Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS         \
41         ((1L << MD_HAS_JOURNAL) |       \
42          (1L << MD_JOURNAL_CLEAN) |     \
43          (1L << MD_HAS_PPL) |           \
44          (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define raid1_log(md, fmt, args...)                             \
50         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52 #include "raid1-10.c"
53
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57                      START, LAST, static inline, raid1_rb);
58
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60                                 struct serial_info *si, int idx)
61 {
62         unsigned long flags;
63         int ret = 0;
64         sector_t lo = r1_bio->sector;
65         sector_t hi = lo + r1_bio->sectors;
66         struct serial_in_rdev *serial = &rdev->serial[idx];
67
68         spin_lock_irqsave(&serial->serial_lock, flags);
69         /* collision happened */
70         if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71                 ret = -EBUSY;
72         else {
73                 si->start = lo;
74                 si->last = hi;
75                 raid1_rb_insert(si, &serial->serial_rb);
76         }
77         spin_unlock_irqrestore(&serial->serial_lock, flags);
78
79         return ret;
80 }
81
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84         struct mddev *mddev = rdev->mddev;
85         struct serial_info *si;
86         int idx = sector_to_idx(r1_bio->sector);
87         struct serial_in_rdev *serial = &rdev->serial[idx];
88
89         if (WARN_ON(!mddev->serial_info_pool))
90                 return;
91         si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92         wait_event(serial->serial_io_wait,
93                    check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98         struct serial_info *si;
99         unsigned long flags;
100         int found = 0;
101         struct mddev *mddev = rdev->mddev;
102         int idx = sector_to_idx(lo);
103         struct serial_in_rdev *serial = &rdev->serial[idx];
104
105         spin_lock_irqsave(&serial->serial_lock, flags);
106         for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107              si; si = raid1_rb_iter_next(si, lo, hi)) {
108                 if (si->start == lo && si->last == hi) {
109                         raid1_rb_remove(si, &serial->serial_rb);
110                         mempool_free(si, mddev->serial_info_pool);
111                         found = 1;
112                         break;
113                 }
114         }
115         if (!found)
116                 WARN(1, "The write IO is not recorded for serialization\n");
117         spin_unlock_irqrestore(&serial->serial_lock, flags);
118         wake_up(&serial->serial_io_wait);
119 }
120
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127         return get_resync_pages(bio)->raid_bio;
128 }
129
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132         struct pool_info *pi = data;
133         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135         /* allocate a r1bio with room for raid_disks entries in the bios array */
136         return kzalloc(size, gfp_flags);
137 }
138
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148         struct pool_info *pi = data;
149         struct r1bio *r1_bio;
150         struct bio *bio;
151         int need_pages;
152         int j;
153         struct resync_pages *rps;
154
155         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156         if (!r1_bio)
157                 return NULL;
158
159         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160                             gfp_flags);
161         if (!rps)
162                 goto out_free_r1bio;
163
164         /*
165          * Allocate bios : 1 for reading, n-1 for writing
166          */
167         for (j = pi->raid_disks ; j-- ; ) {
168                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169                 if (!bio)
170                         goto out_free_bio;
171                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172                 r1_bio->bios[j] = bio;
173         }
174         /*
175          * Allocate RESYNC_PAGES data pages and attach them to
176          * the first bio.
177          * If this is a user-requested check/repair, allocate
178          * RESYNC_PAGES for each bio.
179          */
180         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181                 need_pages = pi->raid_disks;
182         else
183                 need_pages = 1;
184         for (j = 0; j < pi->raid_disks; j++) {
185                 struct resync_pages *rp = &rps[j];
186
187                 bio = r1_bio->bios[j];
188
189                 if (j < need_pages) {
190                         if (resync_alloc_pages(rp, gfp_flags))
191                                 goto out_free_pages;
192                 } else {
193                         memcpy(rp, &rps[0], sizeof(*rp));
194                         resync_get_all_pages(rp);
195                 }
196
197                 rp->raid_bio = r1_bio;
198                 bio->bi_private = rp;
199         }
200
201         r1_bio->master_bio = NULL;
202
203         return r1_bio;
204
205 out_free_pages:
206         while (--j >= 0)
207                 resync_free_pages(&rps[j]);
208
209 out_free_bio:
210         while (++j < pi->raid_disks) {
211                 bio_uninit(r1_bio->bios[j]);
212                 kfree(r1_bio->bios[j]);
213         }
214         kfree(rps);
215
216 out_free_r1bio:
217         rbio_pool_free(r1_bio, data);
218         return NULL;
219 }
220
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223         struct pool_info *pi = data;
224         int i;
225         struct r1bio *r1bio = __r1_bio;
226         struct resync_pages *rp = NULL;
227
228         for (i = pi->raid_disks; i--; ) {
229                 rp = get_resync_pages(r1bio->bios[i]);
230                 resync_free_pages(rp);
231                 bio_uninit(r1bio->bios[i]);
232                 kfree(r1bio->bios[i]);
233         }
234
235         /* resync pages array stored in the 1st bio's .bi_private */
236         kfree(rp);
237
238         rbio_pool_free(r1bio, data);
239 }
240
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243         int i;
244
245         for (i = 0; i < conf->raid_disks * 2; i++) {
246                 struct bio **bio = r1_bio->bios + i;
247                 if (!BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255         struct r1conf *conf = r1_bio->mddev->private;
256
257         put_all_bios(conf, r1_bio);
258         mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260
261 static void put_buf(struct r1bio *r1_bio)
262 {
263         struct r1conf *conf = r1_bio->mddev->private;
264         sector_t sect = r1_bio->sector;
265         int i;
266
267         for (i = 0; i < conf->raid_disks * 2; i++) {
268                 struct bio *bio = r1_bio->bios[i];
269                 if (bio->bi_end_io)
270                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271         }
272
273         mempool_free(r1_bio, &conf->r1buf_pool);
274
275         lower_barrier(conf, sect);
276 }
277
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280         unsigned long flags;
281         struct mddev *mddev = r1_bio->mddev;
282         struct r1conf *conf = mddev->private;
283         int idx;
284
285         idx = sector_to_idx(r1_bio->sector);
286         spin_lock_irqsave(&conf->device_lock, flags);
287         list_add(&r1_bio->retry_list, &conf->retry_list);
288         atomic_inc(&conf->nr_queued[idx]);
289         spin_unlock_irqrestore(&conf->device_lock, flags);
290
291         wake_up(&conf->wait_barrier);
292         md_wakeup_thread(mddev->thread);
293 }
294
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302         struct bio *bio = r1_bio->master_bio;
303
304         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305                 bio->bi_status = BLK_STS_IOERR;
306
307         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308                 bio_end_io_acct(bio, r1_bio->start_time);
309         bio_endio(bio);
310 }
311
312 static void raid_end_bio_io(struct r1bio *r1_bio)
313 {
314         struct bio *bio = r1_bio->master_bio;
315         struct r1conf *conf = r1_bio->mddev->private;
316
317         /* if nobody has done the final endio yet, do it now */
318         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
319                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
321                          (unsigned long long) bio->bi_iter.bi_sector,
322                          (unsigned long long) bio_end_sector(bio) - 1);
323
324                 call_bio_endio(r1_bio);
325         }
326         /*
327          * Wake up any possible resync thread that waits for the device
328          * to go idle.  All I/Os, even write-behind writes, are done.
329          */
330         allow_barrier(conf, r1_bio->sector);
331
332         free_r1bio(r1_bio);
333 }
334
335 /*
336  * Update disk head position estimator based on IRQ completion info.
337  */
338 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
339 {
340         struct r1conf *conf = r1_bio->mddev->private;
341
342         conf->mirrors[disk].head_position =
343                 r1_bio->sector + (r1_bio->sectors);
344 }
345
346 /*
347  * Find the disk number which triggered given bio
348  */
349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
350 {
351         int mirror;
352         struct r1conf *conf = r1_bio->mddev->private;
353         int raid_disks = conf->raid_disks;
354
355         for (mirror = 0; mirror < raid_disks * 2; mirror++)
356                 if (r1_bio->bios[mirror] == bio)
357                         break;
358
359         BUG_ON(mirror == raid_disks * 2);
360         update_head_pos(mirror, r1_bio);
361
362         return mirror;
363 }
364
365 static void raid1_end_read_request(struct bio *bio)
366 {
367         int uptodate = !bio->bi_status;
368         struct r1bio *r1_bio = bio->bi_private;
369         struct r1conf *conf = r1_bio->mddev->private;
370         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
371
372         /*
373          * this branch is our 'one mirror IO has finished' event handler:
374          */
375         update_head_pos(r1_bio->read_disk, r1_bio);
376
377         if (uptodate)
378                 set_bit(R1BIO_Uptodate, &r1_bio->state);
379         else if (test_bit(FailFast, &rdev->flags) &&
380                  test_bit(R1BIO_FailFast, &r1_bio->state))
381                 /* This was a fail-fast read so we definitely
382                  * want to retry */
383                 ;
384         else {
385                 /* If all other devices have failed, we want to return
386                  * the error upwards rather than fail the last device.
387                  * Here we redefine "uptodate" to mean "Don't want to retry"
388                  */
389                 unsigned long flags;
390                 spin_lock_irqsave(&conf->device_lock, flags);
391                 if (r1_bio->mddev->degraded == conf->raid_disks ||
392                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393                      test_bit(In_sync, &rdev->flags)))
394                         uptodate = 1;
395                 spin_unlock_irqrestore(&conf->device_lock, flags);
396         }
397
398         if (uptodate) {
399                 raid_end_bio_io(r1_bio);
400                 rdev_dec_pending(rdev, conf->mddev);
401         } else {
402                 /*
403                  * oops, read error:
404                  */
405                 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
406                                    mdname(conf->mddev),
407                                    rdev->bdev,
408                                    (unsigned long long)r1_bio->sector);
409                 set_bit(R1BIO_ReadError, &r1_bio->state);
410                 reschedule_retry(r1_bio);
411                 /* don't drop the reference on read_disk yet */
412         }
413 }
414
415 static void close_write(struct r1bio *r1_bio)
416 {
417         /* it really is the end of this request */
418         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
419                 bio_free_pages(r1_bio->behind_master_bio);
420                 bio_put(r1_bio->behind_master_bio);
421                 r1_bio->behind_master_bio = NULL;
422         }
423         /* clear the bitmap if all writes complete successfully */
424         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
425                            r1_bio->sectors,
426                            !test_bit(R1BIO_Degraded, &r1_bio->state),
427                            test_bit(R1BIO_BehindIO, &r1_bio->state));
428         md_write_end(r1_bio->mddev);
429 }
430
431 static void r1_bio_write_done(struct r1bio *r1_bio)
432 {
433         if (!atomic_dec_and_test(&r1_bio->remaining))
434                 return;
435
436         if (test_bit(R1BIO_WriteError, &r1_bio->state))
437                 reschedule_retry(r1_bio);
438         else {
439                 close_write(r1_bio);
440                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441                         reschedule_retry(r1_bio);
442                 else
443                         raid_end_bio_io(r1_bio);
444         }
445 }
446
447 static void raid1_end_write_request(struct bio *bio)
448 {
449         struct r1bio *r1_bio = bio->bi_private;
450         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451         struct r1conf *conf = r1_bio->mddev->private;
452         struct bio *to_put = NULL;
453         int mirror = find_bio_disk(r1_bio, bio);
454         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
455         bool discard_error;
456         sector_t lo = r1_bio->sector;
457         sector_t hi = r1_bio->sector + r1_bio->sectors;
458
459         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
460
461         /*
462          * 'one mirror IO has finished' event handler:
463          */
464         if (bio->bi_status && !discard_error) {
465                 set_bit(WriteErrorSeen, &rdev->flags);
466                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
467                         set_bit(MD_RECOVERY_NEEDED, &
468                                 conf->mddev->recovery);
469
470                 if (test_bit(FailFast, &rdev->flags) &&
471                     (bio->bi_opf & MD_FAILFAST) &&
472                     /* We never try FailFast to WriteMostly devices */
473                     !test_bit(WriteMostly, &rdev->flags)) {
474                         md_error(r1_bio->mddev, rdev);
475                 }
476
477                 /*
478                  * When the device is faulty, it is not necessary to
479                  * handle write error.
480                  */
481                 if (!test_bit(Faulty, &rdev->flags))
482                         set_bit(R1BIO_WriteError, &r1_bio->state);
483                 else {
484                         /* Fail the request */
485                         set_bit(R1BIO_Degraded, &r1_bio->state);
486                         /* Finished with this branch */
487                         r1_bio->bios[mirror] = NULL;
488                         to_put = bio;
489                 }
490         } else {
491                 /*
492                  * Set R1BIO_Uptodate in our master bio, so that we
493                  * will return a good error code for to the higher
494                  * levels even if IO on some other mirrored buffer
495                  * fails.
496                  *
497                  * The 'master' represents the composite IO operation
498                  * to user-side. So if something waits for IO, then it
499                  * will wait for the 'master' bio.
500                  */
501                 sector_t first_bad;
502                 int bad_sectors;
503
504                 r1_bio->bios[mirror] = NULL;
505                 to_put = bio;
506                 /*
507                  * Do not set R1BIO_Uptodate if the current device is
508                  * rebuilding or Faulty. This is because we cannot use
509                  * such device for properly reading the data back (we could
510                  * potentially use it, if the current write would have felt
511                  * before rdev->recovery_offset, but for simplicity we don't
512                  * check this here.
