Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / md / persistent-data / dm-btree.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-btree-internal.h"
9 #include "dm-space-map.h"
10 #include "dm-transaction-manager.h"
11
12 #include <linux/export.h>
13 #include <linux/device-mapper.h>
14
15 #define DM_MSG_PREFIX "btree"
16
17 /*
18  *--------------------------------------------------------------
19  * Array manipulation
20  *--------------------------------------------------------------
21  */
22 static void memcpy_disk(void *dest, const void *src, size_t len)
23         __dm_written_to_disk(src)
24 {
25         memcpy(dest, src, len);
26         __dm_unbless_for_disk(src);
27 }
28
29 static void array_insert(void *base, size_t elt_size, unsigned int nr_elts,
30                          unsigned int index, void *elt)
31         __dm_written_to_disk(elt)
32 {
33         if (index < nr_elts)
34                 memmove(base + (elt_size * (index + 1)),
35                         base + (elt_size * index),
36                         (nr_elts - index) * elt_size);
37
38         memcpy_disk(base + (elt_size * index), elt, elt_size);
39 }
40
41 /*----------------------------------------------------------------*/
42
43 /* makes the assumption that no two keys are the same. */
44 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
45 {
46         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
47
48         while (hi - lo > 1) {
49                 int mid = lo + ((hi - lo) / 2);
50                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
51
52                 if (mid_key == key)
53                         return mid;
54
55                 if (mid_key < key)
56                         lo = mid;
57                 else
58                         hi = mid;
59         }
60
61         return want_hi ? hi : lo;
62 }
63
64 int lower_bound(struct btree_node *n, uint64_t key)
65 {
66         return bsearch(n, key, 0);
67 }
68
69 static int upper_bound(struct btree_node *n, uint64_t key)
70 {
71         return bsearch(n, key, 1);
72 }
73
74 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
75                   struct dm_btree_value_type *vt)
76 {
77         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
78
79         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
80                 dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
81
82         else if (vt->inc)
83                 vt->inc(vt->context, value_ptr(n, 0), nr_entries);
84 }
85
86 static int insert_at(size_t value_size, struct btree_node *node, unsigned int index,
87                      uint64_t key, void *value)
88         __dm_written_to_disk(value)
89 {
90         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
91         uint32_t max_entries = le32_to_cpu(node->header.max_entries);
92         __le64 key_le = cpu_to_le64(key);
93
94         if (index > nr_entries ||
95             index >= max_entries ||
96             nr_entries >= max_entries) {
97                 DMERR("too many entries in btree node for insert");
98                 __dm_unbless_for_disk(value);
99                 return -ENOMEM;
100         }
101
102         __dm_bless_for_disk(&key_le);
103
104         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
105         array_insert(value_base(node), value_size, nr_entries, index, value);
106         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
107
108         return 0;
109 }
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * We want 3n entries (for some n).  This works more nicely for repeated
115  * insert remove loops than (2n + 1).
116  */
117 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
118 {
119         uint32_t total, n;
120         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
121
122         block_size -= sizeof(struct node_header);
123         total = block_size / elt_size;
124         n = total / 3;          /* rounds down */
125
126         return 3 * n;
127 }
128
129 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
130 {
131         int r;
132         struct dm_block *b;
133         struct btree_node *n;
134         size_t block_size;
135         uint32_t max_entries;
136
137         r = new_block(info, &b);
138         if (r < 0)
139                 return r;
140
141         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
142         max_entries = calc_max_entries(info->value_type.size, block_size);
143
144         n = dm_block_data(b);
145         memset(n, 0, block_size);
146         n->header.flags = cpu_to_le32(LEAF_NODE);
147         n->header.nr_entries = cpu_to_le32(0);
148         n->header.max_entries = cpu_to_le32(max_entries);
149         n->header.value_size = cpu_to_le32(info->value_type.size);
150
151         *root = dm_block_location(b);
152         unlock_block(info, b);
153
154         return 0;
155 }
156 EXPORT_SYMBOL_GPL(dm_btree_empty);
157
158 /*----------------------------------------------------------------*/
159
160 /*
161  * Deletion uses a recursive algorithm, since we have limited stack space
162  * we explicitly manage our own stack on the heap.
163  */
164 #define MAX_SPINE_DEPTH 64
165 struct frame {
166         struct dm_block *b;
167         struct btree_node *n;
168         unsigned int level;
169         unsigned int nr_children;
170         unsigned int current_child;
171 };
172
173 struct del_stack {
174         struct dm_btree_info *info;
175         struct dm_transaction_manager *tm;
176         int top;
177         struct frame spine[MAX_SPINE_DEPTH];
178 };
179
180 static int top_frame(struct del_stack *s, struct frame **f)
181 {
182         if (s->top < 0) {
183                 DMERR("btree deletion stack empty");
184                 return -EINVAL;
185         }
186
187         *f = s->spine + s->top;
188
189         return 0;
190 }
191
192 static int unprocessed_frames(struct del_stack *s)
193 {
194         return s->top >= 0;
195 }
196
197 static void prefetch_children(struct del_stack *s, struct frame *f)
198 {
199         unsigned int i;
200         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
201
202         for (i = 0; i < f->nr_children; i++)
203                 dm_bm_prefetch(bm, value64(f->n, i));
204 }
205
206 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
207 {
208         return f->level < (info->levels - 1);
209 }
210
211 static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level)
212 {
213         int r;
214         uint32_t ref_count;
215
216         if (s->top >= MAX_SPINE_DEPTH - 1) {
217                 DMERR("btree deletion stack out of memory");
218                 return -ENOMEM;
219         }
220
221         r = dm_tm_ref(s->tm, b, &ref_count);
222         if (r)
223                 return r;
224
225         if (ref_count > 1)
226                 /*
227                  * This is a shared node, so we can just decrement it's
228                  * reference counter and leave the children.
