Merge tag 'for-linus-20180616' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130                             gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, &conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                         r1_bio->sectors,
390                         !test_bit(R1BIO_Degraded, &r1_bio->state),
391                         test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else {
658                         if ((sectors > best_good_sectors) && (best_disk >= 0))
659                                 best_disk = -1;
660                         best_good_sectors = sectors;
661                 }
662
663                 if (best_disk >= 0)
664                         /* At least two disks to choose from so failfast is OK */
665                         set_bit(R1BIO_FailFast, &r1_bio->state);
666
667                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668                 has_nonrot_disk |= nonrot;
669                 pending = atomic_read(&rdev->nr_pending);
670                 dist = abs(this_sector - conf->mirrors[disk].head_position);
671                 if (choose_first) {
672                         best_disk = disk;
673                         break;
674                 }
675                 /* Don't change to another disk for sequential reads */
676                 if (conf->mirrors[disk].next_seq_sect == this_sector
677                     || dist == 0) {
678                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679                         struct raid1_info *mirror = &conf->mirrors[disk];
680
681                         best_disk = disk;
682                         /*
683                          * If buffered sequential IO size exceeds optimal
684                          * iosize, check if there is idle disk. If yes, choose
685                          * the idle disk. read_balance could already choose an
686                          * idle disk before noticing it's a sequential IO in
687                          * this disk. This doesn't matter because this disk
688                          * will idle, next time it will be utilized after the
689                          * first disk has IO size exceeds optimal iosize. In
690                          * this way, iosize of the first disk will be optimal
691                          * iosize at least. iosize of the second disk might be
692                          * small, but not a big deal since when the second disk
693                          * starts IO, the first disk is likely still busy.
694                          */
695                         if (nonrot && opt_iosize > 0 &&
696                             mirror->seq_start != MaxSector &&
697                             mirror->next_seq_sect > opt_iosize &&
698                             mirror->next_seq_sect - opt_iosize >=
699                             mirror->seq_start) {
700                                 choose_next_idle = 1;
701                                 continue;
702                         }
703                         break;
704                 }
705
706                 if (choose_next_idle)
707                         continue;
708
709                 if (min_pending > pending) {
710                         min_pending = pending;
711                         best_pending_disk = disk;
712                 }
713
714                 if (dist < best_dist) {
715                         best_dist = dist;
716                         best_dist_disk = disk;
717                 }
718         }
719
720         /*
721          * If all disks are rotational, choose the closest disk. If any disk is
722          * non-rotational, choose the disk with less pending request even the
723          * disk is rotational, which might/might not be optimal for raids with
724          * mixed ratation/non-rotational disks depending on workload.
725          */
726         if (best_disk == -1) {
727                 if (has_nonrot_disk || min_pending == 0)
728                         best_disk = best_pending_disk;
729                 else
730                         best_disk = best_dist_disk;
731         }
732
733         if (best_disk >= 0) {
734                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735                 if (!rdev)
736                         goto retry;
737                 atomic_inc(&rdev->nr_pending);
738                 sectors = best_good_sectors;
739
740                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741                         conf->mirrors[best_disk].seq_start = this_sector;
742
743                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744         }
745         rcu_read_unlock();
746         *max_sectors = sectors;
747
748         return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753         struct r1conf *conf = mddev->private;
754         int i, ret = 0;
755
756         if ((bits & (1 << WB_async_congested)) &&
757             conf->pending_count >= max_queued_requests)
758                 return 1;
759
760         rcu_read_lock();
761         for (i = 0; i < conf->raid_disks * 2; i++) {
762                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764                         struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766                         BUG_ON(!q);
767
768                         /* Note the '|| 1' - when read_balance prefers
769                          * non-congested targets, it can be removed
770                          */
771                         if ((bits & (1 << WB_async_congested)) || 1)
772                                 ret |= bdi_congested(q->backing_dev_info, bits);
773                         else
774                                 ret &= bdi_congested(q->backing_dev_info, bits);
775                 }
776         }
777         rcu_read_unlock();
778         return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784         bitmap_unplug(conf->mddev->bitmap);
785         wake_up(&conf->wait_barrier);
786
787         while (bio) { /* submit pending writes */
788                 struct bio *next = bio->bi_next;
789                 struct md_rdev *rdev = (void *)bio->bi_disk;
790                 bio->bi_next = NULL;
791                 bio_set_dev(bio, rdev->bdev);
792                 if (test_bit(Faulty, &rdev->flags)) {
793                         bio_io_error(bio);
794                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795                                     !blk_queue_discard(bio->bi_disk->queue)))
796                         /* Just ignore it */
797                         bio_endio(bio);
798                 else
799                         generic_make_request(bio);
800                 bio = next;
801         }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806         /* Any writes that have been queued but are awaiting
807          * bitmap updates get flushed here.
808          */
809         spin_lock_irq(&conf->device_lock);
810
811         if (conf->pending_bio_list.head) {
812                 struct blk_plug plug;
813                 struct bio *bio;
814
815                 bio = bio_list_get(&conf->pending_bio_list);
816                 conf->pending_count = 0;
817                 spin_unlock_irq(&conf->device_lock);
818
819                 /*
820                  * As this is called in a wait_event() loop (see freeze_array),
821                  * current->state might be TASK_UNINTERRUPTIBLE which will
822                  * cause a warning when we prepare to wait again.  As it is
823                  * rare that this path is taken, it is perfectly safe to force
824                  * us to go around the wait_event() loop again, so the warning
825                  * is a false-positive.  Silence the warning by resetting
826                  * thread state
827                  */
828                 __set_current_state(TASK_RUNNING);
829                 blk_start_plug(&plug);
830                 flush_bio_list(conf, bio);
831                 blk_finish_plug(&plug);
832         } else
833                 spin_unlock_irq(&conf->device_lock);
834 }
835
836 /* Barriers....
837  * Sometimes we need to suspend IO while we do something else,
838  * either some resync/recovery, or reconfigure the array.
839  * To do this we raise a 'barrier'.
840  * The 'barrier' is a counter that can be raised multiple times
841  * to count how many activities are happening which preclude
842  * normal IO.
843  * We can only raise the barrier if there is no pending IO.
844  * i.e. if nr_pending == 0.
845  * We choose only to raise the barrier if no-one is waiting for the
846  * barrier to go down.  This means that as soon as an IO request
847  * is ready, no other operations which require a barrier will start
848  * until the IO request has had a chance.
849  *
850  * So: regular IO calls 'wait_barrier'.  When that returns there
851  *    is no backgroup IO happening,  It must arrange to call
852  *    allow_barrier when it has finished its IO.
853  * backgroup IO calls must call raise_barrier.  Once that returns
854  *    there is no normal IO happeing.  It must arrange to call
855  *    lower_barrier when the particular background IO completes.
856  */
857 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
858 {
859         int idx = sector_to_idx(sector_nr);
860
861         spin_lock_irq(&conf->resync_lock);
862
863         /* Wait until no block IO is waiting */
864         wait_event_lock_irq(conf->wait_barrier,
865                             !atomic_read(&conf->nr_waiting[idx]),
866                             conf->resync_lock);
867
868         /* block any new IO from starting */
869         atomic_inc(&conf->barrier[idx]);
870         /*
871          * In raise_barrier() we firstly increase conf->barrier[idx] then
872          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873          * increase conf->nr_pending[idx] then check conf->barrier[idx].
874          * A memory barrier here to make sure conf->nr_pending[idx] won't
875          * be fetched before conf->barrier[idx] is increased. Otherwise
876          * there will be a race between raise_barrier() and _wait_barrier().
877          */
878         smp_mb__after_atomic();
879
880         /* For these conditions we must wait:
881          * A: while the array is in frozen state
882          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883          *    existing in corresponding I/O barrier bucket.
884          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885          *    max resync count which allowed on current I/O barrier bucket.
886          */
887         wait_event_lock_irq(conf->wait_barrier,
888                             (!conf->array_frozen &&
889                              !atomic_read(&conf->nr_pending[idx]) &&
890                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
891                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
892                             conf->resync_lock);
893
894         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
895                 atomic_dec(&conf->barrier[idx]);
896                 spin_unlock_irq(&conf->resync_lock);
897                 wake_up(&conf->wait_barrier);
898                 return -EINTR;
899         }
900
901         atomic_inc(&conf->nr_sync_pending);
902         spin_unlock_irq(&conf->resync_lock);
903
904         return 0;
905 }
906
907 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
908 {
909         int idx = sector_to_idx(sector_nr);
910
911         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
912
913         atomic_dec(&conf->barrier[idx]);
914         atomic_dec(&conf->nr_sync_pending);
915         wake_up(&conf->wait_barrier);
916 }
917
918 static void _wait_barrier(struct r1conf *conf, int idx)
919 {
920         /*
921          * We need to increase conf->nr_pending[idx] very early here,
922          * then raise_barrier() can be blocked when it waits for
923          * conf->nr_pending[idx] to be 0. Then we can avoid holding
924          * conf->resync_lock when there is no barrier raised in same
925          * barrier unit bucket. Also if the array is frozen, I/O
926          * should be blocked until array is unfrozen.
927          */
928         atomic_inc(&conf->nr_pending[idx]);
929         /*
930          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
931          * check conf->barrier[idx]. In raise_barrier() we firstly increase
932          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
933          * barrier is necessary here to make sure conf->barrier[idx] won't be
934          * fetched before conf->nr_pending[idx] is increased. Otherwise there
935          * will be a race between _wait_barrier() and raise_barrier().
936          */
937         smp_mb__after_atomic();
938
939         /*
940          * Don't worry about checking two atomic_t variables at same time
941          * here. If during we check conf->barrier[idx], the array is
942          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
943          * 0, it is safe to return and make the I/O continue. Because the
944          * array is frozen, all I/O returned here will eventually complete
945          * or be queued, no race will happen. See code comment in
946          * frozen_array().
947          */
948         if (!READ_ONCE(conf->array_frozen) &&
949             !atomic_read(&conf->barrier[idx]))
950                 return;
951
952         /*
953          * After holding conf->resync_lock, conf->nr_pending[idx]
954          * should be decreased before waiting for barrier to drop.
955          * Otherwise, we may encounter a race condition because
956          * raise_barrer() might be waiting for conf->nr_pending[idx]
957          * to be 0 at same time.
958          */
959         spin_lock_irq(&conf->resync_lock);
960         atomic_inc(&conf->nr_waiting[idx]);
961         atomic_dec(&conf->nr_pending[idx]);
962         /*
963          * In case freeze_array() is waiting for
964          * get_unqueued_pending() == extra
965          */
966         wake_up(&conf->wait_barrier);
967         /* Wait for the barrier in same barrier unit bucket to drop. */
968         wait_event_lock_irq(conf->wait_barrier,
969                             !conf->array_frozen &&
970                              !atomic_read(&conf->barrier[idx]),
971                             conf->resync_lock);
972         atomic_inc(&conf->nr_pending[idx]);
973         atomic_dec(&conf->nr_waiting[idx]);
974         spin_unlock_irq(&conf->resync_lock);
975 }
976
977 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
978 {
979         int idx = sector_to_idx(sector_nr);
980
981         /*
982          * Very similar to _wait_barrier(). The difference is, for read
983          * I/O we don't need wait for sync I/O, but if the whole array
984          * is frozen, the read I/O still has to wait until the array is
985          * unfrozen. Since there is no ordering requirement with
986          * conf->barrier[idx] here, memory barrier is unnecessary as well.