513                  */
514                 if (test_bit(In_sync, &rdev->flags) &&
515                     !test_bit(Faulty, &rdev->flags))
516                         set_bit(R1BIO_Uptodate, &r1_bio->state);
517
518                 /* Maybe we can clear some bad blocks. */
519                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
520                                 &first_bad, &bad_sectors) && !discard_error) {
521                         r1_bio->bios[mirror] = IO_MADE_GOOD;
522                         set_bit(R1BIO_MadeGood, &r1_bio->state);
523                 }
524         }
525
526         if (behind) {
527                 if (test_bit(CollisionCheck, &rdev->flags))
528                         remove_serial(rdev, lo, hi);
529                 if (test_bit(WriteMostly, &rdev->flags))
530                         atomic_dec(&r1_bio->behind_remaining);
531
532                 /*
533                  * In behind mode, we ACK the master bio once the I/O
534                  * has safely reached all non-writemostly
535                  * disks. Setting the Returned bit ensures that this
536                  * gets done only once -- we don't ever want to return
537                  * -EIO here, instead we'll wait
538                  */
539                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
540                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
541                         /* Maybe we can return now */
542                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
543                                 struct bio *mbio = r1_bio->master_bio;
544                                 pr_debug("raid1: behind end write sectors"
545                                          " %llu-%llu\n",
546                                          (unsigned long long) mbio->bi_iter.bi_sector,
547                                          (unsigned long long) bio_end_sector(mbio) - 1);
548                                 call_bio_endio(r1_bio);
549                         }
550                 }
551         } else if (rdev->mddev->serialize_policy)
552                 remove_serial(rdev, lo, hi);
553         if (r1_bio->bios[mirror] == NULL)
554                 rdev_dec_pending(rdev, conf->mddev);
555
556         /*
557          * Let's see if all mirrored write operations have finished
558          * already.
559          */
560         r1_bio_write_done(r1_bio);
561
562         if (to_put)
563                 bio_put(to_put);
564 }
565
566 static sector_t align_to_barrier_unit_end(sector_t start_sector,
567                                           sector_t sectors)
568 {
569         sector_t len;
570
571         WARN_ON(sectors == 0);
572         /*
573          * len is the number of sectors from start_sector to end of the
574          * barrier unit which start_sector belongs to.
575          */
576         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
577               start_sector;
578
579         if (len > sectors)
580                 len = sectors;
581
582         return len;
583 }
584
585 /*
586  * This routine returns the disk from which the requested read should
587  * be done. There is a per-array 'next expected sequential IO' sector
588  * number - if this matches on the next IO then we use the last disk.
589  * There is also a per-disk 'last know head position' sector that is
590  * maintained from IRQ contexts, both the normal and the resync IO
591  * completion handlers update this position correctly. If there is no
592  * perfect sequential match then we pick the disk whose head is closest.
593  *
594  * If there are 2 mirrors in the same 2 devices, performance degrades
595  * because position is mirror, not device based.
596  *
597  * The rdev for the device selected will have nr_pending incremented.
598  */
599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
600 {
601         const sector_t this_sector = r1_bio->sector;
602         int sectors;
603         int best_good_sectors;
604         int best_disk, best_dist_disk, best_pending_disk;
605         int has_nonrot_disk;
606         int disk;
607         sector_t best_dist;
608         unsigned int min_pending;
609         struct md_rdev *rdev;
610         int choose_first;
611         int choose_next_idle;
612
613         rcu_read_lock();
614         /*
615          * Check if we can balance. We can balance on the whole
616          * device if no resync is going on, or below the resync window.
617          * We take the first readable disk when above the resync window.
618          */
619  retry:
620         sectors = r1_bio->sectors;
621         best_disk = -1;
622         best_dist_disk = -1;
623         best_dist = MaxSector;
624         best_pending_disk = -1;
625         min_pending = UINT_MAX;
626         best_good_sectors = 0;
627         has_nonrot_disk = 0;
628         choose_next_idle = 0;
629         clear_bit(R1BIO_FailFast, &r1_bio->state);
630
631         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
632             (mddev_is_clustered(conf->mddev) &&
633             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
634                     this_sector + sectors)))
635                 choose_first = 1;
636         else
637                 choose_first = 0;
638
639         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
640                 sector_t dist;
641                 sector_t first_bad;
642                 int bad_sectors;
643                 unsigned int pending;
644                 bool nonrot;
645
646                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
647                 if (r1_bio->bios[disk] == IO_BLOCKED
648                     || rdev == NULL
649                     || test_bit(Faulty, &rdev->flags))
650                         continue;
651                 if (!test_bit(In_sync, &rdev->flags) &&
652                     rdev->recovery_offset < this_sector + sectors)
653                         continue;
654                 if (test_bit(WriteMostly, &rdev->flags)) {
655                         /* Don't balance among write-mostly, just
656                          * use the first as a last resort */
657                         if (best_dist_disk < 0) {
658                                 if (is_badblock(rdev, this_sector, sectors,
659                                                 &first_bad, &bad_sectors)) {
660                                         if (first_bad <= this_sector)
661                                                 /* Cannot use this */
662                                                 continue;
663                                         best_good_sectors = first_bad - this_sector;
664                                 } else
665                                         best_good_sectors = sectors;
666                                 best_dist_disk = disk;
667                                 best_pending_disk = disk;
668                         }
669                         continue;
670                 }
671                 /* This is a reasonable device to use.  It might
672                  * even be best.
673                  */
674                 if (is_badblock(rdev, this_sector, sectors,
675                                 &first_bad, &bad_sectors)) {
676                         if (best_dist < MaxSector)
677                                 /* already have a better device */
678                                 continue;
679                         if (first_bad <= this_sector) {
680                                 /* cannot read here. If this is the 'primary'
681                                  * device, then we must not read beyond
682                                  * bad_sectors from another device..
683                                  */
684                                 bad_sectors -= (this_sector - first_bad);
685                                 if (choose_first && sectors > bad_sectors)
686                                         sectors = bad_sectors;
687                                 if (best_good_sectors > sectors)
688                                         best_good_sectors = sectors;
689
690                         } else {
691                                 sector_t good_sectors = first_bad - this_sector;
692                                 if (good_sectors > best_good_sectors) {
693                                         best_good_sectors = good_sectors;
694                                         best_disk = disk;
695                                 }
696                                 if (choose_first)
697                                         break;
698                         }
699                         continue;
700                 } else {
701                         if ((sectors > best_good_sectors) && (best_disk >= 0))
702                                 best_disk = -1;
703                         best_good_sectors = sectors;
704                 }
705
706                 if (best_disk >= 0)
707                         /* At least two disks to choose from so failfast is OK */
708                         set_bit(R1BIO_FailFast, &r1_bio->state);
709
710                 nonrot = bdev_nonrot(rdev->bdev);
711                 has_nonrot_disk |= nonrot;
712                 pending = atomic_read(&rdev->nr_pending);
713                 dist = abs(this_sector - conf->mirrors[disk].head_position);
714                 if (choose_first) {
715                         best_disk = disk;
716                         break;
717                 }
718                 /* Don't change to another disk for sequential reads */
719                 if (conf->mirrors[disk].next_seq_sect == this_sector
720                     || dist == 0) {
721                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
722                         struct raid1_info *mirror = &conf->mirrors[disk];
723
724                         best_disk = disk;
725                         /*
726                          * If buffered sequential IO size exceeds optimal
727                          * iosize, check if there is idle disk. If yes, choose
728                          * the idle disk. read_balance could already choose an
729                          * idle disk before noticing it's a sequential IO in
730                          * this disk. This doesn't matter because this disk
731                          * will idle, next time it will be utilized after the
732                          * first disk has IO size exceeds optimal iosize. In
733                          * this way, iosize of the first disk will be optimal
734                          * iosize at least. iosize of the second disk might be
735                          * small, but not a big deal since when the second disk
736                          * starts IO, the first disk is likely still busy.
737                          */
738                         if (nonrot && opt_iosize > 0 &&
739                             mirror->seq_start != MaxSector &&
740                             mirror->next_seq_sect > opt_iosize &&
741                             mirror->next_seq_sect - opt_iosize >=
742                             mirror->seq_start) {
743                                 choose_next_idle = 1;
744                                 continue;
745                         }
746                         break;
747                 }
748
749                 if (choose_next_idle)
750                         continue;
751
752                 if (min_pending > pending) {
753                         min_pending = pending;
754                         best_pending_disk = disk;
755                 }
756
757                 if (dist < best_dist) {
758                         best_dist = dist;
759                         best_dist_disk = disk;
760                 }
761         }
762
763         /*
764          * If all disks are rotational, choose the closest disk. If any disk is
765          * non-rotational, choose the disk with less pending request even the
766          * disk is rotational, which might/might not be optimal for raids with
767          * mixed ratation/non-rotational disks depending on workload.
768          */
769         if (best_disk == -1) {
770                 if (has_nonrot_disk || min_pending == 0)
771                         best_disk = best_pending_disk;
772                 else
773                         best_disk = best_dist_disk;
774         }
775
776         if (best_disk >= 0) {
777                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
778                 if (!rdev)
779                         goto retry;
780                 atomic_inc(&rdev->nr_pending);
781                 sectors = best_good_sectors;
782
783                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
784                         conf->mirrors[best_disk].seq_start = this_sector;
785
786                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
787         }
788         rcu_read_unlock();
789         *max_sectors = sectors;
790
791         return best_disk;
792 }
793
794 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795 {
796         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
797         raid1_prepare_flush_writes(conf->mddev->bitmap);
798         wake_up(&conf->wait_barrier);
799
800         while (bio) { /* submit pending writes */
801                 struct bio *next = bio->bi_next;
802
803                 raid1_submit_write(bio);
804                 bio = next;
805                 cond_resched();
806         }
807 }
808
809 static void flush_pending_writes(struct r1conf *conf)
810 {
811         /* Any writes that have been queued but are awaiting
812          * bitmap updates get flushed here.
813          */
814         spin_lock_irq(&conf->device_lock);
815
816         if (conf->pending_bio_list.head) {
817                 struct blk_plug plug;
818                 struct bio *bio;
819
820                 bio = bio_list_get(&conf->pending_bio_list);
821                 spin_unlock_irq(&conf->device_lock);
822
823                 /*
824                  * As this is called in a wait_event() loop (see freeze_array),
825                  * current->state might be TASK_UNINTERRUPTIBLE which will
826                  * cause a warning when we prepare to wait again.  As it is
827                  * rare that this path is taken, it is perfectly safe to force
828                  * us to go around the wait_event() loop again, so the warning
829                  * is a false-positive.  Silence the warning by resetting
830                  * thread state
831                  */
832                 __set_current_state(TASK_RUNNING);
833                 blk_start_plug(&plug);
834                 flush_bio_list(conf, bio);
835                 blk_finish_plug(&plug);
836         } else
837                 spin_unlock_irq(&conf->device_lock);
838 }
839
840 /* Barriers....
841  * Sometimes we need to suspend IO while we do something else,
842  * either some resync/recovery, or reconfigure the array.
843  * To do this we raise a 'barrier'.
844  * The 'barrier' is a counter that can be raised multiple times
845  * to count how many activities are happening which preclude
846  * normal IO.
847  * We can only raise the barrier if there is no pending IO.
848  * i.e. if nr_pending == 0.
849  * We choose only to raise the barrier if no-one is waiting for the
850  * barrier to go down.  This means that as soon as an IO request
851  * is ready, no other operations which require a barrier will start
852  * until the IO request has had a chance.
853  *
854  * So: regular IO calls 'wait_barrier'.  When that returns there
855  *    is no backgroup IO happening,  It must arrange to call
856  *    allow_barrier when it has finished its IO.
857  * backgroup IO calls must call raise_barrier.  Once that returns
858  *    there is no normal IO happeing.  It must arrange to call
859  *    lower_barrier when the particular background IO completes.
860  *
861  * If resync/recovery is interrupted, returns -EINTR;
862  * Otherwise, returns 0.
863  */
864 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
865 {
866         int idx = sector_to_idx(sector_nr);
867
868         spin_lock_irq(&conf->resync_lock);
869
870         /* Wait until no block IO is waiting */
871         wait_event_lock_irq(conf->wait_barrier,
872                             !atomic_read(&conf->nr_waiting[idx]),
873                             conf->resync_lock);
874
875         /* block any new IO from starting */
876         atomic_inc(&conf->barrier[idx]);
877         /*
878          * In raise_barrier() we firstly increase conf->barrier[idx] then
879          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
880          * increase conf->nr_pending[idx] then check conf->barrier[idx].
881          * A memory barrier here to make sure conf->nr_pending[idx] won't
882          * be fetched before conf->barrier[idx] is increased. Otherwise
883          * there will be a race between raise_barrier() and _wait_barrier().
884          */
885         smp_mb__after_atomic();
886
887         /* For these conditions we must wait:
888          * A: while the array is in frozen state
889          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
890          *    existing in corresponding I/O barrier bucket.
891          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
892          *    max resync count which allowed on current I/O barrier bucket.
893          */
894         wait_event_lock_irq(conf->wait_barrier,
895                             (!conf->array_frozen &&
896                              !atomic_read(&conf->nr_pending[idx]) &&
897                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
898                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
899                             conf->resync_lock);
900
901         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
902                 atomic_dec(&conf->barrier[idx]);
903                 spin_unlock_irq(&conf->resync_lock);
904                 wake_up(&conf->wait_barrier);
905                 return -EINTR;
906         }
907
908         atomic_inc(&conf->nr_sync_pending);
909         spin_unlock_irq(&conf->resync_lock);
910
911         return 0;
912 }
913
914 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
915 {
916         int idx = sector_to_idx(sector_nr);
917
918         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
919
920         atomic_dec(&conf->barrier[idx]);
921         atomic_dec(&conf->nr_sync_pending);
922         wake_up(&conf->wait_barrier);
923 }
924
925 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
926 {
927         bool ret = true;
928
929         /*
930          * We need to increase conf->nr_pending[idx] very early here,
931          * then raise_barrier() can be blocked when it waits for
932          * conf->nr_pending[idx] to be 0. Then we can avoid holding
933          * conf->resync_lock when there is no barrier raised in same
934          * barrier unit bucket. Also if the array is frozen, I/O
935          * should be blocked until array is unfrozen.
