_disks);
4363         s *= geo->far_copies;
4364         s <<= geo->chunk_shift;
4365         return s;
4366 }
4367
4368 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4369                                 int *skipped)
4370 {
4371         /* We simply copy at most one chunk (smallest of old and new)
4372          * at a time, possibly less if that exceeds RESYNC_PAGES,
4373          * or we hit a bad block or something.
4374          * This might mean we pause for normal IO in the middle of
4375          * a chunk, but that is not a problem as mddev->reshape_position
4376          * can record any location.
4377          *
4378          * If we will want to write to a location that isn't
4379          * yet recorded as 'safe' (i.e. in metadata on disk) then
4380          * we need to flush all reshape requests and update the metadata.
4381          *
4382          * When reshaping forwards (e.g. to more devices), we interpret
4383          * 'safe' as the earliest block which might not have been copied
4384          * down yet.  We divide this by previous stripe size and multiply
4385          * by previous stripe length to get lowest device offset that we
4386          * cannot write to yet.
4387          * We interpret 'sector_nr' as an address that we want to write to.
4388          * From this we use last_device_address() to find where we might
4389          * write to, and first_device_address on the  'safe' position.
4390          * If this 'next' write position is after the 'safe' position,
4391          * we must update the metadata to increase the 'safe' position.
4392          *
4393          * When reshaping backwards, we round in the opposite direction
4394          * and perform the reverse test:  next write position must not be
4395          * less than current safe position.
4396          *
4397          * In all this the minimum difference in data offsets
4398          * (conf->offset_diff - always positive) allows a bit of slack,
4399          * so next can be after 'safe', but not by more than offset_diff
4400          *
4401          * We need to prepare all the bios here before we start any IO
4402          * to ensure the size we choose is acceptable to all devices.
4403          * The means one for each copy for write-out and an extra one for
4404          * read-in.
4405          * We store the read-in bio in ->master_bio and the others in
4406          * ->devs[x].bio and ->devs[x].repl_bio.
4407          */
4408         struct r10conf *conf = mddev->private;
4409         struct r10bio *r10_bio;
4410         sector_t next, safe, last;
4411         int max_sectors;
4412         int nr_sectors;
4413         int s;
4414         struct md_rdev *rdev;
4415         int need_flush = 0;
4416         struct bio *blist;
4417         struct bio *bio, *read_bio;
4418         int sectors_done = 0;
4419         struct page **pages;
4420
4421         if (sector_nr == 0) {
4422                 /* If restarting in the middle, skip the initial sectors */
4423                 if (mddev->reshape_backwards &&
4424                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4425                         sector_nr = (raid10_size(mddev, 0, 0)
4426                                      - conf->reshape_progress);
4427                 } else if (!mddev->reshape_backwards &&
4428                            conf->reshape_progress > 0)
4429                         sector_nr = conf->reshape_progress;
4430                 if (sector_nr) {
4431                         mddev->curr_resync_completed = sector_nr;
4432                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4433                         *skipped = 1;
4434                         return sector_nr;
4435                 }
4436         }
4437
4438         /* We don't use sector_nr to track where we are up to
4439          * as that doesn't work well for ->reshape_backwards.
4440          * So just use ->reshape_progress.
4441          */
4442         if (mddev->reshape_backwards) {
4443                 /* 'next' is the earliest device address that we might
4444                  * write to for this chunk in the new layout
4445                  */
4446                 next = first_dev_address(conf->reshape_progress - 1,
4447                                          &conf->geo);
4448
4449                 /* 'safe' is the last device address that we might read from
4450                  * in the old layout after a restart
4451                  */
4452                 safe = last_dev_address(conf->reshape_safe - 1,
4453                                         &conf->prev);
4454
4455                 if (next + conf->offset_diff < safe)
4456                         need_flush = 1;
4457
4458                 last = conf->reshape_progress - 1;
4459                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4460                                                & conf->prev.chunk_mask);
4461                 if (sector_nr + RESYNC_SECTORS < last)
4462                         sector_nr = last + 1 - RESYNC_SECTORS;
4463         } else {
4464                 /* 'next' is after the last device address that we
4465                  * might write to for this chunk in the new layout
4466                  */
4467                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4468
4469                 /* 'safe' is the earliest device address that we might
4470                  * read from in the old layout after a restart
4471                  */
4472                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4473
4474                 /* Need to update metadata if 'next' might be beyond 'safe'
4475                  * as that would possibly corrupt data
4476                  */
4477                 if (next > safe + conf->offset_diff)
4478                         need_flush = 1;
4479
4480                 sector_nr = conf->reshape_progress;
4481                 last  = sector_nr | (conf->geo.chunk_mask
4482                                      & conf->prev.chunk_mask);
4483
4484                 if (sector_nr + RESYNC_SECTORS <= last)
4485                         last = sector_nr + RESYNC_SECTORS - 1;
4486         }
4487
4488         if (need_flush ||
4489             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4490                 /* Need to update reshape_position in metadata */
4491                 wait_barrier(conf);
4492                 mddev->reshape_position = conf->reshape_progress;
4493                 if (mddev->reshape_backwards)
4494                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4495                                 - conf->reshape_progress;
4496                 else
4497                         mddev->curr_resync_completed = conf->reshape_progress;
4498                 conf->reshape_checkpoint = jiffies;
4499                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4500                 md_wakeup_thread(mddev->thread);