987          */
988         atomic_inc(&conf->nr_pending[idx]);
989
990         if (!READ_ONCE(conf->array_frozen))
991                 return;
992
993         spin_lock_irq(&conf->resync_lock);
994         atomic_inc(&conf->nr_waiting[idx]);
995         atomic_dec(&conf->nr_pending[idx]);
996         /*
997          * In case freeze_array() is waiting for
998          * get_unqueued_pending() == extra
999          */
1000         wake_up(&conf->wait_barrier);
1001         /* Wait for array to be unfrozen */
1002         wait_event_lock_irq(conf->wait_barrier,
1003                             !conf->array_frozen,
1004                             conf->resync_lock);
1005         atomic_inc(&conf->nr_pending[idx]);
1006         atomic_dec(&conf->nr_waiting[idx]);
1007         spin_unlock_irq(&conf->resync_lock);
1008 }
1009
1010 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011 {
1012         int idx = sector_to_idx(sector_nr);
1013
1014         _wait_barrier(conf, idx);
1015 }
1016
1017 static void _allow_barrier(struct r1conf *conf, int idx)
1018 {
1019         atomic_dec(&conf->nr_pending[idx]);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024 {
1025         int idx = sector_to_idx(sector_nr);
1026
1027         _allow_barrier(conf, idx);
1028 }
1029
1030 /* conf->resync_lock should be held */
1031 static int get_unqueued_pending(struct r1conf *conf)
1032 {
1033         int idx, ret;
1034
1035         ret = atomic_read(&conf->nr_sync_pending);
1036         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037                 ret += atomic_read(&conf->nr_pending[idx]) -
1038                         atomic_read(&conf->nr_queued[idx]);
1039
1040         return ret;
1041 }
1042
1043 static void freeze_array(struct r1conf *conf, int extra)
1044 {
1045         /* Stop sync I/O and normal I/O and wait for everything to
1046          * go quiet.
1047          * This is called in two situations:
1048          * 1) management command handlers (reshape, remove disk, quiesce).
1049          * 2) one normal I/O request failed.
1050
1051          * After array_frozen is set to 1, new sync IO will be blocked at
1052          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053          * or wait_read_barrier(). The flying I/Os will either complete or be
1054          * queued. When everything goes quite, there are only queued I/Os left.
1055
1056          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057          * barrier bucket index which this I/O request hits. When all sync and
1058          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060          * in handle_read_error(), we may call freeze_array() before trying to
1061          * fix the read error. In this case, the error read I/O is not queued,
1062          * so get_unqueued_pending() == 1.
1063          *
1064          * Therefore before this function returns, we need to wait until
1065          * get_unqueued_pendings(conf) gets equal to extra. For
1066          * normal I/O context, extra is 1, in rested situations extra is 0.
1067          */
1068         spin_lock_irq(&conf->resync_lock);
1069         conf->array_frozen = 1;
1070         raid1_log(conf->mddev, "wait freeze");
1071         wait_event_lock_irq_cmd(
1072                 conf->wait_barrier,
1073                 get_unqueued_pending(conf) == extra,
1074                 conf->resync_lock,
1075                 flush_pending_writes(conf));
1076         spin_unlock_irq(&conf->resync_lock);
1077 }
1078 static void unfreeze_array(struct r1conf *conf)
1079 {
1080         /* reverse the effect of the freeze */
1081         spin_lock_irq(&conf->resync_lock);
1082         conf->array_frozen = 0;
1083         spin_unlock_irq(&conf->resync_lock);
1084         wake_up(&conf->wait_barrier);
1085 }
1086
1087 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088                                            struct bio *bio)
1089 {
1090         int size = bio->bi_iter.bi_size;
1091         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092         int i = 0;
1093         struct bio *behind_bio = NULL;
1094
1095         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096         if (!behind_bio)
1097                 return;
1098
1099         /* discard op, we don't support writezero/writesame yet */
1100         if (!bio_has_data(bio)) {
1101                 behind_bio->bi_iter.bi_size = size;
1102                 goto skip_copy;
1103         }
1104
1105         behind_bio->bi_write_hint = bio->bi_write_hint;
1106
1107         while (i < vcnt && size) {
1108                 struct page *page;
1109                 int len = min_t(int, PAGE_SIZE, size);
1110
1111                 page = alloc_page(GFP_NOIO);
1112                 if (unlikely(!page))
1113                         goto free_pages;
1114
1115                 bio_add_page(behind_bio, page, len, 0);
1116
1117                 size -= len;
1118                 i++;
1119         }
1120
1121         bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123         r1_bio->behind_master_bio = behind_bio;
1124         set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126         return;
1127
1128 free_pages:
1129         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130                  bio->bi_iter.bi_size);
1131         bio_free_pages(behind_bio);
1132         bio_put(behind_bio);
1133 }
1134
1135 struct raid1_plug_cb {
1136         struct blk_plug_cb      cb;
1137         struct bio_list         pending;
1138         int                     pending_cnt;
1139 };
1140
1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142 {
1143         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144                                                   cb);
1145         struct mddev *mddev = plug->cb.data;
1146         struct r1conf *conf = mddev->private;
1147         struct bio *bio;
1148
1149         if (from_schedule || current->bio_list) {
1150                 spin_lock_irq(&conf->device_lock);
1151                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152                 conf->pending_count += plug->pending_cnt;
1153                 spin_unlock_irq(&conf->device_lock);
1154                 wake_up(&conf->wait_barrier);
1155                 md_wakeup_thread(mddev->thread);
1156                 kfree(plug);
1157                 return;
1158         }
1159
1160         /* we aren't scheduling, so we can do the write-out directly. */
1161         bio = bio_list_get(&plug->pending);
1162         flush_bio_list(conf, bio);
1163         kfree(plug);
1164 }
1165
1166 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167 {
1168         r1_bio->master_bio = bio;
1169         r1_bio->sectors = bio_sectors(bio);
1170         r1_bio->state = 0;
1171         r1_bio->mddev = mddev;
1172         r1_bio->sector = bio->bi_iter.bi_sector;
1173 }
1174
1175 static inline struct r1bio *
1176 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177 {
1178         struct r1conf *conf = mddev->private;
1179         struct r1bio *r1_bio;
1180
1181         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1182         /* Ensure no bio records IO_BLOCKED */
1183         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184         init_r1bio(r1_bio, mddev, bio);
1185         return r1_bio;
1186 }
1187
1188 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189                                int max_read_sectors, struct r1bio *r1_bio)
1190 {
1191         struct r1conf *conf = mddev->private;
1192         struct raid1_info *mirror;
1193         struct bio *read_bio;
1194         struct bitmap *bitmap = mddev->bitmap;
1195         const int op = bio_op(bio);
1196         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197         int max_sectors;
1198         int rdisk;
1199         bool print_msg = !!r1_bio;
1200         char b[BDEVNAME_SIZE];
1201
1202         /*
1203          * If r1_bio is set, we are blocking the raid1d thread
1204          * so there is a tiny risk of deadlock.  So ask for
1205          * emergency memory if needed.
1206          */
1207         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209         if (print_msg) {
1210                 /* Need to get the block device name carefully */
1211                 struct md_rdev *rdev;
1212                 rcu_read_lock();
1213                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214                 if (rdev)
1215                         bdevname(rdev->bdev, b);
1216                 else
1217                         strcpy(b, "???");
1218                 rcu_read_unlock();
1219         }
1220
1221         /*
1222          * Still need barrier for READ in case that whole
1223          * array is frozen.
1224          */
1225         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226
1227         if (!r1_bio)
1228                 r1_bio = alloc_r1bio(mddev, bio);
1229         else
1230                 init_r1bio(r1_bio, mddev, bio);
1231         r1_bio->sectors = max_read_sectors;
1232
1233         /*
1234          * make_request() can abort the operation when read-ahead is being
1235          * used and no empty request is available.
1236          */
1237         rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239         if (rdisk < 0) {
1240                 /* couldn't find anywhere to read from */
1241                 if (print_msg) {
1242                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243                                             mdname(mddev),
1244                                             b,
1245                                             (unsigned long long)r1_bio->sector);
1246                 }
1247                 raid_end_bio_io(r1_bio);
1248                 return;
1249         }
1250         mirror = conf->mirrors + rdisk;
1251
1252         if (print_msg)
1253                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254                                     mdname(mddev),
1255                                     (unsigned long long)r1_bio->sector,
1256                                     bdevname(mirror->rdev->bdev, b));
1257
1258         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259             bitmap) {
1260                 /*
1261                  * Reading from a write-mostly device must take care not to
1262                  * over-take any writes that are 'behind'
1263                  */
1264                 raid1_log(mddev, "wait behind writes");
1265                 wait_event(bitmap->behind_wait,
1266                            atomic_read(&bitmap->behind_writes) == 0);
1267         }
1268
1269         if (max_sectors < bio_sectors(bio)) {
1270                 struct bio *split = bio_split(bio, max_sectors,
1271                                               gfp, &conf->bio_split);
1272                 bio_chain(split, bio);
1273                 generic_make_request(bio);
1274                 bio = split;
1275                 r1_bio->master_bio = bio;
1276                 r1_bio->sectors = max_sectors;
1277         }
1278
1279         r1_bio->read_disk = rdisk;
1280
1281         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1282
1283         r1_bio->bios[rdisk] = read_bio;
1284
1285         read_bio->bi_iter.bi_sector = r1_bio->sector +
1286                 mirror->rdev->data_offset;
1287         bio_set_dev(read_bio, mirror->rdev->bdev);
1288         read_bio->bi_end_io = raid1_end_read_request;
1289         bio_set_op_attrs(read_bio, op, do_sync);
1290         if (test_bit(FailFast, &mirror->rdev->flags) &&
1291             test_bit(R1BIO_FailFast, &r1_bio->state))
1292                 read_bio->bi_opf |= MD_FAILFAST;
1293         read_bio->bi_private = r1_bio;
1294
1295         if (mddev->gendisk)
1296                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297                                 disk_devt(mddev->gendisk), r1_bio->sector);
1298
1299         generic_make_request(read_bio);
1300 }
1301
1302 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303                                 int max_write_sectors)
1304 {
1305         struct r1conf *conf = mddev->private;
1306         struct r1bio *r1_bio;
1307         int i, disks;
1308         struct bitmap *bitmap = mddev->bitmap;
1309         unsigned long flags;
1310         struct md_rdev *blocked_rdev;
1311         struct blk_plug_cb *cb;
1312         struct raid1_plug_cb *plug = NULL;
1313         int first_clone;
1314         int max_sectors;
1315
1316         if (mddev_is_clustered(mddev) &&
1317              md_cluster_ops->area_resyncing(mddev, WRITE,
1318                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319
1320                 DEFINE_WAIT(w);
1321                 for (;;) {
1322                         prepare_to_wait(&conf->wait_barrier,
1323                                         &w, TASK_IDLE);
1324                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325                                                         bio->bi_iter.bi_sector,
1326                                                         bio_end_sector(bio)))
1327                                 break;
1328                         schedule();
1329                 }
1330                 finish_wait(&conf->wait_barrier, &w);
1331         }
1332
1333         /*
1334          * Register the new request and wait if the reconstruction
1335          * thread has put up a bar for new requests.