936          */
937         atomic_inc(&conf->nr_pending[idx]);
938         /*
939          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
940          * check conf->barrier[idx]. In raise_barrier() we firstly increase
941          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
942          * barrier is necessary here to make sure conf->barrier[idx] won't be
943          * fetched before conf->nr_pending[idx] is increased. Otherwise there
944          * will be a race between _wait_barrier() and raise_barrier().
945          */
946         smp_mb__after_atomic();
947
948         /*
949          * Don't worry about checking two atomic_t variables at same time
950          * here. If during we check conf->barrier[idx], the array is
951          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
952          * 0, it is safe to return and make the I/O continue. Because the
953          * array is frozen, all I/O returned here will eventually complete
954          * or be queued, no race will happen. See code comment in
955          * frozen_array().
956          */
957         if (!READ_ONCE(conf->array_frozen) &&
958             !atomic_read(&conf->barrier[idx]))
959                 return ret;
960
961         /*
962          * After holding conf->resync_lock, conf->nr_pending[idx]
963          * should be decreased before waiting for barrier to drop.
964          * Otherwise, we may encounter a race condition because
965          * raise_barrer() might be waiting for conf->nr_pending[idx]
966          * to be 0 at same time.
967          */
968         spin_lock_irq(&conf->resync_lock);
969         atomic_inc(&conf->nr_waiting[idx]);
970         atomic_dec(&conf->nr_pending[idx]);
971         /*
972          * In case freeze_array() is waiting for
973          * get_unqueued_pending() == extra
974          */
975         wake_up(&conf->wait_barrier);
976         /* Wait for the barrier in same barrier unit bucket to drop. */
977
978         /* Return false when nowait flag is set */
979         if (nowait) {
980                 ret = false;
981         } else {
982                 wait_event_lock_irq(conf->wait_barrier,
983                                 !conf->array_frozen &&
984                                 !atomic_read(&conf->barrier[idx]),
985                                 conf->resync_lock);
986                 atomic_inc(&conf->nr_pending[idx]);
987         }
988
989         atomic_dec(&conf->nr_waiting[idx]);
990         spin_unlock_irq(&conf->resync_lock);
991         return ret;
992 }
993
994 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
995 {
996         int idx = sector_to_idx(sector_nr);
997         bool ret = true;
998
999         /*
1000          * Very similar to _wait_barrier(). The difference is, for read
1001          * I/O we don't need wait for sync I/O, but if the whole array
1002          * is frozen, the read I/O still has to wait until the array is
1003          * unfrozen. Since there is no ordering requirement with
1004          * conf->barrier[idx] here, memory barrier is unnecessary as well.
1005          */
1006         atomic_inc(&conf->nr_pending[idx]);
1007
1008         if (!READ_ONCE(conf->array_frozen))
1009                 return ret;
1010
1011         spin_lock_irq(&conf->resync_lock);
1012         atomic_inc(&conf->nr_waiting[idx]);
1013         atomic_dec(&conf->nr_pending[idx]);
1014         /*
1015          * In case freeze_array() is waiting for
1016          * get_unqueued_pending() == extra
1017          */
1018         wake_up(&conf->wait_barrier);
1019         /* Wait for array to be unfrozen */
1020
1021         /* Return false when nowait flag is set */
1022         if (nowait) {
1023                 /* Return false when nowait flag is set */
1024                 ret = false;
1025         } else {
1026                 wait_event_lock_irq(conf->wait_barrier,
1027                                 !conf->array_frozen,
1028                                 conf->resync_lock);
1029                 atomic_inc(&conf->nr_pending[idx]);
1030         }
1031
1032         atomic_dec(&conf->nr_waiting[idx]);
1033         spin_unlock_irq(&conf->resync_lock);
1034         return ret;
1035 }
1036
1037 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1038 {
1039         int idx = sector_to_idx(sector_nr);
1040
1041         return _wait_barrier(conf, idx, nowait);
1042 }
1043
1044 static void _allow_barrier(struct r1conf *conf, int idx)
1045 {
1046         atomic_dec(&conf->nr_pending[idx]);
1047         wake_up(&conf->wait_barrier);
1048 }
1049
1050 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1051 {
1052         int idx = sector_to_idx(sector_nr);
1053
1054         _allow_barrier(conf, idx);
1055 }
1056
1057 /* conf->resync_lock should be held */
1058 static int get_unqueued_pending(struct r1conf *conf)
1059 {
1060         int idx, ret;
1061
1062         ret = atomic_read(&conf->nr_sync_pending);
1063         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1064                 ret += atomic_read(&conf->nr_pending[idx]) -
1065                         atomic_read(&conf->nr_queued[idx]);
1066
1067         return ret;
1068 }
1069
1070 static void freeze_array(struct r1conf *conf, int extra)
1071 {
1072         /* Stop sync I/O and normal I/O and wait for everything to
1073          * go quiet.
1074          * This is called in two situations:
1075          * 1) management command handlers (reshape, remove disk, quiesce).
1076          * 2) one normal I/O request failed.
1077
1078          * After array_frozen is set to 1, new sync IO will be blocked at
1079          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1080          * or wait_read_barrier(). The flying I/Os will either complete or be
1081          * queued. When everything goes quite, there are only queued I/Os left.
1082
1083          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1084          * barrier bucket index which this I/O request hits. When all sync and
1085          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1086          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1087          * in handle_read_error(), we may call freeze_array() before trying to
1088          * fix the read error. In this case, the error read I/O is not queued,
1089          * so get_unqueued_pending() == 1.
1090          *
1091          * Therefore before this function returns, we need to wait until
1092          * get_unqueued_pendings(conf) gets equal to extra. For
1093          * normal I/O context, extra is 1, in rested situations extra is 0.
1094          */
1095         spin_lock_irq(&conf->resync_lock);
1096         conf->array_frozen = 1;
1097         raid1_log(conf->mddev, "wait freeze");
1098         wait_event_lock_irq_cmd(
1099                 conf->wait_barrier,
1100                 get_unqueued_pending(conf) == extra,
1101                 conf->resync_lock,
1102                 flush_pending_writes(conf));
1103         spin_unlock_irq(&conf->resync_lock);
1104 }
1105 static void unfreeze_array(struct r1conf *conf)
1106 {
1107         /* reverse the effect of the freeze */
1108         spin_lock_irq(&conf->resync_lock);
1109         conf->array_frozen = 0;
1110         spin_unlock_irq(&conf->resync_lock);
1111         wake_up(&conf->wait_barrier);
1112 }
1113
1114 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1115                                            struct bio *bio)
1116 {
1117         int size = bio->bi_iter.bi_size;
1118         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1119         int i = 0;
1120         struct bio *behind_bio = NULL;
1121
1122         behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1123                                       &r1_bio->mddev->bio_set);
1124         if (!behind_bio)
1125                 return;
1126
1127         /* discard op, we don't support writezero/writesame yet */
1128         if (!bio_has_data(bio)) {
1129                 behind_bio->bi_iter.bi_size = size;
1130                 goto skip_copy;
1131         }
1132
1133         while (i < vcnt && size) {
1134                 struct page *page;
1135                 int len = min_t(int, PAGE_SIZE, size);
1136
1137                 page = alloc_page(GFP_NOIO);
1138                 if (unlikely(!page))
1139                         goto free_pages;
1140
1141                 if (!bio_add_page(behind_bio, page, len, 0)) {
1142                         put_page(page);
1143                         goto free_pages;
1144                 }
1145
1146                 size -= len;
1147                 i++;
1148         }
1149
1150         bio_copy_data(behind_bio, bio);
1151 skip_copy:
1152         r1_bio->behind_master_bio = behind_bio;
1153         set_bit(R1BIO_BehindIO, &r1_bio->state);
1154
1155         return;
1156
1157 free_pages:
1158         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1159                  bio->bi_iter.bi_size);
1160         bio_free_pages(behind_bio);
1161         bio_put(behind_bio);
1162 }
1163
1164 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1165 {
1166         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1167                                                   cb);
1168         struct mddev *mddev = plug->cb.data;
1169         struct r1conf *conf = mddev->private;
1170         struct bio *bio;
1171
1172         if (from_schedule) {
1173                 spin_lock_irq(&conf->device_lock);
1174                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1175                 spin_unlock_irq(&conf->device_lock);
1176                 wake_up(&conf->wait_barrier);
1177                 md_wakeup_thread(mddev->thread);
1178                 kfree(plug);
1179                 return;
1180         }
1181
1182         /* we aren't scheduling, so we can do the write-out directly. */
1183         bio = bio_list_get(&plug->pending);
1184         flush_bio_list(conf, bio);
1185         kfree(plug);
1186 }
1187
1188 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1189 {
1190         r1_bio->master_bio = bio;
1191         r1_bio->sectors = bio_sectors(bio);
1192         r1_bio->state = 0;
1193         r1_bio->mddev = mddev;
1194         r1_bio->sector = bio->bi_iter.bi_sector;
1195 }
1196
1197 static inline struct r1bio *
1198 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1199 {
1200         struct r1conf *conf = mddev->private;
1201         struct r1bio *r1_bio;
1202
1203         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1204         /* Ensure no bio records IO_BLOCKED */
1205         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1206         init_r1bio(r1_bio, mddev, bio);
1207         return r1_bio;
1208 }
1209
1210 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1211                                int max_read_sectors, struct r1bio *r1_bio)
1212 {
1213         struct r1conf *conf = mddev->private;
1214         struct raid1_info *mirror;
1215         struct bio *read_bio;
1216         struct bitmap *bitmap = mddev->bitmap;
1217         const enum req_op op = bio_op(bio);
1218         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1219         int max_sectors;
1220         int rdisk;
1221         bool r1bio_existed = !!r1_bio;
1222         char b[BDEVNAME_SIZE];
1223
1224         /*
1225          * If r1_bio is set, we are blocking the raid1d thread
1226          * so there is a tiny risk of deadlock.  So ask for
1227          * emergency memory if needed.
1228          */
1229         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1230
1231         if (r1bio_existed) {
1232                 /* Need to get the block device name carefully */
1233                 struct md_rdev *rdev;
1234                 rcu_read_lock();
1235                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1236                 if (rdev)
1237                         snprintf(b, sizeof(b), "%pg", rdev->bdev);
1238                 else
1239                         strcpy(b, "???");
1240                 rcu_read_unlock();
1241         }
1242
1243         /*
1244          * Still need barrier for READ in case that whole
1245          * array is frozen.
1246          */
1247         if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248                                 bio->bi_opf & REQ_NOWAIT)) {
1249                 bio_wouldblock_error(bio);
1250                 return;
1251         }
1252
1253         if (!r1_bio)
1254                 r1_bio = alloc_r1bio(mddev, bio);
1255         else
1256                 init_r1bio(r1_bio, mddev, bio);
1257         r1_bio->sectors = max_read_sectors;
1258
1259         /*
1260          * make_request() can abort the operation when read-ahead is being
1261          * used and no empty request is available.
1262          */
1263         rdisk = read_balance(conf, r1_bio, &max_sectors);
1264
1265         if (rdisk < 0) {
1266                 /* couldn't find anywhere to read from */
1267                 if (r1bio_existed) {
1268                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269                                             mdname(mddev),
1270                                             b,
1271                                             (unsigned long long)r1_bio->sector);
1272                 }
1273                 raid_end_bio_io(r1_bio);
1274                 return;
1275         }
1276         mirror = conf->mirrors + rdisk;
1277
1278         if (r1bio_existed)
1279                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280                                     mdname(mddev),
1281                                     (unsigned long long)r1_bio->sector,
1282                                     mirror->rdev->bdev);
1283
1284         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285             bitmap) {
1286                 /*
1287                  * Reading from a write-mostly device must take care not to
1288                  * over-take any writes that are 'behind'
1289                  */
1290                 raid1_log(mddev, "wait behind writes");
1291                 wait_event(bitmap->behind_wait,
1292                            atomic_read(&bitmap->behind_writes) == 0);
1293         }
1294
1295         if (max_sectors < bio_sectors(bio)) {
1296                 struct bio *split = bio_split(bio, max_sectors,
1297                                               gfp, &conf->bio_split);
1298                 bio_chain(split, bio);
1299                 submit_bio_noacct(bio);
1300                 bio = split;
1301                 r1_bio->master_bio = bio;
1302                 r1_bio->sectors = max_sectors;
1303         }
1304
1305         r1_bio->read_disk = rdisk;
1306
1307         if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1308                 r1_bio->start_time = bio_start_io_acct(bio);
1309
1310         read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311                                    &mddev->bio_set);
1312
1313         r1_bio->bios[rdisk] = read_bio;
1314
1315         read_bio->bi_iter.bi_sector = r1_bio->sector +
1316                 mirror->rdev->data_offset;
1317         read_bio->bi_end_io = raid1_end_read_request;
1318         read_bio->bi_opf = op | do_sync;
1319         if (test_bit(FailFast, &mirror->rdev->flags) &&
1320             test_bit(R1BIO_FailFast, &r1_bio->state))
1321                 read_bio->bi_opf |= MD_FAILFAST;
1322         read_bio->bi_private = r1_bio;
1323
1324         if (mddev->gendisk)
1325                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326                                       r1_bio->sector);
1327
1328         submit_bio_noacct(read_bio);
1329 }
1330
1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332                                 int max_write_sectors)
1333 {
1334         struct r1conf *conf = mddev->private;
1335         struct r1bio *r1_bio;
1336         int i, disks;
1337         struct bitmap *bitmap = mddev->bitmap;
1338         unsigned long flags;
1339         struct md_rdev *blocked_rdev;
1340         int first_clone;
1341         int max_sectors;
1342         bool write_behind = false;
1343
1344         if (mddev_is_clustered(mddev) &&
1345              md_cluster_ops->area_resyncing(mddev, WRITE,
1346                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1347
1348                 DEFINE_WAIT(w);
1349                 if (bio->bi_opf & REQ_NOWAIT) {
1350                         bio_wouldblock_error(bio);
1351                         return;
1352                 }
1353                 for (;;) {
1354                         prepare_to_wait(&conf->wait_barrier,
1355                                         &w, TASK_IDLE);
1356                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1357                                                         bio->bi_iter.bi_sector,
1358                                                         bio_end_sector(bio)))
1359                                 break;
1360                         schedule();
1361                 }
1362                 finish_wait(&conf->wait_barrier, &w);
1363         }
1364
1365         /*
1366          * Register the new request and wait if the reconstruction
1367          * thread has put up a bar for new requests.
