Merge tag 'pci-v4.14-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL) |           \
52          (1L << MD_HAS_MULTIPLE_PPLS))
53
54 /*
55  * Number of guaranteed r1bios in case of extreme VM load:
56  */
57 #define NR_RAID1_BIOS 256
58
59 /* when we get a read error on a read-only array, we redirect to another
60  * device without failing the first device, or trying to over-write to
61  * correct the read error.  To keep track of bad blocks on a per-bio
62  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63  */
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66  * bad-block marking which must be done from process context.  So we record
67  * the success by setting devs[n].bio to IO_MADE_GOOD
68  */
69 #define IO_MADE_GOOD ((struct bio *)2)
70
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72
73 /* When there are this many requests queue to be written by
74  * the raid1 thread, we become 'congested' to provide back-pressure
75  * for writeback.
76  */
77 static int max_queued_requests = 1024;
78
79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
81
82 #define raid1_log(md, fmt, args...)                             \
83         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
84
85 #include "raid1-10.c"
86
87 /*
88  * for resync bio, r1bio pointer can be retrieved from the per-bio
89  * 'struct resync_pages'.
90  */
91 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
92 {
93         return get_resync_pages(bio)->raid_bio;
94 }
95
96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
97 {
98         struct pool_info *pi = data;
99         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
100
101         /* allocate a r1bio with room for raid_disks entries in the bios array */
102         return kzalloc(size, gfp_flags);
103 }
104
105 static void r1bio_pool_free(void *r1_bio, void *data)
106 {
107         kfree(r1_bio);
108 }
109
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116
117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
118 {
119         struct pool_info *pi = data;
120         struct r1bio *r1_bio;
121         struct bio *bio;
122         int need_pages;
123         int j;
124         struct resync_pages *rps;
125
126         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
127         if (!r1_bio)
128                 return NULL;
129
130         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131                       gfp_flags);
132         if (!rps)
133                 goto out_free_r1bio;
134
135         /*
136          * Allocate bios : 1 for reading, n-1 for writing
137          */
138         for (j = pi->raid_disks ; j-- ; ) {
139                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
140                 if (!bio)
141                         goto out_free_bio;
142                 r1_bio->bios[j] = bio;
143         }
144         /*
145          * Allocate RESYNC_PAGES data pages and attach them to
146          * the first bio.
147          * If this is a user-requested check/repair, allocate
148          * RESYNC_PAGES for each bio.
149          */
150         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
151                 need_pages = pi->raid_disks;
152         else
153                 need_pages = 1;
154         for (j = 0; j < pi->raid_disks; j++) {
155                 struct resync_pages *rp = &rps[j];
156
157                 bio = r1_bio->bios[j];
158
159                 if (j < need_pages) {
160                         if (resync_alloc_pages(rp, gfp_flags))
161                                 goto out_free_pages;
162                 } else {
163                         memcpy(rp, &rps[0], sizeof(*rp));
164                         resync_get_all_pages(rp);
165                 }
166
167                 rp->raid_bio = r1_bio;
168                 bio->bi_private = rp;
169         }
170
171         r1_bio->master_bio = NULL;
172
173         return r1_bio;
174
175 out_free_pages:
176         while (--j >= 0)
177                 resync_free_pages(&rps[j]);
178
179 out_free_bio:
180         while (++j < pi->raid_disks)
181                 bio_put(r1_bio->bios[j]);
182         kfree(rps);
183
184 out_free_r1bio:
185         r1bio_pool_free(r1_bio, data);
186         return NULL;
187 }
188
189 static void r1buf_pool_free(void *__r1_bio, void *data)
190 {
191         struct pool_info *pi = data;
192         int i;
193         struct r1bio *r1bio = __r1_bio;
194         struct resync_pages *rp = NULL;
195
196         for (i = pi->raid_disks; i--; ) {
197                 rp = get_resync_pages(r1bio->bios[i]);
198                 resync_free_pages(rp);
199                 bio_put(r1bio->bios[i]);
200         }
201
202         /* resync pages array stored in the 1st bio's .bi_private */
203         kfree(rp);
204
205         r1bio_pool_free(r1bio, data);
206 }
207
208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
209 {
210         int i;
211
212         for (i = 0; i < conf->raid_disks * 2; i++) {
213                 struct bio **bio = r1_bio->bios + i;
214                 if (!BIO_SPECIAL(*bio))
215                         bio_put(*bio);
216                 *bio = NULL;
217         }
218 }
219
220 static void free_r1bio(struct r1bio *r1_bio)
221 {
222         struct r1conf *conf = r1_bio->mddev->private;
223
224         put_all_bios(conf, r1_bio);
225         mempool_free(r1_bio, conf->r1bio_pool);
226 }
227
228 static void put_buf(struct r1bio *r1_bio)
229 {
230         struct r1conf *conf = r1_bio->mddev->private;
231         sector_t sect = r1_bio->sector;
232         int i;
233
234         for (i = 0; i < conf->raid_disks * 2; i++) {
235                 struct bio *bio = r1_bio->bios[i];
236                 if (bio->bi_end_io)
237                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
238         }
239
240         mempool_free(r1_bio, conf->r1buf_pool);
241
242         lower_barrier(conf, sect);
243 }
244
245 static void reschedule_retry(struct r1bio *r1_bio)
246 {
247         unsigned long flags;
248         struct mddev *mddev = r1_bio->mddev;
249         struct r1conf *conf = mddev->private;
250         int idx;
251
252         idx = sector_to_idx(r1_bio->sector);
253         spin_lock_irqsave(&conf->device_lock, flags);
254         list_add(&r1_bio->retry_list, &conf->retry_list);
255         atomic_inc(&conf->nr_queued[idx]);
256         spin_unlock_irqrestore(&conf->device_lock, flags);
257
258         wake_up(&conf->wait_barrier);
259         md_wakeup_thread(mddev->thread);
260 }
261
262 /*
263  * raid_end_bio_io() is called when we have finished servicing a mirrored
264  * operation and are ready to return a success/failure code to the buffer
265  * cache layer.
266  */
267 static void call_bio_endio(struct r1bio *r1_bio)
268 {
269         struct bio *bio = r1_bio->master_bio;
270         struct r1conf *conf = r1_bio->mddev->private;
271
272         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
273                 bio->bi_status = BLK_STS_IOERR;
274
275         bio_endio(bio);
276         /*
277          * Wake up any possible resync thread that waits for the device
278          * to go idle.
279          */
280         allow_barrier(conf, r1_bio->sector);
281 }
282
283 static void raid_end_bio_io(struct r1bio *r1_bio)
284 {
285         struct bio *bio = r1_bio->master_bio;
286
287         /* if nobody has done the final endio yet, do it now */
288         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
289                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
291                          (unsigned long long) bio->bi_iter.bi_sector,
292                          (unsigned long long) bio_end_sector(bio) - 1);
293
294                 call_bio_endio(r1_bio);
295         }
296         free_r1bio(r1_bio);
297 }
298
299 /*
300  * Update disk head position estimator based on IRQ completion info.
301  */
302 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
303 {
304         struct r1conf *conf = r1_bio->mddev->private;
305
306         conf->mirrors[disk].head_position =
307                 r1_bio->sector + (r1_bio->sectors);
308 }
309
310 /*
311  * Find the disk number which triggered given bio
312  */
313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
314 {
315         int mirror;
316         struct r1conf *conf = r1_bio->mddev->private;
317         int raid_disks = conf->raid_disks;
318
319         for (mirror = 0; mirror < raid_disks * 2; mirror++)
320                 if (r1_bio->bios[mirror] == bio)
321                         break;
322
323         BUG_ON(mirror == raid_disks * 2);
324         update_head_pos(mirror, r1_bio);
325
326         return mirror;
327 }
328
329 static void raid1_end_read_request(struct bio *bio)
330 {
331         int uptodate = !bio->bi_status;
332         struct r1bio *r1_bio = bio->bi_private;
333         struct r1conf *conf = r1_bio->mddev->private;
334         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
335
336         /*
337          * this branch is our 'one mirror IO has finished' event handler:
338          */
339         update_head_pos(r1_bio->read_disk, r1_bio);
340
341         if (uptodate)
342                 set_bit(R1BIO_Uptodate, &r1_bio->state);
343         else if (test_bit(FailFast, &rdev->flags) &&
344                  test_bit(R1BIO_FailFast, &r1_bio->state))
345                 /* This was a fail-fast read so we definitely
346                  * want to retry */
347                 ;
348         else {
349                 /* If all other devices have failed, we want to return
350                  * the error upwards rather than fail the last device.
351                  * Here we redefine "uptodate" to mean "Don't want to retry"
352                  */
353                 unsigned long flags;
354                 spin_lock_irqsave(&conf->device_lock, flags);
355                 if (r1_bio->mddev->degraded == conf->raid_disks ||
356                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
357                      test_bit(In_sync, &rdev->flags)))
358                         uptodate = 1;
359                 spin_unlock_irqrestore(&conf->device_lock, flags);
360         }
361
362         if (uptodate) {
363                 raid_end_bio_io(r1_bio);
364                 rdev_dec_pending(rdev, conf->mddev);
365         } else {
366                 /*
367                  * oops, read error:
368                  */
369                 char b[BDEVNAME_SIZE];
370                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371                                    mdname(conf->mddev),
372                                    bdevname(rdev->bdev, b),
373                                    (unsigned long long)r1_bio->sector);
374                 set_bit(R1BIO_ReadError, &r1_bio->state);
375                 reschedule_retry(r1_bio);
376                 /* don't drop the reference on read_disk yet */
377         }
378 }
379
380 static void close_write(struct r1bio *r1_bio)
381 {
382         /* it really is the end of this request */
383         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                 bio_free_pages(r1_bio->behind_master_bio);
385                 bio_put(r1_bio->behind_master_bio);
386                 r1_bio->behind_master_bio = NULL;
387         }
388         /* clear the bitmap if all writes complete successfully */
389         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390                         r1_bio->sectors,
391                         !test_bit(R1BIO_Degraded, &r1_bio->state),
392                         test_bit(R1BIO_BehindIO, &r1_bio->state));
393         md_write_end(r1_bio->mddev);
394 }
395
396 static void r1_bio_write_done(struct r1bio *r1_bio)
397 {
398         if (!atomic_dec_and_test(&r1_bio->remaining))
399                 return;
400
401         if (test_bit(R1BIO_WriteError, &r1_bio->state))
402                 reschedule_retry(r1_bio);
403         else {
404                 close_write(r1_bio);
405                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406                         reschedule_retry(r1_bio);
407                 else
408                         raid_end_bio_io(r1_bio);
409         }
410 }
411
412 static void raid1_end_write_request(struct bio *bio)
413 {
414         struct r1bio *r1_bio = bio->bi_private;
415         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
416         struct r1conf *conf = r1_bio->mddev->private;
417         struct bio *to_put = NULL;
418         int mirror = find_bio_disk(r1_bio, bio);
419         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
420         bool discard_error;
421
422         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
423
424         /*
425          * 'one mirror IO has finished' event handler:
426          */
427         if (bio->bi_status && !discard_error) {
428                 set_bit(WriteErrorSeen, &rdev->flags);
429                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
430                         set_bit(MD_RECOVERY_NEEDED, &
431                                 conf->mddev->recovery);
432
433                 if (test_bit(FailFast, &rdev->flags) &&
434                     (bio->bi_opf & MD_FAILFAST) &&
435                     /* We never try FailFast to WriteMostly devices */
436                     !test_bit(WriteMostly, &rdev->flags)) {
437                         md_error(r1_bio->mddev, rdev);
438                         if (!test_bit(Faulty, &rdev->flags))
439                                 /* This is the only remaining device,
440                                  * We need to retry the write without
441                                  * FailFast
442                                  */
443                                 set_bit(R1BIO_WriteError, &r1_bio->state);
444                         else {
445                                 /* Finished with this branch */
446                                 r1_bio->bios[mirror] = NULL;
447                                 to_put = bio;
448                         }
449                 } else
450                         set_bit(R1BIO_WriteError, &r1_bio->state);
451         } else {
452                 /*
453                  * Set R1BIO_Uptodate in our master bio, so that we
454                  * will return a good error code for to the higher
455                  * levels even if IO on some other mirrored buffer
456                  * fails.
457                  *
458                  * The 'master' represents the composite IO operation
459                  * to user-side. So if something waits for IO, then it
460                  * will wait for the 'master' bio.
461                  */
462                 sector_t first_bad;
463                 int bad_sectors;
464
465                 r1_bio->bios[mirror] = NULL;
466                 to_put = bio;
467                 /*
468                  * Do not set R1BIO_Uptodate if the current device is
469                  * rebuilding or Faulty. This is because we cannot use
470                  * such device for properly reading the data back (we could
471                  * potentially use it, if the current write would have felt
472                  * before rdev->recovery_offset, but for simplicity we don't
473                  * check this here.