1336          * Continue immediately if no resync is active currently.
1337          */
1338         wait_barrier(conf, bio->bi_iter.bi_sector);
1339
1340         r1_bio = alloc_r1bio(mddev, bio);
1341         r1_bio->sectors = max_write_sectors;
1342
1343         if (conf->pending_count >= max_queued_requests) {
1344                 md_wakeup_thread(mddev->thread);
1345                 raid1_log(mddev, "wait queued");
1346                 wait_event(conf->wait_barrier,
1347                            conf->pending_count < max_queued_requests);
1348         }
1349         /* first select target devices under rcu_lock and
1350          * inc refcount on their rdev.  Record them by setting
1351          * bios[x] to bio
1352          * If there are known/acknowledged bad blocks on any device on
1353          * which we have seen a write error, we want to avoid writing those
1354          * blocks.
1355          * This potentially requires several writes to write around
1356          * the bad blocks.  Each set of writes gets it's own r1bio
1357          * with a set of bios attached.
1358          */
1359
1360         disks = conf->raid_disks * 2;
1361  retry_write:
1362         blocked_rdev = NULL;
1363         rcu_read_lock();
1364         max_sectors = r1_bio->sectors;
1365         for (i = 0;  i < disks; i++) {
1366                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368                         atomic_inc(&rdev->nr_pending);
1369                         blocked_rdev = rdev;
1370                         break;
1371                 }
1372                 r1_bio->bios[i] = NULL;
1373                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374                         if (i < conf->raid_disks)
1375                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1376                         continue;
1377                 }
1378
1379                 atomic_inc(&rdev->nr_pending);
1380                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381                         sector_t first_bad;
1382                         int bad_sectors;
1383                         int is_bad;
1384
1385                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1386                                              &first_bad, &bad_sectors);
1387                         if (is_bad < 0) {
1388                                 /* mustn't write here until the bad block is
1389                                  * acknowledged*/
1390                                 set_bit(BlockedBadBlocks, &rdev->flags);
1391                                 blocked_rdev = rdev;
1392                                 break;
1393                         }
1394                         if (is_bad && first_bad <= r1_bio->sector) {
1395                                 /* Cannot write here at all */
1396                                 bad_sectors -= (r1_bio->sector - first_bad);
1397                                 if (bad_sectors < max_sectors)
1398                                         /* mustn't write more than bad_sectors
1399                                          * to other devices yet
1400                                          */
1401                                         max_sectors = bad_sectors;
1402                                 rdev_dec_pending(rdev, mddev);
1403                                 /* We don't set R1BIO_Degraded as that
1404                                  * only applies if the disk is
1405                                  * missing, so it might be re-added,
1406                                  * and we want to know to recover this
1407                                  * chunk.
1408                                  * In this case the device is here,
1409                                  * and the fact that this chunk is not
1410                                  * in-sync is recorded in the bad
1411                                  * block log
1412                                  */
1413                                 continue;
1414                         }
1415                         if (is_bad) {
1416                                 int good_sectors = first_bad - r1_bio->sector;
1417                                 if (good_sectors < max_sectors)
1418                                         max_sectors = good_sectors;
1419                         }
1420                 }
1421                 r1_bio->bios[i] = bio;
1422         }
1423         rcu_read_unlock();
1424
1425         if (unlikely(blocked_rdev)) {
1426                 /* Wait for this device to become unblocked */
1427                 int j;
1428
1429                 for (j = 0; j < i; j++)
1430                         if (r1_bio->bios[j])
1431                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432                 r1_bio->state = 0;
1433                 allow_barrier(conf, bio->bi_iter.bi_sector);
1434                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436                 wait_barrier(conf, bio->bi_iter.bi_sector);
1437                 goto retry_write;
1438         }
1439
1440         if (max_sectors < bio_sectors(bio)) {
1441                 struct bio *split = bio_split(bio, max_sectors,
1442                                               GFP_NOIO, &conf->bio_split);
1443                 bio_chain(split, bio);
1444                 generic_make_request(bio);
1445                 bio = split;
1446                 r1_bio->master_bio = bio;
1447                 r1_bio->sectors = max_sectors;
1448         }
1449
1450         atomic_set(&r1_bio->remaining, 1);
1451         atomic_set(&r1_bio->behind_remaining, 0);
1452
1453         first_clone = 1;
1454
1455         for (i = 0; i < disks; i++) {
1456                 struct bio *mbio = NULL;
1457                 if (!r1_bio->bios[i])
1458                         continue;
1459
1460
1461                 if (first_clone) {
1462                         /* do behind I/O ?
1463                          * Not if there are too many, or cannot
1464                          * allocate memory, or a reader on WriteMostly
1465                          * is waiting for behind writes to flush */
1466                         if (bitmap &&
1467                             (atomic_read(&bitmap->behind_writes)
1468                              < mddev->bitmap_info.max_write_behind) &&
1469                             !waitqueue_active(&bitmap->behind_wait)) {
1470                                 alloc_behind_master_bio(r1_bio, bio);
1471                         }
1472
1473                         bitmap_startwrite(bitmap, r1_bio->sector,
1474                                           r1_bio->sectors,
1475                                           test_bit(R1BIO_BehindIO,
1476                                                    &r1_bio->state));
1477                         first_clone = 0;
1478                 }
1479
1480                 if (r1_bio->behind_master_bio)
1481                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482                                               GFP_NOIO, &mddev->bio_set);
1483                 else
1484                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1485
1486                 if (r1_bio->behind_master_bio) {
1487                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488                                 atomic_inc(&r1_bio->behind_remaining);
1489                 }
1490
1491                 r1_bio->bios[i] = mbio;
1492
1493                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1494                                    conf->mirrors[i].rdev->data_offset);
1495                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496                 mbio->bi_end_io = raid1_end_write_request;
1497                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500                     conf->raid_disks - mddev->degraded > 1)
1501                         mbio->bi_opf |= MD_FAILFAST;
1502                 mbio->bi_private = r1_bio;
1503
1504                 atomic_inc(&r1_bio->remaining);
1505
1506                 if (mddev->gendisk)
1507                         trace_block_bio_remap(mbio->bi_disk->queue,
1508                                               mbio, disk_devt(mddev->gendisk),
1509                                               r1_bio->sector);
1510                 /* flush_pending_writes() needs access to the rdev so...*/
1511                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1512
1513                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514                 if (cb)
1515                         plug = container_of(cb, struct raid1_plug_cb, cb);
1516                 else
1517                         plug = NULL;
1518                 if (plug) {
1519                         bio_list_add(&plug->pending, mbio);
1520                         plug->pending_cnt++;
1521                 } else {
1522                         spin_lock_irqsave(&conf->device_lock, flags);
1523                         bio_list_add(&conf->pending_bio_list, mbio);
1524                         conf->pending_count++;
1525                         spin_unlock_irqrestore(&conf->device_lock, flags);
1526                         md_wakeup_thread(mddev->thread);
1527                 }
1528         }
1529
1530         r1_bio_write_done(r1_bio);
1531
1532         /* In case raid1d snuck in to freeze_array */
1533         wake_up(&conf->wait_barrier);
1534 }
1535
1536 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538         sector_t sectors;
1539
1540         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1541                 md_flush_request(mddev, bio);
1542                 return true;
1543         }
1544
1545         /*
1546          * There is a limit to the maximum size, but
1547          * the read/write handler might find a lower limit
1548          * due to bad blocks.  To avoid multiple splits,
1549          * we pass the maximum number of sectors down
1550          * and let the lower level perform the split.
1551          */
1552         sectors = align_to_barrier_unit_end(
1553                 bio->bi_iter.bi_sector, bio_sectors(bio));
1554
1555         if (bio_data_dir(bio) == READ)
1556                 raid1_read_request(mddev, bio, sectors, NULL);
1557         else {
1558                 if (!md_write_start(mddev,bio))
1559                         return false;
1560                 raid1_write_request(mddev, bio, sectors);
1561         }
1562         return true;
1563 }
1564
1565 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1566 {
1567         struct r1conf *conf = mddev->private;
1568         int i;
1569
1570         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1571                    conf->raid_disks - mddev->degraded);
1572         rcu_read_lock();
1573         for (i = 0; i < conf->raid_disks; i++) {
1574                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575                 seq_printf(seq, "%s",
1576                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577         }
1578         rcu_read_unlock();
1579         seq_printf(seq, "]");
1580 }
1581
1582 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1583 {
1584         char b[BDEVNAME_SIZE];
1585         struct r1conf *conf = mddev->private;
1586         unsigned long flags;
1587
1588         /*
1589          * If it is not operational, then we have already marked it as dead
1590          * else if it is the last working disks, ignore the error, let the
1591          * next level up know.
1592          * else mark the drive as failed
1593          */
1594         spin_lock_irqsave(&conf->device_lock, flags);
1595         if (test_bit(In_sync, &rdev->flags)
1596             && (conf->raid_disks - mddev->degraded) == 1) {
1597                 /*
1598                  * Don't fail the drive, act as though we were just a
1599                  * normal single drive.
1600                  * However don't try a recovery from this drive as
1601                  * it is very likely to fail.
1602                  */
1603                 conf->recovery_disabled = mddev->recovery_disabled;
1604                 spin_unlock_irqrestore(&conf->device_lock, flags);
1605                 return;
1606         }
1607         set_bit(Blocked, &rdev->flags);
1608         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1609                 mddev->degraded++;
1610                 set_bit(Faulty, &rdev->flags);
1611         } else
1612                 set_bit(Faulty, &rdev->flags);
1613         spin_unlock_irqrestore(&conf->device_lock, flags);
1614         /*
1615          * if recovery is running, make sure it aborts.
1616          */
1617         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1618         set_mask_bits(&mddev->sb_flags, 0,
1619                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1620         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1621                 "md/raid1:%s: Operation continuing on %d devices.\n",
1622                 mdname(mddev), bdevname(rdev->bdev, b),
1623                 mdname(mddev), conf->raid_disks - mddev->degraded);
1624 }
1625
1626 static void print_conf(struct r1conf *conf)
1627 {
1628         int i;
1629
1630         pr_debug("RAID1 conf printout:\n");
1631         if (!conf) {
1632                 pr_debug("(!conf)\n");
1633                 return;
1634         }
1635         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1636                  conf->raid_disks);
1637
1638         rcu_read_lock();
1639         for (i = 0; i < conf->raid_disks; i++) {
1640                 char b[BDEVNAME_SIZE];
1641                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1642                 if (rdev)
1643                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1644                                  i, !test_bit(In_sync, &rdev->flags),
1645                                  !test_bit(Faulty, &rdev->flags),
1646                                  bdevname(rdev->bdev,b));
1647         }
1648         rcu_read_unlock();
1649 }
1650
1651 static void close_sync(struct r1conf *conf)
1652 {
1653         int idx;
1654
1655         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1656                 _wait_barrier(conf, idx);
1657                 _allow_barrier(conf, idx);
1658         }
1659
1660         mempool_exit(&conf->r1buf_pool);
1661 }
1662
1663 static int raid1_spare_active(struct mddev *mddev)
1664 {
1665         int i;
1666         struct r1conf *conf = mddev->private;
1667         int count = 0;
1668         unsigned long flags;
1669
1670         /*
1671          * Find all failed disks within the RAID1 configuration
1672          * and mark them readable.