4501                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4502                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4503                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4504                         allow_barrier(conf);
4505                         return sectors_done;
4506                 }
4507                 conf->reshape_safe = mddev->reshape_position;
4508                 allow_barrier(conf);
4509         }
4510
4511         raise_barrier(conf, 0);
4512 read_more:
4513         /* Now schedule reads for blocks from sector_nr to last */
4514         r10_bio = raid10_alloc_init_r10buf(conf);
4515         r10_bio->state = 0;
4516         raise_barrier(conf, 1);
4517         atomic_set(&r10_bio->remaining, 0);
4518         r10_bio->mddev = mddev;
4519         r10_bio->sector = sector_nr;
4520         set_bit(R10BIO_IsReshape, &r10_bio->state);
4521         r10_bio->sectors = last - sector_nr + 1;
4522         rdev = read_balance(conf, r10_bio, &max_sectors);
4523         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4524
4525         if (!rdev) {
4526                 /* Cannot read from here, so need to record bad blocks
4527                  * on all the target devices.
4528                  */
4529                 // FIXME
4530                 mempool_free(r10_bio, &conf->r10buf_pool);
4531                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4532                 return sectors_done;
4533         }
4534
4535         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4536
4537         bio_set_dev(read_bio, rdev->bdev);
4538         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4539                                + rdev->data_offset);
4540         read_bio->bi_private = r10_bio;
4541         read_bio->bi_end_io = end_reshape_read;
4542         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4543         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4544         read_bio->bi_status = 0;
4545         read_bio->bi_vcnt = 0;
4546         read_bio->bi_iter.bi_size = 0;
4547         r10_bio->master_bio = read_bio;
4548         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4549
4550         /*
4551          * Broadcast RESYNC message to other nodes, so all nodes would not
4552          * write to the region to avoid conflict.
4553         */
4554         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4555                 struct mdp_superblock_1 *sb = NULL;
4556                 int sb_reshape_pos = 0;
4557
4558                 conf->cluster_sync_low = sector_nr;
4559                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4560                 sb = page_address(rdev->sb_page);
4561                 if (sb) {
4562                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4563                         /*
4564                          * Set cluster_sync_low again if next address for array
4565                          * reshape is less than cluster_sync_low. Since we can't
4566                          * update cluster_sync_low until it has finished reshape.
4567                          */
4568                         if (sb_reshape_pos < conf->cluster_sync_low)
4569                                 conf->cluster_sync_low = sb_reshape_pos;
4570                 }
4571
4572                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4573                                                           conf->cluster_sync_high);
4574         }
4575
4576         /* Now find the locations in the new layout */
4577         __raid10_find_phys(&conf->geo, r10_bio);
4578
4579         blist = read_bio;
4580         read_bio->bi_next = NULL;
4581
4582         rcu_read_lock();
4583         for (s = 0; s < conf->copies*2; s++) {
4584                 struct bio *b;
4585                 int d = r10_bio->devs[s/2].devnum;
4586                 struct md_rdev *rdev2;
4587                 if (s&1) {
4588                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4589                         b = r10_bio->devs[s/2].repl_bio;
4590                 } else {
4591                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4592                         b = r10_bio->devs[s/2].bio;
4593                 }
4594                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4595                         continue;
4596
4597                 bio_set_dev(b, rdev2->bdev);
4598                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4599                         rdev2->new_data_offset;
4600                 b->bi_end_io = end_reshape_write;
4601                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4602                 b->bi_next = blist;
4603                 blist = b;
4604         }
4605
4606         /* Now add as many pages as possible to all of these bios. */
4607
4608         nr_sectors = 0;
4609         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4610         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4611                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4612                 int len = (max_sectors - s) << 9;
4613                 if (len > PAGE_SIZE)
4614                         len = PAGE_SIZE;
4615                 for (bio = blist; bio ; bio = bio->bi_next) {
4616                         /*
4617                          * won't fail because the vec table is big enough
4618                          * to hold all these pages
4619                          */
4620                         bio_add_page(bio, page, len, 0);
4621                 }
4622                 sector_nr += len >> 9;
4623                 nr_sectors += len >> 9;
4624         }
4625         rcu_read_unlock();
4626         r10_bio->sectors = nr_sectors;
4627
4628         /* Now submit the read */
4629         md_sync_acct_bio(read_bio, r10_bio->sectors);
4630         atomic_inc(&r10_bio->remaining);
4631         read_bio->bi_next = NULL;
4632         submit_bio_noacct(read_bio);
4633         sectors_done += nr_sectors;
4634         if (sector_nr <= last)
4635                 goto read_more;
4636
4637         lower_barrier(conf);
4638
4639         /* Now that we have done the whole section we can
4640          * update reshape_progress
4641          */
4642         if (mddev->reshape_backwards)
4643                 conf->reshape_progress -= sectors_done;
4644         else
4645                 conf->reshape_progress += sectors_done;
4646
4647         return sectors_done;
4648 }
4649
4650 static void end_reshape_request(struct r10bio *r10_bio);
4651 static int handle_reshape_read_error(struct mddev *mddev,
4652                                      struct r10bio *r10_bio);
4653 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4654 {
4655         /* Reshape read completed.  Hopefully we have a block
4656          * to write out.