474                  */
475                 if (test_bit(In_sync, &rdev->flags) &&
476                     !test_bit(Faulty, &rdev->flags))
477                         set_bit(R1BIO_Uptodate, &r1_bio->state);
478
479                 /* Maybe we can clear some bad blocks. */
480                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
481                                 &first_bad, &bad_sectors) && !discard_error) {
482                         r1_bio->bios[mirror] = IO_MADE_GOOD;
483                         set_bit(R1BIO_MadeGood, &r1_bio->state);
484                 }
485         }
486
487         if (behind) {
488                 if (test_bit(WriteMostly, &rdev->flags))
489                         atomic_dec(&r1_bio->behind_remaining);
490
491                 /*
492                  * In behind mode, we ACK the master bio once the I/O
493                  * has safely reached all non-writemostly
494                  * disks. Setting the Returned bit ensures that this
495                  * gets done only once -- we don't ever want to return
496                  * -EIO here, instead we'll wait
497                  */
498                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
499                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
500                         /* Maybe we can return now */
501                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
502                                 struct bio *mbio = r1_bio->master_bio;
503                                 pr_debug("raid1: behind end write sectors"
504                                          " %llu-%llu\n",
505                                          (unsigned long long) mbio->bi_iter.bi_sector,
506                                          (unsigned long long) bio_end_sector(mbio) - 1);
507                                 call_bio_endio(r1_bio);
508                         }
509                 }
510         }
511         if (r1_bio->bios[mirror] == NULL)
512                 rdev_dec_pending(rdev, conf->mddev);
513
514         /*
515          * Let's see if all mirrored write operations have finished
516          * already.
517          */
518         r1_bio_write_done(r1_bio);
519
520         if (to_put)
521                 bio_put(to_put);
522 }
523
524 static sector_t align_to_barrier_unit_end(sector_t start_sector,
525                                           sector_t sectors)
526 {
527         sector_t len;
528
529         WARN_ON(sectors == 0);
530         /*
531          * len is the number of sectors from start_sector to end of the
532          * barrier unit which start_sector belongs to.
533          */
534         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
535               start_sector;
536
537         if (len > sectors)
538                 len = sectors;
539
540         return len;
541 }
542
543 /*
544  * This routine returns the disk from which the requested read should
545  * be done. There is a per-array 'next expected sequential IO' sector
546  * number - if this matches on the next IO then we use the last disk.
547  * There is also a per-disk 'last know head position' sector that is
548  * maintained from IRQ contexts, both the normal and the resync IO
549  * completion handlers update this position correctly. If there is no
550  * perfect sequential match then we pick the disk whose head is closest.
551  *
552  * If there are 2 mirrors in the same 2 devices, performance degrades
553  * because position is mirror, not device based.
554  *
555  * The rdev for the device selected will have nr_pending incremented.
556  */
557 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
558 {
559         const sector_t this_sector = r1_bio->sector;
560         int sectors;
561         int best_good_sectors;
562         int best_disk, best_dist_disk, best_pending_disk;
563         int has_nonrot_disk;
564         int disk;
565         sector_t best_dist;
566         unsigned int min_pending;
567         struct md_rdev *rdev;
568         int choose_first;
569         int choose_next_idle;
570
571         rcu_read_lock();
572         /*
573          * Check if we can balance. We can balance on the whole
574          * device if no resync is going on, or below the resync window.
575          * We take the first readable disk when above the resync window.
576          */
577  retry:
578         sectors = r1_bio->sectors;
579         best_disk = -1;
580         best_dist_disk = -1;
581         best_dist = MaxSector;
582         best_pending_disk = -1;
583         min_pending = UINT_MAX;
584         best_good_sectors = 0;
585         has_nonrot_disk = 0;
586         choose_next_idle = 0;
587         clear_bit(R1BIO_FailFast, &r1_bio->state);
588
589         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
590             (mddev_is_clustered(conf->mddev) &&
591             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
592                     this_sector + sectors)))
593                 choose_first = 1;
594         else
595                 choose_first = 0;
596
597         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598                 sector_t dist;
599                 sector_t first_bad;
600                 int bad_sectors;
601                 unsigned int pending;
602                 bool nonrot;
603
604                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
605                 if (r1_bio->bios[disk] == IO_BLOCKED
606                     || rdev == NULL
607                     || test_bit(Faulty, &rdev->flags))
608                         continue;
609                 if (!test_bit(In_sync, &rdev->flags) &&
610                     rdev->recovery_offset < this_sector + sectors)
611                         continue;
612                 if (test_bit(WriteMostly, &rdev->flags)) {
613                         /* Don't balance among write-mostly, just
614                          * use the first as a last resort */
615                         if (best_dist_disk < 0) {
616                                 if (is_badblock(rdev, this_sector, sectors,
617                                                 &first_bad, &bad_sectors)) {
618                                         if (first_bad <= this_sector)
619                                                 /* Cannot use this */
620                                                 continue;
621                                         best_good_sectors = first_bad - this_sector;
622                                 } else
623                                         best_good_sectors = sectors;
624                                 best_dist_disk = disk;
625                                 best_pending_disk = disk;
626                         }
627                         continue;
628                 }
629                 /* This is a reasonable device to use.  It might
630                  * even be best.
631                  */
632                 if (is_badblock(rdev, this_sector, sectors,
633                                 &first_bad, &bad_sectors)) {
634                         if (best_dist < MaxSector)
635                                 /* already have a better device */
636                                 continue;
637                         if (first_bad <= this_sector) {
638                                 /* cannot read here. If this is the 'primary'
639                                  * device, then we must not read beyond
640                                  * bad_sectors from another device..
641                                  */
642                                 bad_sectors -= (this_sector - first_bad);
643                                 if (choose_first && sectors > bad_sectors)
644                                         sectors = bad_sectors;
645                                 if (best_good_sectors > sectors)
646                                         best_good_sectors = sectors;
647
648                         } else {
649                                 sector_t good_sectors = first_bad - this_sector;
650                                 if (good_sectors > best_good_sectors) {
651                                         best_good_sectors = good_sectors;
652                                         best_disk = disk;
653                                 }
654                                 if (choose_first)
655                                         break;
656                         }
657                         continue;
658                 } else {
659                         if ((sectors > best_good_sectors) && (best_disk >= 0))
660                                 best_disk = -1;
661                         best_good_sectors = sectors;
662                 }
663
664                 if (best_disk >= 0)
665                         /* At least two disks to choose from so failfast is OK */
666                         set_bit(R1BIO_FailFast, &r1_bio->state);
667
668                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
669                 has_nonrot_disk |= nonrot;
670                 pending = atomic_read(&rdev->nr_pending);
671                 dist = abs(this_sector - conf->mirrors[disk].head_position);
672                 if (choose_first) {
673                         best_disk = disk;
674                         break;
675                 }
676                 /* Don't change to another disk for sequential reads */
677                 if (conf->mirrors[disk].next_seq_sect == this_sector
678                     || dist == 0) {
679                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
680                         struct raid1_info *mirror = &conf->mirrors[disk];
681
682                         best_disk = disk;
683                         /*
684                          * If buffered sequential IO size exceeds optimal
685                          * iosize, check if there is idle disk. If yes, choose
686                          * the idle disk. read_balance could already choose an
687                          * idle disk before noticing it's a sequential IO in
688                          * this disk. This doesn't matter because this disk
689                          * will idle, next time it will be utilized after the
690                          * first disk has IO size exceeds optimal iosize. In
691                          * this way, iosize of the first disk will be optimal
692                          * iosize at least. iosize of the second disk might be
693                          * small, but not a big deal since when the second disk
694                          * starts IO, the first disk is likely still busy.
695                          */
696                         if (nonrot && opt_iosize > 0 &&
697                             mirror->seq_start != MaxSector &&
698                             mirror->next_seq_sect > opt_iosize &&
699                             mirror->next_seq_sect - opt_iosize >=
700                             mirror->seq_start) {
701                                 choose_next_idle = 1;
702                                 continue;
703                         }
704                         break;
705                 }
706
707                 if (choose_next_idle)
708                         continue;
709
710                 if (min_pending > pending) {
711                         min_pending = pending;
712                         best_pending_disk = disk;
713                 }
714
715                 if (dist < best_dist) {
716                         best_dist = dist;
717                         best_dist_disk = disk;
718                 }
719         }
720
721         /*
722          * If all disks are rotational, choose the closest disk. If any disk is
723          * non-rotational, choose the disk with less pending request even the
724          * disk is rotational, which might/might not be optimal for raids with
725          * mixed ratation/non-rotational disks depending on workload.
726          */
727         if (best_disk == -1) {
728                 if (has_nonrot_disk || min_pending == 0)
729                         best_disk = best_pending_disk;
730                 else
731                         best_disk = best_dist_disk;
732         }
733
734         if (best_disk >= 0) {
735                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
736                 if (!rdev)
737                         goto retry;
738                 atomic_inc(&rdev->nr_pending);
739                 sectors = best_good_sectors;
740
741                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
742                         conf->mirrors[best_disk].seq_start = this_sector;
743
744                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
745         }
746         rcu_read_unlock();
747         *max_sectors = sectors;
748
749         return best_disk;
750 }
751
752 static int raid1_congested(struct mddev *mddev, int bits)
753 {
754         struct r1conf *conf = mddev->private;
755         int i, ret = 0;
756
757         if ((bits & (1 << WB_async_congested)) &&
758             conf->pending_count >= max_queued_requests)
759                 return 1;
760
761         rcu_read_lock();
762         for (i = 0; i < conf->raid_disks * 2; i++) {
763                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
764                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
765                         struct request_queue *q = bdev_get_queue(rdev->bdev);
766
767                         BUG_ON(!q);
768
769                         /* Note the '|| 1' - when read_balance prefers
770                          * non-congested targets, it can be removed
771                          */
772                         if ((bits & (1 << WB_async_congested)) || 1)
773                                 ret |= bdi_congested(q->backing_dev_info, bits);
774                         else
775                                 ret &= bdi_congested(q->backing_dev_info, bits);
776                 }
777         }
778         rcu_read_unlock();
779         return ret;
780 }
781
782 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
783 {
784         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
785         bitmap_unplug(conf->mddev->bitmap);
786         wake_up(&conf->wait_barrier);
787
788         while (bio) { /* submit pending writes */
789                 struct bio *next = bio->bi_next;
790                 struct md_rdev *rdev = (void *)bio->bi_disk;
791                 bio->bi_next = NULL;
792                 bio_set_dev(bio, rdev->bdev);
793                 if (test_bit(Faulty, &rdev->flags)) {
794                         bio_io_error(bio);
795                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
796                                     !blk_queue_discard(bio->bi_disk->queue)))
797                         /* Just ignore it */
798                         bio_endio(bio);
799                 else
800                         generic_make_request(bio);
801                 bio = next;
802         }
803 }
804
805 static void flush_pending_writes(struct r1conf *conf)
806 {
807         /* Any writes that have been queued but are awaiting
808          * bitmap updates get flushed here.
809          */
810         spin_lock_irq(&conf->device_lock);
811
812         if (conf->pending_bio_list.head) {
813                 struct bio *bio;
814                 bio = bio_list_get(&conf->pending_bio_list);
815                 conf->pending_count = 0;
816                 spin_unlock_irq(&conf->device_lock);
817                 flush_bio_list(conf, bio);
818         } else
819                 spin_unlock_irq(&conf->device_lock);
820 }
821
822 /* Barriers....
823  * Sometimes we need to suspend IO while we do something else,
824  * either some resync/recovery, or reconfigure the array.
825  * To do this we raise a 'barrier'.
826  * The 'barrier' is a counter that can be raised multiple times
827  * to count how many activities are happening which preclude
828  * normal IO.
829  * We can only raise the barrier if there is no pending IO.
830  * i.e. if nr_pending == 0.
831  * We choose only to raise the barrier if no-one is waiting for the
832  * barrier to go down.  This means that as soon as an IO request
833  * is ready, no other operations which require a barrier will start
834  * until the IO request has had a chance.
835  *
836  * So: regular IO calls 'wait_barrier'.  When that returns there
837  *    is no backgroup IO happening,  It must arrange to call
838  *    allow_barrier when it has finished its IO.
839  * backgroup IO calls must call raise_barrier.  Once that returns
840  *    there is no normal IO happeing.  It must arrange to call
841  *    lower_barrier when the particular background IO completes.
842  */
843 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
844 {
845         int idx = sector_to_idx(sector_nr);
846
847         spin_lock_irq(&conf->resync_lock);
848
849         /* Wait until no block IO is waiting */
850         wait_event_lock_irq(conf->wait_barrier,
851                             !atomic_read(&conf->nr_waiting[idx]),
852                             conf->resync_lock);
853
854         /* block any new IO from starting */
855         atomic_inc(&conf->barrier[idx]);
856         /*
857          * In raise_barrier() we firstly increase conf->barrier[idx] then
858          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
859          * increase conf->nr_pending[idx] then check conf->barrier[idx].
860          * A memory barrier here to make sure conf->nr_pending[idx] won't
861          * be fetched before conf->barrier[idx] is increased. Otherwise
862          * there will be a race between raise_barrier() and _wait_barrier().
863          */
864         smp_mb__after_atomic();
865
866         /* For these conditions we must wait:
867          * A: while the array is in frozen state
868          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
869          *    existing in corresponding I/O barrier bucket.
870          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
871          *    max resync count which allowed on current I/O barrier bucket.
872          */
873         wait_event_lock_irq(conf->wait_barrier,
874                             !conf->array_frozen &&
875                              !atomic_read(&conf->nr_pending[idx]) &&
876                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
877                             conf->resync_lock);
878
879         atomic_inc(&conf->nr_sync_pending);
880         spin_unlock_irq(&conf->resync_lock);
881 }
882
883 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
884 {
885         int idx = sector_to_idx(sector_nr);
886
887         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
888
889         atomic_dec(&conf->barrier[idx]);
890         atomic_dec(&conf->nr_sync_pending);
891         wake_up(&conf->wait_barrier);
892 }
893
894 static void _wait_barrier(struct r1conf *conf, int idx)
895 {
896         /*
897          * We need to increase conf->nr_pending[idx] very early here,
898          * then raise_barrier() can be blocked when it waits for
899          * conf->nr_pending[idx] to be 0. Then we can avoid holding
900          * conf->resync_lock when there is no barrier raised in same
901          * barrier unit bucket. Also if the array is frozen, I/O
902          * should be blocked until array is unfrozen.