1368          * Continue immediately if no resync is active currently.
1369          */
1370         if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1371                                 bio->bi_opf & REQ_NOWAIT)) {
1372                 bio_wouldblock_error(bio);
1373                 return;
1374         }
1375
1376         r1_bio = alloc_r1bio(mddev, bio);
1377         r1_bio->sectors = max_write_sectors;
1378
1379         /* first select target devices under rcu_lock and
1380          * inc refcount on their rdev.  Record them by setting
1381          * bios[x] to bio
1382          * If there are known/acknowledged bad blocks on any device on
1383          * which we have seen a write error, we want to avoid writing those
1384          * blocks.
1385          * This potentially requires several writes to write around
1386          * the bad blocks.  Each set of writes gets it's own r1bio
1387          * with a set of bios attached.
1388          */
1389
1390         disks = conf->raid_disks * 2;
1391  retry_write:
1392         blocked_rdev = NULL;
1393         rcu_read_lock();
1394         max_sectors = r1_bio->sectors;
1395         for (i = 0;  i < disks; i++) {
1396                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1397
1398                 /*
1399                  * The write-behind io is only attempted on drives marked as
1400                  * write-mostly, which means we could allocate write behind
1401                  * bio later.
1402                  */
1403                 if (rdev && test_bit(WriteMostly, &rdev->flags))
1404                         write_behind = true;
1405
1406                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407                         atomic_inc(&rdev->nr_pending);
1408                         blocked_rdev = rdev;
1409                         break;
1410                 }
1411                 r1_bio->bios[i] = NULL;
1412                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413                         if (i < conf->raid_disks)
1414                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1415                         continue;
1416                 }
1417
1418                 atomic_inc(&rdev->nr_pending);
1419                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420                         sector_t first_bad;
1421                         int bad_sectors;
1422                         int is_bad;
1423
1424                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1425                                              &first_bad, &bad_sectors);
1426                         if (is_bad < 0) {
1427                                 /* mustn't write here until the bad block is
1428                                  * acknowledged*/
1429                                 set_bit(BlockedBadBlocks, &rdev->flags);
1430                                 blocked_rdev = rdev;
1431                                 break;
1432                         }
1433                         if (is_bad && first_bad <= r1_bio->sector) {
1434                                 /* Cannot write here at all */
1435                                 bad_sectors -= (r1_bio->sector - first_bad);
1436                                 if (bad_sectors < max_sectors)
1437                                         /* mustn't write more than bad_sectors
1438                                          * to other devices yet
1439                                          */
1440                                         max_sectors = bad_sectors;
1441                                 rdev_dec_pending(rdev, mddev);
1442                                 /* We don't set R1BIO_Degraded as that
1443                                  * only applies if the disk is
1444                                  * missing, so it might be re-added,
1445                                  * and we want to know to recover this
1446                                  * chunk.
1447                                  * In this case the device is here,
1448                                  * and the fact that this chunk is not
1449                                  * in-sync is recorded in the bad
1450                                  * block log
1451                                  */
1452                                 continue;
1453                         }
1454                         if (is_bad) {
1455                                 int good_sectors = first_bad - r1_bio->sector;
1456                                 if (good_sectors < max_sectors)
1457                                         max_sectors = good_sectors;
1458                         }
1459                 }
1460                 r1_bio->bios[i] = bio;
1461         }
1462         rcu_read_unlock();
1463
1464         if (unlikely(blocked_rdev)) {
1465                 /* Wait for this device to become unblocked */
1466                 int j;
1467
1468                 for (j = 0; j < i; j++)
1469                         if (r1_bio->bios[j])
1470                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1471                 r1_bio->state = 0;
1472                 allow_barrier(conf, bio->bi_iter.bi_sector);
1473
1474                 if (bio->bi_opf & REQ_NOWAIT) {
1475                         bio_wouldblock_error(bio);
1476                         return;
1477                 }
1478                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1479                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480                 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1481                 goto retry_write;
1482         }
1483
1484         /*
1485          * When using a bitmap, we may call alloc_behind_master_bio below.
1486          * alloc_behind_master_bio allocates a copy of the data payload a page
1487          * at a time and thus needs a new bio that can fit the whole payload
1488          * this bio in page sized chunks.
1489          */
1490         if (write_behind && bitmap)
1491                 max_sectors = min_t(int, max_sectors,
1492                                     BIO_MAX_VECS * (PAGE_SIZE >> 9));
1493         if (max_sectors < bio_sectors(bio)) {
1494                 struct bio *split = bio_split(bio, max_sectors,
1495                                               GFP_NOIO, &conf->bio_split);
1496                 bio_chain(split, bio);
1497                 submit_bio_noacct(bio);
1498                 bio = split;
1499                 r1_bio->master_bio = bio;
1500                 r1_bio->sectors = max_sectors;
1501         }
1502
1503         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1504                 r1_bio->start_time = bio_start_io_acct(bio);
1505         atomic_set(&r1_bio->remaining, 1);
1506         atomic_set(&r1_bio->behind_remaining, 0);
1507
1508         first_clone = 1;
1509
1510         for (i = 0; i < disks; i++) {
1511                 struct bio *mbio = NULL;
1512                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1513                 if (!r1_bio->bios[i])
1514                         continue;
1515
1516                 if (first_clone) {
1517                         /* do behind I/O ?
1518                          * Not if there are too many, or cannot
1519                          * allocate memory, or a reader on WriteMostly
1520                          * is waiting for behind writes to flush */
1521                         if (bitmap &&
1522                             test_bit(WriteMostly, &rdev->flags) &&
1523                             (atomic_read(&bitmap->behind_writes)
1524                              < mddev->bitmap_info.max_write_behind) &&
1525                             !waitqueue_active(&bitmap->behind_wait)) {
1526                                 alloc_behind_master_bio(r1_bio, bio);
1527                         }
1528
1529                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1530                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1531                         first_clone = 0;
1532                 }
1533
1534                 if (r1_bio->behind_master_bio) {
1535                         mbio = bio_alloc_clone(rdev->bdev,
1536                                                r1_bio->behind_master_bio,
1537                                                GFP_NOIO, &mddev->bio_set);
1538                         if (test_bit(CollisionCheck, &rdev->flags))
1539                                 wait_for_serialization(rdev, r1_bio);
1540                         if (test_bit(WriteMostly, &rdev->flags))
1541                                 atomic_inc(&r1_bio->behind_remaining);
1542                 } else {
1543                         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1544                                                &mddev->bio_set);
1545
1546                         if (mddev->serialize_policy)
1547                                 wait_for_serialization(rdev, r1_bio);
1548                 }
1549
1550                 r1_bio->bios[i] = mbio;
1551
1552                 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1553                 mbio->bi_end_io = raid1_end_write_request;
1554                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1555                 if (test_bit(FailFast, &rdev->flags) &&
1556                     !test_bit(WriteMostly, &rdev->flags) &&
1557                     conf->raid_disks - mddev->degraded > 1)
1558                         mbio->bi_opf |= MD_FAILFAST;
1559                 mbio->bi_private = r1_bio;
1560
1561                 atomic_inc(&r1_bio->remaining);
1562
1563                 if (mddev->gendisk)
1564                         trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1565                                               r1_bio->sector);
1566                 /* flush_pending_writes() needs access to the rdev so...*/
1567                 mbio->bi_bdev = (void *)rdev;
1568                 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1569                         spin_lock_irqsave(&conf->device_lock, flags);
1570                         bio_list_add(&conf->pending_bio_list, mbio);
1571                         spin_unlock_irqrestore(&conf->device_lock, flags);
1572                         md_wakeup_thread(mddev->thread);
1573                 }
1574         }
1575
1576         r1_bio_write_done(r1_bio);
1577
1578         /* In case raid1d snuck in to freeze_array */
1579         wake_up(&conf->wait_barrier);
1580 }
1581
1582 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1583 {
1584         sector_t sectors;
1585
1586         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1587             && md_flush_request(mddev, bio))
1588                 return true;
1589
1590         /*
1591          * There is a limit to the maximum size, but
1592          * the read/write handler might find a lower limit
1593          * due to bad blocks.  To avoid multiple splits,
1594          * we pass the maximum number of sectors down
1595          * and let the lower level perform the split.
1596          */
1597         sectors = align_to_barrier_unit_end(
1598                 bio->bi_iter.bi_sector, bio_sectors(bio));
1599
1600         if (bio_data_dir(bio) == READ)
1601                 raid1_read_request(mddev, bio, sectors, NULL);
1602         else {
1603                 if (!md_write_start(mddev,bio))
1604                         return false;
1605                 raid1_write_request(mddev, bio, sectors);
1606         }
1607         return true;
1608 }
1609
1610 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1611 {
1612         struct r1conf *conf = mddev->private;
1613         int i;
1614
1615         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616                    conf->raid_disks - mddev->degraded);
1617         rcu_read_lock();
1618         for (i = 0; i < conf->raid_disks; i++) {
1619                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1620                 seq_printf(seq, "%s",
1621                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622         }
1623         rcu_read_unlock();
1624         seq_printf(seq, "]");
1625 }
1626
1627 /**
1628  * raid1_error() - RAID1 error handler.
1629  * @mddev: affected md device.
1630  * @rdev: member device to fail.
1631  *
1632  * The routine acknowledges &rdev failure and determines new @mddev state.
1633  * If it failed, then:
1634  *      - &MD_BROKEN flag is set in &mddev->flags.
1635  *      - recovery is disabled.
1636  * Otherwise, it must be degraded:
1637  *      - recovery is interrupted.
1638  *      - &mddev->degraded is bumped.
1639  *
1640  * @rdev is marked as &Faulty excluding case when array is failed and
1641  * &mddev->fail_last_dev is off.
1642  */
1643 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1644 {
1645         struct r1conf *conf = mddev->private;
1646         unsigned long flags;
1647
1648         spin_lock_irqsave(&conf->device_lock, flags);
1649
1650         if (test_bit(In_sync, &rdev->flags) &&
1651             (conf->raid_disks - mddev->degraded) == 1) {
1652                 set_bit(MD_BROKEN, &mddev->flags);
1653
1654                 if (!mddev->fail_last_dev) {
1655                         conf->recovery_disabled = mddev->recovery_disabled;
1656                         spin_unlock_irqrestore(&conf->device_lock, flags);
1657                         return;
1658                 }
1659         }
1660         set_bit(Blocked, &rdev->flags);
1661         if (test_and_clear_bit(In_sync, &rdev->flags))
1662                 mddev->degraded++;
1663         set_bit(Faulty, &rdev->flags);
1664         spin_unlock_irqrestore(&conf->device_lock, flags);
1665         /*
1666          * if recovery is running, make sure it aborts.
1667          */
1668         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1669         set_mask_bits(&mddev->sb_flags, 0,
1670                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1671         pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1672                 "md/raid1:%s: Operation continuing on %d devices.\n",
1673                 mdname(mddev), rdev->bdev,
1674                 mdname(mddev), conf->raid_disks - mddev->degraded);
1675 }
1676
1677 static void print_conf(struct r1conf *conf)
1678 {
1679         int i;
1680
1681         pr_debug("RAID1 conf printout:\n");
1682         if (!conf) {
1683                 pr_debug("(!conf)\n");
1684                 return;
1685         }
1686         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1687                  conf->raid_disks);
1688
1689         rcu_read_lock();
1690         for (i = 0; i < conf->raid_disks; i++) {
1691                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1692                 if (rdev)
1693                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1694                                  i, !test_bit(In_sync, &rdev->flags),
1695                                  !test_bit(Faulty, &rdev->flags),
1696                                  rdev->bdev);
1697         }
1698         rcu_read_unlock();
1699 }
1700
1701 static void close_sync(struct r1conf *conf)
1702 {
1703         int idx;
1704
1705         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1706                 _wait_barrier(conf, idx, false);
1707                 _allow_barrier(conf, idx);
1708         }
1709
1710         mempool_exit(&conf->r1buf_pool);
1711 }
1712
1713 static int raid1_spare_active(struct mddev *mddev)
1714 {
1715         int i;
1716         struct r1conf *conf = mddev->private;
1717         int count = 0;
1718         unsigned long flags;
1719
1720         /*
1721          * Find all failed disks within the RAID1 configuration
1722          * and mark them readable.
1723          * Called under mddev lock, so rcu protection not needed.
1724          * device_lock used to avoid races with raid1_end_read_request
1725          * which expects 'In_sync' flags and ->degraded to be consistent.