229                  */
230                 dm_tm_dec(s->tm, b);
231
232         else {
233                 uint32_t flags;
234                 struct frame *f = s->spine + ++s->top;
235
236                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
237                 if (r) {
238                         s->top--;
239                         return r;
240                 }
241
242                 f->n = dm_block_data(f->b);
243                 f->level = level;
244                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
245                 f->current_child = 0;
246
247                 flags = le32_to_cpu(f->n->header.flags);
248                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
249                         prefetch_children(s, f);
250         }
251
252         return 0;
253 }
254
255 static void pop_frame(struct del_stack *s)
256 {
257         struct frame *f = s->spine + s->top--;
258
259         dm_tm_dec(s->tm, dm_block_location(f->b));
260         dm_tm_unlock(s->tm, f->b);
261 }
262
263 static void unlock_all_frames(struct del_stack *s)
264 {
265         struct frame *f;
266
267         while (unprocessed_frames(s)) {
268                 f = s->spine + s->top--;
269                 dm_tm_unlock(s->tm, f->b);
270         }
271 }
272
273 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
274 {
275         int r;
276         struct del_stack *s;
277
278         /*
279          * dm_btree_del() is called via an ioctl, as such should be
280          * considered an FS op.  We can't recurse back into the FS, so we
281          * allocate GFP_NOFS.
282          */
283         s = kmalloc(sizeof(*s), GFP_NOFS);
284         if (!s)
285                 return -ENOMEM;
286         s->info = info;
287         s->tm = info->tm;
288         s->top = -1;
289
290         r = push_frame(s, root, 0);
291         if (r)
292                 goto out;
293
294         while (unprocessed_frames(s)) {
295                 uint32_t flags;
296                 struct frame *f;
297                 dm_block_t b;
298
299                 r = top_frame(s, &f);
300                 if (r)
301                         goto out;
302
303                 if (f->current_child >= f->nr_children) {
304                         pop_frame(s);
305                         continue;
306                 }
307
308                 flags = le32_to_cpu(f->n->header.flags);
309                 if (flags & INTERNAL_NODE) {
310                         b = value64(f->n, f->current_child);
311                         f->current_child++;
312                         r = push_frame(s, b, f->level);
313                         if (r)
314                                 goto out;
315
316                 } else if (is_internal_level(info, f)) {
317                         b = value64(f->n, f->current_child);
318                         f->current_child++;
319                         r = push_frame(s, b, f->level + 1);
320                         if (r)
321                                 goto out;
322
323                 } else {
324                         if (info->value_type.dec)
325                                 info->value_type.dec(info->value_type.context,
326                                                      value_ptr(f->n, 0), f->nr_children);
327                         pop_frame(s);
328                 }
329         }
330 out:
331         if (r) {
332                 /* cleanup all frames of del_stack */
333                 unlock_all_frames(s);
334         }
335         kfree(s);
336
337         return r;
338 }
339 EXPORT_SYMBOL_GPL(dm_btree_del);
340
341 /*----------------------------------------------------------------*/
342
343 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
344                             int (*search_fn)(struct btree_node *, uint64_t),
345                             uint64_t *result_key, void *v, size_t value_size)
346 {
347         int i, r;
348         uint32_t flags, nr_entries;
349
350         do {
351                 r = ro_step(s, block);
352                 if (r < 0)
353                         return r;
354
355                 i = search_fn(ro_node(s), key);
356
357                 flags = le32_to_cpu(ro_node(s)->header.flags);
358                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
359                 if (i < 0 || i >= nr_entries)
360                         return -ENODATA;
361
362                 if (flags & INTERNAL_NODE)
363                         block = value64(ro_node(s), i);
364
365         } while (!(flags & LEAF_NODE));
366
367         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
368         if (v)
369                 memcpy(v, value_ptr(ro_node(s), i), value_size);
370
371         return 0;
372 }
373
374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375                     uint64_t *keys, void *value_le)
376 {
377         unsigned int level, last_level = info->levels - 1;
378         int r = -ENODATA;
379         uint64_t rkey;
380         __le64 internal_value_le;
381         struct ro_spine spine;
382
383         init_ro_spine(&spine, info);
384         for (level = 0; level < info->levels; level++) {
385                 size_t size;
386                 void *value_p;
387
388                 if (level == last_level) {
389                         value_p = value_le;
390                         size = info->value_type.size;
391
392                 } else {
393                         value_p = &internal_value_le;
394                         size = sizeof(uint64_t);
395                 }
396
397                 r = btree_lookup_raw(&spine, root, keys[level],
398                                      lower_bound, &rkey,
399                                      value_p, size);
400
401                 if (!r) {
402                         if (rkey != keys[level]) {
403                                 exit_ro_spine(&spine);
404                                 return -ENODATA;
405                         }
406                 } else {
407                         exit_ro_spine(&spine);
408                         return r;
409                 }
410
411                 root = le64_to_cpu(internal_value_le);
412         }
413         exit_ro_spine(&spine);
414
415         return r;
416 }
417 EXPORT_SYMBOL_GPL(dm_btree_lookup);
418
419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420                                        uint64_t key, uint64_t *rkey, void *value_le)
421 {
422         int r, i;
423         uint32_t flags, nr_entries;
424         struct dm_block *node;
425         struct btree_node *n;
426
427         r = bn_read_lock(info, root, &node);
428         if (r)
429                 return r;
430
431         n = dm_block_data(node);
432         flags = le32_to_cpu(n->header.flags);
433         nr_entries = le32_to_cpu(n->header.nr_entries);
434
435         if (flags & INTERNAL_NODE) {
436                 i = lower_bound(n, key);
437                 if (i < 0) {
438                         /*
439                          * avoid early -ENODATA return when all entries are
440                          * higher than the search @key.