4657          * If we got a read error then we do sync 1-page reads from
4658          * elsewhere until we find the data - or give up.
4659          */
4660         struct r10conf *conf = mddev->private;
4661         int s;
4662
4663         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4664                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4665                         /* Reshape has been aborted */
4666                         md_done_sync(mddev, r10_bio->sectors, 0);
4667                         return;
4668                 }
4669
4670         /* We definitely have the data in the pages, schedule the
4671          * writes.
4672          */
4673         atomic_set(&r10_bio->remaining, 1);
4674         for (s = 0; s < conf->copies*2; s++) {
4675                 struct bio *b;
4676                 int d = r10_bio->devs[s/2].devnum;
4677                 struct md_rdev *rdev;
4678                 rcu_read_lock();
4679                 if (s&1) {
4680                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4681                         b = r10_bio->devs[s/2].repl_bio;
4682                 } else {
4683                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4684                         b = r10_bio->devs[s/2].bio;
4685                 }
4686                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4687                         rcu_read_unlock();
4688                         continue;
4689                 }
4690                 atomic_inc(&rdev->nr_pending);
4691                 rcu_read_unlock();
4692                 md_sync_acct_bio(b, r10_bio->sectors);
4693                 atomic_inc(&r10_bio->remaining);
4694                 b->bi_next = NULL;
4695                 submit_bio_noacct(b);
4696         }
4697         end_reshape_request(r10_bio);
4698 }
4699
4700 static void end_reshape(struct r10conf *conf)
4701 {
4702         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4703                 return;
4704
4705         spin_lock_irq(&conf->device_lock);
4706         conf->prev = conf->geo;
4707         md_finish_reshape(conf->mddev);
4708         smp_wmb();
4709         conf->reshape_progress = MaxSector;
4710         conf->reshape_safe = MaxSector;
4711         spin_unlock_irq(&conf->device_lock);
4712
4713         if (conf->mddev->queue)
4714                 raid10_set_io_opt(conf);
4715         conf->fullsync = 0;
4716 }
4717
4718 static void raid10_update_reshape_pos(struct mddev *mddev)
4719 {
4720         struct r10conf *conf = mddev->private;
4721         sector_t lo, hi;
4722
4723         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4724         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4725             || mddev->reshape_position == MaxSector)
4726                 conf->reshape_progress = mddev->reshape_position;
4727         else
4728                 WARN_ON_ONCE(1);
4729 }
4730
4731 static int handle_reshape_read_error(struct mddev *mddev,
4732                                      struct r10bio *r10_bio)
4733 {
4734         /* Use sync reads to get the blocks from somewhere else */
4735         int sectors = r10_bio->sectors;
4736         struct r10conf *conf = mddev->private;
4737         struct r10bio *r10b;
4738         int slot = 0;
4739         int idx = 0;
4740         struct page **pages;
4741
4742         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4743         if (!r10b) {
4744                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4745                 return -ENOMEM;
4746         }
4747
4748         /* reshape IOs share pages from .devs[0].bio */
4749         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4750
4751         r10b->sector = r10_bio->sector;
4752         __raid10_find_phys(&conf->prev, r10b);
4753
4754         while (sectors) {
4755                 int s = sectors;
4756                 int success = 0;
4757                 int first_slot = slot;
4758
4759                 if (s > (PAGE_SIZE >> 9))
4760                         s = PAGE_SIZE >> 9;
4761
4762                 rcu_read_lock();
4763                 while (!success) {
4764                         int d = r10b->devs[slot].devnum;
4765                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4766                         sector_t addr;
4767                         if (rdev == NULL ||
4768                             test_bit(Faulty, &rdev->flags) ||
4769                             !test_bit(In_sync, &rdev->flags))
4770                                 goto failed;
4771
4772                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4773                         atomic_inc(&rdev->nr_pending);
4774                         rcu_read_unlock();
4775                         success = sync_page_io(rdev,
4776                                                addr,
4777                                                s << 9,
4778                                                pages[idx],
4779                                                REQ_OP_READ, 0, false);
4780                         rdev_dec_pending(rdev, mddev);
4781                         rcu_read_lock();