1673          * Called under mddev lock, so rcu protection not needed.
1674          * device_lock used to avoid races with raid1_end_read_request
1675          * which expects 'In_sync' flags and ->degraded to be consistent.
1676          */
1677         spin_lock_irqsave(&conf->device_lock, flags);
1678         for (i = 0; i < conf->raid_disks; i++) {
1679                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1680                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1681                 if (repl
1682                     && !test_bit(Candidate, &repl->flags)
1683                     && repl->recovery_offset == MaxSector
1684                     && !test_bit(Faulty, &repl->flags)
1685                     && !test_and_set_bit(In_sync, &repl->flags)) {
1686                         /* replacement has just become active */
1687                         if (!rdev ||
1688                             !test_and_clear_bit(In_sync, &rdev->flags))
1689                                 count++;
1690                         if (rdev) {
1691                                 /* Replaced device not technically
1692                                  * faulty, but we need to be sure
1693                                  * it gets removed and never re-added
1694                                  */
1695                                 set_bit(Faulty, &rdev->flags);
1696                                 sysfs_notify_dirent_safe(
1697                                         rdev->sysfs_state);
1698                         }
1699                 }
1700                 if (rdev
1701                     && rdev->recovery_offset == MaxSector
1702                     && !test_bit(Faulty, &rdev->flags)
1703                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1704                         count++;
1705                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1706                 }
1707         }
1708         mddev->degraded -= count;
1709         spin_unlock_irqrestore(&conf->device_lock, flags);
1710
1711         print_conf(conf);
1712         return count;
1713 }
1714
1715 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1716 {
1717         struct r1conf *conf = mddev->private;
1718         int err = -EEXIST;
1719         int mirror = 0;
1720         struct raid1_info *p;
1721         int first = 0;
1722         int last = conf->raid_disks - 1;
1723
1724         if (mddev->recovery_disabled == conf->recovery_disabled)
1725                 return -EBUSY;
1726
1727         if (md_integrity_add_rdev(rdev, mddev))
1728                 return -ENXIO;
1729
1730         if (rdev->raid_disk >= 0)
1731                 first = last = rdev->raid_disk;
1732
1733         /*
1734          * find the disk ... but prefer rdev->saved_raid_disk
1735          * if possible.
1736          */
1737         if (rdev->saved_raid_disk >= 0 &&
1738             rdev->saved_raid_disk >= first &&
1739             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1740                 first = last = rdev->saved_raid_disk;
1741
1742         for (mirror = first; mirror <= last; mirror++) {
1743                 p = conf->mirrors+mirror;
1744                 if (!p->rdev) {
1745
1746                         if (mddev->gendisk)
1747                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1748                                                   rdev->data_offset << 9);
1749
1750                         p->head_position = 0;
1751                         rdev->raid_disk = mirror;
1752                         err = 0;
1753                         /* As all devices are equivalent, we don't need a full recovery
1754                          * if this was recently any drive of the array
1755                          */
1756                         if (rdev->saved_raid_disk < 0)
1757                                 conf->fullsync = 1;
1758                         rcu_assign_pointer(p->rdev, rdev);
1759                         break;
1760                 }
1761                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1762                     p[conf->raid_disks].rdev == NULL) {
1763                         /* Add this device as a replacement */
1764                         clear_bit(In_sync, &rdev->flags);
1765                         set_bit(Replacement, &rdev->flags);
1766                         rdev->raid_disk = mirror;
1767                         err = 0;
1768                         conf->fullsync = 1;
1769                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1770                         break;
1771                 }
1772         }
1773         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1774                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1775         print_conf(conf);
1776         return err;
1777 }
1778
1779 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1780 {
1781         struct r1conf *conf = mddev->private;
1782         int err = 0;
1783         int number = rdev->raid_disk;
1784         struct raid1_info *p = conf->mirrors + number;
1785
1786         if (rdev != p->rdev)
1787                 p = conf->mirrors + conf->raid_disks + number;
1788
1789         print_conf(conf);
1790         if (rdev == p->rdev) {
1791                 if (test_bit(In_sync, &rdev->flags) ||
1792                     atomic_read(&rdev->nr_pending)) {
1793                         err = -EBUSY;
1794                         goto abort;
1795                 }
1796                 /* Only remove non-faulty devices if recovery
1797                  * is not possible.
1798                  */
1799                 if (!test_bit(Faulty, &rdev->flags) &&
1800                     mddev->recovery_disabled != conf->recovery_disabled &&
1801                     mddev->degraded < conf->raid_disks) {
1802                         err = -EBUSY;
1803                         goto abort;
1804                 }
1805                 p->rdev = NULL;
1806                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1807                         synchronize_rcu();
1808                         if (atomic_read(&rdev->nr_pending)) {
1809                                 /* lost the race, try later */
1810                                 err = -EBUSY;
1811                                 p->rdev = rdev;
1812                                 goto abort;
1813                         }
1814                 }
1815                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1816                         /* We just removed a device that is being replaced.
1817                          * Move down the replacement.  We drain all IO before
1818                          * doing this to avoid confusion.
1819                          */
1820                         struct md_rdev *repl =
1821                                 conf->mirrors[conf->raid_disks + number].rdev;
1822                         freeze_array(conf, 0);
1823                         if (atomic_read(&repl->nr_pending)) {
1824                                 /* It means that some queued IO of retry_list
1825                                  * hold repl. Thus, we cannot set replacement
1826                                  * as NULL, avoiding rdev NULL pointer
1827                                  * dereference in sync_request_write and
1828                                  * handle_write_finished.
1829                                  */
1830                                 err = -EBUSY;
1831                                 unfreeze_array(conf);
1832                                 goto abort;
1833                         }
1834                         clear_bit(Replacement, &repl->flags);
1835                         p->rdev = repl;
1836                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1837                         unfreeze_array(conf);
1838                 }
1839
1840                 clear_bit(WantReplacement, &rdev->flags);
1841                 err = md_integrity_register(mddev);
1842         }
1843 abort:
1844
1845         print_conf(conf);
1846         return err;
1847 }
1848
1849 static void end_sync_read(struct bio *bio)
1850 {
1851         struct r1bio *r1_bio = get_resync_r1bio(bio);
1852
1853         update_head_pos(r1_bio->read_disk, r1_bio);
1854
1855         /*
1856          * we have read a block, now it needs to be re-written,
1857          * or re-read if the read failed.
1858          * We don't do much here, just schedule handling by raid1d
1859          */
1860         if (!bio->bi_status)
1861                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1862
1863         if (atomic_dec_and_test(&r1_bio->remaining))
1864                 reschedule_retry(r1_bio);
1865 }
1866
1867 static void end_sync_write(struct bio *bio)
1868 {
1869         int uptodate = !bio->bi_status;
1870         struct r1bio *r1_bio = get_resync_r1bio(bio);
1871         struct mddev *mddev = r1_bio->mddev;
1872         struct r1conf *conf = mddev->private;
1873         sector_t first_bad;
1874         int bad_sectors;
1875         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1876
1877         if (!uptodate) {
1878                 sector_t sync_blocks = 0;
1879                 sector_t s = r1_bio->sector;
1880                 long sectors_to_go = r1_bio->sectors;
1881                 /* make sure these bits doesn't get cleared. */
1882                 do {
1883                         bitmap_end_sync(mddev->bitmap, s,
1884                                         &sync_blocks, 1);
1885                         s += sync_blocks;
1886                         sectors_to_go -= sync_blocks;
1887                 } while (sectors_to_go > 0);
1888                 set_bit(WriteErrorSeen, &rdev->flags);
1889                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1890                         set_bit(MD_RECOVERY_NEEDED, &
1891                                 mddev->recovery);
1892                 set_bit(R1BIO_WriteError, &r1_bio->state);
1893         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1894                                &first_bad, &bad_sectors) &&
1895                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1896                                 r1_bio->sector,
1897                                 r1_bio->sectors,
1898                                 &first_bad, &bad_sectors)
1899                 )
1900                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1901
1902         if (atomic_dec_and_test(&r1_bio->remaining)) {
1903                 int s = r1_bio->sectors;
1904                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1905                     test_bit(R1BIO_WriteError, &r1_bio->state))
1906                         reschedule_retry(r1_bio);
1907                 else {
1908                         put_buf(r1_bio);
1909                         md_done_sync(mddev, s, uptodate);
1910                 }
1911         }
1912 }
1913
1914 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1915                             int sectors, struct page *page, int rw)
1916 {
1917         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1918                 /* success */
1919                 return 1;
1920         if (rw == WRITE) {
1921                 set_bit(WriteErrorSeen, &rdev->flags);
1922                 if (!test_and_set_bit(WantReplacement,
1923                                       &rdev->flags))
1924                         set_bit(MD_RECOVERY_NEEDED, &
1925                                 rdev->mddev->recovery);
1926         }
1927         /* need to record an error - either for the block or the device */
1928         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1929                 md_error(rdev->mddev, rdev);
1930         return 0;
1931 }
1932
1933 static int fix_sync_read_error(struct r1bio *r1_bio)
1934 {
1935         /* Try some synchronous reads of other devices to get
1936          * good data, much like with normal read errors.  Only
1937          * read into the pages we already have so we don't
1938          * need to re-issue the read request.
1939          * We don't need to freeze the array, because being in an
1940          * active sync request, there is no normal IO, and
1941          * no overlapping syncs.
1942          * We don't need to check is_badblock() again as we
1943          * made sure that anything with a bad block in range
1944          * will have bi_end_io clear.
1945          */
1946         struct mddev *mddev = r1_bio->mddev;
1947         struct r1conf *conf = mddev->private;
1948         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1949         struct page **pages = get_resync_pages(bio)->pages;
1950         sector_t sect = r1_bio->sector;
1951         int sectors = r1_bio->sectors;
1952         int idx = 0;
1953         struct md_rdev *rdev;
1954
1955         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1956         if (test_bit(FailFast, &rdev->flags)) {
1957                 /* Don't try recovering from here - just fail it
1958                  * ... unless it is the last working device of course */
1959                 md_error(mddev, rdev);
1960                 if (test_bit(Faulty, &rdev->flags))
1961                         /* Don't try to read from here, but make sure
1962                          * put_buf does it's thing
1963                          */
1964                         bio->bi_end_io = end_sync_write;
1965         }
1966
1967         while(sectors) {
1968                 int s = sectors;
1969                 int d = r1_bio->read_disk;
1970                 int success = 0;
1971                 int start;
1972
1973                 if (s > (PAGE_SIZE>>9))
1974                         s = PAGE_SIZE >> 9;
1975                 do {
1976                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1977                                 /* No rcu protection needed here devices
1978                                  * can only be removed when no resync is
1979                                  * active, and resync is currently active
1980                                  */
1981                                 rdev = conf->mirrors[d].rdev;
1982                                 if (sync_page_io(rdev, sect, s<<9,
1983                                                  pages[idx],
1984                                                  REQ_OP_READ, 0, false)) {
1985                                         success = 1;
1986                                         break;
1987                                 }
1988                         }
1989                         d++;
1990                         if (d == conf->raid_disks * 2)
1991                                 d = 0;
1992                 } while (!success && d != r1_bio->read_disk);
1993
1994                 if (!success) {
1995                         char b[BDEVNAME_SIZE];
1996                         int abort = 0;
1997                         /* Cannot read from anywhere, this block is lost.