903          */
904         atomic_inc(&conf->nr_pending[idx]);
905         /*
906          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
907          * check conf->barrier[idx]. In raise_barrier() we firstly increase
908          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
909          * barrier is necessary here to make sure conf->barrier[idx] won't be
910          * fetched before conf->nr_pending[idx] is increased. Otherwise there
911          * will be a race between _wait_barrier() and raise_barrier().
912          */
913         smp_mb__after_atomic();
914
915         /*
916          * Don't worry about checking two atomic_t variables at same time
917          * here. If during we check conf->barrier[idx], the array is
918          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
919          * 0, it is safe to return and make the I/O continue. Because the
920          * array is frozen, all I/O returned here will eventually complete
921          * or be queued, no race will happen. See code comment in
922          * frozen_array().
923          */
924         if (!READ_ONCE(conf->array_frozen) &&
925             !atomic_read(&conf->barrier[idx]))
926                 return;
927
928         /*
929          * After holding conf->resync_lock, conf->nr_pending[idx]
930          * should be decreased before waiting for barrier to drop.
931          * Otherwise, we may encounter a race condition because
932          * raise_barrer() might be waiting for conf->nr_pending[idx]
933          * to be 0 at same time.
934          */
935         spin_lock_irq(&conf->resync_lock);
936         atomic_inc(&conf->nr_waiting[idx]);
937         atomic_dec(&conf->nr_pending[idx]);
938         /*
939          * In case freeze_array() is waiting for
940          * get_unqueued_pending() == extra
941          */
942         wake_up(&conf->wait_barrier);
943         /* Wait for the barrier in same barrier unit bucket to drop. */
944         wait_event_lock_irq(conf->wait_barrier,
945                             !conf->array_frozen &&
946                              !atomic_read(&conf->barrier[idx]),
947                             conf->resync_lock);
948         atomic_inc(&conf->nr_pending[idx]);
949         atomic_dec(&conf->nr_waiting[idx]);
950         spin_unlock_irq(&conf->resync_lock);
951 }
952
953 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
954 {
955         int idx = sector_to_idx(sector_nr);
956
957         /*
958          * Very similar to _wait_barrier(). The difference is, for read
959          * I/O we don't need wait for sync I/O, but if the whole array
960          * is frozen, the read I/O still has to wait until the array is
961          * unfrozen. Since there is no ordering requirement with
962          * conf->barrier[idx] here, memory barrier is unnecessary as well.
963          */
964         atomic_inc(&conf->nr_pending[idx]);
965
966         if (!READ_ONCE(conf->array_frozen))
967                 return;
968
969         spin_lock_irq(&conf->resync_lock);
970         atomic_inc(&conf->nr_waiting[idx]);
971         atomic_dec(&conf->nr_pending[idx]);
972         /*
973          * In case freeze_array() is waiting for
974          * get_unqueued_pending() == extra
975          */
976         wake_up(&conf->wait_barrier);
977         /* Wait for array to be unfrozen */
978         wait_event_lock_irq(conf->wait_barrier,
979                             !conf->array_frozen,
980                             conf->resync_lock);
981         atomic_inc(&conf->nr_pending[idx]);
982         atomic_dec(&conf->nr_waiting[idx]);
983         spin_unlock_irq(&conf->resync_lock);
984 }
985
986 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
987 {
988         int idx = sector_to_idx(sector_nr);
989
990         _wait_barrier(conf, idx);
991 }
992
993 static void wait_all_barriers(struct r1conf *conf)
994 {
995         int idx;
996
997         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
998                 _wait_barrier(conf, idx);
999 }
1000
1001 static void _allow_barrier(struct r1conf *conf, int idx)
1002 {
1003         atomic_dec(&conf->nr_pending[idx]);
1004         wake_up(&conf->wait_barrier);
1005 }
1006
1007 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1008 {
1009         int idx = sector_to_idx(sector_nr);
1010
1011         _allow_barrier(conf, idx);
1012 }
1013
1014 static void allow_all_barriers(struct r1conf *conf)
1015 {
1016         int idx;
1017
1018         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1019                 _allow_barrier(conf, idx);
1020 }
1021
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf *conf)
1024 {
1025         int idx, ret;
1026
1027         ret = atomic_read(&conf->nr_sync_pending);
1028         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1029                 ret += atomic_read(&conf->nr_pending[idx]) -
1030                         atomic_read(&conf->nr_queued[idx]);
1031
1032         return ret;
1033 }
1034
1035 static void freeze_array(struct r1conf *conf, int extra)
1036 {
1037         /* Stop sync I/O and normal I/O and wait for everything to
1038          * go quiet.
1039          * This is called in two situations:
1040          * 1) management command handlers (reshape, remove disk, quiesce).
1041          * 2) one normal I/O request failed.
1042
1043          * After array_frozen is set to 1, new sync IO will be blocked at
1044          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045          * or wait_read_barrier(). The flying I/Os will either complete or be
1046          * queued. When everything goes quite, there are only queued I/Os left.
1047
1048          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049          * barrier bucket index which this I/O request hits. When all sync and
1050          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052          * in handle_read_error(), we may call freeze_array() before trying to
1053          * fix the read error. In this case, the error read I/O is not queued,
1054          * so get_unqueued_pending() == 1.
1055          *
1056          * Therefore before this function returns, we need to wait until
1057          * get_unqueued_pendings(conf) gets equal to extra. For
1058          * normal I/O context, extra is 1, in rested situations extra is 0.
1059          */
1060         spin_lock_irq(&conf->resync_lock);
1061         conf->array_frozen = 1;
1062         raid1_log(conf->mddev, "wait freeze");
1063         wait_event_lock_irq_cmd(
1064                 conf->wait_barrier,
1065                 get_unqueued_pending(conf) == extra,
1066                 conf->resync_lock,
1067                 flush_pending_writes(conf));
1068         spin_unlock_irq(&conf->resync_lock);
1069 }
1070 static void unfreeze_array(struct r1conf *conf)
1071 {
1072         /* reverse the effect of the freeze */
1073         spin_lock_irq(&conf->resync_lock);
1074         conf->array_frozen = 0;
1075         spin_unlock_irq(&conf->resync_lock);
1076         wake_up(&conf->wait_barrier);
1077 }
1078
1079 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1080                                            struct bio *bio)
1081 {
1082         int size = bio->bi_iter.bi_size;
1083         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084         int i = 0;
1085         struct bio *behind_bio = NULL;
1086
1087         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088         if (!behind_bio)
1089                 return;
1090
1091         /* discard op, we don't support writezero/writesame yet */
1092         if (!bio_has_data(bio)) {
1093                 behind_bio->bi_iter.bi_size = size;
1094                 goto skip_copy;
1095         }
1096
1097         while (i < vcnt && size) {
1098                 struct page *page;
1099                 int len = min_t(int, PAGE_SIZE, size);
1100
1101                 page = alloc_page(GFP_NOIO);
1102                 if (unlikely(!page))
1103                         goto free_pages;
1104
1105                 bio_add_page(behind_bio, page, len, 0);
1106
1107                 size -= len;
1108                 i++;
1109         }
1110
1111         bio_copy_data(behind_bio, bio);
1112 skip_copy:
1113         r1_bio->behind_master_bio = behind_bio;;
1114         set_bit(R1BIO_BehindIO, &r1_bio->state);
1115
1116         return;
1117
1118 free_pages:
1119         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1120                  bio->bi_iter.bi_size);
1121         bio_free_pages(behind_bio);
1122         bio_put(behind_bio);
1123 }
1124
1125 struct raid1_plug_cb {
1126         struct blk_plug_cb      cb;
1127         struct bio_list         pending;
1128         int                     pending_cnt;
1129 };
1130
1131 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1132 {
1133         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1134                                                   cb);
1135         struct mddev *mddev = plug->cb.data;
1136         struct r1conf *conf = mddev->private;
1137         struct bio *bio;
1138
1139         if (from_schedule || current->bio_list) {
1140                 spin_lock_irq(&conf->device_lock);
1141                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1142                 conf->pending_count += plug->pending_cnt;
1143                 spin_unlock_irq(&conf->device_lock);
1144                 wake_up(&conf->wait_barrier);
1145                 md_wakeup_thread(mddev->thread);
1146                 kfree(plug);
1147                 return;
1148         }
1149
1150         /* we aren't scheduling, so we can do the write-out directly. */
1151         bio = bio_list_get(&plug->pending);
1152         flush_bio_list(conf, bio);
1153         kfree(plug);
1154 }
1155
1156 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1157 {
1158         r1_bio->master_bio = bio;
1159         r1_bio->sectors = bio_sectors(bio);
1160         r1_bio->state = 0;
1161         r1_bio->mddev = mddev;
1162         r1_bio->sector = bio->bi_iter.bi_sector;
1163 }
1164
1165 static inline struct r1bio *
1166 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1167 {
1168         struct r1conf *conf = mddev->private;
1169         struct r1bio *r1_bio;
1170
1171         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1172         /* Ensure no bio records IO_BLOCKED */
1173         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1174         init_r1bio(r1_bio, mddev, bio);
1175         return r1_bio;
1176 }
1177
1178 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1179                                int max_read_sectors, struct r1bio *r1_bio)
1180 {
1181         struct r1conf *conf = mddev->private;
1182         struct raid1_info *mirror;
1183         struct bio *read_bio;
1184         struct bitmap *bitmap = mddev->bitmap;
1185         const int op = bio_op(bio);
1186         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1187         int max_sectors;
1188         int rdisk;
1189         bool print_msg = !!r1_bio;
1190         char b[BDEVNAME_SIZE];
1191
1192         /*
1193          * If r1_bio is set, we are blocking the raid1d thread
1194          * so there is a tiny risk of deadlock.  So ask for
1195          * emergency memory if needed.
1196          */
1197         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1198
1199         if (print_msg) {
1200                 /* Need to get the block device name carefully */
1201                 struct md_rdev *rdev;
1202                 rcu_read_lock();
1203                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1204                 if (rdev)
1205                         bdevname(rdev->bdev, b);
1206                 else
1207                         strcpy(b, "???");
1208                 rcu_read_unlock();
1209         }
1210
1211         /*
1212          * Still need barrier for READ in case that whole
1213          * array is frozen.
1214          */
1215         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1216
1217         if (!r1_bio)
1218                 r1_bio = alloc_r1bio(mddev, bio);
1219         else
1220                 init_r1bio(r1_bio, mddev, bio);
1221         r1_bio->sectors = max_read_sectors;
1222
1223         /*
1224          * make_request() can abort the operation when read-ahead is being
1225          * used and no empty request is available.
1226          */
1227         rdisk = read_balance(conf, r1_bio, &max_sectors);
1228
1229         if (rdisk < 0) {
1230                 /* couldn't find anywhere to read from */
1231                 if (print_msg) {
1232                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233                                             mdname(mddev),
1234                                             b,
1235                                             (unsigned long long)r1_bio->sector);
1236                 }
1237                 raid_end_bio_io(r1_bio);
1238                 return;
1239         }
1240         mirror = conf->mirrors + rdisk;
1241
1242         if (print_msg)
1243                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1244                                     mdname(mddev),
1245                                     (unsigned long long)r1_bio->sector,
1246                                     bdevname(mirror->rdev->bdev, b));
1247
1248         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1249             bitmap) {
1250                 /*
1251                  * Reading from a write-mostly device must take care not to
1252                  * over-take any writes that are 'behind'
1253                  */
1254                 raid1_log(mddev, "wait behind writes");
1255                 wait_event(bitmap->behind_wait,
1256                            atomic_read(&bitmap->behind_writes) == 0);
1257         }
1258
1259         if (max_sectors < bio_sectors(bio)) {
1260                 struct bio *split = bio_split(bio, max_sectors,
1261                                               gfp, conf->bio_split);
1262                 bio_chain(split, bio);
1263                 generic_make_request(bio);
1264                 bio = split;
1265                 r1_bio->master_bio = bio;
1266                 r1_bio->sectors = max_sectors;
1267         }
1268
1269         r1_bio->read_disk = rdisk;
1270
1271         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1272
1273         r1_bio->bios[rdisk] = read_bio;
1274
1275         read_bio->bi_iter.bi_sector = r1_bio->sector +
1276                 mirror->rdev->data_offset;
1277         bio_set_dev(read_bio, mirror->rdev->bdev);
1278         read_bio->bi_end_io = raid1_end_read_request;
1279         bio_set_op_attrs(read_bio, op, do_sync);
1280         if (test_bit(FailFast, &mirror->rdev->flags) &&
1281             test_bit(R1BIO_FailFast, &r1_bio->state))
1282                 read_bio->bi_opf |= MD_FAILFAST;
1283         read_bio->bi_private = r1_bio;
1284
1285         if (mddev->gendisk)
1286                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1287                                 disk_devt(mddev->gendisk), r1_bio->sector);
1288
1289         generic_make_request(read_bio);
1290 }
1291
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293                                 int max_write_sectors)
1294 {
1295         struct r1conf *conf = mddev->private;
1296         struct r1bio *r1_bio;
1297         int i, disks;
1298         struct bitmap *bitmap = mddev->bitmap;
1299         unsigned long flags;
1300         struct md_rdev *blocked_rdev;
1301         struct blk_plug_cb *cb;
1302         struct raid1_plug_cb *plug = NULL;
1303         int first_clone;
1304         int max_sectors;
1305
1306         /*
1307          * Register the new request and wait if the reconstruction
1308          * thread has put up a bar for new requests.
1309          * Continue immediately if no resync is active currently.