441                          */
442                         i = 0;
443                 }
444                 if (i >= nr_entries) {
445                         r = -ENODATA;
446                         goto out;
447                 }
448
449                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450                 if (r == -ENODATA && i < (nr_entries - 1)) {
451                         i++;
452                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453                 }
454
455         } else {
456                 i = upper_bound(n, key);
457                 if (i < 0 || i >= nr_entries) {
458                         r = -ENODATA;
459                         goto out;
460                 }
461
462                 *rkey = le64_to_cpu(n->keys[i]);
463                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
464         }
465 out:
466         dm_tm_unlock(info->tm, node);
467         return r;
468 }
469
470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471                          uint64_t *keys, uint64_t *rkey, void *value_le)
472 {
473         unsigned int level;
474         int r = -ENODATA;
475         __le64 internal_value_le;
476         struct ro_spine spine;
477
478         init_ro_spine(&spine, info);
479         for (level = 0; level < info->levels - 1u; level++) {
480                 r = btree_lookup_raw(&spine, root, keys[level],
481                                      lower_bound, rkey,
482                                      &internal_value_le, sizeof(uint64_t));
483                 if (r)
484                         goto out;
485
486                 if (*rkey != keys[level]) {
487                         r = -ENODATA;
488                         goto out;
489                 }
490
491                 root = le64_to_cpu(internal_value_le);
492         }
493
494         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495 out:
496         exit_ro_spine(&spine);
497         return r;
498 }
499 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
500
501 /*----------------------------------------------------------------*/
502
503 /*
504  * Copies entries from one region of a btree node to another.  The regions
505  * must not overlap.
506  */
507 static void copy_entries(struct btree_node *dest, unsigned int dest_offset,
508                          struct btree_node *src, unsigned int src_offset,
509                          unsigned int count)
510 {
511         size_t value_size = le32_to_cpu(dest->header.value_size);
512
513         memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
514         memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
515 }
516
517 /*
518  * Moves entries from one region fo a btree node to another.  The regions
519  * may overlap.
520  */
521 static void move_entries(struct btree_node *dest, unsigned int dest_offset,
522                          struct btree_node *src, unsigned int src_offset,
523                          unsigned int count)
524 {
525         size_t value_size = le32_to_cpu(dest->header.value_size);
526
527         memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
528         memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
529 }
530
531 /*
532  * Erases the first 'count' entries of a btree node, shifting following
533  * entries down into their place.
534  */
535 static void shift_down(struct btree_node *n, unsigned int count)
536 {
537         move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
538 }
539
540 /*
541  * Moves entries in a btree node up 'count' places, making space for
542  * new entries at the start of the node.
543  */
544 static void shift_up(struct btree_node *n, unsigned int count)
545 {
546         move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
547 }
548
549 /*
550  * Redistributes entries between two btree nodes to make them
551  * have similar numbers of entries.
552  */
553 static void redistribute2(struct btree_node *left, struct btree_node *right)
554 {
555         unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
556         unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
557         unsigned int total = nr_left + nr_right;
558         unsigned int target_left = total / 2;
559         unsigned int target_right = total - target_left;
560
561         if (nr_left < target_left) {
562                 unsigned int delta = target_left - nr_left;
563
564                 copy_entries(left, nr_left, right, 0, delta);
565                 shift_down(right, delta);
566         } else if (nr_left > target_left) {
567                 unsigned int delta = nr_left - target_left;
568
569                 if (nr_right)
570                         shift_up(right, delta);
571                 copy_entries(right, 0, left, target_left, delta);
572         }
573
574         left->header.nr_entries = cpu_to_le32(target_left);
575         right->header.nr_entries = cpu_to_le32(target_right);
576 }
577
578 /*
579  * Redistribute entries between three nodes.  Assumes the central
580  * node is empty.