1998                          * Record a bad block on each device.  If that doesn't
1999                          * work just disable and interrupt the recovery.
2000                          * Don't fail devices as that won't really help.
2001                          */
2002                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2003                                             mdname(mddev), bio_devname(bio, b),
2004                                             (unsigned long long)r1_bio->sector);
2005                         for (d = 0; d < conf->raid_disks * 2; d++) {
2006                                 rdev = conf->mirrors[d].rdev;
2007                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2008                                         continue;
2009                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2010                                         abort = 1;
2011                         }
2012                         if (abort) {
2013                                 conf->recovery_disabled =
2014                                         mddev->recovery_disabled;
2015                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2016                                 md_done_sync(mddev, r1_bio->sectors, 0);
2017                                 put_buf(r1_bio);
2018                                 return 0;
2019                         }
2020                         /* Try next page */
2021                         sectors -= s;
2022                         sect += s;
2023                         idx++;
2024                         continue;
2025                 }
2026
2027                 start = d;
2028                 /* write it back and re-read */
2029                 while (d != r1_bio->read_disk) {
2030                         if (d == 0)
2031                                 d = conf->raid_disks * 2;
2032                         d--;
2033                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2034                                 continue;
2035                         rdev = conf->mirrors[d].rdev;
2036                         if (r1_sync_page_io(rdev, sect, s,
2037                                             pages[idx],
2038                                             WRITE) == 0) {
2039                                 r1_bio->bios[d]->bi_end_io = NULL;
2040                                 rdev_dec_pending(rdev, mddev);
2041                         }
2042                 }
2043                 d = start;
2044                 while (d != r1_bio->read_disk) {
2045                         if (d == 0)
2046                                 d = conf->raid_disks * 2;
2047                         d--;
2048                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2049                                 continue;
2050                         rdev = conf->mirrors[d].rdev;
2051                         if (r1_sync_page_io(rdev, sect, s,
2052                                             pages[idx],
2053                                             READ) != 0)
2054                                 atomic_add(s, &rdev->corrected_errors);
2055                 }
2056                 sectors -= s;
2057                 sect += s;
2058                 idx ++;
2059         }
2060         set_bit(R1BIO_Uptodate, &r1_bio->state);
2061         bio->bi_status = 0;
2062         return 1;
2063 }
2064
2065 static void process_checks(struct r1bio *r1_bio)
2066 {
2067         /* We have read all readable devices.  If we haven't
2068          * got the block, then there is no hope left.
2069          * If we have, then we want to do a comparison
2070          * and skip the write if everything is the same.
2071          * If any blocks failed to read, then we need to
2072          * attempt an over-write
2073          */
2074         struct mddev *mddev = r1_bio->mddev;
2075         struct r1conf *conf = mddev->private;
2076         int primary;
2077         int i;
2078         int vcnt;
2079
2080         /* Fix variable parts of all bios */
2081         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2082         for (i = 0; i < conf->raid_disks * 2; i++) {
2083                 blk_status_t status;
2084                 struct bio *b = r1_bio->bios[i];
2085                 struct resync_pages *rp = get_resync_pages(b);
2086                 if (b->bi_end_io != end_sync_read)
2087                         continue;
2088                 /* fixup the bio for reuse, but preserve errno */
2089                 status = b->bi_status;
2090                 bio_reset(b);
2091                 b->bi_status = status;
2092                 b->bi_iter.bi_sector = r1_bio->sector +
2093                         conf->mirrors[i].rdev->data_offset;
2094                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2095                 b->bi_end_io = end_sync_read;
2096                 rp->raid_bio = r1_bio;
2097                 b->bi_private = rp;
2098
2099                 /* initialize bvec table again */
2100                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2101         }
2102         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2103                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2104                     !r1_bio->bios[primary]->bi_status) {
2105                         r1_bio->bios[primary]->bi_end_io = NULL;
2106                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2107                         break;
2108                 }
2109         r1_bio->read_disk = primary;
2110         for (i = 0; i < conf->raid_disks * 2; i++) {
2111                 int j;
2112                 struct bio *pbio = r1_bio->bios[primary];
2113                 struct bio *sbio = r1_bio->bios[i];
2114                 blk_status_t status = sbio->bi_status;
2115                 struct page **ppages = get_resync_pages(pbio)->pages;
2116                 struct page **spages = get_resync_pages(sbio)->pages;
2117                 struct bio_vec *bi;
2118                 int page_len[RESYNC_PAGES] = { 0 };
2119
2120                 if (sbio->bi_end_io != end_sync_read)
2121                         continue;
2122                 /* Now we can 'fixup' the error value */
2123                 sbio->bi_status = 0;
2124
2125                 bio_for_each_segment_all(bi, sbio, j)
2126                         page_len[j] = bi->bv_len;
2127
2128                 if (!status) {
2129                         for (j = vcnt; j-- ; ) {
2130                                 if (memcmp(page_address(ppages[j]),
2131                                            page_address(spages[j]),
2132                                            page_len[j]))
2133                                         break;
2134                         }
2135                 } else
2136                         j = 0;
2137                 if (j >= 0)
2138                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2139                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2140                               && !status)) {
2141                         /* No need to write to this device. */
2142                         sbio->bi_end_io = NULL;
2143                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2144                         continue;
2145                 }
2146
2147                 bio_copy_data(sbio, pbio);
2148         }
2149 }
2150
2151 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2152 {
2153         struct r1conf *conf = mddev->private;
2154         int i;
2155         int disks = conf->raid_disks * 2;
2156         struct bio *wbio;
2157
2158         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2159                 /* ouch - failed to read all of that. */
2160                 if (!fix_sync_read_error(r1_bio))
2161                         return;
2162
2163         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2164                 process_checks(r1_bio);
2165
2166         /*
2167          * schedule writes
2168          */
2169         atomic_set(&r1_bio->remaining, 1);
2170         for (i = 0; i < disks ; i++) {
2171                 wbio = r1_bio->bios[i];
2172                 if (wbio->bi_end_io == NULL ||
2173                     (wbio->bi_end_io == end_sync_read &&
2174                      (i == r1_bio->read_disk ||
2175                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2176                         continue;
2177                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2178                         continue;
2179
2180                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2181                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2182                         wbio->bi_opf |= MD_FAILFAST;
2183
2184                 wbio->bi_end_io = end_sync_write;
2185                 atomic_inc(&r1_bio->remaining);
2186                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2187
2188                 generic_make_request(wbio);
2189         }
2190
2191         if (atomic_dec_and_test(&r1_bio->remaining)) {
2192                 /* if we're here, all write(s) have completed, so clean up */
2193                 int s = r1_bio->sectors;
2194                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2195                     test_bit(R1BIO_WriteError, &r1_bio->state))
2196                         reschedule_retry(r1_bio);
2197                 else {
2198                         put_buf(r1_bio);
2199                         md_done_sync(mddev, s, 1);
2200                 }
2201         }
2202 }
2203
2204 /*
2205  * This is a kernel thread which:
2206  *
2207  *      1.      Retries failed read operations on working mirrors.
2208  *      2.      Updates the raid superblock when problems encounter.
2209  *      3.      Performs writes following reads for array synchronising.
2210  */
2211
2212 static void fix_read_error(struct r1conf *conf, int read_disk,
2213                            sector_t sect, int sectors)
2214 {
2215         struct mddev *mddev = conf->mddev;
2216         while(sectors) {
2217                 int s = sectors;
2218                 int d = read_disk;
2219                 int success = 0;
2220                 int start;
2221                 struct md_rdev *rdev;
2222
2223                 if (s > (PAGE_SIZE>>9))
2224                         s = PAGE_SIZE >> 9;
2225
2226                 do {
2227                         sector_t first_bad;
2228                         int bad_sectors;
2229
2230                         rcu_read_lock();
2231                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2232                         if (rdev &&
2233                             (test_bit(In_sync, &rdev->flags) ||
2234                              (!test_bit(Faulty, &rdev->flags) &&
2235                               rdev->recovery_offset >= sect + s)) &&
2236                             is_badblock(rdev, sect, s,
2237                                         &first_bad, &bad_sectors) == 0) {
2238                                 atomic_inc(&rdev->nr_pending);
2239                                 rcu_read_unlock();
2240                                 if (sync_page_io(rdev, sect, s<<9,
2241                                          conf->tmppage, REQ_OP_READ, 0, false))
2242                                         success = 1;
2243                                 rdev_dec_pending(rdev, mddev);
2244                                 if (success)
2245                                         break;
2246                         } else
2247                                 rcu_read_unlock();
2248                         d++;
2249                         if (d == conf->raid_disks * 2)
2250                                 d = 0;
2251                 } while (!success && d != read_disk);
2252
2253                 if (!success) {
2254                         /* Cannot read from anywhere - mark it bad */
2255                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2256                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2257                                 md_error(mddev, rdev);
2258                         break;
2259                 }
2260                 /* write it back and re-read */
2261                 start = d;
2262                 while (d != read_disk) {
2263                         if (d==0)
2264                                 d = conf->raid_disks * 2;
2265                         d--;
2266                         rcu_read_lock();
2267                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2268                         if (rdev &&
2269                             !test_bit(Faulty, &rdev->flags)) {
2270                                 atomic_inc(&rdev->nr_pending);
2271                                 rcu_read_unlock();
2272                                 r1_sync_page_io(rdev, sect, s,
2273                                                 conf->tmppage, WRITE);
2274                                 rdev_dec_pending(rdev, mddev);
2275                         } else
2276                                 rcu_read_unlock();
2277                 }
2278                 d = start;
2279                 while (d != read_disk) {
2280                         char b[BDEVNAME_SIZE];
2281                         if (d==0)
2282                                 d = conf->raid_disks * 2;
2283                         d--;
2284                         rcu_read_lock();
2285                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2286                         if (rdev &&
2287                             !test_bit(Faulty, &rdev->flags)) {
2288                                 atomic_inc(&rdev->nr_pending);
2289                                 rcu_read_unlock();
2290                                 if (r1_sync_page_io(rdev, sect, s,
2291                                                     conf->tmppage, READ)) {
2292                                         atomic_add(s, &rdev->corrected_errors);
2293                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2294                                                 mdname(mddev), s,
2295                                                 (unsigned long long)(sect +
2296                                                                      rdev->data_offset),
2297                                                 bdevname(rdev->bdev, b));
2298                                 }
2299                                 rdev_dec_pending(rdev, mddev);
2300                         } else
2301                                 rcu_read_unlock();
2302                 }
2303                 sectors -= s;
2304                 sect += s;
2305         }
2306 }
2307
2308 static int narrow_write_error(struct r1bio *r1_bio, int i)
2309 {
2310         struct mddev *mddev = r1_bio->mddev;
2311         struct r1conf *conf = mddev->private;
2312         struct md_rdev *rdev = conf->mirrors[i].rdev;
2313
2314         /* bio has the data to be written to device 'i' where
2315          * we just recently had a write error.
2316          * We repeatedly clone the bio and trim down to one block,
2317          * then try the write.  Where the write fails we record
2318          * a bad block.
2319          * It is conceivable that the bio doesn't exactly align with
2320          * blocks.  We must handle this somehow.
2321          *
2322          * We currently own a reference on the rdev.