1310          */
1311
1312
1313         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315             (mddev_is_clustered(mddev) &&
1316              md_cluster_ops->area_resyncing(mddev, WRITE,
1317                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318
1319                 /*
1320                  * As the suspend_* range is controlled by userspace, we want
1321                  * an interruptible wait.
1322                  */
1323                 DEFINE_WAIT(w);
1324                 for (;;) {
1325                         sigset_t full, old;
1326                         prepare_to_wait(&conf->wait_barrier,
1327                                         &w, TASK_INTERRUPTIBLE);
1328                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330                             (mddev_is_clustered(mddev) &&
1331                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1332                                      bio->bi_iter.bi_sector,
1333                                      bio_end_sector(bio))))
1334                                 break;
1335                         sigfillset(&full);
1336                         sigprocmask(SIG_BLOCK, &full, &old);
1337                         schedule();
1338                         sigprocmask(SIG_SETMASK, &old, NULL);
1339                 }
1340                 finish_wait(&conf->wait_barrier, &w);
1341         }
1342         wait_barrier(conf, bio->bi_iter.bi_sector);
1343
1344         r1_bio = alloc_r1bio(mddev, bio);
1345         r1_bio->sectors = max_write_sectors;
1346
1347         if (conf->pending_count >= max_queued_requests) {
1348                 md_wakeup_thread(mddev->thread);
1349                 raid1_log(mddev, "wait queued");
1350                 wait_event(conf->wait_barrier,
1351                            conf->pending_count < max_queued_requests);
1352         }
1353         /* first select target devices under rcu_lock and
1354          * inc refcount on their rdev.  Record them by setting
1355          * bios[x] to bio
1356          * If there are known/acknowledged bad blocks on any device on
1357          * which we have seen a write error, we want to avoid writing those
1358          * blocks.
1359          * This potentially requires several writes to write around
1360          * the bad blocks.  Each set of writes gets it's own r1bio
1361          * with a set of bios attached.
1362          */
1363
1364         disks = conf->raid_disks * 2;
1365  retry_write:
1366         blocked_rdev = NULL;
1367         rcu_read_lock();
1368         max_sectors = r1_bio->sectors;
1369         for (i = 0;  i < disks; i++) {
1370                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372                         atomic_inc(&rdev->nr_pending);
1373                         blocked_rdev = rdev;
1374                         break;
1375                 }
1376                 r1_bio->bios[i] = NULL;
1377                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378                         if (i < conf->raid_disks)
1379                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1380                         continue;
1381                 }
1382
1383                 atomic_inc(&rdev->nr_pending);
1384                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385                         sector_t first_bad;
1386                         int bad_sectors;
1387                         int is_bad;
1388
1389                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390                                              &first_bad, &bad_sectors);
1391                         if (is_bad < 0) {
1392                                 /* mustn't write here until the bad block is
1393                                  * acknowledged*/
1394                                 set_bit(BlockedBadBlocks, &rdev->flags);
1395                                 blocked_rdev = rdev;
1396                                 break;
1397                         }
1398                         if (is_bad && first_bad <= r1_bio->sector) {
1399                                 /* Cannot write here at all */
1400                                 bad_sectors -= (r1_bio->sector - first_bad);
1401                                 if (bad_sectors < max_sectors)
1402                                         /* mustn't write more than bad_sectors
1403                                          * to other devices yet
1404                                          */
1405                                         max_sectors = bad_sectors;
1406                                 rdev_dec_pending(rdev, mddev);
1407                                 /* We don't set R1BIO_Degraded as that
1408                                  * only applies if the disk is
1409                                  * missing, so it might be re-added,
1410                                  * and we want to know to recover this
1411                                  * chunk.
1412                                  * In this case the device is here,
1413                                  * and the fact that this chunk is not
1414                                  * in-sync is recorded in the bad
1415                                  * block log
1416                                  */
1417                                 continue;
1418                         }
1419                         if (is_bad) {
1420                                 int good_sectors = first_bad - r1_bio->sector;
1421                                 if (good_sectors < max_sectors)
1422                                         max_sectors = good_sectors;
1423                         }
1424                 }
1425                 r1_bio->bios[i] = bio;
1426         }
1427         rcu_read_unlock();
1428
1429         if (unlikely(blocked_rdev)) {
1430                 /* Wait for this device to become unblocked */
1431                 int j;
1432
1433                 for (j = 0; j < i; j++)
1434                         if (r1_bio->bios[j])
1435                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436                 r1_bio->state = 0;
1437                 allow_barrier(conf, bio->bi_iter.bi_sector);
1438                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440                 wait_barrier(conf, bio->bi_iter.bi_sector);
1441                 goto retry_write;
1442         }
1443
1444         if (max_sectors < bio_sectors(bio)) {
1445                 struct bio *split = bio_split(bio, max_sectors,
1446                                               GFP_NOIO, conf->bio_split);
1447                 bio_chain(split, bio);
1448                 generic_make_request(bio);
1449                 bio = split;
1450                 r1_bio->master_bio = bio;
1451                 r1_bio->sectors = max_sectors;
1452         }
1453
1454         atomic_set(&r1_bio->remaining, 1);
1455         atomic_set(&r1_bio->behind_remaining, 0);
1456
1457         first_clone = 1;
1458
1459         for (i = 0; i < disks; i++) {
1460                 struct bio *mbio = NULL;
1461                 if (!r1_bio->bios[i])
1462                         continue;
1463
1464
1465                 if (first_clone) {
1466                         /* do behind I/O ?
1467                          * Not if there are too many, or cannot
1468                          * allocate memory, or a reader on WriteMostly
1469                          * is waiting for behind writes to flush */
1470                         if (bitmap &&
1471                             (atomic_read(&bitmap->behind_writes)
1472                              < mddev->bitmap_info.max_write_behind) &&
1473                             !waitqueue_active(&bitmap->behind_wait)) {
1474                                 alloc_behind_master_bio(r1_bio, bio);
1475                         }
1476
1477                         bitmap_startwrite(bitmap, r1_bio->sector,
1478                                           r1_bio->sectors,
1479                                           test_bit(R1BIO_BehindIO,
1480                                                    &r1_bio->state));
1481                         first_clone = 0;
1482                 }
1483
1484                 if (r1_bio->behind_master_bio)
1485                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486                                               GFP_NOIO, mddev->bio_set);
1487                 else
1488                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489
1490                 if (r1_bio->behind_master_bio) {
1491                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492                                 atomic_inc(&r1_bio->behind_remaining);
1493                 }
1494
1495                 r1_bio->bios[i] = mbio;
1496
1497                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1498                                    conf->mirrors[i].rdev->data_offset);
1499                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1500                 mbio->bi_end_io = raid1_end_write_request;
1501                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504                     conf->raid_disks - mddev->degraded > 1)
1505                         mbio->bi_opf |= MD_FAILFAST;
1506                 mbio->bi_private = r1_bio;
1507
1508                 atomic_inc(&r1_bio->remaining);
1509
1510                 if (mddev->gendisk)
1511                         trace_block_bio_remap(mbio->bi_disk->queue,
1512                                               mbio, disk_devt(mddev->gendisk),
1513                                               r1_bio->sector);
1514                 /* flush_pending_writes() needs access to the rdev so...*/
1515                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1516
1517                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518                 if (cb)
1519                         plug = container_of(cb, struct raid1_plug_cb, cb);
1520                 else
1521                         plug = NULL;
1522                 if (plug) {
1523                         bio_list_add(&plug->pending, mbio);
1524                         plug->pending_cnt++;
1525                 } else {
1526                         spin_lock_irqsave(&conf->device_lock, flags);
1527                         bio_list_add(&conf->pending_bio_list, mbio);
1528                         conf->pending_count++;
1529                         spin_unlock_irqrestore(&conf->device_lock, flags);
1530                         md_wakeup_thread(mddev->thread);
1531                 }
1532         }
1533
1534         r1_bio_write_done(r1_bio);
1535
1536         /* In case raid1d snuck in to freeze_array */
1537         wake_up(&conf->wait_barrier);
1538 }
1539
1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542         sector_t sectors;
1543
1544         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545                 md_flush_request(mddev, bio);
1546                 return true;
1547         }
1548
1549         /*
1550          * There is a limit to the maximum size, but
1551          * the read/write handler might find a lower limit
1552          * due to bad blocks.  To avoid multiple splits,
1553          * we pass the maximum number of sectors down
1554          * and let the lower level perform the split.
1555          */
1556         sectors = align_to_barrier_unit_end(
1557                 bio->bi_iter.bi_sector, bio_sectors(bio));
1558
1559         if (bio_data_dir(bio) == READ)
1560                 raid1_read_request(mddev, bio, sectors, NULL);
1561         else {
1562                 if (!md_write_start(mddev,bio))
1563                         return false;
1564                 raid1_write_request(mddev, bio, sectors);
1565         }
1566         return true;
1567 }
1568
1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1570 {
1571         struct r1conf *conf = mddev->private;
1572         int i;
1573
1574         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575                    conf->raid_disks - mddev->degraded);
1576         rcu_read_lock();
1577         for (i = 0; i < conf->raid_disks; i++) {
1578                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579                 seq_printf(seq, "%s",
1580                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581         }
1582         rcu_read_unlock();
1583         seq_printf(seq, "]");
1584 }
1585
1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1587 {
1588         char b[BDEVNAME_SIZE];
1589         struct r1conf *conf = mddev->private;
1590         unsigned long flags;
1591
1592         /*
1593          * If it is not operational, then we have already marked it as dead
1594          * else if it is the last working disks, ignore the error, let the
1595          * next level up know.
1596          * else mark the drive as failed
1597          */
1598         spin_lock_irqsave(&conf->device_lock, flags);
1599         if (test_bit(In_sync, &rdev->flags)
1600             && (conf->raid_disks - mddev->degraded) == 1) {
1601                 /*
1602                  * Don't fail the drive, act as though we were just a
1603                  * normal single drive.
1604                  * However don't try a recovery from this drive as
1605                  * it is very likely to fail.
1606                  */
1607                 conf->recovery_disabled = mddev->recovery_disabled;
1608                 spin_unlock_irqrestore(&conf->device_lock, flags);
1609                 return;
1610         }
1611         set_bit(Blocked, &rdev->flags);
1612         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613                 mddev->degraded++;
1614                 set_bit(Faulty, &rdev->flags);
1615         } else
1616                 set_bit(Faulty, &rdev->flags);
1617         spin_unlock_irqrestore(&conf->device_lock, flags);
1618         /*
1619          * if recovery is running, make sure it aborts.
1620          */
1621         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622         set_mask_bits(&mddev->sb_flags, 0,
1623                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625                 "md/raid1:%s: Operation continuing on %d devices.\n",
1626                 mdname(mddev), bdevname(rdev->bdev, b),
1627                 mdname(mddev), conf->raid_disks - mddev->degraded);
1628 }
1629
1630 static void print_conf(struct r1conf *conf)
1631 {
1632         int i;
1633
1634         pr_debug("RAID1 conf printout:\n");
1635         if (!conf) {
1636                 pr_debug("(!conf)\n");
1637                 return;
1638         }
1639         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640                  conf->raid_disks);
1641
1642         rcu_read_lock();
1643         for (i = 0; i < conf->raid_disks; i++) {
1644                 char b[BDEVNAME_SIZE];
1645                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646                 if (rdev)
1647                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648                                  i, !test_bit(In_sync, &rdev->flags),
1649                                  !test_bit(Faulty, &rdev->flags),
1650                                  bdevname(rdev->bdev,b));
1651         }
1652         rcu_read_unlock();
1653 }
1654
1655 static void close_sync(struct r1conf *conf)
1656 {
1657         wait_all_barriers(conf);
1658         allow_all_barriers(conf);
1659
1660         mempool_destroy(conf->r1buf_pool);
1661         conf->r1buf_pool = NULL;
1662 }
1663
1664 static int raid1_spare_active(struct mddev *mddev)
1665 {
1666         int i;
1667         struct r1conf *conf = mddev->private;
1668         int count = 0;
1669         unsigned long flags;
1670
1671         /*
1672          * Find all failed disks within the RAID1 configuration
1673          * and mark them readable.
1674          * Called under mddev lock, so rcu protection not needed.
1675          * device_lock used to avoid races with raid1_end_read_request
1676          * which expects 'In_sync' flags and ->degraded to be consistent.
1677          */
1678         spin_lock_irqsave(&conf->device_lock, flags);
1679         for (i = 0; i < conf->raid_disks; i++) {
1680                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1681                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682                 if (repl
1683                     && !test_bit(Candidate, &repl->flags)
1684                     && repl->recovery_offset == MaxSector
1685                     && !test_bit(Faulty, &repl->flags)
1686                     && !test_and_set_bit(In_sync, &repl->flags)) {
1687                         /* replacement has just become active */
1688                         if (!rdev ||
1689                             !test_and_clear_bit(In_sync, &rdev->flags))
1690                                 count++;
1691                         if (rdev) {
1692                                 /* Replaced device not technically
1693                                  * faulty, but we need to be sure
1694                                  * it gets removed and never re-added
1695                                  */
1696                                 set_bit(Faulty, &rdev->flags);
1697                                 sysfs_notify_dirent_safe(
1698                                         rdev->sysfs_state);
1699                         }
1700                 }
1701                 if (rdev
1702                     && rdev->recovery_offset == MaxSector
1703                     && !test_bit(Faulty, &rdev->flags)
1704                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1705                         count++;
1706                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1707                 }
1708         }
1709         mddev->degraded -= count;
1710         spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712         print_conf(conf);
1713         return count;
1714 }
1715
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717 {
1718         struct r1conf *conf = mddev->private;
1719         int err = -EEXIST;
1720         int mirror = 0;
1721         struct raid1_info *p;
1722         int first = 0;
1723         int last = conf->raid_disks - 1;
1724
1725         if (mddev->recovery_disabled == conf->recovery_disabled)
1726                 return -EBUSY;
1727
1728         if (md_integrity_add_rdev(rdev, mddev))
1729                 return -ENXIO;
1730
1731         if (rdev->raid_disk >= 0)
1732                 first = last = rdev->raid_disk;
1733
1734         /*
1735          * find the disk ... but prefer rdev->saved_raid_disk
1736          * if possible.