581  */
582 static void redistribute3(struct btree_node *left, struct btree_node *center,
583                           struct btree_node *right)
584 {
585         unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
586         unsigned int nr_center = le32_to_cpu(center->header.nr_entries);
587         unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
588         unsigned int total, target_left, target_center, target_right;
589
590         BUG_ON(nr_center);
591
592         total = nr_left + nr_right;
593         target_left = total / 3;
594         target_center = (total - target_left) / 2;
595         target_right = (total - target_left - target_center);
596
597         if (nr_left < target_left) {
598                 unsigned int left_short = target_left - nr_left;
599
600                 copy_entries(left, nr_left, right, 0, left_short);
601                 copy_entries(center, 0, right, left_short, target_center);
602                 shift_down(right, nr_right - target_right);
603
604         } else if (nr_left < (target_left + target_center)) {
605                 unsigned int left_to_center = nr_left - target_left;
606
607                 copy_entries(center, 0, left, target_left, left_to_center);
608                 copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
609                 shift_down(right, nr_right - target_right);
610
611         } else {
612                 unsigned int right_short = target_right - nr_right;
613
614                 shift_up(right, right_short);
615                 copy_entries(right, 0, left, nr_left - right_short, right_short);
616                 copy_entries(center, 0, left, target_left, nr_left - target_left);
617         }
618
619         left->header.nr_entries = cpu_to_le32(target_left);
620         center->header.nr_entries = cpu_to_le32(target_center);
621         right->header.nr_entries = cpu_to_le32(target_right);
622 }
623
624 /*
625  * Splits a node by creating a sibling node and shifting half the nodes
626  * contents across.  Assumes there is a parent node, and it has room for
627  * another child.
628  *
629  * Before:
630  *        +--------+
631  *        | Parent |
632  *        +--------+
633  *           |
634  *           v
635  *      +----------+
636  *      | A ++++++ |
637  *      +----------+
638  *
639  *
640  * After:
641  *              +--------+
642  *              | Parent |
643  *              +--------+
644  *                |     |
645  *                v     +------+
646  *          +---------+        |
647  *          | A* +++  |        v
648  *          +---------+   +-------+
649  *                        | B +++ |
650  *                        +-------+
651  *
652  * Where A* is a shadow of A.
653  */
654 static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index,
655                               struct dm_btree_value_type *vt, uint64_t key)
656 {
657         int r;
658         struct dm_block *left, *right, *parent;
659         struct btree_node *ln, *rn, *pn;
660         __le64 location;
661
662         left = shadow_current(s);
663
664         r = new_block(s->info, &right);
665         if (r < 0)
666                 return r;
667
668         ln = dm_block_data(left);
669         rn = dm_block_data(right);
670
671         rn->header.flags = ln->header.flags;
672         rn->header.nr_entries = cpu_to_le32(0);
673         rn->header.max_entries = ln->header.max_entries;
674         rn->header.value_size = ln->header.value_size;
675         redistribute2(ln, rn);
676
677         /* patch up the parent */
678         parent = shadow_parent(s);
679         pn = dm_block_data(parent);
680
681         location = cpu_to_le64(dm_block_location(right));
682         __dm_bless_for_disk(&location);
683         r = insert_at(sizeof(__le64), pn, parent_index + 1,
684                       le64_to_cpu(rn->keys[0]), &location);
685         if (r) {
686                 unlock_block(s->info, right);
687                 return r;
688         }
689
690         /* patch up the spine */
691         if (key < le64_to_cpu(rn->keys[0])) {
692                 unlock_block(s->info, right);
693                 s->nodes[1] = left;
694         } else {
695                 unlock_block(s->info, left);
696                 s->nodes[1] = right;
697         }
698
699         return 0;
700 }
701
702 /*
703  * We often need to modify a sibling node.  This function shadows a particular
704  * child of the given parent node.  Making sure to update the parent to point
705  * to the new shadow.
706  */
707 static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
708                         struct btree_node *parent, unsigned int index,
709                         struct dm_block **result)
710 {
711         int r, inc;
712         dm_block_t root;
713         struct btree_node *node;
714
715         root = value64(parent, index);
716
717         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
718                                result, &inc);
719         if (r)
720                 return r;
721
722         node = dm_block_data(*result);
723
724         if (inc)
725                 inc_children(info->tm, node, vt);
726
727         *((__le64 *) value_ptr(parent, index)) =
728                 cpu_to_le64(dm_block_location(*result));
729
730         return 0;
731 }
732
733 /*
734  * Splits two nodes into three.  This is more work, but results in fuller
735  * nodes, so saves metadata space.