1726          */
1727         spin_lock_irqsave(&conf->device_lock, flags);
1728         for (i = 0; i < conf->raid_disks; i++) {
1729                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1730                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731                 if (repl
1732                     && !test_bit(Candidate, &repl->flags)
1733                     && repl->recovery_offset == MaxSector
1734                     && !test_bit(Faulty, &repl->flags)
1735                     && !test_and_set_bit(In_sync, &repl->flags)) {
1736                         /* replacement has just become active */
1737                         if (!rdev ||
1738                             !test_and_clear_bit(In_sync, &rdev->flags))
1739                                 count++;
1740                         if (rdev) {
1741                                 /* Replaced device not technically
1742                                  * faulty, but we need to be sure
1743                                  * it gets removed and never re-added
1744                                  */
1745                                 set_bit(Faulty, &rdev->flags);
1746                                 sysfs_notify_dirent_safe(
1747                                         rdev->sysfs_state);
1748                         }
1749                 }
1750                 if (rdev
1751                     && rdev->recovery_offset == MaxSector
1752                     && !test_bit(Faulty, &rdev->flags)
1753                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1754                         count++;
1755                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1756                 }
1757         }
1758         mddev->degraded -= count;
1759         spin_unlock_irqrestore(&conf->device_lock, flags);
1760
1761         print_conf(conf);
1762         return count;
1763 }
1764
1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1766 {
1767         struct r1conf *conf = mddev->private;
1768         int err = -EEXIST;
1769         int mirror = 0;
1770         struct raid1_info *p;
1771         int first = 0;
1772         int last = conf->raid_disks - 1;
1773
1774         if (mddev->recovery_disabled == conf->recovery_disabled)
1775                 return -EBUSY;
1776
1777         if (md_integrity_add_rdev(rdev, mddev))
1778                 return -ENXIO;
1779
1780         if (rdev->raid_disk >= 0)
1781                 first = last = rdev->raid_disk;
1782
1783         /*
1784          * find the disk ... but prefer rdev->saved_raid_disk
1785          * if possible.
1786          */
1787         if (rdev->saved_raid_disk >= 0 &&
1788             rdev->saved_raid_disk >= first &&
1789             rdev->saved_raid_disk < conf->raid_disks &&
1790             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1791                 first = last = rdev->saved_raid_disk;
1792
1793         for (mirror = first; mirror <= last; mirror++) {
1794                 p = conf->mirrors + mirror;
1795                 if (!p->rdev) {
1796                         if (mddev->gendisk)
1797                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1798                                                   rdev->data_offset << 9);
1799
1800                         p->head_position = 0;
1801                         rdev->raid_disk = mirror;
1802                         err = 0;
1803                         /* As all devices are equivalent, we don't need a full recovery
1804                          * if this was recently any drive of the array
1805                          */
1806                         if (rdev->saved_raid_disk < 0)
1807                                 conf->fullsync = 1;
1808                         rcu_assign_pointer(p->rdev, rdev);
1809                         break;
1810                 }
1811                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1812                     p[conf->raid_disks].rdev == NULL) {
1813                         /* Add this device as a replacement */
1814                         clear_bit(In_sync, &rdev->flags);
1815                         set_bit(Replacement, &rdev->flags);
1816                         rdev->raid_disk = mirror;
1817                         err = 0;
1818                         conf->fullsync = 1;
1819                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820                         break;
1821                 }
1822         }
1823         print_conf(conf);
1824         return err;
1825 }
1826
1827 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1828 {
1829         struct r1conf *conf = mddev->private;
1830         int err = 0;
1831         int number = rdev->raid_disk;
1832         struct raid1_info *p = conf->mirrors + number;
1833
1834         if (rdev != p->rdev)
1835                 p = conf->mirrors + conf->raid_disks + number;
1836
1837         print_conf(conf);
1838         if (rdev == p->rdev) {
1839                 if (test_bit(In_sync, &rdev->flags) ||
1840                     atomic_read(&rdev->nr_pending)) {
1841                         err = -EBUSY;
1842                         goto abort;
1843                 }
1844                 /* Only remove non-faulty devices if recovery
1845                  * is not possible.
1846                  */
1847                 if (!test_bit(Faulty, &rdev->flags) &&
1848                     mddev->recovery_disabled != conf->recovery_disabled &&
1849                     mddev->degraded < conf->raid_disks) {
1850                         err = -EBUSY;
1851                         goto abort;
1852                 }
1853                 p->rdev = NULL;
1854                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1855                         synchronize_rcu();
1856                         if (atomic_read(&rdev->nr_pending)) {
1857                                 /* lost the race, try later */
1858                                 err = -EBUSY;
1859                                 p->rdev = rdev;
1860                                 goto abort;
1861                         }
1862                 }
1863                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1864                         /* We just removed a device that is being replaced.
1865                          * Move down the replacement.  We drain all IO before
1866                          * doing this to avoid confusion.
1867                          */
1868                         struct md_rdev *repl =
1869                                 conf->mirrors[conf->raid_disks + number].rdev;
1870                         freeze_array(conf, 0);
1871                         if (atomic_read(&repl->nr_pending)) {
1872                                 /* It means that some queued IO of retry_list
1873                                  * hold repl. Thus, we cannot set replacement
1874                                  * as NULL, avoiding rdev NULL pointer
1875                                  * dereference in sync_request_write and
1876                                  * handle_write_finished.
1877                                  */
1878                                 err = -EBUSY;
1879                                 unfreeze_array(conf);
1880                                 goto abort;
1881                         }
1882                         clear_bit(Replacement, &repl->flags);
1883                         p->rdev = repl;
1884                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1885                         unfreeze_array(conf);
1886                 }
1887
1888                 clear_bit(WantReplacement, &rdev->flags);
1889                 err = md_integrity_register(mddev);
1890         }
1891 abort:
1892
1893         print_conf(conf);
1894         return err;
1895 }
1896
1897 static void end_sync_read(struct bio *bio)
1898 {
1899         struct r1bio *r1_bio = get_resync_r1bio(bio);
1900
1901         update_head_pos(r1_bio->read_disk, r1_bio);
1902
1903         /*
1904          * we have read a block, now it needs to be re-written,
1905          * or re-read if the read failed.
1906          * We don't do much here, just schedule handling by raid1d
1907          */
1908         if (!bio->bi_status)
1909                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1910
1911         if (atomic_dec_and_test(&r1_bio->remaining))
1912                 reschedule_retry(r1_bio);
1913 }
1914
1915 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1916 {
1917         sector_t sync_blocks = 0;
1918         sector_t s = r1_bio->sector;
1919         long sectors_to_go = r1_bio->sectors;
1920
1921         /* make sure these bits don't get cleared. */
1922         do {
1923                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1924                 s += sync_blocks;
1925                 sectors_to_go -= sync_blocks;
1926         } while (sectors_to_go > 0);
1927 }
1928
1929 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1930 {
1931         if (atomic_dec_and_test(&r1_bio->remaining)) {
1932                 struct mddev *mddev = r1_bio->mddev;
1933                 int s = r1_bio->sectors;
1934
1935                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1936                     test_bit(R1BIO_WriteError, &r1_bio->state))
1937                         reschedule_retry(r1_bio);
1938                 else {
1939                         put_buf(r1_bio);
1940                         md_done_sync(mddev, s, uptodate);
1941                 }
1942         }
1943 }
1944
1945 static void end_sync_write(struct bio *bio)
1946 {
1947         int uptodate = !bio->bi_status;
1948         struct r1bio *r1_bio = get_resync_r1bio(bio);
1949         struct mddev *mddev = r1_bio->mddev;
1950         struct r1conf *conf = mddev->private;
1951         sector_t first_bad;
1952         int bad_sectors;
1953         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1954
1955         if (!uptodate) {
1956                 abort_sync_write(mddev, r1_bio);
1957                 set_bit(WriteErrorSeen, &rdev->flags);
1958                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1959                         set_bit(MD_RECOVERY_NEEDED, &
1960                                 mddev->recovery);
1961                 set_bit(R1BIO_WriteError, &r1_bio->state);
1962         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1963                                &first_bad, &bad_sectors) &&
1964                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1965                                 r1_bio->sector,
1966                                 r1_bio->sectors,
1967                                 &first_bad, &bad_sectors)
1968                 )
1969                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1970
1971         put_sync_write_buf(r1_bio, uptodate);
1972 }
1973
1974 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1975                            int sectors, struct page *page, int rw)
1976 {
1977         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1978                 /* success */
1979                 return 1;
1980         if (rw == WRITE) {
1981                 set_bit(WriteErrorSeen, &rdev->flags);
1982                 if (!test_and_set_bit(WantReplacement,
1983                                       &rdev->flags))
1984                         set_bit(MD_RECOVERY_NEEDED, &
1985                                 rdev->mddev->recovery);
1986         }
1987         /* need to record an error - either for the block or the device */
1988         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1989                 md_error(rdev->mddev, rdev);
1990         return 0;
1991 }
1992
1993 static int fix_sync_read_error(struct r1bio *r1_bio)
1994 {
1995         /* Try some synchronous reads of other devices to get
1996          * good data, much like with normal read errors.  Only
1997          * read into the pages we already have so we don't
1998          * need to re-issue the read request.
1999          * We don't need to freeze the array, because being in an
2000          * active sync request, there is no normal IO, and
2001          * no overlapping syncs.
2002          * We don't need to check is_badblock() again as we
2003          * made sure that anything with a bad block in range
2004          * will have bi_end_io clear.
2005          */
2006         struct mddev *mddev = r1_bio->mddev;
2007         struct r1conf *conf = mddev->private;
2008         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2009         struct page **pages = get_resync_pages(bio)->pages;
2010         sector_t sect = r1_bio->sector;
2011         int sectors = r1_bio->sectors;
2012         int idx = 0;
2013         struct md_rdev *rdev;
2014
2015         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2016         if (test_bit(FailFast, &rdev->flags)) {
2017                 /* Don't try recovering from here - just fail it
2018                  * ... unless it is the last working device of course */
2019                 md_error(mddev, rdev);
2020                 if (test_bit(Faulty, &rdev->flags))
2021                         /* Don't try to read from here, but make sure
2022                          * put_buf does it's thing
2023                          */
2024                         bio->bi_end_io = end_sync_write;
2025         }
2026
2027         while(sectors) {
2028                 int s = sectors;
2029                 int d = r1_bio->read_disk;
2030                 int success = 0;
2031                 int start;
2032
2033                 if (s > (PAGE_SIZE>>9))
2034                         s = PAGE_SIZE >> 9;
2035                 do {
2036                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2037                                 /* No rcu protection needed here devices
2038                                  * can only be removed when no resync is
2039                                  * active, and resync is currently active
2040                                  */
2041                                 rdev = conf->mirrors[d].rdev;
2042                                 if (sync_page_io(rdev, sect, s<<9,
2043                                                  pages[idx],
2044                                                  REQ_OP_READ, false)) {
2045                                         success = 1;
2046                                         break;
2047                                 }
2048                         }
2049                         d++;
2050                         if (d == conf->raid_disks * 2)
2051                                 d = 0;
2052                 } while (!success && d != r1_bio->read_disk);
2053
2054                 if (!success) {
2055                         int abort = 0;
2056                         /* Cannot read from anywhere, this block is lost.
2057                          * Record a bad block on each device.  If that doesn't
2058                          * work just disable and interrupt the recovery.
2059                          * Don't fail devices as that won't really help.
2060                          */
2061                         pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2062                                             mdname(mddev), bio->bi_bdev,
2063                                             (unsigned long long)r1_bio->sector);
2064                         for (d = 0; d < conf->raid_disks * 2; d++) {
2065                                 rdev = conf->mirrors[d].rdev;
2066                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2067                                         continue;
2068                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2069                                         abort = 1;
2070                         }
2071                         if (abort) {
2072                                 conf->recovery_disabled =
2073                                         mddev->recovery_disabled;
2074                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2075                                 md_done_sync(mddev, r1_bio->sectors, 0);
2076                                 put_buf(r1_bio);
2077                                 return 0;
2078                         }
2079                         /* Try next page */
2080                         sectors -= s;
2081                         sect += s;
2082                         idx++;
2083                         continue;
2084                 }
2085
2086                 start = d;
2087                 /* write it back and re-read */
2088                 while (d != r1_bio->read_disk) {
2089                         if (d == 0)
2090                                 d = conf->raid_disks * 2;
2091                         d--;
2092                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2093                                 continue;
2094                         rdev = conf->mirrors[d].rdev;
2095                         if (r1_sync_page_io(rdev, sect, s,
2096                                             pages[idx],
2097                                             WRITE) == 0) {
2098                                 r1_bio->bios[d]->bi_end_io = NULL;
2099                                 rdev_dec_pending(rdev, mddev);
2100                         }
2101                 }
2102                 d = start;
2103                 while (d != r1_bio->read_disk) {
2104                         if (d == 0)
2105                                 d = conf->raid_disks * 2;
2106                         d--;
2107                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2108                                 continue;
2109                         rdev = conf->mirrors[d].rdev;
2110                         if (r1_sync_page_io(rdev, sect, s,
2111                                             pages[idx],
2112                                             READ) != 0)
2113                                 atomic_add(s, &rdev->corrected_errors);
2114                 }
2115                 sectors -= s;
2116                 sect += s;
2117                 idx ++;
2118         }
2119         set_bit(R1BIO_Uptodate, &r1_bio->state);
2120         bio->bi_status = 0;
2121         return 1;
2122 }
2123
2124 static void process_checks(struct r1bio *r1_bio)
2125 {
2126         /* We have read all readable devices.  If we haven't
2127          * got the block, then there is no hope left.
2128          * If we have, then we want to do a comparison
2129          * and skip the write if everything is the same.