1737          */
1738         if (rdev->saved_raid_disk >= 0 &&
1739             rdev->saved_raid_disk >= first &&
1740             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741                 first = last = rdev->saved_raid_disk;
1742
1743         for (mirror = first; mirror <= last; mirror++) {
1744                 p = conf->mirrors+mirror;
1745                 if (!p->rdev) {
1746
1747                         if (mddev->gendisk)
1748                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1749                                                   rdev->data_offset << 9);
1750
1751                         p->head_position = 0;
1752                         rdev->raid_disk = mirror;
1753                         err = 0;
1754                         /* As all devices are equivalent, we don't need a full recovery
1755                          * if this was recently any drive of the array
1756                          */
1757                         if (rdev->saved_raid_disk < 0)
1758                                 conf->fullsync = 1;
1759                         rcu_assign_pointer(p->rdev, rdev);
1760                         break;
1761                 }
1762                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1763                     p[conf->raid_disks].rdev == NULL) {
1764                         /* Add this device as a replacement */
1765                         clear_bit(In_sync, &rdev->flags);
1766                         set_bit(Replacement, &rdev->flags);
1767                         rdev->raid_disk = mirror;
1768                         err = 0;
1769                         conf->fullsync = 1;
1770                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771                         break;
1772                 }
1773         }
1774         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776         print_conf(conf);
1777         return err;
1778 }
1779
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782         struct r1conf *conf = mddev->private;
1783         int err = 0;
1784         int number = rdev->raid_disk;
1785         struct raid1_info *p = conf->mirrors + number;
1786
1787         if (rdev != p->rdev)
1788                 p = conf->mirrors + conf->raid_disks + number;
1789
1790         print_conf(conf);
1791         if (rdev == p->rdev) {
1792                 if (test_bit(In_sync, &rdev->flags) ||
1793                     atomic_read(&rdev->nr_pending)) {
1794                         err = -EBUSY;
1795                         goto abort;
1796                 }
1797                 /* Only remove non-faulty devices if recovery
1798                  * is not possible.
1799                  */
1800                 if (!test_bit(Faulty, &rdev->flags) &&
1801                     mddev->recovery_disabled != conf->recovery_disabled &&
1802                     mddev->degraded < conf->raid_disks) {
1803                         err = -EBUSY;
1804                         goto abort;
1805                 }
1806                 p->rdev = NULL;
1807                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808                         synchronize_rcu();
1809                         if (atomic_read(&rdev->nr_pending)) {
1810                                 /* lost the race, try later */
1811                                 err = -EBUSY;
1812                                 p->rdev = rdev;
1813                                 goto abort;
1814                         }
1815                 }
1816                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1817                         /* We just removed a device that is being replaced.
1818                          * Move down the replacement.  We drain all IO before
1819                          * doing this to avoid confusion.
1820                          */
1821                         struct md_rdev *repl =
1822                                 conf->mirrors[conf->raid_disks + number].rdev;
1823                         freeze_array(conf, 0);
1824                         clear_bit(Replacement, &repl->flags);
1825                         p->rdev = repl;
1826                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827                         unfreeze_array(conf);
1828                 }
1829
1830                 clear_bit(WantReplacement, &rdev->flags);
1831                 err = md_integrity_register(mddev);
1832         }
1833 abort:
1834
1835         print_conf(conf);
1836         return err;
1837 }
1838
1839 static void end_sync_read(struct bio *bio)
1840 {
1841         struct r1bio *r1_bio = get_resync_r1bio(bio);
1842
1843         update_head_pos(r1_bio->read_disk, r1_bio);
1844
1845         /*
1846          * we have read a block, now it needs to be re-written,
1847          * or re-read if the read failed.
1848          * We don't do much here, just schedule handling by raid1d
1849          */
1850         if (!bio->bi_status)
1851                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1852
1853         if (atomic_dec_and_test(&r1_bio->remaining))
1854                 reschedule_retry(r1_bio);
1855 }
1856
1857 static void end_sync_write(struct bio *bio)
1858 {
1859         int uptodate = !bio->bi_status;
1860         struct r1bio *r1_bio = get_resync_r1bio(bio);
1861         struct mddev *mddev = r1_bio->mddev;
1862         struct r1conf *conf = mddev->private;
1863         sector_t first_bad;
1864         int bad_sectors;
1865         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1866
1867         if (!uptodate) {
1868                 sector_t sync_blocks = 0;
1869                 sector_t s = r1_bio->sector;
1870                 long sectors_to_go = r1_bio->sectors;
1871                 /* make sure these bits doesn't get cleared. */
1872                 do {
1873                         bitmap_end_sync(mddev->bitmap, s,
1874                                         &sync_blocks, 1);
1875                         s += sync_blocks;
1876                         sectors_to_go -= sync_blocks;
1877                 } while (sectors_to_go > 0);
1878                 set_bit(WriteErrorSeen, &rdev->flags);
1879                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880                         set_bit(MD_RECOVERY_NEEDED, &
1881                                 mddev->recovery);
1882                 set_bit(R1BIO_WriteError, &r1_bio->state);
1883         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884                                &first_bad, &bad_sectors) &&
1885                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886                                 r1_bio->sector,
1887                                 r1_bio->sectors,
1888                                 &first_bad, &bad_sectors)
1889                 )
1890                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1891
1892         if (atomic_dec_and_test(&r1_bio->remaining)) {
1893                 int s = r1_bio->sectors;
1894                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895                     test_bit(R1BIO_WriteError, &r1_bio->state))
1896                         reschedule_retry(r1_bio);
1897                 else {
1898                         put_buf(r1_bio);
1899                         md_done_sync(mddev, s, uptodate);
1900                 }
1901         }
1902 }
1903
1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905                             int sectors, struct page *page, int rw)
1906 {
1907         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908                 /* success */
1909                 return 1;
1910         if (rw == WRITE) {
1911                 set_bit(WriteErrorSeen, &rdev->flags);
1912                 if (!test_and_set_bit(WantReplacement,
1913                                       &rdev->flags))
1914                         set_bit(MD_RECOVERY_NEEDED, &
1915                                 rdev->mddev->recovery);
1916         }
1917         /* need to record an error - either for the block or the device */
1918         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919                 md_error(rdev->mddev, rdev);
1920         return 0;
1921 }
1922
1923 static int fix_sync_read_error(struct r1bio *r1_bio)
1924 {
1925         /* Try some synchronous reads of other devices to get
1926          * good data, much like with normal read errors.  Only
1927          * read into the pages we already have so we don't
1928          * need to re-issue the read request.
1929          * We don't need to freeze the array, because being in an
1930          * active sync request, there is no normal IO, and
1931          * no overlapping syncs.
1932          * We don't need to check is_badblock() again as we
1933          * made sure that anything with a bad block in range
1934          * will have bi_end_io clear.
1935          */
1936         struct mddev *mddev = r1_bio->mddev;
1937         struct r1conf *conf = mddev->private;
1938         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939         struct page **pages = get_resync_pages(bio)->pages;
1940         sector_t sect = r1_bio->sector;
1941         int sectors = r1_bio->sectors;
1942         int idx = 0;
1943         struct md_rdev *rdev;
1944
1945         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946         if (test_bit(FailFast, &rdev->flags)) {
1947                 /* Don't try recovering from here - just fail it
1948                  * ... unless it is the last working device of course */
1949                 md_error(mddev, rdev);
1950                 if (test_bit(Faulty, &rdev->flags))
1951                         /* Don't try to read from here, but make sure
1952                          * put_buf does it's thing
1953                          */
1954                         bio->bi_end_io = end_sync_write;
1955         }
1956
1957         while(sectors) {
1958                 int s = sectors;
1959                 int d = r1_bio->read_disk;
1960                 int success = 0;
1961                 int start;
1962
1963                 if (s > (PAGE_SIZE>>9))
1964                         s = PAGE_SIZE >> 9;
1965                 do {
1966                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967                                 /* No rcu protection needed here devices
1968                                  * can only be removed when no resync is
1969                                  * active, and resync is currently active
1970                                  */
1971                                 rdev = conf->mirrors[d].rdev;
1972                                 if (sync_page_io(rdev, sect, s<<9,
1973                                                  pages[idx],
1974                                                  REQ_OP_READ, 0, false)) {
1975                                         success = 1;
1976                                         break;
1977                                 }
1978                         }
1979                         d++;
1980                         if (d == conf->raid_disks * 2)
1981                                 d = 0;
1982                 } while (!success && d != r1_bio->read_disk);
1983
1984                 if (!success) {
1985                         char b[BDEVNAME_SIZE];
1986                         int abort = 0;
1987                         /* Cannot read from anywhere, this block is lost.
1988                          * Record a bad block on each device.  If that doesn't
1989                          * work just disable and interrupt the recovery.
1990                          * Don't fail devices as that won't really help.
1991                          */
1992                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993                                             mdname(mddev), bio_devname(bio, b),
1994                                             (unsigned long long)r1_bio->sector);
1995                         for (d = 0; d < conf->raid_disks * 2; d++) {
1996                                 rdev = conf->mirrors[d].rdev;
1997                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1998                                         continue;
1999                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2000                                         abort = 1;
2001                         }
2002                         if (abort) {
2003                                 conf->recovery_disabled =
2004                                         mddev->recovery_disabled;
2005                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006                                 md_done_sync(mddev, r1_bio->sectors, 0);
2007                                 put_buf(r1_bio);
2008                                 return 0;
2009                         }
2010                         /* Try next page */
2011                         sectors -= s;
2012                         sect += s;
2013                         idx++;
2014                         continue;
2015                 }
2016
2017                 start = d;
2018                 /* write it back and re-read */
2019                 while (d != r1_bio->read_disk) {
2020                         if (d == 0)
2021                                 d = conf->raid_disks * 2;
2022                         d--;
2023                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2024                                 continue;
2025                         rdev = conf->mirrors[d].rdev;
2026                         if (r1_sync_page_io(rdev, sect, s,
2027                                             pages[idx],
2028                                             WRITE) == 0) {
2029                                 r1_bio->bios[d]->bi_end_io = NULL;
2030                                 rdev_dec_pending(rdev, mddev);
2031                         }
2032                 }
2033                 d = start;
2034                 while (d != r1_bio->read_disk) {
2035                         if (d == 0)
2036                                 d = conf->raid_disks * 2;
2037                         d--;
2038                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039                                 continue;
2040                         rdev = conf->mirrors[d].rdev;
2041                         if (r1_sync_page_io(rdev, sect, s,
2042                                             pages[idx],
2043                                             READ) != 0)
2044                                 atomic_add(s, &rdev->corrected_errors);
2045                 }
2046                 sectors -= s;
2047                 sect += s;
2048                 idx ++;
2049         }
2050         set_bit(R1BIO_Uptodate, &r1_bio->state);
2051         bio->bi_status = 0;
2052         return 1;
2053 }
2054
2055 static void process_checks(struct r1bio *r1_bio)
2056 {
2057         /* We have read all readable devices.  If we haven't
2058          * got the block, then there is no hope left.
2059          * If we have, then we want to do a comparison
2060          * and skip the write if everything is the same.