2323          */
2324
2325         int block_sectors;
2326         sector_t sector;
2327         int sectors;
2328         int sect_to_write = r1_bio->sectors;
2329         int ok = 1;
2330
2331         if (rdev->badblocks.shift < 0)
2332                 return 0;
2333
2334         block_sectors = roundup(1 << rdev->badblocks.shift,
2335                                 bdev_logical_block_size(rdev->bdev) >> 9);
2336         sector = r1_bio->sector;
2337         sectors = ((sector + block_sectors)
2338                    & ~(sector_t)(block_sectors - 1))
2339                 - sector;
2340
2341         while (sect_to_write) {
2342                 struct bio *wbio;
2343                 if (sectors > sect_to_write)
2344                         sectors = sect_to_write;
2345                 /* Write at 'sector' for 'sectors'*/
2346
2347                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2348                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2349                                               GFP_NOIO,
2350                                               &mddev->bio_set);
2351                 } else {
2352                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2353                                               &mddev->bio_set);
2354                 }
2355
2356                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2357                 wbio->bi_iter.bi_sector = r1_bio->sector;
2358                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2359
2360                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2361                 wbio->bi_iter.bi_sector += rdev->data_offset;
2362                 bio_set_dev(wbio, rdev->bdev);
2363
2364                 if (submit_bio_wait(wbio) < 0)
2365                         /* failure! */
2366                         ok = rdev_set_badblocks(rdev, sector,
2367                                                 sectors, 0)
2368                                 && ok;
2369
2370                 bio_put(wbio);
2371                 sect_to_write -= sectors;
2372                 sector += sectors;
2373                 sectors = block_sectors;
2374         }
2375         return ok;
2376 }
2377
2378 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2379 {
2380         int m;
2381         int s = r1_bio->sectors;
2382         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2383                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2384                 struct bio *bio = r1_bio->bios[m];
2385                 if (bio->bi_end_io == NULL)
2386                         continue;
2387                 if (!bio->bi_status &&
2388                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2389                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2390                 }
2391                 if (bio->bi_status &&
2392                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2393                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2394                                 md_error(conf->mddev, rdev);
2395                 }
2396         }
2397         put_buf(r1_bio);
2398         md_done_sync(conf->mddev, s, 1);
2399 }
2400
2401 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2402 {
2403         int m, idx;
2404         bool fail = false;
2405
2406         for (m = 0; m < conf->raid_disks * 2 ; m++)
2407                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2408                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2409                         rdev_clear_badblocks(rdev,
2410                                              r1_bio->sector,
2411                                              r1_bio->sectors, 0);
2412                         rdev_dec_pending(rdev, conf->mddev);
2413                 } else if (r1_bio->bios[m] != NULL) {
2414                         /* This drive got a write error.  We need to
2415                          * narrow down and record precise write
2416                          * errors.
2417                          */
2418                         fail = true;
2419                         if (!narrow_write_error(r1_bio, m)) {
2420                                 md_error(conf->mddev,
2421                                          conf->mirrors[m].rdev);
2422                                 /* an I/O failed, we can't clear the bitmap */
2423                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2424                         }
2425                         rdev_dec_pending(conf->mirrors[m].rdev,
2426                                          conf->mddev);
2427                 }
2428         if (fail) {
2429                 spin_lock_irq(&conf->device_lock);
2430                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2431                 idx = sector_to_idx(r1_bio->sector);
2432                 atomic_inc(&conf->nr_queued[idx]);
2433                 spin_unlock_irq(&conf->device_lock);
2434                 /*
2435                  * In case freeze_array() is waiting for condition
2436                  * get_unqueued_pending() == extra to be true.
2437                  */
2438                 wake_up(&conf->wait_barrier);
2439                 md_wakeup_thread(conf->mddev->thread);
2440         } else {
2441                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2442                         close_write(r1_bio);
2443                 raid_end_bio_io(r1_bio);
2444         }
2445 }
2446
2447 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2448 {
2449         struct mddev *mddev = conf->mddev;
2450         struct bio *bio;
2451         struct md_rdev *rdev;
2452
2453         clear_bit(R1BIO_ReadError, &r1_bio->state);
2454         /* we got a read error. Maybe the drive is bad.  Maybe just
2455          * the block and we can fix it.
2456          * We freeze all other IO, and try reading the block from
2457          * other devices.  When we find one, we re-write
2458          * and check it that fixes the read error.
2459          * This is all done synchronously while the array is
2460          * frozen
2461          */
2462
2463         bio = r1_bio->bios[r1_bio->read_disk];
2464         bio_put(bio);
2465         r1_bio->bios[r1_bio->read_disk] = NULL;
2466
2467         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2468         if (mddev->ro == 0
2469             && !test_bit(FailFast, &rdev->flags)) {
2470                 freeze_array(conf, 1);
2471                 fix_read_error(conf, r1_bio->read_disk,
2472                                r1_bio->sector, r1_bio->sectors);
2473                 unfreeze_array(conf);
2474         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2475                 md_error(mddev, rdev);
2476         } else {
2477                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2478         }
2479
2480         rdev_dec_pending(rdev, conf->mddev);
2481         allow_barrier(conf, r1_bio->sector);
2482         bio = r1_bio->master_bio;
2483
2484         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2485         r1_bio->state = 0;
2486         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2487 }
2488
2489 static void raid1d(struct md_thread *thread)
2490 {
2491         struct mddev *mddev = thread->mddev;
2492         struct r1bio *r1_bio;
2493         unsigned long flags;
2494         struct r1conf *conf = mddev->private;
2495         struct list_head *head = &conf->retry_list;
2496         struct blk_plug plug;
2497         int idx;
2498
2499         md_check_recovery(mddev);
2500
2501         if (!list_empty_careful(&conf->bio_end_io_list) &&
2502             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2503                 LIST_HEAD(tmp);
2504                 spin_lock_irqsave(&conf->device_lock, flags);
2505                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2506                         list_splice_init(&conf->bio_end_io_list, &tmp);
2507                 spin_unlock_irqrestore(&conf->device_lock, flags);
2508                 while (!list_empty(&tmp)) {
2509                         r1_bio = list_first_entry(&tmp, struct r1bio,
2510                                                   retry_list);
2511                         list_del(&r1_bio->retry_list);
2512                         idx = sector_to_idx(r1_bio->sector);
2513                         atomic_dec(&conf->nr_queued[idx]);
2514                         if (mddev->degraded)
2515                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2516                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2517                                 close_write(r1_bio);
2518                         raid_end_bio_io(r1_bio);
2519                 }
2520         }
2521
2522         blk_start_plug(&plug);
2523         for (;;) {
2524
2525                 flush_pending_writes(conf);
2526
2527                 spin_lock_irqsave(&conf->device_lock, flags);
2528                 if (list_empty(head)) {
2529                         spin_unlock_irqrestore(&conf->device_lock, flags);
2530                         break;
2531                 }
2532                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2533                 list_del(head->prev);
2534                 idx = sector_to_idx(r1_bio->sector);
2535                 atomic_dec(&conf->nr_queued[idx]);
2536                 spin_unlock_irqrestore(&conf->device_lock, flags);
2537
2538                 mddev = r1_bio->mddev;
2539                 conf = mddev->private;
2540                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2541                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2542                             test_bit(R1BIO_WriteError, &r1_bio->state))
2543                                 handle_sync_write_finished(conf, r1_bio);
2544                         else
2545                                 sync_request_write(mddev, r1_bio);
2546                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2547                            test_bit(R1BIO_WriteError, &r1_bio->state))
2548                         handle_write_finished(conf, r1_bio);
2549                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2550                         handle_read_error(conf, r1_bio);
2551                 else
2552                         WARN_ON_ONCE(1);
2553
2554                 cond_resched();
2555                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2556                         md_check_recovery(mddev);
2557         }
2558         blk_finish_plug(&plug);
2559 }
2560
2561 static int init_resync(struct r1conf *conf)
2562 {
2563         int buffs;
2564
2565         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2566         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2567
2568         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2569                             r1buf_pool_free, conf->poolinfo);
2570 }
2571
2572 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2573 {
2574         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2575         struct resync_pages *rps;
2576         struct bio *bio;
2577         int i;
2578
2579         for (i = conf->poolinfo->raid_disks; i--; ) {
2580                 bio = r1bio->bios[i];
2581                 rps = bio->bi_private;
2582                 bio_reset(bio);
2583                 bio->bi_private = rps;
2584         }
2585         r1bio->master_bio = NULL;
2586         return r1bio;
2587 }
2588
2589 /*
2590  * perform a "sync" on one "block"
2591  *
2592  * We need to make sure that no normal I/O request - particularly write
2593  * requests - conflict with active sync requests.
2594  *
2595  * This is achieved by tracking pending requests and a 'barrier' concept
2596  * that can be installed to exclude normal IO requests.
2597  */
2598
2599 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2600                                    int *skipped)
2601 {
2602         struct r1conf *conf = mddev->private;
2603         struct r1bio *r1_bio;
2604         struct bio *bio;
2605         sector_t max_sector, nr_sectors;
2606         int disk = -1;
2607         int i;
2608         int wonly = -1;
2609         int write_targets = 0, read_targets = 0;
2610         sector_t sync_blocks;
2611         int still_degraded = 0;
2612         int good_sectors = RESYNC_SECTORS;
2613         int min_bad = 0; /* number of sectors that are bad in all devices */
2614         int idx = sector_to_idx(sector_nr);
2615         int page_idx = 0;
2616
2617         if (!mempool_initialized(&conf->r1buf_pool))
2618                 if (init_resync(conf))
2619                         return 0;
2620
2621         max_sector = mddev->dev_sectors;
2622         if (sector_nr >= max_sector) {
2623                 /* If we aborted, we need to abort the
2624                  * sync on the 'current' bitmap chunk (there will
2625                  * only be one in raid1 resync.
2626                  * We can find the current addess in mddev->curr_resync
2627                  */
2628                 if (mddev->curr_resync < max_sector) /* aborted */
2629                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2630                                                 &sync_blocks, 1);
2631                 else /* completed sync */
2632                         conf->fullsync = 0;
2633
2634                 bitmap_close_sync(mddev->bitmap);
2635                 close_sync(conf);
2636
2637                 if (mddev_is_clustered(mddev)) {
2638                         conf->cluster_sync_low = 0;
2639                         conf->cluster_sync_high = 0;
2640                 }
2641                 return 0;
2642         }
2643
2644         if (mddev->bitmap == NULL &&
2645             mddev->recovery_cp == MaxSector &&
2646             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2647             conf->fullsync == 0) {
2648                 *skipped = 1;
2649                 return max_sector - sector_nr;
2650         }
2651         /* before building a request, check if we can skip these blocks..
2652          * This call the bitmap_start_sync doesn't actually record anything
2653          */
2654         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2655             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2656                 /* We can skip this block, and probably several more */
2657                 *skipped = 1;
2658                 return sync_blocks;
2659         }
2660
2661         /*
2662          * If there is non-resync activity waiting for a turn, then let it
2663          * though before starting on this new sync request.