2130          * If any blocks failed to read, then we need to
2131          * attempt an over-write
2132          */
2133         struct mddev *mddev = r1_bio->mddev;
2134         struct r1conf *conf = mddev->private;
2135         int primary;
2136         int i;
2137         int vcnt;
2138
2139         /* Fix variable parts of all bios */
2140         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2141         for (i = 0; i < conf->raid_disks * 2; i++) {
2142                 blk_status_t status;
2143                 struct bio *b = r1_bio->bios[i];
2144                 struct resync_pages *rp = get_resync_pages(b);
2145                 if (b->bi_end_io != end_sync_read)
2146                         continue;
2147                 /* fixup the bio for reuse, but preserve errno */
2148                 status = b->bi_status;
2149                 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2150                 b->bi_status = status;
2151                 b->bi_iter.bi_sector = r1_bio->sector +
2152                         conf->mirrors[i].rdev->data_offset;
2153                 b->bi_end_io = end_sync_read;
2154                 rp->raid_bio = r1_bio;
2155                 b->bi_private = rp;
2156
2157                 /* initialize bvec table again */
2158                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2159         }
2160         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2161                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2162                     !r1_bio->bios[primary]->bi_status) {
2163                         r1_bio->bios[primary]->bi_end_io = NULL;
2164                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2165                         break;
2166                 }
2167         r1_bio->read_disk = primary;
2168         for (i = 0; i < conf->raid_disks * 2; i++) {
2169                 int j = 0;
2170                 struct bio *pbio = r1_bio->bios[primary];
2171                 struct bio *sbio = r1_bio->bios[i];
2172                 blk_status_t status = sbio->bi_status;
2173                 struct page **ppages = get_resync_pages(pbio)->pages;
2174                 struct page **spages = get_resync_pages(sbio)->pages;
2175                 struct bio_vec *bi;
2176                 int page_len[RESYNC_PAGES] = { 0 };
2177                 struct bvec_iter_all iter_all;
2178
2179                 if (sbio->bi_end_io != end_sync_read)
2180                         continue;
2181                 /* Now we can 'fixup' the error value */
2182                 sbio->bi_status = 0;
2183
2184                 bio_for_each_segment_all(bi, sbio, iter_all)
2185                         page_len[j++] = bi->bv_len;
2186
2187                 if (!status) {
2188                         for (j = vcnt; j-- ; ) {
2189                                 if (memcmp(page_address(ppages[j]),
2190                                            page_address(spages[j]),
2191                                            page_len[j]))
2192                                         break;
2193                         }
2194                 } else
2195                         j = 0;
2196                 if (j >= 0)
2197                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2198                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2199                               && !status)) {
2200                         /* No need to write to this device. */
2201                         sbio->bi_end_io = NULL;
2202                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2203                         continue;
2204                 }
2205
2206                 bio_copy_data(sbio, pbio);
2207         }
2208 }
2209
2210 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2211 {
2212         struct r1conf *conf = mddev->private;
2213         int i;
2214         int disks = conf->raid_disks * 2;
2215         struct bio *wbio;
2216
2217         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2218                 /* ouch - failed to read all of that. */
2219                 if (!fix_sync_read_error(r1_bio))
2220                         return;
2221
2222         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2223                 process_checks(r1_bio);
2224
2225         /*
2226          * schedule writes
2227          */
2228         atomic_set(&r1_bio->remaining, 1);
2229         for (i = 0; i < disks ; i++) {
2230                 wbio = r1_bio->bios[i];
2231                 if (wbio->bi_end_io == NULL ||
2232                     (wbio->bi_end_io == end_sync_read &&
2233                      (i == r1_bio->read_disk ||
2234                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2235                         continue;
2236                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2237                         abort_sync_write(mddev, r1_bio);
2238                         continue;
2239                 }
2240
2241                 wbio->bi_opf = REQ_OP_WRITE;
2242                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2243                         wbio->bi_opf |= MD_FAILFAST;
2244
2245                 wbio->bi_end_io = end_sync_write;
2246                 atomic_inc(&r1_bio->remaining);
2247                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2248
2249                 submit_bio_noacct(wbio);
2250         }
2251
2252         put_sync_write_buf(r1_bio, 1);
2253 }
2254
2255 /*
2256  * This is a kernel thread which:
2257  *
2258  *      1.      Retries failed read operations on working mirrors.
2259  *      2.      Updates the raid superblock when problems encounter.
2260  *      3.      Performs writes following reads for array synchronising.
2261  */
2262
2263 static void fix_read_error(struct r1conf *conf, int read_disk,
2264                            sector_t sect, int sectors)
2265 {
2266         struct mddev *mddev = conf->mddev;
2267         while(sectors) {
2268                 int s = sectors;
2269                 int d = read_disk;
2270                 int success = 0;
2271                 int start;
2272                 struct md_rdev *rdev;
2273
2274                 if (s > (PAGE_SIZE>>9))
2275                         s = PAGE_SIZE >> 9;
2276
2277                 do {
2278                         sector_t first_bad;
2279                         int bad_sectors;
2280
2281                         rcu_read_lock();
2282                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2283                         if (rdev &&
2284                             (test_bit(In_sync, &rdev->flags) ||
2285                              (!test_bit(Faulty, &rdev->flags) &&
2286                               rdev->recovery_offset >= sect + s)) &&
2287                             is_badblock(rdev, sect, s,
2288                                         &first_bad, &bad_sectors) == 0) {
2289                                 atomic_inc(&rdev->nr_pending);
2290                                 rcu_read_unlock();
2291                                 if (sync_page_io(rdev, sect, s<<9,
2292                                          conf->tmppage, REQ_OP_READ, false))
2293                                         success = 1;
2294                                 rdev_dec_pending(rdev, mddev);
2295                                 if (success)
2296                                         break;
2297                         } else
2298                                 rcu_read_unlock();
2299                         d++;
2300                         if (d == conf->raid_disks * 2)
2301                                 d = 0;
2302                 } while (!success && d != read_disk);
2303
2304                 if (!success) {
2305                         /* Cannot read from anywhere - mark it bad */
2306                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2307                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2308                                 md_error(mddev, rdev);
2309                         break;
2310                 }
2311                 /* write it back and re-read */
2312                 start = d;
2313                 while (d != read_disk) {
2314                         if (d==0)
2315                                 d = conf->raid_disks * 2;
2316                         d--;
2317                         rcu_read_lock();
2318                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2319                         if (rdev &&
2320                             !test_bit(Faulty, &rdev->flags)) {
2321                                 atomic_inc(&rdev->nr_pending);
2322                                 rcu_read_unlock();
2323                                 r1_sync_page_io(rdev, sect, s,
2324                                                 conf->tmppage, WRITE);
2325                                 rdev_dec_pending(rdev, mddev);
2326                         } else
2327                                 rcu_read_unlock();
2328                 }
2329                 d = start;
2330                 while (d != read_disk) {
2331                         if (d==0)
2332                                 d = conf->raid_disks * 2;
2333                         d--;
2334                         rcu_read_lock();
2335                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2336                         if (rdev &&
2337                             !test_bit(Faulty, &rdev->flags)) {
2338                                 atomic_inc(&rdev->nr_pending);
2339                                 rcu_read_unlock();
2340                                 if (r1_sync_page_io(rdev, sect, s,
2341                                                     conf->tmppage, READ)) {
2342                                         atomic_add(s, &rdev->corrected_errors);
2343                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2344                                                 mdname(mddev), s,
2345                                                 (unsigned long long)(sect +
2346                                                                      rdev->data_offset),
2347                                                 rdev->bdev);
2348                                 }
2349                                 rdev_dec_pending(rdev, mddev);
2350                         } else
2351                                 rcu_read_unlock();
2352                 }
2353                 sectors -= s;
2354                 sect += s;
2355         }
2356 }
2357
2358 static int narrow_write_error(struct r1bio *r1_bio, int i)
2359 {
2360         struct mddev *mddev = r1_bio->mddev;
2361         struct r1conf *conf = mddev->private;
2362         struct md_rdev *rdev = conf->mirrors[i].rdev;
2363
2364         /* bio has the data to be written to device 'i' where
2365          * we just recently had a write error.
2366          * We repeatedly clone the bio and trim down to one block,
2367          * then try the write.  Where the write fails we record
2368          * a bad block.
2369          * It is conceivable that the bio doesn't exactly align with
2370          * blocks.  We must handle this somehow.
2371          *
2372          * We currently own a reference on the rdev.
2373          */
2374
2375         int block_sectors;
2376         sector_t sector;
2377         int sectors;
2378         int sect_to_write = r1_bio->sectors;
2379         int ok = 1;
2380
2381         if (rdev->badblocks.shift < 0)
2382                 return 0;
2383
2384         block_sectors = roundup(1 << rdev->badblocks.shift,
2385                                 bdev_logical_block_size(rdev->bdev) >> 9);
2386         sector = r1_bio->sector;
2387         sectors = ((sector + block_sectors)
2388                    & ~(sector_t)(block_sectors - 1))
2389                 - sector;
2390
2391         while (sect_to_write) {
2392                 struct bio *wbio;
2393                 if (sectors > sect_to_write)
2394                         sectors = sect_to_write;
2395                 /* Write at 'sector' for 'sectors'*/
2396
2397                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2398                         wbio = bio_alloc_clone(rdev->bdev,
2399                                                r1_bio->behind_master_bio,
2400                                                GFP_NOIO, &mddev->bio_set);
2401                 } else {
2402                         wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2403                                                GFP_NOIO, &mddev->bio_set);
2404                 }
2405
2406                 wbio->bi_opf = REQ_OP_WRITE;
2407                 wbio->bi_iter.bi_sector = r1_bio->sector;
2408                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2409
2410                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2411                 wbio->bi_iter.bi_sector += rdev->data_offset;
2412
2413                 if (submit_bio_wait(wbio) < 0)
2414                         /* failure! */
2415                         ok = rdev_set_badblocks(rdev, sector,
2416                                                 sectors, 0)
2417                                 && ok;
2418
2419                 bio_put(wbio);
2420                 sect_to_write -= sectors;
2421                 sector += sectors;
2422                 sectors = block_sectors;
2423         }
2424         return ok;
2425 }
2426
2427 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2428 {
2429         int m;
2430         int s = r1_bio->sectors;
2431         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2432                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2433                 struct bio *bio = r1_bio->bios[m];
2434                 if (bio->bi_end_io == NULL)
2435                         continue;
2436                 if (!bio->bi_status &&
2437                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2438                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2439                 }
2440                 if (bio->bi_status &&
2441                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2442                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2443                                 md_error(conf->mddev, rdev);
2444                 }
2445         }
2446         put_buf(r1_bio);
2447         md_done_sync(conf->mddev, s, 1);
2448 }
2449
2450 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2451 {
2452         int m, idx;
2453         bool fail = false;
2454
2455         for (m = 0; m < conf->raid_disks * 2 ; m++)
2456                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2457                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2458                         rdev_clear_badblocks(rdev,
2459                                              r1_bio->sector,
2460                                              r1_bio->sectors, 0);
2461                         rdev_dec_pending(rdev, conf->mddev);
2462                 } else if (r1_bio->bios[m] != NULL) {
2463                         /* This drive got a write error.  We need to
2464                          * narrow down and record precise write
2465                          * errors.
2466                          */
2467                         fail = true;
2468                         if (!narrow_write_error(r1_bio, m)) {
2469                                 md_error(conf->mddev,
2470                                          conf->mirrors[m].rdev);
2471                                 /* an I/O failed, we can't clear the bitmap */
2472                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2473                         }
2474                         rdev_dec_pending(conf->mirrors[m].rdev,
2475                                          conf->mddev);
2476                 }
2477         if (fail) {
2478                 spin_lock_irq(&conf->device_lock);
2479                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2480                 idx = sector_to_idx(r1_bio->sector);
2481                 atomic_inc(&conf->nr_queued[idx]);
2482                 spin_unlock_irq(&conf->device_lock);
2483                 /*
2484                  * In case freeze_array() is waiting for condition
2485                  * get_unqueued_pending() == extra to be true.
2486                  */
2487                 wake_up(&conf->wait_barrier);
2488                 md_wakeup_thread(conf->mddev->thread);
2489         } else {
2490                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2491                         close_write(r1_bio);
2492                 raid_end_bio_io(r1_bio);
2493         }
2494 }
2495
2496 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2497 {
2498         struct mddev *mddev = conf->mddev;
2499         struct bio *bio;
2500         struct md_rdev *rdev;
2501
2502         clear_bit(R1BIO_ReadError, &r1_bio->state);
2503         /* we got a read error. Maybe the drive is bad.  Maybe just
2504          * the block and we can fix it.
2505          * We freeze all other IO, and try reading the block from
2506          * other devices.  When we find one, we re-write
2507          * and check it that fixes the read error.