2061          * If any blocks failed to read, then we need to
2062          * attempt an over-write
2063          */
2064         struct mddev *mddev = r1_bio->mddev;
2065         struct r1conf *conf = mddev->private;
2066         int primary;
2067         int i;
2068         int vcnt;
2069
2070         /* Fix variable parts of all bios */
2071         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2072         for (i = 0; i < conf->raid_disks * 2; i++) {
2073                 blk_status_t status;
2074                 struct bio *b = r1_bio->bios[i];
2075                 struct resync_pages *rp = get_resync_pages(b);
2076                 if (b->bi_end_io != end_sync_read)
2077                         continue;
2078                 /* fixup the bio for reuse, but preserve errno */
2079                 status = b->bi_status;
2080                 bio_reset(b);
2081                 b->bi_status = status;
2082                 b->bi_iter.bi_sector = r1_bio->sector +
2083                         conf->mirrors[i].rdev->data_offset;
2084                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2085                 b->bi_end_io = end_sync_read;
2086                 rp->raid_bio = r1_bio;
2087                 b->bi_private = rp;
2088
2089                 /* initialize bvec table again */
2090                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2091         }
2092         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2093                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2094                     !r1_bio->bios[primary]->bi_status) {
2095                         r1_bio->bios[primary]->bi_end_io = NULL;
2096                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2097                         break;
2098                 }
2099         r1_bio->read_disk = primary;
2100         for (i = 0; i < conf->raid_disks * 2; i++) {
2101                 int j;
2102                 struct bio *pbio = r1_bio->bios[primary];
2103                 struct bio *sbio = r1_bio->bios[i];
2104                 blk_status_t status = sbio->bi_status;
2105                 struct page **ppages = get_resync_pages(pbio)->pages;
2106                 struct page **spages = get_resync_pages(sbio)->pages;
2107                 struct bio_vec *bi;
2108                 int page_len[RESYNC_PAGES] = { 0 };
2109
2110                 if (sbio->bi_end_io != end_sync_read)
2111                         continue;
2112                 /* Now we can 'fixup' the error value */
2113                 sbio->bi_status = 0;
2114
2115                 bio_for_each_segment_all(bi, sbio, j)
2116                         page_len[j] = bi->bv_len;
2117
2118                 if (!status) {
2119                         for (j = vcnt; j-- ; ) {
2120                                 if (memcmp(page_address(ppages[j]),
2121                                            page_address(spages[j]),
2122                                            page_len[j]))
2123                                         break;
2124                         }
2125                 } else
2126                         j = 0;
2127                 if (j >= 0)
2128                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2129                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2130                               && !status)) {
2131                         /* No need to write to this device. */
2132                         sbio->bi_end_io = NULL;
2133                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2134                         continue;
2135                 }
2136
2137                 bio_copy_data(sbio, pbio);
2138         }
2139 }
2140
2141 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2142 {
2143         struct r1conf *conf = mddev->private;
2144         int i;
2145         int disks = conf->raid_disks * 2;
2146         struct bio *wbio;
2147
2148         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2149                 /* ouch - failed to read all of that. */
2150                 if (!fix_sync_read_error(r1_bio))
2151                         return;
2152
2153         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2154                 process_checks(r1_bio);
2155
2156         /*
2157          * schedule writes
2158          */
2159         atomic_set(&r1_bio->remaining, 1);
2160         for (i = 0; i < disks ; i++) {
2161                 wbio = r1_bio->bios[i];
2162                 if (wbio->bi_end_io == NULL ||
2163                     (wbio->bi_end_io == end_sync_read &&
2164                      (i == r1_bio->read_disk ||
2165                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2166                         continue;
2167                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2168                         continue;
2169
2170                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2171                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2172                         wbio->bi_opf |= MD_FAILFAST;
2173
2174                 wbio->bi_end_io = end_sync_write;
2175                 atomic_inc(&r1_bio->remaining);
2176                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2177
2178                 generic_make_request(wbio);
2179         }
2180
2181         if (atomic_dec_and_test(&r1_bio->remaining)) {
2182                 /* if we're here, all write(s) have completed, so clean up */
2183                 int s = r1_bio->sectors;
2184                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2185                     test_bit(R1BIO_WriteError, &r1_bio->state))
2186                         reschedule_retry(r1_bio);
2187                 else {
2188                         put_buf(r1_bio);
2189                         md_done_sync(mddev, s, 1);
2190                 }
2191         }
2192 }
2193
2194 /*
2195  * This is a kernel thread which:
2196  *
2197  *      1.      Retries failed read operations on working mirrors.
2198  *      2.      Updates the raid superblock when problems encounter.
2199  *      3.      Performs writes following reads for array synchronising.
2200  */
2201
2202 static void fix_read_error(struct r1conf *conf, int read_disk,
2203                            sector_t sect, int sectors)
2204 {
2205         struct mddev *mddev = conf->mddev;
2206         while(sectors) {
2207                 int s = sectors;
2208                 int d = read_disk;
2209                 int success = 0;
2210                 int start;
2211                 struct md_rdev *rdev;
2212
2213                 if (s > (PAGE_SIZE>>9))
2214                         s = PAGE_SIZE >> 9;
2215
2216                 do {
2217                         sector_t first_bad;
2218                         int bad_sectors;
2219
2220                         rcu_read_lock();
2221                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2222                         if (rdev &&
2223                             (test_bit(In_sync, &rdev->flags) ||
2224                              (!test_bit(Faulty, &rdev->flags) &&
2225                               rdev->recovery_offset >= sect + s)) &&
2226                             is_badblock(rdev, sect, s,
2227                                         &first_bad, &bad_sectors) == 0) {
2228                                 atomic_inc(&rdev->nr_pending);
2229                                 rcu_read_unlock();
2230                                 if (sync_page_io(rdev, sect, s<<9,
2231                                          conf->tmppage, REQ_OP_READ, 0, false))
2232                                         success = 1;
2233                                 rdev_dec_pending(rdev, mddev);
2234                                 if (success)
2235                                         break;
2236                         } else
2237                                 rcu_read_unlock();
2238                         d++;
2239                         if (d == conf->raid_disks * 2)
2240                                 d = 0;
2241                 } while (!success && d != read_disk);
2242
2243                 if (!success) {
2244                         /* Cannot read from anywhere - mark it bad */
2245                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2246                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2247                                 md_error(mddev, rdev);
2248                         break;
2249                 }
2250                 /* write it back and re-read */
2251                 start = d;
2252                 while (d != read_disk) {
2253                         if (d==0)
2254                                 d = conf->raid_disks * 2;
2255                         d--;
2256                         rcu_read_lock();
2257                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2258                         if (rdev &&
2259                             !test_bit(Faulty, &rdev->flags)) {
2260                                 atomic_inc(&rdev->nr_pending);
2261                                 rcu_read_unlock();
2262                                 r1_sync_page_io(rdev, sect, s,
2263                                                 conf->tmppage, WRITE);
2264                                 rdev_dec_pending(rdev, mddev);
2265                         } else
2266                                 rcu_read_unlock();
2267                 }
2268                 d = start;
2269                 while (d != read_disk) {
2270                         char b[BDEVNAME_SIZE];
2271                         if (d==0)
2272                                 d = conf->raid_disks * 2;
2273                         d--;
2274                         rcu_read_lock();
2275                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2276                         if (rdev &&
2277                             !test_bit(Faulty, &rdev->flags)) {
2278                                 atomic_inc(&rdev->nr_pending);
2279                                 rcu_read_unlock();
2280                                 if (r1_sync_page_io(rdev, sect, s,
2281                                                     conf->tmppage, READ)) {
2282                                         atomic_add(s, &rdev->corrected_errors);
2283                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2284                                                 mdname(mddev), s,
2285                                                 (unsigned long long)(sect +
2286                                                                      rdev->data_offset),
2287                                                 bdevname(rdev->bdev, b));
2288                                 }
2289                                 rdev_dec_pending(rdev, mddev);
2290                         } else
2291                                 rcu_read_unlock();
2292                 }
2293                 sectors -= s;
2294                 sect += s;
2295         }
2296 }
2297
2298 static int narrow_write_error(struct r1bio *r1_bio, int i)
2299 {
2300         struct mddev *mddev = r1_bio->mddev;
2301         struct r1conf *conf = mddev->private;
2302         struct md_rdev *rdev = conf->mirrors[i].rdev;
2303
2304         /* bio has the data to be written to device 'i' where
2305          * we just recently had a write error.
2306          * We repeatedly clone the bio and trim down to one block,
2307          * then try the write.  Where the write fails we record
2308          * a bad block.
2309          * It is conceivable that the bio doesn't exactly align with
2310          * blocks.  We must handle this somehow.
2311          *
2312          * We currently own a reference on the rdev.
2313          */
2314
2315         int block_sectors;
2316         sector_t sector;
2317         int sectors;
2318         int sect_to_write = r1_bio->sectors;
2319         int ok = 1;
2320
2321         if (rdev->badblocks.shift < 0)
2322                 return 0;
2323
2324         block_sectors = roundup(1 << rdev->badblocks.shift,
2325                                 bdev_logical_block_size(rdev->bdev) >> 9);
2326         sector = r1_bio->sector;
2327         sectors = ((sector + block_sectors)
2328                    & ~(sector_t)(block_sectors - 1))
2329                 - sector;
2330
2331         while (sect_to_write) {
2332                 struct bio *wbio;
2333                 if (sectors > sect_to_write)
2334                         sectors = sect_to_write;
2335                 /* Write at 'sector' for 'sectors'*/
2336
2337                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2338                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2339                                               GFP_NOIO,
2340                                               mddev->bio_set);
2341                 } else {
2342                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2343                                               mddev->bio_set);
2344                 }
2345
2346                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2347                 wbio->bi_iter.bi_sector = r1_bio->sector;
2348                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2349
2350                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2351                 wbio->bi_iter.bi_sector += rdev->data_offset;
2352                 bio_set_dev(wbio, rdev->bdev);
2353
2354                 if (submit_bio_wait(wbio) < 0)
2355                         /* failure! */
2356                         ok = rdev_set_badblocks(rdev, sector,
2357                                                 sectors, 0)
2358                                 && ok;
2359
2360                 bio_put(wbio);
2361                 sect_to_write -= sectors;
2362                 sector += sectors;
2363                 sectors = block_sectors;
2364         }
2365         return ok;
2366 }
2367
2368 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2369 {
2370         int m;
2371         int s = r1_bio->sectors;
2372         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2373                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2374                 struct bio *bio = r1_bio->bios[m];
2375                 if (bio->bi_end_io == NULL)
2376                         continue;
2377                 if (!bio->bi_status &&
2378                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2379                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2380                 }
2381                 if (bio->bi_status &&
2382                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2383                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2384                                 md_error(conf->mddev, rdev);
2385                 }
2386         }
2387         put_buf(r1_bio);
2388         md_done_sync(conf->mddev, s, 1);
2389 }
2390
2391 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2392 {
2393         int m, idx;
2394         bool fail = false;
2395
2396         for (m = 0; m < conf->raid_disks * 2 ; m++)
2397                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2398                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2399                         rdev_clear_badblocks(rdev,
2400                                              r1_bio->sector,
2401                                              r1_bio->sectors, 0);
2402                         rdev_dec_pending(rdev, conf->mddev);
2403                 } else if (r1_bio->bios[m] != NULL) {
2404                         /* This drive got a write error.  We need to
2405                          * narrow down and record precise write
2406                          * errors.
2407                          */
2408                         fail = true;
2409                         if (!narrow_write_error(r1_bio, m)) {
2410                                 md_error(conf->mddev,
2411                                          conf->mirrors[m].rdev);
2412                                 /* an I/O failed, we can't clear the bitmap */
2413                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2414                         }
2415                         rdev_dec_pending(conf->mirrors[m].rdev,
2416                                          conf->mddev);
2417                 }
2418         if (fail) {
2419                 spin_lock_irq(&conf->device_lock);
2420                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2421                 idx = sector_to_idx(r1_bio->sector);
2422                 atomic_inc(&conf->nr_queued[idx]);
2423                 spin_unlock_irq(&conf->device_lock);
2424                 /*
2425                  * In case freeze_array() is waiting for condition
2426                  * get_unqueued_pending() == extra to be true.
2427                  */
2428                 wake_up(&conf->wait_barrier);
2429                 md_wakeup_thread(conf->mddev->thread);
2430         } else {
2431                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2432                         close_write(r1_bio);
2433                 raid_end_bio_io(r1_bio);
2434         }
2435 }
2436
2437 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2438 {
2439         struct mddev *mddev = conf->mddev;
2440         struct bio *bio;
2441         struct md_rdev *rdev;
2442         sector_t bio_sector;
2443
2444         clear_bit(R1BIO_ReadError, &r1_bio->state);
2445         /* we got a read error. Maybe the drive is bad.  Maybe just
2446          * the block and we can fix it.
2447          * We freeze all other IO, and try reading the block from
2448          * other devices.  When we find one, we re-write
2449          * and check it that fixes the read error.
2450          * This is all done synchronously while the array is
2451          * frozen
2452          */
2453
2454         bio = r1_bio->bios[r1_bio->read_disk];
2455         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2456         bio_put(bio);
2457         r1_bio->bios[r1_bio->read_disk] = NULL;
2458
2459         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2460         if (mddev->ro == 0
2461             && !test_bit(FailFast, &rdev->flags)) {
2462                 freeze_array(conf, 1);
2463                 fix_read_error(conf, r1_bio->read_disk,
2464                                r1_bio->sector, r1_bio->sectors);
2465                 unfreeze_array(conf);
2466         } else {
2467                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2468         }
2469
2470         rdev_dec_pending(rdev, conf->mddev);
2471         allow_barrier(conf, r1_bio->sector);
2472         bio = r1_bio->master_bio;
2473
2474         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2475         r1_bio->state = 0;
2476         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2477 }
2478
2479 static void raid1d(struct md_thread *thread)
2480 {
2481         struct mddev *mddev = thread->mddev;
2482         struct r1bio *r1_bio;
2483         unsigned long flags;
2484         struct r1conf *conf = mddev->private;
2485         struct list_head *head = &conf->retry_list;
2486         struct blk_plug plug;
2487         int idx;
2488
2489         md_check_recovery(mddev);
2490
2491         if (!list_empty_careful(&conf->bio_end_io_list) &&
2492             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2493                 LIST_HEAD(tmp);
2494                 spin_lock_irqsave(&conf->device_lock, flags);
2495                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2496                         list_splice_init(&conf->bio_end_io_list, &tmp);
2497                 spin_unlock_irqrestore(&conf->device_lock, flags);
2498                 while (!list_empty(&tmp)) {
2499                         r1_bio = list_first_entry(&tmp, struct r1bio,
2500                                                   retry_list);
2501                         list_del(&r1_bio->retry_list);
2502                         idx = sector_to_idx(r1_bio->sector);
2503                         atomic_dec(&conf->nr_queued[idx]);
2504                         if (mddev->degraded)
2505                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2506                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507                                 close_write(r1_bio);
2508                         raid_end_bio_io(r1_bio);
2509                 }
2510         }
2511
2512         blk_start_plug(&plug);
2513         for (;;) {
2514
2515                 flush_pending_writes(conf);
2516
2517                 spin_lock_irqsave(&conf->device_lock, flags);
2518                 if (list_empty(head)) {
2519                         spin_unlock_irqrestore(&conf->device_lock, flags);
2520                         break;
2521                 }
2522                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2523                 list_del(head->prev);
2524                 idx = sector_to_idx(r1_bio->sector);
2525                 atomic_dec(&conf->nr_queued[idx]);
2526                 spin_unlock_irqrestore(&conf->device_lock, flags);
2527
2528                 mddev = r1_bio->mddev;
2529                 conf = mddev->private;
2530                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2531                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2532                             test_bit(R1BIO_WriteError, &r1_bio->state))
2533                                 handle_sync_write_finished(conf, r1_bio);
2534                         else
2535                                 sync_request_write(mddev, r1_bio);
2536                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2537                            test_bit(R1BIO_WriteError, &r1_bio->state))
2538                         handle_write_finished(conf, r1_bio);
2539                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2540                         handle_read_error(conf, r1_bio);
2541                 else
2542                         WARN_ON_ONCE(1);
2543
2544                 cond_resched();
2545                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2546                         md_check_recovery(mddev);
2547         }
2548         blk_finish_plug(&plug);
2549 }
2550
2551 static int init_resync(struct r1conf *conf)
2552 {
2553         int buffs;
2554
2555         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2556         BUG_ON(conf->r1buf_pool);
2557         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2558                                           conf->poolinfo);
2559         if (!conf->r1buf_pool)
2560                 return -ENOMEM;
2561         return 0;
2562 }
2563
2564 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2565 {
2566         struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2567         struct resync_pages *rps;
2568         struct bio *bio;
2569         int i;
2570
2571         for (i = conf->poolinfo->raid_disks; i--; ) {
2572                 bio = r1bio->bios[i];
2573                 rps = bio->bi_private;
2574                 bio_reset(bio);
2575                 bio->bi_private = rps;
2576         }
2577         r1bio->master_bio = NULL;
2578         return r1bio;
2579 }
2580
2581 /*
2582  * perform a "sync" on one "block"
2583  *
2584  * We need to make sure that no normal I/O request - particularly write
2585  * requests - conflict with active sync requests.