736  */
737 static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index,
738                                 struct dm_btree_value_type *vt, uint64_t key)
739 {
740         int r;
741         unsigned int middle_index;
742         struct dm_block *left, *middle, *right, *parent;
743         struct btree_node *ln, *rn, *mn, *pn;
744         __le64 location;
745
746         parent = shadow_parent(s);
747         pn = dm_block_data(parent);
748
749         if (parent_index == 0) {
750                 middle_index = 1;
751                 left = shadow_current(s);
752                 r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
753                 if (r)
754                         return r;
755         } else {
756                 middle_index = parent_index;
757                 right = shadow_current(s);
758                 r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
759                 if (r)
760                         return r;
761         }
762
763         r = new_block(s->info, &middle);
764         if (r < 0)
765                 return r;
766
767         ln = dm_block_data(left);
768         mn = dm_block_data(middle);
769         rn = dm_block_data(right);
770
771         mn->header.nr_entries = cpu_to_le32(0);
772         mn->header.flags = ln->header.flags;
773         mn->header.max_entries = ln->header.max_entries;
774         mn->header.value_size = ln->header.value_size;
775
776         redistribute3(ln, mn, rn);
777
778         /* patch up the parent */
779         pn->keys[middle_index] = rn->keys[0];
780         location = cpu_to_le64(dm_block_location(middle));
781         __dm_bless_for_disk(&location);
782         r = insert_at(sizeof(__le64), pn, middle_index,
783                       le64_to_cpu(mn->keys[0]), &location);
784         if (r) {
785                 if (shadow_current(s) != left)
786                         unlock_block(s->info, left);
787
788                 unlock_block(s->info, middle);
789
790                 if (shadow_current(s) != right)
791                         unlock_block(s->info, right);
792
793                 return r;
794         }
795
796
797         /* patch up the spine */
798         if (key < le64_to_cpu(mn->keys[0])) {
799                 unlock_block(s->info, middle);
800                 unlock_block(s->info, right);
801                 s->nodes[1] = left;
802         } else if (key < le64_to_cpu(rn->keys[0])) {
803                 unlock_block(s->info, left);
804                 unlock_block(s->info, right);
805                 s->nodes[1] = middle;
806         } else {
807                 unlock_block(s->info, left);
808                 unlock_block(s->info, middle);
809                 s->nodes[1] = right;
810         }
811
812         return 0;
813 }
814
815 /*----------------------------------------------------------------*/
816
817 /*
818  * Splits a node by creating two new children beneath the given node.
819  *
820  * Before:
821  *        +----------+
822  *        | A ++++++ |
823  *        +----------+
824  *
825  *
826  * After:
827  *      +------------+
828  *      | A (shadow) |
829  *      +------------+
830  *          |   |
831  *   +------+   +----+
832  *   |               |
833  *   v               v
834  * +-------+     +-------+
835  * | B +++ |     | C +++ |
836  * +-------+     +-------+
837  */
838 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
839 {
840         int r;
841         size_t size;
842         unsigned int nr_left, nr_right;
843         struct dm_block *left, *right, *new_parent;
844         struct btree_node *pn, *ln, *rn;
845         __le64 val;
846
847         new_parent = shadow_current(s);
848
849         pn = dm_block_data(new_parent);
850         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
851                 sizeof(__le64) : s->info->value_type.size;
852
853         /* create & init the left block */
854         r = new_block(s->info, &left);
855         if (r < 0)
856                 return r;
857
858         ln = dm_block_data(left);
859         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
860
861         ln->header.flags = pn->header.flags;
862         ln->header.nr_entries = cpu_to_le32(nr_left);
863         ln->header.max_entries = pn->header.max_entries;
864         ln->header.value_size = pn->header.value_size;
865         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
866         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
867
868         /* create & init the right block */
869         r = new_block(s->info, &right);
870         if (r < 0) {
871                 unlock_block(s->info, left);
872                 return r;
873         }
874
875         rn = dm_block_data(right);
876         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
877
878         rn->header.flags = pn->header.flags;
879         rn->header.nr_entries = cpu_to_le32(nr_right);
880         rn->header.max_entries = pn->header.max_entries;
881         rn->header.value_size = pn->header.value_size;
882         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
883         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
884                nr_right * size);
885
886         /* new_parent should just point to l and r now */
887         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
888         pn->header.nr_entries = cpu_to_le32(2);
889         pn->header.max_entries = cpu_to_le32(
890                 calc_max_entries(sizeof(__le64),
891                                  dm_bm_block_size(
892                                          dm_tm_get_bm(s->info->tm))));
893         pn->header.value_size = cpu_to_le32(sizeof(__le64));
894
895         val = cpu_to_le64(dm_block_location(left));
896         __dm_bless_for_disk(&val);
897         pn->keys[0] = ln->keys[0];
898         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
899
900         val = cpu_to_le64(dm_block_location(right));
901         __dm_bless_for_disk(&val);
902         pn->keys[1] = rn->keys[0];
903         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
904
905         unlock_block(s->info, left);
906         unlock_block(s->info, right);
907         return 0;
908 }
909
910 /*----------------------------------------------------------------*/
911
912 /*
913  * Redistributes a node's entries with its left sibling.
914  */
915 static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
916                           unsigned int parent_index, uint64_t key)
917 {
918         int r;
919         struct dm_block *sib;
920         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
921
922         r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
923         if (r)
924                 return r;
925
926         left = dm_block_data(sib);
927         right = dm_block_data(shadow_current(s));
928         redistribute2(left, right);
929         *key_ptr(parent, parent_index) = right->keys[0];
930
931         if (key < le64_to_cpu(right->keys[0])) {
932                 unlock_block(s->info, s->nodes[1]);
933                 s->nodes[1] = sib;
934         } else {
935                 unlock_block(s->info, sib);
936         }
937
938         return 0;
939 }
940
941 /*
942  * Redistributes a nodes entries with its right sibling.