2508          * This is all done synchronously while the array is
2509          * frozen
2510          */
2511
2512         bio = r1_bio->bios[r1_bio->read_disk];
2513         bio_put(bio);
2514         r1_bio->bios[r1_bio->read_disk] = NULL;
2515
2516         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2517         if (mddev->ro == 0
2518             && !test_bit(FailFast, &rdev->flags)) {
2519                 freeze_array(conf, 1);
2520                 fix_read_error(conf, r1_bio->read_disk,
2521                                r1_bio->sector, r1_bio->sectors);
2522                 unfreeze_array(conf);
2523         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2524                 md_error(mddev, rdev);
2525         } else {
2526                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2527         }
2528
2529         rdev_dec_pending(rdev, conf->mddev);
2530         allow_barrier(conf, r1_bio->sector);
2531         bio = r1_bio->master_bio;
2532
2533         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2534         r1_bio->state = 0;
2535         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2536 }
2537
2538 static void raid1d(struct md_thread *thread)
2539 {
2540         struct mddev *mddev = thread->mddev;
2541         struct r1bio *r1_bio;
2542         unsigned long flags;
2543         struct r1conf *conf = mddev->private;
2544         struct list_head *head = &conf->retry_list;
2545         struct blk_plug plug;
2546         int idx;
2547
2548         md_check_recovery(mddev);
2549
2550         if (!list_empty_careful(&conf->bio_end_io_list) &&
2551             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2552                 LIST_HEAD(tmp);
2553                 spin_lock_irqsave(&conf->device_lock, flags);
2554                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2555                         list_splice_init(&conf->bio_end_io_list, &tmp);
2556                 spin_unlock_irqrestore(&conf->device_lock, flags);
2557                 while (!list_empty(&tmp)) {
2558                         r1_bio = list_first_entry(&tmp, struct r1bio,
2559                                                   retry_list);
2560                         list_del(&r1_bio->retry_list);
2561                         idx = sector_to_idx(r1_bio->sector);
2562                         atomic_dec(&conf->nr_queued[idx]);
2563                         if (mddev->degraded)
2564                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2565                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2566                                 close_write(r1_bio);
2567                         raid_end_bio_io(r1_bio);
2568                 }
2569         }
2570
2571         blk_start_plug(&plug);
2572         for (;;) {
2573
2574                 flush_pending_writes(conf);
2575
2576                 spin_lock_irqsave(&conf->device_lock, flags);
2577                 if (list_empty(head)) {
2578                         spin_unlock_irqrestore(&conf->device_lock, flags);
2579                         break;
2580                 }
2581                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2582                 list_del(head->prev);
2583                 idx = sector_to_idx(r1_bio->sector);
2584                 atomic_dec(&conf->nr_queued[idx]);
2585                 spin_unlock_irqrestore(&conf->device_lock, flags);
2586
2587                 mddev = r1_bio->mddev;
2588                 conf = mddev->private;
2589                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2590                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2591                             test_bit(R1BIO_WriteError, &r1_bio->state))
2592                                 handle_sync_write_finished(conf, r1_bio);
2593                         else
2594                                 sync_request_write(mddev, r1_bio);
2595                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2596                            test_bit(R1BIO_WriteError, &r1_bio->state))
2597                         handle_write_finished(conf, r1_bio);
2598                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2599                         handle_read_error(conf, r1_bio);
2600                 else
2601                         WARN_ON_ONCE(1);
2602
2603                 cond_resched();
2604                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2605                         md_check_recovery(mddev);
2606         }
2607         blk_finish_plug(&plug);
2608 }
2609
2610 static int init_resync(struct r1conf *conf)
2611 {
2612         int buffs;
2613
2614         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2615         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2616
2617         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2618                             r1buf_pool_free, conf->poolinfo);
2619 }
2620
2621 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2622 {
2623         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2624         struct resync_pages *rps;
2625         struct bio *bio;
2626         int i;
2627
2628         for (i = conf->poolinfo->raid_disks; i--; ) {
2629                 bio = r1bio->bios[i];
2630                 rps = bio->bi_private;
2631                 bio_reset(bio, NULL, 0);
2632                 bio->bi_private = rps;
2633         }
2634         r1bio->master_bio = NULL;
2635         return r1bio;
2636 }
2637
2638 /*
2639  * perform a "sync" on one "block"
2640  *
2641  * We need to make sure that no normal I/O request - particularly write
2642  * requests - conflict with active sync requests.
2643  *
2644  * This is achieved by tracking pending requests and a 'barrier' concept
2645  * that can be installed to exclude normal IO requests.
2646  */
2647
2648 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2649                                    int *skipped)
2650 {
2651         struct r1conf *conf = mddev->private;
2652         struct r1bio *r1_bio;
2653         struct bio *bio;
2654         sector_t max_sector, nr_sectors;
2655         int disk = -1;
2656         int i;
2657         int wonly = -1;
2658         int write_targets = 0, read_targets = 0;
2659         sector_t sync_blocks;
2660         int still_degraded = 0;
2661         int good_sectors = RESYNC_SECTORS;
2662         int min_bad = 0; /* number of sectors that are bad in all devices */
2663         int idx = sector_to_idx(sector_nr);
2664         int page_idx = 0;
2665
2666         if (!mempool_initialized(&conf->r1buf_pool))
2667                 if (init_resync(conf))
2668                         return 0;
2669
2670         max_sector = mddev->dev_sectors;
2671         if (sector_nr >= max_sector) {
2672                 /* If we aborted, we need to abort the
2673                  * sync on the 'current' bitmap chunk (there will
2674                  * only be one in raid1 resync.
2675                  * We can find the current addess in mddev->curr_resync
2676                  */
2677                 if (mddev->curr_resync < max_sector) /* aborted */
2678                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2679                                            &sync_blocks, 1);
2680                 else /* completed sync */
2681                         conf->fullsync = 0;
2682
2683                 md_bitmap_close_sync(mddev->bitmap);
2684                 close_sync(conf);
2685
2686                 if (mddev_is_clustered(mddev)) {
2687                         conf->cluster_sync_low = 0;
2688                         conf->cluster_sync_high = 0;
2689                 }
2690                 return 0;
2691         }
2692
2693         if (mddev->bitmap == NULL &&
2694             mddev->recovery_cp == MaxSector &&
2695             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2696             conf->fullsync == 0) {
2697                 *skipped = 1;
2698                 return max_sector - sector_nr;
2699         }
2700         /* before building a request, check if we can skip these blocks..
2701          * This call the bitmap_start_sync doesn't actually record anything
2702          */
2703         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2704             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2705                 /* We can skip this block, and probably several more */
2706                 *skipped = 1;
2707                 return sync_blocks;
2708         }
2709
2710         /*
2711          * If there is non-resync activity waiting for a turn, then let it
2712          * though before starting on this new sync request.
2713          */
2714         if (atomic_read(&conf->nr_waiting[idx]))
2715                 schedule_timeout_uninterruptible(1);
2716
2717         /* we are incrementing sector_nr below. To be safe, we check against
2718          * sector_nr + two times RESYNC_SECTORS
2719          */
2720
2721         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2722                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2723
2724
2725         if (raise_barrier(conf, sector_nr))
2726                 return 0;
2727
2728         r1_bio = raid1_alloc_init_r1buf(conf);
2729
2730         rcu_read_lock();
2731         /*
2732          * If we get a correctably read error during resync or recovery,
2733          * we might want to read from a different device.  So we
2734          * flag all drives that could conceivably be read from for READ,
2735          * and any others (which will be non-In_sync devices) for WRITE.
2736          * If a read fails, we try reading from something else for which READ
2737          * is OK.
2738          */
2739
2740         r1_bio->mddev = mddev;
2741         r1_bio->sector = sector_nr;
2742         r1_bio->state = 0;
2743         set_bit(R1BIO_IsSync, &r1_bio->state);
2744         /* make sure good_sectors won't go across barrier unit boundary */
2745         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2746
2747         for (i = 0; i < conf->raid_disks * 2; i++) {
2748                 struct md_rdev *rdev;
2749                 bio = r1_bio->bios[i];
2750
2751                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2752                 if (rdev == NULL ||
2753                     test_bit(Faulty, &rdev->flags)) {
2754                         if (i < conf->raid_disks)
2755                                 still_degraded = 1;
2756                 } else if (!test_bit(In_sync, &rdev->flags)) {
2757                         bio->bi_opf = REQ_OP_WRITE;
2758                         bio->bi_end_io = end_sync_write;
2759                         write_targets ++;
2760                 } else {
2761                         /* may need to read from here */
2762                         sector_t first_bad = MaxSector;
2763                         int bad_sectors;
2764
2765                         if (is_badblock(rdev, sector_nr, good_sectors,
2766                                         &first_bad, &bad_sectors)) {
2767                                 if (first_bad > sector_nr)
2768                                         good_sectors = first_bad - sector_nr;
2769                                 else {
2770                                         bad_sectors -= (sector_nr - first_bad);
2771                                         if (min_bad == 0 ||
2772                                             min_bad > bad_sectors)
2773                                                 min_bad = bad_sectors;
2774                                 }
2775                         }
2776                         if (sector_nr < first_bad) {
2777                                 if (test_bit(WriteMostly, &rdev->flags)) {
2778                                         if (wonly < 0)
2779                                                 wonly = i;
2780                                 } else {
2781                                         if (disk < 0)
2782                                                 disk = i;
2783                                 }
2784                                 bio->bi_opf = REQ_OP_READ;
2785                                 bio->bi_end_io = end_sync_read;
2786                                 read_targets++;
2787                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2788                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2789                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2790                                 /*
2791                                  * The device is suitable for reading (InSync),
2792                                  * but has bad block(s) here. Let's try to correct them,
2793                                  * if we are doing resync or repair. Otherwise, leave
2794                                  * this device alone for this sync request.
2795                                  */
2796                                 bio->bi_opf = REQ_OP_WRITE;
2797                                 bio->bi_end_io = end_sync_write;
2798                                 write_targets++;
2799                         }
2800                 }
2801                 if (rdev && bio->bi_end_io) {
2802                         atomic_inc(&rdev->nr_pending);
2803                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2804                         bio_set_dev(bio, rdev->bdev);
2805                         if (test_bit(FailFast, &rdev->flags))
2806                                 bio->bi_opf |= MD_FAILFAST;
2807                 }
2808         }
2809         rcu_read_unlock();
2810         if (disk < 0)
2811                 disk = wonly;
2812         r1_bio->read_disk = disk;
2813
2814         if (read_targets == 0 && min_bad > 0) {
2815                 /* These sectors are bad on all InSync devices, so we
2816                  * need to mark them bad on all write targets
2817                  */
2818                 int ok = 1;
2819                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2820                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2821                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2822                                 ok = rdev_set_badblocks(rdev, sector_nr,
2823                                                         min_bad, 0
2824                                         ) && ok;
2825                         }
2826                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2827                 *skipped = 1;
2828                 put_buf(r1_bio);
2829
2830                 if (!ok) {
2831                         /* Cannot record the badblocks, so need to
2832                          * abort the resync.
2833                          * If there are multiple read targets, could just
2834                          * fail the really bad ones ???
2835                          */
2836                         conf->recovery_disabled = mddev->recovery_disabled;
2837                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2838                         return 0;
2839                 } else
2840                         return min_bad;
2841
2842         }
2843         if (min_bad > 0 && min_bad < good_sectors) {
2844                 /* only resync enough to reach the next bad->good
2845                  * transition */
2846                 good_sectors = min_bad;
2847         }
2848
2849         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2850                 /* extra read targets are also write targets */
2851                 write_targets += read_targets-1;
2852
2853         if (write_targets == 0 || read_targets == 0) {
2854                 /* There is nowhere to write, so all non-sync
2855                  * drives must be failed - so we are finished
2856                  */
2857                 sector_t rv;
2858                 if (min_bad > 0)
2859                         max_sector = sector_nr + min_bad;
2860                 rv = max_sector - sector_nr;
2861                 *skipped = 1;
2862                 put_buf(r1_bio);
2863                 return rv;
2864         }
2865
2866         if (max_sector > mddev->resync_max)
2867                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2868         if (max_sector > sector_nr + good_sectors)
2869                 max_sector = sector_nr + good_sectors;
2870         nr_sectors = 0;
2871         sync_blocks = 0;
2872         do {
2873                 struct page *page;
2874                 int len = PAGE_SIZE;
2875                 if (sector_nr + (len>>9) > max_sector)
2876                         len = (max_sector - sector_nr) << 9;
2877                 if (len == 0)
2878                         break;
2879                 if (sync_blocks == 0) {
2880                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2881                                                   &sync_blocks, still_degraded) &&
2882                             !conf->fullsync &&
2883                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2884                                 break;
2885                         if ((len >> 9) > sync_blocks)
2886                                 len = sync_blocks<<9;
2887                 }
2888
2889                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2890                         struct resync_pages *rp;
2891
2892                         bio = r1_bio->bios[i];
2893                         rp = get_resync_pages(bio);
2894                         if (bio->bi_end_io) {
2895                                 page = resync_fetch_page(rp, page_idx);
2896
2897                                 /*
2898                                  * won't fail because the vec table is big
2899                                  * enough to hold all these pages
2900                                  */
2901                                 __bio_add_page(bio, page, len, 0);
2902                         }
2903                 }
2904                 nr_sectors += len>>9;
2905                 sector_nr += len>>9;
2906                 sync_blocks -= (len>>9);
2907         } while (++page_idx < RESYNC_PAGES);
2908
2909         r1_bio->sectors = nr_sectors;
2910
2911         if (mddev_is_clustered(mddev) &&
2912                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2913                 conf->cluster_sync_low = mddev->curr_resync_completed;
2914                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2915                 /* Send resync message */
2916                 md_cluster_ops->resync_info_update(mddev,
2917                                 conf->cluster_sync_low,
2918                                 conf->cluster_sync_high);
2919         }
2920
2921         /* For a user-requested sync, we read all readable devices and do a