2586  *
2587  * This is achieved by tracking pending requests and a 'barrier' concept
2588  * that can be installed to exclude normal IO requests.
2589  */
2590
2591 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2592                                    int *skipped)
2593 {
2594         struct r1conf *conf = mddev->private;
2595         struct r1bio *r1_bio;
2596         struct bio *bio;
2597         sector_t max_sector, nr_sectors;
2598         int disk = -1;
2599         int i;
2600         int wonly = -1;
2601         int write_targets = 0, read_targets = 0;
2602         sector_t sync_blocks;
2603         int still_degraded = 0;
2604         int good_sectors = RESYNC_SECTORS;
2605         int min_bad = 0; /* number of sectors that are bad in all devices */
2606         int idx = sector_to_idx(sector_nr);
2607         int page_idx = 0;
2608
2609         if (!conf->r1buf_pool)
2610                 if (init_resync(conf))
2611                         return 0;
2612
2613         max_sector = mddev->dev_sectors;
2614         if (sector_nr >= max_sector) {
2615                 /* If we aborted, we need to abort the
2616                  * sync on the 'current' bitmap chunk (there will
2617                  * only be one in raid1 resync.
2618                  * We can find the current addess in mddev->curr_resync
2619                  */
2620                 if (mddev->curr_resync < max_sector) /* aborted */
2621                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2622                                                 &sync_blocks, 1);
2623                 else /* completed sync */
2624                         conf->fullsync = 0;
2625
2626                 bitmap_close_sync(mddev->bitmap);
2627                 close_sync(conf);
2628
2629                 if (mddev_is_clustered(mddev)) {
2630                         conf->cluster_sync_low = 0;
2631                         conf->cluster_sync_high = 0;
2632                 }
2633                 return 0;
2634         }
2635
2636         if (mddev->bitmap == NULL &&
2637             mddev->recovery_cp == MaxSector &&
2638             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2639             conf->fullsync == 0) {
2640                 *skipped = 1;
2641                 return max_sector - sector_nr;
2642         }
2643         /* before building a request, check if we can skip these blocks..
2644          * This call the bitmap_start_sync doesn't actually record anything
2645          */
2646         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2647             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2648                 /* We can skip this block, and probably several more */
2649                 *skipped = 1;
2650                 return sync_blocks;
2651         }
2652
2653         /*
2654          * If there is non-resync activity waiting for a turn, then let it
2655          * though before starting on this new sync request.
2656          */
2657         if (atomic_read(&conf->nr_waiting[idx]))
2658                 schedule_timeout_uninterruptible(1);
2659
2660         /* we are incrementing sector_nr below. To be safe, we check against
2661          * sector_nr + two times RESYNC_SECTORS
2662          */
2663
2664         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2665                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2666         r1_bio = raid1_alloc_init_r1buf(conf);
2667
2668         raise_barrier(conf, sector_nr);
2669
2670         rcu_read_lock();
2671         /*
2672          * If we get a correctably read error during resync or recovery,
2673          * we might want to read from a different device.  So we
2674          * flag all drives that could conceivably be read from for READ,
2675          * and any others (which will be non-In_sync devices) for WRITE.
2676          * If a read fails, we try reading from something else for which READ
2677          * is OK.
2678          */
2679
2680         r1_bio->mddev = mddev;
2681         r1_bio->sector = sector_nr;
2682         r1_bio->state = 0;
2683         set_bit(R1BIO_IsSync, &r1_bio->state);
2684         /* make sure good_sectors won't go across barrier unit boundary */
2685         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2686
2687         for (i = 0; i < conf->raid_disks * 2; i++) {
2688                 struct md_rdev *rdev;
2689                 bio = r1_bio->bios[i];
2690
2691                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2692                 if (rdev == NULL ||
2693                     test_bit(Faulty, &rdev->flags)) {
2694                         if (i < conf->raid_disks)
2695                                 still_degraded = 1;
2696                 } else if (!test_bit(In_sync, &rdev->flags)) {
2697                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2698                         bio->bi_end_io = end_sync_write;
2699                         write_targets ++;
2700                 } else {
2701                         /* may need to read from here */
2702                         sector_t first_bad = MaxSector;
2703                         int bad_sectors;
2704
2705                         if (is_badblock(rdev, sector_nr, good_sectors,
2706                                         &first_bad, &bad_sectors)) {
2707                                 if (first_bad > sector_nr)
2708                                         good_sectors = first_bad - sector_nr;
2709                                 else {
2710                                         bad_sectors -= (sector_nr - first_bad);
2711                                         if (min_bad == 0 ||
2712                                             min_bad > bad_sectors)
2713                                                 min_bad = bad_sectors;
2714                                 }
2715                         }
2716                         if (sector_nr < first_bad) {
2717                                 if (test_bit(WriteMostly, &rdev->flags)) {
2718                                         if (wonly < 0)
2719                                                 wonly = i;
2720                                 } else {
2721                                         if (disk < 0)
2722                                                 disk = i;
2723                                 }
2724                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2725                                 bio->bi_end_io = end_sync_read;
2726                                 read_targets++;
2727                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2728                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2729                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2730                                 /*
2731                                  * The device is suitable for reading (InSync),
2732                                  * but has bad block(s) here. Let's try to correct them,
2733                                  * if we are doing resync or repair. Otherwise, leave
2734                                  * this device alone for this sync request.
2735                                  */
2736                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2737                                 bio->bi_end_io = end_sync_write;
2738                                 write_targets++;
2739                         }
2740                 }
2741                 if (bio->bi_end_io) {
2742                         atomic_inc(&rdev->nr_pending);
2743                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2744                         bio_set_dev(bio, rdev->bdev);
2745                         if (test_bit(FailFast, &rdev->flags))
2746                                 bio->bi_opf |= MD_FAILFAST;
2747                 }
2748         }
2749         rcu_read_unlock();
2750         if (disk < 0)
2751                 disk = wonly;
2752         r1_bio->read_disk = disk;
2753
2754         if (read_targets == 0 && min_bad > 0) {
2755                 /* These sectors are bad on all InSync devices, so we
2756                  * need to mark them bad on all write targets
2757                  */
2758                 int ok = 1;
2759                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2760                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2761                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2762                                 ok = rdev_set_badblocks(rdev, sector_nr,
2763                                                         min_bad, 0
2764                                         ) && ok;
2765                         }
2766                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2767                 *skipped = 1;
2768                 put_buf(r1_bio);
2769
2770                 if (!ok) {
2771                         /* Cannot record the badblocks, so need to
2772                          * abort the resync.
2773                          * If there are multiple read targets, could just
2774                          * fail the really bad ones ???
2775                          */
2776                         conf->recovery_disabled = mddev->recovery_disabled;
2777                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2778                         return 0;
2779                 } else
2780                         return min_bad;
2781
2782         }
2783         if (min_bad > 0 && min_bad < good_sectors) {
2784                 /* only resync enough to reach the next bad->good
2785                  * transition */
2786                 good_sectors = min_bad;
2787         }
2788
2789         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2790                 /* extra read targets are also write targets */
2791                 write_targets += read_targets-1;
2792
2793         if (write_targets == 0 || read_targets == 0) {
2794                 /* There is nowhere to write, so all non-sync
2795                  * drives must be failed - so we are finished
2796                  */
2797                 sector_t rv;
2798                 if (min_bad > 0)
2799                         max_sector = sector_nr + min_bad;
2800                 rv = max_sector - sector_nr;
2801                 *skipped = 1;
2802                 put_buf(r1_bio);
2803                 return rv;
2804         }
2805
2806         if (max_sector > mddev->resync_max)
2807                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2808         if (max_sector > sector_nr + good_sectors)
2809                 max_sector = sector_nr + good_sectors;
2810         nr_sectors = 0;
2811         sync_blocks = 0;
2812         do {
2813                 struct page *page;
2814                 int len = PAGE_SIZE;
2815                 if (sector_nr + (len>>9) > max_sector)
2816                         len = (max_sector - sector_nr) << 9;
2817                 if (len == 0)
2818                         break;
2819                 if (sync_blocks == 0) {
2820                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2821                                                &sync_blocks, still_degraded) &&
2822                             !conf->fullsync &&
2823                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2824                                 break;
2825                         if ((len >> 9) > sync_blocks)
2826                                 len = sync_blocks<<9;
2827                 }
2828
2829                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2830                         struct resync_pages *rp;
2831
2832                         bio = r1_bio->bios[i];
2833                         rp = get_resync_pages(bio);
2834                         if (bio->bi_end_io) {
2835                                 page = resync_fetch_page(rp, page_idx);
2836
2837                                 /*
2838                                  * won't fail because the vec table is big
2839                                  * enough to hold all these pages
2840                                  */
2841                                 bio_add_page(bio, page, len, 0);
2842                         }
2843                 }
2844                 nr_sectors += len>>9;
2845                 sector_nr += len>>9;
2846                 sync_blocks -= (len>>9);
2847         } while (++page_idx < RESYNC_PAGES);
2848
2849         r1_bio->sectors = nr_sectors;
2850
2851         if (mddev_is_clustered(mddev) &&
2852                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2853                 conf->cluster_sync_low = mddev->curr_resync_completed;
2854                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2855                 /* Send resync message */
2856                 md_cluster_ops->resync_info_update(mddev,
2857                                 conf->cluster_sync_low,
2858                                 conf->cluster_sync_high);
2859         }
2860
2861         /* For a user-requested sync, we read all readable devices and do a
2862          * compare
2863          */
2864         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2865                 atomic_set(&r1_bio->remaining, read_targets);
2866                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2867                         bio = r1_bio->bios[i];
2868                         if (bio->bi_end_io == end_sync_read) {
2869                                 read_targets--;
2870                                 md_sync_acct_bio(bio, nr_sectors);
2871                                 if (read_targets == 1)
2872                                         bio->bi_opf &= ~MD_FAILFAST;
2873                                 generic_make_request(bio);
2874                         }
2875                 }
2876         } else {
2877                 atomic_set(&r1_bio->remaining, 1);
2878                 bio = r1_bio->bios[r1_bio->read_disk];
2879                 md_sync_acct_bio(bio, nr_sectors);
2880                 if (read_targets == 1)
2881                         bio->bi_opf &= ~MD_FAILFAST;
2882                 generic_make_request(bio);
2883
2884         }
2885         return nr_sectors;
2886 }
2887
2888 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2889 {
2890         if (sectors)
2891                 return sectors;
2892
2893         return mddev->dev_sectors;
2894 }
2895
2896 static struct r1conf *setup_conf(struct mddev *mddev)
2897 {
2898         struct r1conf *conf;
2899         int i;
2900         struct raid1_info *disk;
2901         struct md_rdev *rdev;
2902         int err = -ENOMEM;
2903
2904         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2905         if (!conf)
2906                 goto abort;
2907
2908         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2909                                    sizeof(atomic_t), GFP_KERNEL);
2910         if (!conf->nr_pending)
2911                 goto abort;
2912
2913         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2914                                    sizeof(atomic_t), GFP_KERNEL);
2915         if (!conf->nr_waiting)
2916                 goto abort;
2917
2918         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2919                                   sizeof(atomic_t), GFP_KERNEL);
2920         if (!conf->nr_queued)
2921                 goto abort;
2922
2923         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2924                                 sizeof(atomic_t), GFP_KERNEL);
2925         if (!conf->barrier)
2926                 goto abort;
2927
2928         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2929                                 * mddev->raid_disks * 2,
2930                                  GFP_KERNEL);
2931         if (!conf->mirrors)
2932                 goto abort;
2933
2934         conf->tmppage = alloc_page(GFP_KERNEL);
2935         if (!conf->tmppage)
2936                 goto abort;
2937
2938         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2939         if (!conf->poolinfo)
2940                 goto abort;
2941         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2942         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2943                                           r1bio_pool_free,