4782                         if (success)
4783                                 break;
4784                 failed:
4785                         slot++;
4786                         if (slot >= conf->copies)
4787                                 slot = 0;
4788                         if (slot == first_slot)
4789                                 break;
4790                 }
4791                 rcu_read_unlock();
4792                 if (!success) {
4793                         /* couldn't read this block, must give up */
4794                         set_bit(MD_RECOVERY_INTR,
4795                                 &mddev->recovery);
4796                         kfree(r10b);
4797                         return -EIO;
4798                 }
4799                 sectors -= s;
4800                 idx++;
4801         }
4802         kfree(r10b);
4803         return 0;
4804 }
4805
4806 static void end_reshape_write(struct bio *bio)
4807 {
4808         struct r10bio *r10_bio = get_resync_r10bio(bio);
4809         struct mddev *mddev = r10_bio->mddev;
4810         struct r10conf *conf = mddev->private;
4811         int d;
4812         int slot;
4813         int repl;
4814         struct md_rdev *rdev = NULL;
4815
4816         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4817         if (repl)
4818                 rdev = conf->mirrors[d].replacement;
4819         if (!rdev) {
4820                 smp_mb();
4821                 rdev = conf->mirrors[d].rdev;
4822         }
4823
4824         if (bio->bi_status) {
4825                 /* FIXME should record badblock */
4826                 md_error(mddev, rdev);
4827         }
4828
4829         rdev_dec_pending(rdev, mddev);
4830         end_reshape_request(r10_bio);
4831 }
4832
4833 static void end_reshape_request(struct r10bio *r10_bio)
4834 {
4835         if (!atomic_dec_and_test(&r10_bio->remaining))
4836                 return;
4837         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4838         bio_put(r10_bio->master_bio);
4839         put_buf(r10_bio);
4840 }
4841
4842 static void raid10_finish_reshape(struct mddev *mddev)
4843 {
4844         struct r10conf *conf = mddev->private;
4845
4846         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4847                 return;
4848
4849         if (mddev->delta_disks > 0) {
4850                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4851                         mddev->recovery_cp = mddev->resync_max_sectors;
4852                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4853                 }
4854                 mddev->resync_max_sectors = mddev->array_sectors;
4855         } else {
4856                 int d;
4857                 rcu_read_lock();
4858                 for (d = conf->geo.raid_disks ;
4859                      d < conf->geo.raid_disks - mddev->delta_disks;
4860                      d++) {
4861                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4862                         if (rdev)
4863                                 clear_bit(In_sync, &rdev->flags);
4864                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4865                         if (rdev)
4866                                 clear_bit(In_sync, &rdev->flags);
4867                 }
4868                 rcu_read_unlock();
4869         }
4870         mddev->layout = mddev->new_layout;
4871         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4872         mddev->reshape_position = MaxSector;
4873         mddev->delta_disks = 0;
4874         mddev->reshape_backwards = 0;
4875 }
4876
4877 static struct md_personality raid10_personality =
4878 {
4879         .name           = "raid10",
4880         .level          = 10,
4881         .owner          = THIS_MODULE,
4882         .make_request   = raid10_make_request,
4883         .run            = raid10_run,
4884         .free           = raid10_free,
4885         .status         = raid10_status,
4886         .error_handler  = raid10_error,
4887         .hot_add_disk   = raid10_add_disk,
4888         .hot_remove_disk= raid10_remove_disk,
4889         .spare_active   = raid10_spare_active,
4890         .sync_request   = raid10_sync_request,
4891         .quiesce        = raid10_quiesce,
4892         .size           = raid10_size,
4893         .resize         = raid10_resize,
4894         .takeover       = raid10_takeover,
4895         .check_reshape  = raid10_check_reshape,
4896         .start_reshape  = raid10_start_reshape,
4897         .finish_reshape = raid10_finish_reshape,
4898         .update_reshape_pos = raid10_update_reshape_pos,
4899 };
4900
4901 static int __init raid_init(void)
4902 {
4903         return register_md_personality(&raid10_personality);
4904 }
4905
4906 static void raid_exit(void)
4907 {
4908         unregister_md_personality(&raid10_personality);
4909 }
4910
4911 module_init(raid_init);
4912 module_exit(raid_exit);
4913 MODULE_LICENSE("GPL");
4914 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4915 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4916 MODULE_ALIAS("md-raid10");
4917 MODULE_ALIAS("md-level-10");
4918
4919 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);