2922          * compare
2923          */
2924         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2925                 atomic_set(&r1_bio->remaining, read_targets);
2926                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2927                         bio = r1_bio->bios[i];
2928                         if (bio->bi_end_io == end_sync_read) {
2929                                 read_targets--;
2930                                 md_sync_acct_bio(bio, nr_sectors);
2931                                 if (read_targets == 1)
2932                                         bio->bi_opf &= ~MD_FAILFAST;
2933                                 submit_bio_noacct(bio);
2934                         }
2935                 }
2936         } else {
2937                 atomic_set(&r1_bio->remaining, 1);
2938                 bio = r1_bio->bios[r1_bio->read_disk];
2939                 md_sync_acct_bio(bio, nr_sectors);
2940                 if (read_targets == 1)
2941                         bio->bi_opf &= ~MD_FAILFAST;
2942                 submit_bio_noacct(bio);
2943         }
2944         return nr_sectors;
2945 }
2946
2947 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2948 {
2949         if (sectors)
2950                 return sectors;
2951
2952         return mddev->dev_sectors;
2953 }
2954
2955 static struct r1conf *setup_conf(struct mddev *mddev)
2956 {
2957         struct r1conf *conf;
2958         int i;
2959         struct raid1_info *disk;
2960         struct md_rdev *rdev;
2961         int err = -ENOMEM;
2962
2963         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2964         if (!conf)
2965                 goto abort;
2966
2967         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2968                                    sizeof(atomic_t), GFP_KERNEL);
2969         if (!conf->nr_pending)
2970                 goto abort;
2971
2972         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2973                                    sizeof(atomic_t), GFP_KERNEL);
2974         if (!conf->nr_waiting)
2975                 goto abort;
2976
2977         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2978                                   sizeof(atomic_t), GFP_KERNEL);
2979         if (!conf->nr_queued)
2980                 goto abort;
2981
2982         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2983                                 sizeof(atomic_t), GFP_KERNEL);
2984         if (!conf->barrier)
2985                 goto abort;
2986
2987         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2988                                             mddev->raid_disks, 2),
2989                                 GFP_KERNEL);
2990         if (!conf->mirrors)
2991                 goto abort;
2992
2993         conf->tmppage = alloc_page(GFP_KERNEL);
2994         if (!conf->tmppage)
2995                 goto abort;
2996
2997         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2998         if (!conf->poolinfo)
2999                 goto abort;
3000         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3001         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3002                            rbio_pool_free, conf->poolinfo);
3003         if (err)
3004                 goto abort;
3005
3006         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3007         if (err)
3008                 goto abort;
3009
3010         conf->poolinfo->mddev = mddev;
3011
3012         err = -EINVAL;
3013         spin_lock_init(&conf->device_lock);
3014         rdev_for_each(rdev, mddev) {
3015                 int disk_idx = rdev->raid_disk;
3016                 if (disk_idx >= mddev->raid_disks
3017                     || disk_idx < 0)
3018                         continue;
3019                 if (test_bit(Replacement, &rdev->flags))
3020                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3021                 else
3022                         disk = conf->mirrors + disk_idx;
3023
3024                 if (disk->rdev)
3025                         goto abort;
3026                 disk->rdev = rdev;
3027                 disk->head_position = 0;
3028                 disk->seq_start = MaxSector;
3029         }
3030         conf->raid_disks = mddev->raid_disks;
3031         conf->mddev = mddev;
3032         INIT_LIST_HEAD(&conf->retry_list);
3033         INIT_LIST_HEAD(&conf->bio_end_io_list);
3034
3035         spin_lock_init(&conf->resync_lock);
3036         init_waitqueue_head(&conf->wait_barrier);
3037
3038         bio_list_init(&conf->pending_bio_list);
3039         conf->recovery_disabled = mddev->recovery_disabled - 1;
3040
3041         err = -EIO;
3042         for (i = 0; i < conf->raid_disks * 2; i++) {
3043
3044                 disk = conf->mirrors + i;
3045
3046                 if (i < conf->raid_disks &&
3047                     disk[conf->raid_disks].rdev) {
3048                         /* This slot has a replacement. */
3049                         if (!disk->rdev) {
3050                                 /* No original, just make the replacement
3051                                  * a recovering spare
3052                                  */
3053                                 disk->rdev =
3054                                         disk[conf->raid_disks].rdev;
3055                                 disk[conf->raid_disks].rdev = NULL;
3056                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3057                                 /* Original is not in_sync - bad */
3058                                 goto abort;
3059                 }
3060
3061                 if (!disk->rdev ||
3062                     !test_bit(In_sync, &disk->rdev->flags)) {
3063                         disk->head_position = 0;
3064                         if (disk->rdev &&
3065                             (disk->rdev->saved_raid_disk < 0))
3066                                 conf->fullsync = 1;
3067                 }
3068         }
3069
3070         err = -ENOMEM;
3071         rcu_assign_pointer(conf->thread,
3072                            md_register_thread(raid1d, mddev, "raid1"));
3073         if (!conf->thread)
3074                 goto abort;
3075
3076         return conf;
3077
3078  abort:
3079         if (conf) {
3080                 mempool_exit(&conf->r1bio_pool);
3081                 kfree(conf->mirrors);
3082                 safe_put_page(conf->tmppage);
3083                 kfree(conf->poolinfo);
3084                 kfree(conf->nr_pending);
3085                 kfree(conf->nr_waiting);
3086                 kfree(conf->nr_queued);
3087                 kfree(conf->barrier);
3088                 bioset_exit(&conf->bio_split);
3089                 kfree(conf);
3090         }
3091         return ERR_PTR(err);
3092 }
3093
3094 static void raid1_free(struct mddev *mddev, void *priv);
3095 static int raid1_run(struct mddev *mddev)
3096 {
3097         struct r1conf *conf;
3098         int i;
3099         struct md_rdev *rdev;
3100         int ret;
3101
3102         if (mddev->level != 1) {
3103                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3104                         mdname(mddev), mddev->level);
3105                 return -EIO;
3106         }
3107         if (mddev->reshape_position != MaxSector) {
3108                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3109                         mdname(mddev));
3110                 return -EIO;
3111         }
3112         if (mddev_init_writes_pending(mddev) < 0)
3113                 return -ENOMEM;
3114         /*
3115          * copy the already verified devices into our private RAID1
3116          * bookkeeping area. [whatever we allocate in run(),
3117          * should be freed in raid1_free()]
3118          */
3119         if (mddev->private == NULL)
3120                 conf = setup_conf(mddev);
3121         else
3122                 conf = mddev->private;
3123
3124         if (IS_ERR(conf))
3125                 return PTR_ERR(conf);
3126
3127         if (mddev->queue)
3128                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3129
3130         rdev_for_each(rdev, mddev) {
3131                 if (!mddev->gendisk)
3132                         continue;
3133                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3134                                   rdev->data_offset << 9);
3135         }
3136
3137         mddev->degraded = 0;
3138         for (i = 0; i < conf->raid_disks; i++)
3139                 if (conf->mirrors[i].rdev == NULL ||
3140                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3141                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3142                         mddev->degraded++;
3143         /*
3144          * RAID1 needs at least one disk in active
3145          */
3146         if (conf->raid_disks - mddev->degraded < 1) {
3147                 md_unregister_thread(&conf->thread);
3148                 ret = -EINVAL;
3149                 goto abort;
3150         }
3151
3152         if (conf->raid_disks - mddev->degraded == 1)
3153                 mddev->recovery_cp = MaxSector;
3154
3155         if (mddev->recovery_cp != MaxSector)
3156                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3157                         mdname(mddev));
3158         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3159                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3160                 mddev->raid_disks);
3161
3162         /*
3163          * Ok, everything is just fine now
3164          */
3165         rcu_assign_pointer(mddev->thread, conf->thread);
3166         rcu_assign_pointer(conf->thread, NULL);
3167         mddev->private = conf;
3168         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3169
3170         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3171
3172         ret = md_integrity_register(mddev);
3173         if (ret) {
3174                 md_unregister_thread(&mddev->thread);
3175                 goto abort;
3176         }
3177         return 0;
3178
3179 abort:
3180         raid1_free(mddev, conf);
3181         return ret;
3182 }
3183
3184 static void raid1_free(struct mddev *mddev, void *priv)
3185 {
3186         struct r1conf *conf = priv;
3187
3188         mempool_exit(&conf->r1bio_pool);
3189         kfree(conf->mirrors);
3190         safe_put_page(conf->tmppage);
3191         kfree(conf->poolinfo);
3192         kfree(conf->nr_pending);
3193         kfree(conf->nr_waiting);
3194         kfree(conf->nr_queued);
3195         kfree(conf->barrier);
3196         bioset_exit(&conf->bio_split);
3197         kfree(conf);
3198 }
3199
3200 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3201 {
3202         /* no resync is happening, and there is enough space
3203          * on all devices, so we can resize.
3204          * We need to make sure resync covers any new space.
3205          * If the array is shrinking we should possibly wait until
3206          * any io in the removed space completes, but it hardly seems
3207          * worth it.
3208          */
3209         sector_t newsize = raid1_size(mddev, sectors, 0);
3210         if (mddev->external_size &&
3211             mddev->array_sectors > newsize)
3212                 return -EINVAL;
3213         if (mddev->bitmap) {
3214                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3215                 if (ret)
3216                         return ret;
3217         }
3218         md_set_array_sectors(mddev, newsize);
3219         if (sectors > mddev->dev_sectors &&
3220             mddev->recovery_cp > mddev->dev_sectors) {
3221                 mddev->recovery_cp = mddev->dev_sectors;
3222                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3223         }
3224         mddev->dev_sectors = sectors;
3225         mddev->resync_max_sectors = sectors;
3226         return 0;
3227 }
3228
3229 static int raid1_reshape(struct mddev *mddev)
3230 {
3231         /* We need to:
3232          * 1/ resize the r1bio_pool
3233          * 2/ resize conf->mirrors
3234          *
3235          * We allocate a new r1bio_pool if we can.
3236          * Then raise a device barrier and wait until all IO stops.
3237          * Then resize conf->mirrors and swap in the new r1bio pool.
3238          *
3239          * At the same time, we "pack" the devices so that all the missing
3240          * devices have the higher raid_disk numbers.
3241          */
3242         mempool_t newpool, oldpool;
3243         struct pool_info *newpoolinfo;
3244         struct raid1_info *newmirrors;
3245         struct r1conf *conf = mddev->private;
3246         int cnt, raid_disks;
3247         unsigned long flags;
3248         int d, d2;
3249         int ret;
3250
3251         memset(&newpool, 0, sizeof(newpool));
3252         memset(&oldpool, 0, sizeof(oldpool));
3253
3254         /* Cannot change chunk_size, layout, or level */
3255         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3256             mddev->layout != mddev->new_layout ||
3257             mddev->level != mddev->new_level) {
3258                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3259                 mddev->new_layout = mddev->layout;
3260                 mddev->new_level = mddev->level;
3261                 return -EINVAL;
3262         }
3263
3264         if (!mddev_is_clustered(mddev))
3265                 md_allow_write(mddev);
3266
3267         raid_disks = mddev->raid_disks + mddev->delta_disks;
3268
3269         if (raid_disks < conf->raid_disks) {
3270                 cnt=0;
3271                 for (d= 0; d < conf->raid_disks; d++)
3272                         if (conf->mirrors[d].rdev)
3273                                 cnt++;
3274                 if (cnt > raid_disks)
3275                         return -EBUSY;
3276         }
3277
3278         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3279         if (!newpoolinfo)
3280                 return -ENOMEM;
3281         newpoolinfo->mddev = mddev;
3282         newpoolinfo->raid_disks = raid_disks * 2;
3283
3284         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3285                            rbio_pool_free, newpoolinfo);
3286         if (ret) {
3287                 kfree(newpoolinfo);
3288                 return ret;
3289         }
3290         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3291                                          raid_disks, 2),
3292                              GFP_KERNEL);
3293         if (!newmirrors) {
3294                 kfree(newpoolinfo);
3295                 mempool_exit(&newpool);
3296                 return -ENOMEM;
3297         }
3298
3299         freeze_array(conf, 0);
3300
3301         /* ok, everything is stopped */
3302         oldpool = conf->r1bio_pool;
3303         conf->r1bio_pool = newpool;
3304
3305         for (d = d2 = 0; d < conf->raid_disks; d++) {
3306                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3307                 if (rdev && rdev->raid_disk != d2) {
3308                         sysfs_unlink_rdev(mddev, rdev);
3309                         rdev->raid_disk = d2;
3310                         sysfs_unlink_rdev(mddev, rdev);
3311                         if (sysfs_link_rdev(mddev, rdev))
3312                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3313                                         mdname(mddev), rdev->raid_disk);
3314                 }
3315                 if (rdev)
3316                         newmirrors[d2++].rdev = rdev;
3317         }
3318         kfree(conf->mirrors);
3319         conf->mirrors = newmirrors;
3320         kfree(conf->poolinfo);
3321         conf->poolinfo = newpoolinfo;
3322
3323         spin_lock_irqsave(&conf->device_lock, flags);
3324         mddev->degraded += (raid_disks - conf->raid_disks);
3325         spin_unlock_irqrestore(&conf->device_lock, flags);
3326         conf->raid_disks = mddev->raid_disks = raid_disks;
3327         mddev->delta_disks = 0;
3328
3329         unfreeze_array(conf);
3330
3331         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3332         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3333         md_wakeup_thread(mddev->thread);
3334
3335         mempool_exit(&oldpool);
3336         return 0;
3337 }
3338
3339 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3340 {
3341         struct r1conf *conf = mddev->private;
3342
3343         if (quiesce)
3344                 freeze_array(conf, 0);
3345         else
3346                 unfreeze_array(conf);
3347 }
3348
3349 static void *raid1_takeover(struct mddev *mddev)
3350 {
3351         /* raid1 can take over:
3352          *  raid5 with 2 devices, any layout or chunk size
3353          */
3354         if (mddev->level == 5 && mddev->raid_disks == 2) {
3355                 struct r1conf *conf;
3356                 mddev->new_level = 1;
3357                 mddev->new_layout = 0;
3358                 mddev->new_chunk_sectors = 0;
3359                 conf = setup_conf(mddev);
3360                 if (!IS_ERR(conf)) {
3361                         /* Array must appear to be quiesced */
3362                         conf->array_frozen = 1;
3363                         mddev_clear_unsupported_flags(mddev,
3364                                 UNSUPPORTED_MDDEV_FLAGS);
3365                 }
3366                 return conf;
3367         }
3368         return ERR_PTR(-EINVAL);
3369 }
3370
3371 static struct md_personality raid1_personality =
3372 {
3373         .name           = "raid1",
3374         .level          = 1,
3375         .owner          = THIS_MODULE,
3376         .make_request   = raid1_make_request,
3377         .run            = raid1_run,
3378         .free           = raid1_free,
3379         .status         = raid1_status,
3380         .error_handler  = raid1_error,
3381         .hot_add_disk   = raid1_add_disk,
3382         .hot_remove_disk= raid1_remove_disk,
3383         .spare_active   = raid1_spare_active,
3384         .sync_request   = raid1_sync_request,
3385         .resize         = raid1_resize,
3386         .size           = raid1_size,
3387         .check_reshape  = raid1_reshape,
3388         .quiesce        = raid1_quiesce,
3389         .takeover       = raid1_takeover,
3390 };
3391
3392 static int __init raid_init(void)
3393 {
3394         return register_md_personality(&raid1_personality);
3395 }
3396
3397 static void raid_exit(void)
3398 {
3399         unregister_md_personality(&raid1_personality);
3400 }
3401
3402 module_init(raid_init);
3403 module_exit(raid_exit);
3404 MODULE_LICENSE("GPL");
3405 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3406 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3407 MODULE_ALIAS("md-raid1");
3408 MODULE_ALIAS("md-level-1");