2664          */
2665         if (atomic_read(&conf->nr_waiting[idx]))
2666                 schedule_timeout_uninterruptible(1);
2667
2668         /* we are incrementing sector_nr below. To be safe, we check against
2669          * sector_nr + two times RESYNC_SECTORS
2670          */
2671
2672         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2673                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2674
2675
2676         if (raise_barrier(conf, sector_nr))
2677                 return 0;
2678
2679         r1_bio = raid1_alloc_init_r1buf(conf);
2680
2681         rcu_read_lock();
2682         /*
2683          * If we get a correctably read error during resync or recovery,
2684          * we might want to read from a different device.  So we
2685          * flag all drives that could conceivably be read from for READ,
2686          * and any others (which will be non-In_sync devices) for WRITE.
2687          * If a read fails, we try reading from something else for which READ
2688          * is OK.
2689          */
2690
2691         r1_bio->mddev = mddev;
2692         r1_bio->sector = sector_nr;
2693         r1_bio->state = 0;
2694         set_bit(R1BIO_IsSync, &r1_bio->state);
2695         /* make sure good_sectors won't go across barrier unit boundary */
2696         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2697
2698         for (i = 0; i < conf->raid_disks * 2; i++) {
2699                 struct md_rdev *rdev;
2700                 bio = r1_bio->bios[i];
2701
2702                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2703                 if (rdev == NULL ||
2704                     test_bit(Faulty, &rdev->flags)) {
2705                         if (i < conf->raid_disks)
2706                                 still_degraded = 1;
2707                 } else if (!test_bit(In_sync, &rdev->flags)) {
2708                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2709                         bio->bi_end_io = end_sync_write;
2710                         write_targets ++;
2711                 } else {
2712                         /* may need to read from here */
2713                         sector_t first_bad = MaxSector;
2714                         int bad_sectors;
2715
2716                         if (is_badblock(rdev, sector_nr, good_sectors,
2717                                         &first_bad, &bad_sectors)) {
2718                                 if (first_bad > sector_nr)
2719                                         good_sectors = first_bad - sector_nr;
2720                                 else {
2721                                         bad_sectors -= (sector_nr - first_bad);
2722                                         if (min_bad == 0 ||
2723                                             min_bad > bad_sectors)
2724                                                 min_bad = bad_sectors;
2725                                 }
2726                         }
2727                         if (sector_nr < first_bad) {
2728                                 if (test_bit(WriteMostly, &rdev->flags)) {
2729                                         if (wonly < 0)
2730                                                 wonly = i;
2731                                 } else {
2732                                         if (disk < 0)
2733                                                 disk = i;
2734                                 }
2735                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2736                                 bio->bi_end_io = end_sync_read;
2737                                 read_targets++;
2738                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2739                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2740                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2741                                 /*
2742                                  * The device is suitable for reading (InSync),
2743                                  * but has bad block(s) here. Let's try to correct them,
2744                                  * if we are doing resync or repair. Otherwise, leave
2745                                  * this device alone for this sync request.
2746                                  */
2747                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2748                                 bio->bi_end_io = end_sync_write;
2749                                 write_targets++;
2750                         }
2751                 }
2752                 if (bio->bi_end_io) {
2753                         atomic_inc(&rdev->nr_pending);
2754                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2755                         bio_set_dev(bio, rdev->bdev);
2756                         if (test_bit(FailFast, &rdev->flags))
2757                                 bio->bi_opf |= MD_FAILFAST;
2758                 }
2759         }
2760         rcu_read_unlock();
2761         if (disk < 0)
2762                 disk = wonly;
2763         r1_bio->read_disk = disk;
2764
2765         if (read_targets == 0 && min_bad > 0) {
2766                 /* These sectors are bad on all InSync devices, so we
2767                  * need to mark them bad on all write targets
2768                  */
2769                 int ok = 1;
2770                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2771                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2772                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2773                                 ok = rdev_set_badblocks(rdev, sector_nr,
2774                                                         min_bad, 0
2775                                         ) && ok;
2776                         }
2777                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2778                 *skipped = 1;
2779                 put_buf(r1_bio);
2780
2781                 if (!ok) {
2782                         /* Cannot record the badblocks, so need to
2783                          * abort the resync.
2784                          * If there are multiple read targets, could just
2785                          * fail the really bad ones ???
2786                          */
2787                         conf->recovery_disabled = mddev->recovery_disabled;
2788                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2789                         return 0;
2790                 } else
2791                         return min_bad;
2792
2793         }
2794         if (min_bad > 0 && min_bad < good_sectors) {
2795                 /* only resync enough to reach the next bad->good
2796                  * transition */
2797                 good_sectors = min_bad;
2798         }
2799
2800         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2801                 /* extra read targets are also write targets */
2802                 write_targets += read_targets-1;
2803
2804         if (write_targets == 0 || read_targets == 0) {
2805                 /* There is nowhere to write, so all non-sync
2806                  * drives must be failed - so we are finished
2807                  */
2808                 sector_t rv;
2809                 if (min_bad > 0)
2810                         max_sector = sector_nr + min_bad;
2811                 rv = max_sector - sector_nr;
2812                 *skipped = 1;
2813                 put_buf(r1_bio);
2814                 return rv;
2815         }
2816
2817         if (max_sector > mddev->resync_max)
2818                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2819         if (max_sector > sector_nr + good_sectors)
2820                 max_sector = sector_nr + good_sectors;
2821         nr_sectors = 0;
2822         sync_blocks = 0;
2823         do {
2824                 struct page *page;
2825                 int len = PAGE_SIZE;
2826                 if (sector_nr + (len>>9) > max_sector)
2827                         len = (max_sector - sector_nr) << 9;
2828                 if (len == 0)
2829                         break;
2830                 if (sync_blocks == 0) {
2831                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2832                                                &sync_blocks, still_degraded) &&
2833                             !conf->fullsync &&
2834                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2835                                 break;
2836                         if ((len >> 9) > sync_blocks)
2837                                 len = sync_blocks<<9;
2838                 }
2839
2840                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2841                         struct resync_pages *rp;
2842
2843                         bio = r1_bio->bios[i];
2844                         rp = get_resync_pages(bio);
2845                         if (bio->bi_end_io) {
2846                                 page = resync_fetch_page(rp, page_idx);
2847
2848                                 /*
2849                                  * won't fail because the vec table is big
2850                                  * enough to hold all these pages
2851                                  */
2852                                 bio_add_page(bio, page, len, 0);
2853                         }
2854                 }
2855                 nr_sectors += len>>9;
2856                 sector_nr += len>>9;
2857                 sync_blocks -= (len>>9);
2858         } while (++page_idx < RESYNC_PAGES);
2859
2860         r1_bio->sectors = nr_sectors;
2861
2862         if (mddev_is_clustered(mddev) &&
2863                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2864                 conf->cluster_sync_low = mddev->curr_resync_completed;
2865                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2866                 /* Send resync message */
2867                 md_cluster_ops->resync_info_update(mddev,
2868                                 conf->cluster_sync_low,
2869                                 conf->cluster_sync_high);
2870         }
2871
2872         /* For a user-requested sync, we read all readable devices and do a
2873          * compare
2874          */
2875         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2876                 atomic_set(&r1_bio->remaining, read_targets);
2877                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2878                         bio = r1_bio->bios[i];
2879                         if (bio->bi_end_io == end_sync_read) {
2880                                 read_targets--;
2881                                 md_sync_acct_bio(bio, nr_sectors);
2882                                 if (read_targets == 1)
2883                                         bio->bi_opf &= ~MD_FAILFAST;
2884                                 generic_make_request(bio);
2885                         }
2886                 }
2887         } else {
2888                 atomic_set(&r1_bio->remaining, 1);
2889                 bio = r1_bio->bios[r1_bio->read_disk];
2890                 md_sync_acct_bio(bio, nr_sectors);
2891                 if (read_targets == 1)
2892                         bio->bi_opf &= ~MD_FAILFAST;
2893                 generic_make_request(bio);
2894
2895         }
2896         return nr_sectors;
2897 }
2898
2899 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2900 {
2901         if (sectors)
2902                 return sectors;
2903
2904         return mddev->dev_sectors;
2905 }
2906
2907 static struct r1conf *setup_conf(struct mddev *mddev)
2908 {
2909         struct r1conf *conf;
2910         int i;
2911         struct raid1_info *disk;
2912         struct md_rdev *rdev;
2913         int err = -ENOMEM;
2914
2915         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2916         if (!conf)
2917                 goto abort;
2918
2919         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2920                                    sizeof(atomic_t), GFP_KERNEL);
2921         if (!conf->nr_pending)
2922                 goto abort;
2923
2924         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2925                                    sizeof(atomic_t), GFP_KERNEL);
2926         if (!conf->nr_waiting)
2927                 goto abort;
2928
2929         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2930                                   sizeof(atomic_t), GFP_KERNEL);
2931         if (!conf->nr_queued)
2932                 goto abort;
2933
2934         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2935                                 sizeof(atomic_t), GFP_KERNEL);
2936         if (!conf->barrier)
2937                 goto abort;
2938
2939         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2940                                             mddev->raid_disks, 2),
2941                                 GFP_KERNEL);
2942         if (!conf->mirrors)
2943                 goto abort;
2944
2945         conf->tmppage = alloc_page(GFP_KERNEL);
2946         if (!conf->tmppage)
2947                 goto abort;
2948
2949         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2950         if (!conf->poolinfo)
2951                 goto abort;
2952         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2953         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2954                            r1bio_pool_free, conf->poolinfo);
2955         if (err)
2956                 goto abort;
2957
2958         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2959         if (err)
2960                 goto abort;
2961
2962         conf->poolinfo->mddev = mddev;
2963
2964         err = -EINVAL;
2965         spin_lock_init(&conf->device_lock);
2966         rdev_for_each(rdev, mddev) {
2967                 int disk_idx = rdev->raid_disk;
2968                 if (disk_idx >= mddev->raid_disks
2969                     || disk_idx < 0)
2970                         continue;
2971                 if (test_bit(Replacement, &rdev->flags))
2972                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2973                 else
2974                         disk = conf->mirrors + disk_idx;
2975
2976                 if (disk->rdev)
2977                         goto abort;
2978                 disk->rdev = rdev;
2979                 disk->head_position = 0;
2980                 disk->seq_start = MaxSector;
2981         }
2982         conf->raid_disks = mddev->raid_disks;
2983         conf->mddev = mddev;
2984         INIT_LIST_HEAD(&conf->retry_list);
2985         INIT_LIST_HEAD(&conf->bio_end_io_list);
2986
2987         spin_lock_init(&conf->resync_lock);
2988         init_waitqueue_head(&conf->wait_barrier);