943  */
944 static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
945                            unsigned int parent_index, uint64_t key)
946 {
947         int r;
948         struct dm_block *sib;
949         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
950
951         r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
952         if (r)
953                 return r;
954
955         left = dm_block_data(shadow_current(s));
956         right = dm_block_data(sib);
957         redistribute2(left, right);
958         *key_ptr(parent, parent_index + 1) = right->keys[0];
959
960         if (key < le64_to_cpu(right->keys[0])) {
961                 unlock_block(s->info, sib);
962         } else {
963                 unlock_block(s->info, s->nodes[1]);
964                 s->nodes[1] = sib;
965         }
966
967         return 0;
968 }
969
970 /*
971  * Returns the number of spare entries in a node.
972  */
973 static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space)
974 {
975         int r;
976         unsigned int nr_entries;
977         struct dm_block *block;
978         struct btree_node *node;
979
980         r = bn_read_lock(info, b, &block);
981         if (r)
982                 return r;
983
984         node = dm_block_data(block);
985         nr_entries = le32_to_cpu(node->header.nr_entries);
986         *space = le32_to_cpu(node->header.max_entries) - nr_entries;
987
988         unlock_block(info, block);
989         return 0;
990 }
991
992 /*
993  * Make space in a node, either by moving some entries to a sibling,
994  * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
995  * number of free entries that must be in the sibling to make the move
996  * worth while.  If the siblings are shared (eg, part of a snapshot),
997  * then they are not touched, since this break sharing and so consume
998  * more space than we save.
999  */
1000 #define SPACE_THRESHOLD 8
1001 static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
1002                               unsigned int parent_index, uint64_t key)
1003 {
1004         int r;
1005         struct btree_node *parent = dm_block_data(shadow_parent(s));
1006         unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries);
1007         unsigned int free_space;
1008         int left_shared = 0, right_shared = 0;
1009
1010         /* Should we move entries to the left sibling? */
1011         if (parent_index > 0) {
1012                 dm_block_t left_b = value64(parent, parent_index - 1);
1013
1014                 r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1015                 if (r)
1016                         return r;
1017
1018                 if (!left_shared) {
1019                         r = get_node_free_space(s->info, left_b, &free_space);
1020                         if (r)
1021                                 return r;
1022
1023                         if (free_space >= SPACE_THRESHOLD)
1024                                 return rebalance_left(s, vt, parent_index, key);
1025                 }
1026         }
1027
1028         /* Should we move entries to the right sibling? */
1029         if (parent_index < (nr_parent - 1)) {
1030                 dm_block_t right_b = value64(parent, parent_index + 1);
1031
1032                 r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1033                 if (r)
1034                         return r;
1035
1036                 if (!right_shared) {
1037                         r = get_node_free_space(s->info, right_b, &free_space);
1038                         if (r)
1039                                 return r;
1040
1041                         if (free_space >= SPACE_THRESHOLD)
1042                                 return rebalance_right(s, vt, parent_index, key);
1043                 }
1044         }
1045
1046         /*
1047          * We need to split the node, normally we split two nodes
1048          * into three.  But when inserting a sequence that is either
1049          * monotonically increasing or decreasing it's better to split
1050          * a single node into two.
1051          */
1052         if (left_shared || right_shared || (nr_parent <= 2) ||
1053             (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1054                 return split_one_into_two(s, parent_index, vt, key);
1055         } else {
1056                 return split_two_into_three(s, parent_index, vt, key);
1057         }
1058 }
1059
1060 /*
1061  * Does the node contain a particular key?
1062  */
1063 static bool contains_key(struct btree_node *node, uint64_t key)
1064 {
1065         int i = lower_bound(node, key);
1066
1067         if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1068                 return true;
1069
1070         return false;
1071 }
1072
1073 /*
1074  * In general we preemptively make sure there's a free entry in every
1075  * node on the spine when doing an insert.  But we can avoid that with
1076  * leaf nodes if we know it's an overwrite.
1077  */
1078 static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1079 {
1080         if (node->header.nr_entries == node->header.max_entries) {
1081                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1082                         /* we don't need space if it's an overwrite */
1083                         return contains_key(node, key);
1084                 }
1085
1086                 return false;
1087         }
1088
1089         return true;
1090 }
1091
1092 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1093                             struct dm_btree_value_type *vt,
1094                             uint64_t key, unsigned int *index)
1095 {
1096         int r, i = *index, top = 1;
1097         struct btree_node *node;
1098
1099         for (;;) {
1100                 r = shadow_step(s, root, vt);
1101                 if (r < 0)
1102                         return r;
1103
1104                 node = dm_block_data(shadow_current(s));
1105
1106                 /*
1107                  * We have to patch up the parent node, ugly, but I don't
1108                  * see a way to do this automatically as part of the spine
1109                  * op.