2944                                           conf->poolinfo);
2945         if (!conf->r1bio_pool)
2946                 goto abort;
2947
2948         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2949         if (!conf->bio_split)
2950                 goto abort;
2951
2952         conf->poolinfo->mddev = mddev;
2953
2954         err = -EINVAL;
2955         spin_lock_init(&conf->device_lock);
2956         rdev_for_each(rdev, mddev) {
2957                 int disk_idx = rdev->raid_disk;
2958                 if (disk_idx >= mddev->raid_disks
2959                     || disk_idx < 0)
2960                         continue;
2961                 if (test_bit(Replacement, &rdev->flags))
2962                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2963                 else
2964                         disk = conf->mirrors + disk_idx;
2965
2966                 if (disk->rdev)
2967                         goto abort;
2968                 disk->rdev = rdev;
2969                 disk->head_position = 0;
2970                 disk->seq_start = MaxSector;
2971         }
2972         conf->raid_disks = mddev->raid_disks;
2973         conf->mddev = mddev;
2974         INIT_LIST_HEAD(&conf->retry_list);
2975         INIT_LIST_HEAD(&conf->bio_end_io_list);
2976
2977         spin_lock_init(&conf->resync_lock);
2978         init_waitqueue_head(&conf->wait_barrier);
2979
2980         bio_list_init(&conf->pending_bio_list);
2981         conf->pending_count = 0;
2982         conf->recovery_disabled = mddev->recovery_disabled - 1;
2983
2984         err = -EIO;
2985         for (i = 0; i < conf->raid_disks * 2; i++) {
2986
2987                 disk = conf->mirrors + i;
2988
2989                 if (i < conf->raid_disks &&
2990                     disk[conf->raid_disks].rdev) {
2991                         /* This slot has a replacement. */
2992                         if (!disk->rdev) {
2993                                 /* No original, just make the replacement
2994                                  * a recovering spare
2995                                  */
2996                                 disk->rdev =
2997                                         disk[conf->raid_disks].rdev;
2998                                 disk[conf->raid_disks].rdev = NULL;
2999                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3000                                 /* Original is not in_sync - bad */
3001                                 goto abort;
3002                 }
3003
3004                 if (!disk->rdev ||
3005                     !test_bit(In_sync, &disk->rdev->flags)) {
3006                         disk->head_position = 0;
3007                         if (disk->rdev &&
3008                             (disk->rdev->saved_raid_disk < 0))
3009                                 conf->fullsync = 1;
3010                 }
3011         }
3012
3013         err = -ENOMEM;
3014         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3015         if (!conf->thread)
3016                 goto abort;
3017
3018         return conf;
3019
3020  abort:
3021         if (conf) {
3022                 mempool_destroy(conf->r1bio_pool);
3023                 kfree(conf->mirrors);
3024                 safe_put_page(conf->tmppage);
3025                 kfree(conf->poolinfo);
3026                 kfree(conf->nr_pending);
3027                 kfree(conf->nr_waiting);
3028                 kfree(conf->nr_queued);
3029                 kfree(conf->barrier);
3030                 if (conf->bio_split)
3031                         bioset_free(conf->bio_split);
3032                 kfree(conf);
3033         }
3034         return ERR_PTR(err);
3035 }
3036
3037 static void raid1_free(struct mddev *mddev, void *priv);
3038 static int raid1_run(struct mddev *mddev)
3039 {
3040         struct r1conf *conf;
3041         int i;
3042         struct md_rdev *rdev;
3043         int ret;
3044         bool discard_supported = false;
3045
3046         if (mddev->level != 1) {
3047                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3048                         mdname(mddev), mddev->level);
3049                 return -EIO;
3050         }
3051         if (mddev->reshape_position != MaxSector) {
3052                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3053                         mdname(mddev));
3054                 return -EIO;
3055         }
3056         if (mddev_init_writes_pending(mddev) < 0)
3057                 return -ENOMEM;
3058         /*
3059          * copy the already verified devices into our private RAID1
3060          * bookkeeping area. [whatever we allocate in run(),
3061          * should be freed in raid1_free()]
3062          */
3063         if (mddev->private == NULL)
3064                 conf = setup_conf(mddev);
3065         else
3066                 conf = mddev->private;
3067
3068         if (IS_ERR(conf))
3069                 return PTR_ERR(conf);
3070
3071         if (mddev->queue) {
3072                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3073                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3074         }
3075
3076         rdev_for_each(rdev, mddev) {
3077                 if (!mddev->gendisk)
3078                         continue;
3079                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3080                                   rdev->data_offset << 9);
3081                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3082                         discard_supported = true;
3083         }
3084
3085         mddev->degraded = 0;
3086         for (i=0; i < conf->raid_disks; i++)
3087                 if (conf->mirrors[i].rdev == NULL ||
3088                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3089                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3090                         mddev->degraded++;
3091
3092         if (conf->raid_disks - mddev->degraded == 1)
3093                 mddev->recovery_cp = MaxSector;
3094
3095         if (mddev->recovery_cp != MaxSector)
3096                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3097                         mdname(mddev));
3098         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3099                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3100                 mddev->raid_disks);
3101
3102         /*
3103          * Ok, everything is just fine now
3104          */
3105         mddev->thread = conf->thread;
3106         conf->thread = NULL;
3107         mddev->private = conf;
3108         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3109
3110         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3111
3112         if (mddev->queue) {
3113                 if (discard_supported)
3114                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3115                                                 mddev->queue);
3116                 else
3117                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3118                                                   mddev->queue);
3119         }
3120
3121         ret =  md_integrity_register(mddev);
3122         if (ret) {
3123                 md_unregister_thread(&mddev->thread);
3124                 raid1_free(mddev, conf);
3125         }
3126         return ret;
3127 }
3128
3129 static void raid1_free(struct mddev *mddev, void *priv)
3130 {
3131         struct r1conf *conf = priv;
3132
3133         mempool_destroy(conf->r1bio_pool);
3134         kfree(conf->mirrors);
3135         safe_put_page(conf->tmppage);
3136         kfree(conf->poolinfo);
3137         kfree(conf->nr_pending);
3138         kfree(conf->nr_waiting);
3139         kfree(conf->nr_queued);
3140         kfree(conf->barrier);
3141         if (conf->bio_split)
3142                 bioset_free(conf->bio_split);
3143         kfree(conf);
3144 }
3145
3146 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3147 {
3148         /* no resync is happening, and there is enough space
3149          * on all devices, so we can resize.
3150          * We need to make sure resync covers any new space.
3151          * If the array is shrinking we should possibly wait until
3152          * any io in the removed space completes, but it hardly seems
3153          * worth it.
3154          */
3155         sector_t newsize = raid1_size(mddev, sectors, 0);
3156         if (mddev->external_size &&
3157             mddev->array_sectors > newsize)
3158                 return -EINVAL;
3159         if (mddev->bitmap) {
3160                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3161                 if (ret)
3162                         return ret;
3163         }
3164         md_set_array_sectors(mddev, newsize);
3165         if (sectors > mddev->dev_sectors &&
3166             mddev->recovery_cp > mddev->dev_sectors) {
3167                 mddev->recovery_cp = mddev->dev_sectors;
3168                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3169         }
3170         mddev->dev_sectors = sectors;
3171         mddev->resync_max_sectors = sectors;
3172         return 0;
3173 }
3174
3175 static int raid1_reshape(struct mddev *mddev)
3176 {
3177         /* We need to:
3178          * 1/ resize the r1bio_pool
3179          * 2/ resize conf->mirrors
3180          *
3181          * We allocate a new r1bio_pool if we can.
3182          * Then raise a device barrier and wait until all IO stops.
3183          * Then resize conf->mirrors and swap in the new r1bio pool.
3184          *
3185          * At the same time, we "pack" the devices so that all the missing
3186          * devices have the higher raid_disk numbers.
3187          */
3188         mempool_t *newpool, *oldpool;
3189         struct pool_info *newpoolinfo;
3190         struct raid1_info *newmirrors;
3191         struct r1conf *conf = mddev->private;
3192         int cnt, raid_disks;
3193         unsigned long flags;
3194         int d, d2;
3195
3196         /* Cannot change chunk_size, layout, or level */
3197         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3198             mddev->layout != mddev->new_layout ||
3199             mddev->level != mddev->new_level) {
3200                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3201                 mddev->new_layout = mddev->layout;
3202                 mddev->new_level = mddev->level;
3203                 return -EINVAL;
3204         }
3205
3206         if (!mddev_is_clustered(mddev))
3207                 md_allow_write(mddev);
3208
3209         raid_disks = mddev->raid_disks + mddev->delta_disks;
3210
3211         if (raid_disks < conf->raid_disks) {
3212                 cnt=0;
3213                 for (d= 0; d < conf->raid_disks; d++)
3214                         if (conf->mirrors[d].rdev)
3215                                 cnt++;
3216                 if (cnt > raid_disks)
3217                         return -EBUSY;
3218         }
3219
3220         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3221         if (!newpoolinfo)
3222                 return -ENOMEM;
3223         newpoolinfo->mddev = mddev;
3224         newpoolinfo->raid_disks = raid_disks * 2;
3225
3226         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3227                                  r1bio_pool_free, newpoolinfo);
3228         if (!newpool) {
3229                 kfree(newpoolinfo);
3230                 return -ENOMEM;
3231         }
3232         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3233                              GFP_KERNEL);
3234         if (!newmirrors) {
3235                 kfree(newpoolinfo);
3236                 mempool_destroy(newpool);
3237                 return -ENOMEM;
3238         }
3239
3240         freeze_array(conf, 0);
3241
3242         /* ok, everything is stopped */
3243         oldpool = conf->r1bio_pool;
3244         conf->r1bio_pool = newpool;
3245
3246         for (d = d2 = 0; d < conf->raid_disks; d++) {
3247                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3248                 if (rdev && rdev->raid_disk != d2) {
3249                         sysfs_unlink_rdev(mddev, rdev);
3250                         rdev->raid_disk = d2;
3251                         sysfs_unlink_rdev(mddev, rdev);
3252                         if (sysfs_link_rdev(mddev, rdev))
3253                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3254                                         mdname(mddev), rdev->raid_disk);
3255                 }
3256                 if (rdev)
3257                         newmirrors[d2++].rdev = rdev;
3258         }
3259         kfree(conf->mirrors);
3260         conf->mirrors = newmirrors;
3261         kfree(conf->poolinfo);
3262         conf->poolinfo = newpoolinfo;
3263
3264         spin_lock_irqsave(&conf->device_lock, flags);
3265         mddev->degraded += (raid_disks - conf->raid_disks);
3266         spin_unlock_irqrestore(&conf->device_lock, flags);
3267         conf->raid_disks = mddev->raid_disks = raid_disks;
3268         mddev->delta_disks = 0;
3269
3270         unfreeze_array(conf);
3271
3272         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3273         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274         md_wakeup_thread(mddev->thread);
3275
3276         mempool_destroy(oldpool);
3277         return 0;
3278 }
3279
3280 static void raid1_quiesce(struct mddev *mddev, int state)
3281 {
3282         struct r1conf *conf = mddev->private;
3283
3284         switch(state) {
3285         case 2: /* wake for suspend */
3286                 wake_up(&conf->wait_barrier);
3287                 break;
3288         case 1:
3289                 freeze_array(conf, 0);
3290                 break;
3291         case 0:
3292                 unfreeze_array(conf);
3293                 break;
3294         }
3295 }
3296
3297 static void *raid1_takeover(struct mddev *mddev)
3298 {
3299         /* raid1 can take over:
3300          *  raid5 with 2 devices, any layout or chunk size
3301          */
3302         if (mddev->level == 5 && mddev->raid_disks == 2) {
3303                 struct r1conf *conf;
3304                 mddev->new_level = 1;
3305                 mddev->new_layout = 0;
3306                 mddev->new_chunk_sectors = 0;
3307                 conf = setup_conf(mddev);
3308                 if (!IS_ERR(conf)) {
3309                         /* Array must appear to be quiesced */
3310                         conf->array_frozen = 1;
3311                         mddev_clear_unsupported_flags(mddev,
3312                                 UNSUPPORTED_MDDEV_FLAGS);
3313                 }
3314                 return conf;
3315         }
3316         return ERR_PTR(-EINVAL);
3317 }
3318
3319 static struct md_personality raid1_personality =
3320 {
3321         .name           = "raid1",
3322         .level          = 1,
3323         .owner          = THIS_MODULE,
3324         .make_request   = raid1_make_request,
3325         .run            = raid1_run,
3326         .free           = raid1_free,
3327         .status         = raid1_status,
3328         .error_handler  = raid1_error,
3329         .hot_add_disk   = raid1_add_disk,
3330         .hot_remove_disk= raid1_remove_disk,
3331         .spare_active   = raid1_spare_active,
3332         .sync_request   = raid1_sync_request,
3333         .resize         = raid1_resize,
3334         .size           = raid1_size,
3335         .check_reshape  = raid1_reshape,
3336         .quiesce        = raid1_quiesce,
3337         .takeover       = raid1_takeover,
3338         .congested      = raid1_congested,
3339 };
3340
3341 static int __init raid_init(void)
3342 {
3343         return register_md_personality(&raid1_personality);
3344 }
3345
3346 static void raid_exit(void)
3347 {
3348         unregister_md_personality(&raid1_personality);
3349 }
3350
3351 module_init(raid_init);
3352 module_exit(raid_exit);
3353 MODULE_LICENSE("GPL");
3354 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3355 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3356 MODULE_ALIAS("md-raid1");
3357 MODULE_ALIAS("md-level-1");
3358
3359 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);