2989
2990         bio_list_init(&conf->pending_bio_list);
2991         conf->pending_count = 0;
2992         conf->recovery_disabled = mddev->recovery_disabled - 1;
2993
2994         err = -EIO;
2995         for (i = 0; i < conf->raid_disks * 2; i++) {
2996
2997                 disk = conf->mirrors + i;
2998
2999                 if (i < conf->raid_disks &&
3000                     disk[conf->raid_disks].rdev) {
3001                         /* This slot has a replacement. */
3002                         if (!disk->rdev) {
3003                                 /* No original, just make the replacement
3004                                  * a recovering spare
3005                                  */
3006                                 disk->rdev =
3007                                         disk[conf->raid_disks].rdev;
3008                                 disk[conf->raid_disks].rdev = NULL;
3009                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3010                                 /* Original is not in_sync - bad */
3011                                 goto abort;
3012                 }
3013
3014                 if (!disk->rdev ||
3015                     !test_bit(In_sync, &disk->rdev->flags)) {
3016                         disk->head_position = 0;
3017                         if (disk->rdev &&
3018                             (disk->rdev->saved_raid_disk < 0))
3019                                 conf->fullsync = 1;
3020                 }
3021         }
3022
3023         err = -ENOMEM;
3024         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3025         if (!conf->thread)
3026                 goto abort;
3027
3028         return conf;
3029
3030  abort:
3031         if (conf) {
3032                 mempool_exit(&conf->r1bio_pool);
3033                 kfree(conf->mirrors);
3034                 safe_put_page(conf->tmppage);
3035                 kfree(conf->poolinfo);
3036                 kfree(conf->nr_pending);
3037                 kfree(conf->nr_waiting);
3038                 kfree(conf->nr_queued);
3039                 kfree(conf->barrier);
3040                 bioset_exit(&conf->bio_split);
3041                 kfree(conf);
3042         }
3043         return ERR_PTR(err);
3044 }
3045
3046 static void raid1_free(struct mddev *mddev, void *priv);
3047 static int raid1_run(struct mddev *mddev)
3048 {
3049         struct r1conf *conf;
3050         int i;
3051         struct md_rdev *rdev;
3052         int ret;
3053         bool discard_supported = false;
3054
3055         if (mddev->level != 1) {
3056                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3057                         mdname(mddev), mddev->level);
3058                 return -EIO;
3059         }
3060         if (mddev->reshape_position != MaxSector) {
3061                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3062                         mdname(mddev));
3063                 return -EIO;
3064         }
3065         if (mddev_init_writes_pending(mddev) < 0)
3066                 return -ENOMEM;
3067         /*
3068          * copy the already verified devices into our private RAID1
3069          * bookkeeping area. [whatever we allocate in run(),
3070          * should be freed in raid1_free()]
3071          */
3072         if (mddev->private == NULL)
3073                 conf = setup_conf(mddev);
3074         else
3075                 conf = mddev->private;
3076
3077         if (IS_ERR(conf))
3078                 return PTR_ERR(conf);
3079
3080         if (mddev->queue) {
3081                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3082                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3083         }
3084
3085         rdev_for_each(rdev, mddev) {
3086                 if (!mddev->gendisk)
3087                         continue;
3088                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3089                                   rdev->data_offset << 9);
3090                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3091                         discard_supported = true;
3092         }
3093
3094         mddev->degraded = 0;
3095         for (i=0; i < conf->raid_disks; i++)
3096                 if (conf->mirrors[i].rdev == NULL ||
3097                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3098                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3099                         mddev->degraded++;
3100
3101         if (conf->raid_disks - mddev->degraded == 1)
3102                 mddev->recovery_cp = MaxSector;
3103
3104         if (mddev->recovery_cp != MaxSector)
3105                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3106                         mdname(mddev));
3107         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3108                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3109                 mddev->raid_disks);
3110
3111         /*
3112          * Ok, everything is just fine now
3113          */
3114         mddev->thread = conf->thread;
3115         conf->thread = NULL;
3116         mddev->private = conf;
3117         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3118
3119         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3120
3121         if (mddev->queue) {
3122                 if (discard_supported)
3123                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3124                                                 mddev->queue);
3125                 else
3126                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3127                                                   mddev->queue);
3128         }
3129
3130         ret =  md_integrity_register(mddev);
3131         if (ret) {
3132                 md_unregister_thread(&mddev->thread);
3133                 raid1_free(mddev, conf);
3134         }
3135         return ret;
3136 }
3137
3138 static void raid1_free(struct mddev *mddev, void *priv)
3139 {
3140         struct r1conf *conf = priv;
3141
3142         mempool_exit(&conf->r1bio_pool);
3143         kfree(conf->mirrors);
3144         safe_put_page(conf->tmppage);
3145         kfree(conf->poolinfo);
3146         kfree(conf->nr_pending);
3147         kfree(conf->nr_waiting);
3148         kfree(conf->nr_queued);
3149         kfree(conf->barrier);
3150         bioset_exit(&conf->bio_split);
3151         kfree(conf);
3152 }
3153
3154 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3155 {
3156         /* no resync is happening, and there is enough space
3157          * on all devices, so we can resize.
3158          * We need to make sure resync covers any new space.
3159          * If the array is shrinking we should possibly wait until
3160          * any io in the removed space completes, but it hardly seems
3161          * worth it.
3162          */
3163         sector_t newsize = raid1_size(mddev, sectors, 0);
3164         if (mddev->external_size &&
3165             mddev->array_sectors > newsize)
3166                 return -EINVAL;
3167         if (mddev->bitmap) {
3168                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3169                 if (ret)
3170                         return ret;
3171         }
3172         md_set_array_sectors(mddev, newsize);
3173         if (sectors > mddev->dev_sectors &&
3174             mddev->recovery_cp > mddev->dev_sectors) {
3175                 mddev->recovery_cp = mddev->dev_sectors;
3176                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3177         }
3178         mddev->dev_sectors = sectors;
3179         mddev->resync_max_sectors = sectors;
3180         return 0;
3181 }
3182
3183 static int raid1_reshape(struct mddev *mddev)
3184 {
3185         /* We need to:
3186          * 1/ resize the r1bio_pool
3187          * 2/ resize conf->mirrors
3188          *
3189          * We allocate a new r1bio_pool if we can.
3190          * Then raise a device barrier and wait until all IO stops.
3191          * Then resize conf->mirrors and swap in the new r1bio pool.
3192          *
3193          * At the same time, we "pack" the devices so that all the missing
3194          * devices have the higher raid_disk numbers.
3195          */
3196         mempool_t newpool, oldpool;
3197         struct pool_info *newpoolinfo;
3198         struct raid1_info *newmirrors;
3199         struct r1conf *conf = mddev->private;
3200         int cnt, raid_disks;
3201         unsigned long flags;
3202         int d, d2;
3203         int ret;
3204
3205         memset(&newpool, 0, sizeof(newpool));
3206         memset(&oldpool, 0, sizeof(oldpool));
3207
3208         /* Cannot change chunk_size, layout, or level */
3209         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3210             mddev->layout != mddev->new_layout ||
3211             mddev->level != mddev->new_level) {
3212                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3213                 mddev->new_layout = mddev->layout;
3214                 mddev->new_level = mddev->level;
3215                 return -EINVAL;
3216         }
3217
3218         if (!mddev_is_clustered(mddev))
3219                 md_allow_write(mddev);
3220
3221         raid_disks = mddev->raid_disks + mddev->delta_disks;
3222
3223         if (raid_disks < conf->raid_disks) {
3224                 cnt=0;
3225                 for (d= 0; d < conf->raid_disks; d++)
3226                         if (conf->mirrors[d].rdev)
3227                                 cnt++;
3228                 if (cnt > raid_disks)
3229                         return -EBUSY;
3230         }
3231
3232         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3233         if (!newpoolinfo)
3234                 return -ENOMEM;
3235         newpoolinfo->mddev = mddev;
3236         newpoolinfo->raid_disks = raid_disks * 2;
3237
3238         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3239                            r1bio_pool_free, newpoolinfo);
3240         if (ret) {
3241                 kfree(newpoolinfo);
3242                 return ret;
3243         }
3244         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3245                                          raid_disks, 2),
3246                              GFP_KERNEL);
3247         if (!newmirrors) {
3248                 kfree(newpoolinfo);
3249                 mempool_exit(&newpool);
3250                 return -ENOMEM;
3251         }
3252
3253         freeze_array(conf, 0);
3254
3255         /* ok, everything is stopped */
3256         oldpool = conf->r1bio_pool;
3257         conf->r1bio_pool = newpool;
3258
3259         for (d = d2 = 0; d < conf->raid_disks; d++) {
3260                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3261                 if (rdev && rdev->raid_disk != d2) {
3262                         sysfs_unlink_rdev(mddev, rdev);
3263                         rdev->raid_disk = d2;
3264                         sysfs_unlink_rdev(mddev, rdev);
3265                         if (sysfs_link_rdev(mddev, rdev))
3266                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3267                                         mdname(mddev), rdev->raid_disk);
3268                 }
3269                 if (rdev)
3270                         newmirrors[d2++].rdev = rdev;
3271         }
3272         kfree(conf->mirrors);
3273         conf->mirrors = newmirrors;
3274         kfree(conf->poolinfo);
3275         conf->poolinfo = newpoolinfo;
3276
3277         spin_lock_irqsave(&conf->device_lock, flags);
3278         mddev->degraded += (raid_disks - conf->raid_disks);
3279         spin_unlock_irqrestore(&conf->device_lock, flags);
3280         conf->raid_disks = mddev->raid_disks = raid_disks;
3281         mddev->delta_disks = 0;
3282
3283         unfreeze_array(conf);
3284
3285         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3286         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3287         md_wakeup_thread(mddev->thread);
3288
3289         mempool_exit(&oldpool);
3290         return 0;
3291 }
3292
3293 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3294 {
3295         struct r1conf *conf = mddev->private;
3296
3297         if (quiesce)
3298                 freeze_array(conf, 0);
3299         else
3300                 unfreeze_array(conf);
3301 }
3302
3303 static void *raid1_takeover(struct mddev *mddev)
3304 {
3305         /* raid1 can take over:
3306          *  raid5 with 2 devices, any layout or chunk size
3307          */
3308         if (mddev->level == 5 && mddev->raid_disks == 2) {
3309                 struct r1conf *conf;
3310                 mddev->new_level = 1;
3311                 mddev->new_layout = 0;
3312                 mddev->new_chunk_sectors = 0;
3313                 conf = setup_conf(mddev);
3314                 if (!IS_ERR(conf)) {
3315                         /* Array must appear to be quiesced */
3316                         conf->array_frozen = 1;
3317                         mddev_clear_unsupported_flags(mddev,
3318                                 UNSUPPORTED_MDDEV_FLAGS);
3319                 }
3320                 return conf;
3321         }
3322         return ERR_PTR(-EINVAL);
3323 }
3324
3325 static struct md_personality raid1_personality =
3326 {
3327         .name           = "raid1",
3328         .level          = 1,
3329         .owner          = THIS_MODULE,
3330         .make_request   = raid1_make_request,
3331         .run            = raid1_run,
3332         .free           = raid1_free,
3333         .status         = raid1_status,
3334         .error_handler  = raid1_error,
3335         .hot_add_disk   = raid1_add_disk,
3336         .hot_remove_disk= raid1_remove_disk,
3337         .spare_active   = raid1_spare_active,
3338         .sync_request   = raid1_sync_request,
3339         .resize         = raid1_resize,
3340         .size           = raid1_size,
3341         .check_reshape  = raid1_reshape,
3342         .quiesce        = raid1_quiesce,
3343         .takeover       = raid1_takeover,
3344         .congested      = raid1_congested,
3345 };
3346
3347 static int __init raid_init(void)
3348 {
3349         return register_md_personality(&raid1_personality);
3350 }
3351
3352 static void raid_exit(void)
3353 {
3354         unregister_md_personality(&raid1_personality);
3355 }
3356
3357 module_init(raid_init);
3358 module_exit(raid_exit);
3359 MODULE_LICENSE("GPL");
3360 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3361 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3362 MODULE_ALIAS("md-raid1");
3363 MODULE_ALIAS("md-level-1");
3364
3365 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);