1110                  */
1111                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1112                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1113
1114                         __dm_bless_for_disk(&location);
1115                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1116                                     &location, sizeof(__le64));
1117                 }
1118
1119                 node = dm_block_data(shadow_current(s));
1120
1121                 if (!has_space_for_insert(node, key)) {
1122                         if (top)
1123                                 r = btree_split_beneath(s, key);
1124                         else
1125                                 r = rebalance_or_split(s, vt, i, key);
1126
1127                         if (r < 0)
1128                                 return r;
1129
1130                         /* making space can cause the current node to change */
1131                         node = dm_block_data(shadow_current(s));
1132                 }
1133
1134                 i = lower_bound(node, key);
1135
1136                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1137                         break;
1138
1139                 if (i < 0) {
1140                         /* change the bounds on the lowest key */
1141                         node->keys[0] = cpu_to_le64(key);
1142                         i = 0;
1143                 }
1144
1145                 root = value64(node, i);
1146                 top = 0;
1147         }
1148
1149         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1150                 i++;
1151
1152         *index = i;
1153         return 0;
1154 }
1155
1156 static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1157                                       uint64_t key, int *index)
1158 {
1159         int r, i = -1;
1160         struct btree_node *node;
1161
1162         *index = 0;
1163         for (;;) {
1164                 r = shadow_step(s, root, &s->info->value_type);
1165                 if (r < 0)
1166                         return r;
1167
1168                 node = dm_block_data(shadow_current(s));
1169
1170                 /*
1171                  * We have to patch up the parent node, ugly, but I don't
1172                  * see a way to do this automatically as part of the spine
1173                  * op.
1174                  */
1175                 if (shadow_has_parent(s) && i >= 0) {
1176                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1177
1178                         __dm_bless_for_disk(&location);
1179                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1180                                     &location, sizeof(__le64));
1181                 }
1182
1183                 node = dm_block_data(shadow_current(s));
1184                 i = lower_bound(node, key);
1185
1186                 BUG_ON(i < 0);
1187                 BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1188
1189                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1190                         if (key != le64_to_cpu(node->keys[i]))
1191                                 return -EINVAL;
1192                         break;
1193                 }
1194
1195                 root = value64(node, i);
1196         }
1197
1198         *index = i;
1199         return 0;
1200 }
1201
1202 int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1203                              uint64_t key, int *index,
1204                              dm_block_t *new_root, struct dm_block **leaf)
1205 {
1206         int r;
1207         struct shadow_spine spine;
1208
1209         BUG_ON(info->levels > 1);
1210         init_shadow_spine(&spine, info);
1211         r = __btree_get_overwrite_leaf(&spine, root, key, index);
1212         if (!r) {
1213                 *new_root = shadow_root(&spine);
1214                 *leaf = shadow_current(&spine);
1215
1216                 /*
1217                  * Decrement the count so exit_shadow_spine() doesn't
1218                  * unlock the leaf.
1219                  */
1220                 spine.count--;
1221         }
1222         exit_shadow_spine(&spine);
1223
1224         return r;
1225 }
1226
1227 static bool need_insert(struct btree_node *node, uint64_t *keys,
1228                         unsigned int level, unsigned int index)
1229 {
1230         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1231                 (le64_to_cpu(node->keys[index]) != keys[level]));
1232 }
1233
1234 static int insert(struct dm_btree_info *info, dm_block_t root,
1235                   uint64_t *keys, void *value, dm_block_t *new_root,
1236                   int *inserted)
1237                   __dm_written_to_disk(value)
1238 {
1239         int r;
1240         unsigned int level, index = -1, last_level = info->levels - 1;
1241         dm_block_t block = root;
1242         struct shadow_spine spine;
1243         struct btree_node *n;
1244         struct dm_btree_value_type le64_type;
1245
1246         init_le64_type(info->tm, &le64_type);
1247         init_shadow_spine(&spine, info);
1248
1249         for (level = 0; level < (info->levels - 1); level++) {
1250                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1251                 if (r < 0)
1252                         goto bad;
1253
1254                 n = dm_block_data(shadow_current(&spine));
1255
1256                 if (need_insert(n, keys, level, index)) {
1257                         dm_block_t new_tree;
1258                         __le64 new_le;
1259
1260                         r = dm_btree_empty(info, &new_tree);
1261                         if (r < 0)
1262                                 goto bad;
1263
1264                         new_le = cpu_to_le64(new_tree);
1265                         __dm_bless_for_disk(&new_le);
1266
1267                         r = insert_at(sizeof(uint64_t), n, index,
1268                                       keys[level], &new_le);
1269                         if (r)
1270                                 goto bad;
1271                 }
1272
1273                 if (level < last_level)
1274                         block = value64(n, index);
1275         }
1276
1277         r = btree_insert_raw(&spine, block, &info->value_type,
1278                              keys[level], &index);
1279         if (r < 0)
1280                 goto bad;
1281
1282         n = dm_block_data(shadow_current(&spine));
1283
1284         if (need_insert(n, keys, level, index)) {
1285                 if (inserted)
1286                         *inserted = 1;
1287
1288                 r = insert_at(info->value_type.size, n, index,
1289                               keys[level], value);
1290                 if (r)
1291                         goto bad_unblessed;
1292         } else {
1293                 if (inserted)
1294                         *inserted = 0;
1295
1296                 if (info->value_type.dec &&
1297                     (!info->value_type.equal ||
1298                      !info->value_type.equal(
1299                              info->value_type.context,
1300                              value_ptr(n, index),
1301                              value))) {
1302                         info->value_type.dec(info->value_type.context,
1303                                              value_ptr(n, index), 1);
1304                 }
1305                 memcpy_disk(value_ptr(n, index),
1306                             value, info->value_type.size);
1307         }
1308
1309         *new_root = shadow_root(&spine);
1310         exit_shadow_spine(&spine);
1311
1312         return 0;
1313
1314 bad:
1315         __dm_unbless_for_disk(value);
1316 bad_unblessed:
1317         exit_shadow_spine(&spine);
1318         return r;
1319 }
1320
1321 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1322                     uint64_t *keys, void *value, dm_block_t *new_root)
1323         __dm_written_to_disk(value)
1324 {
1325         return insert(info, root, keys, value, new_root, NULL);
1326 }
1327 EXPORT_SYMBOL_GPL(dm_btree_insert);
1328
1329 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1330                            uint64_t *keys, void *value, dm_block_t *new_root,
1331                            int *inserted)
1332         __dm_written_to_disk(value)
1333 {
1334         return insert(info, root, keys, value, new_root, inserted);
1335 }
1336 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1337
1338 /*----------------------------------------------------------------*/
1339
1340 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1341                     uint64_t *result_key, dm_block_t *next_block)
1342 {
1343         int i, r;
1344         uint32_t flags;
1345
1346         do {
1347                 r = ro_step(s, block);
1348                 if (r < 0)
1349                         return r;
1350
1351                 flags = le32_to_cpu(ro_node(s)->header.flags);
1352                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
1353                 if (!i)
1354                         return -ENODATA;
1355
1356                 i--;
1357
1358                 if (find_highest)
1359                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
1360                 else
1361                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
1362
1363                 if (next_block || flags & INTERNAL_NODE) {
1364                         if (find_highest)
1365                                 block = value64(ro_node(s), i);
1366                         else
1367                                 block = value64(ro_node(s), 0);
1368                 }
1369
1370         } while (flags & INTERNAL_NODE);
1371
1372         if (next_block)
1373                 *next_block = block;
1374         return 0;
1375 }
1376
1377 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1378                              bool find_highest, uint64_t *result_keys)
1379 {
1380         int r = 0, count = 0, level;
1381         struct ro_spine spine;
1382
1383         init_ro_spine(&spine, info);
1384         for (level = 0; level < info->levels; level++) {
1385                 r = find_key(&spine, root, find_highest, result_keys + level,
1386                              level == info->levels - 1 ? NULL : &root);
1387                 if (r == -ENODATA) {
1388                         r = 0;
1389                         break;
1390
1391                 } else if (r)
1392                         break;
1393
1394                 count++;
1395         }
1396         exit_ro_spine(&spine);
1397
1398         return r ? r : count;
1399 }
1400
1401 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1402                               uint64_t *result_keys)
1403 {
1404         return dm_btree_find_key(info, root, true, result_keys);
1405 }
1406 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1407
1408 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1409                              uint64_t *result_keys)
1410 {
1411         return dm_btree_find_key(info, root, false, result_keys);
1412 }
1413 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1414
1415 /*----------------------------------------------------------------*/
1416
1417 /*
1418  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1419  * space.  Also this only works for single level trees.
1420  */
1421 static int walk_node(struct dm_btree_info *info, dm_block_t block,
1422                      int (*fn)(void *context, uint64_t *keys, void *leaf),
1423                      void *context)
1424 {
1425         int r;
1426         unsigned int i, nr;
1427         struct dm_block *node;
1428         struct btree_node *n;
1429         uint64_t keys;
1430
1431         r = bn_read_lock(info, block, &node);
1432         if (r)
1433                 return r;
1434
1435         n = dm_block_data(node);
1436
1437         nr = le32_to_cpu(n->header.nr_entries);
1438         for (i = 0; i < nr; i++) {
1439                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1440                         r = walk_node(info, value64(n, i), fn, context);
1441                         if (r)
1442                                 goto out;
1443                 } else {
1444                         keys = le64_to_cpu(*key_ptr(n, i));
1445                         r = fn(context, &keys, value_ptr(n, i));
1446                         if (r)
1447                                 goto out;
1448                 }
1449         }
1450
1451 out:
1452         dm_tm_unlock(info->tm, node);
1453         return r;
1454 }
1455
1456 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1457                   int (*fn)(void *context, uint64_t *keys, void *leaf),
1458                   void *context)
1459 {
1460         BUG_ON(info->levels > 1);
1461         return walk_node(info, root, fn, context);
1462 }
1463 EXPORT_SYMBOL_GPL(dm_btree_walk);
1464
1465 /*----------------------------------------------------------------*/
1466
1467 static void prefetch_values(struct dm_btree_cursor *c)
1468 {
1469         unsigned int i, nr;
1470         __le64 value_le;
1471         struct cursor_node *n = c->nodes + c->depth - 1;
1472         struct btree_node *bn = dm_block_data(n->b);
1473         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1474
1475         BUG_ON(c->info->value_type.size != sizeof(value_le));
1476
1477         nr = le32_to_cpu(bn->header.nr_entries);
1478         for (i = 0; i < nr; i++) {
1479                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1480                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1481         }
1482 }
1483
1484 static bool leaf_node(struct dm_btree_cursor *c)
1485 {
1486         struct cursor_node *n = c->nodes + c->depth - 1;
1487         struct btree_node *bn = dm_block_data(n->b);
1488
1489         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1490 }
1491
1492 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1493 {
1494         int r;
1495         struct cursor_node *n = c->nodes + c->depth;
1496
1497         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1498                 DMERR("couldn't push cursor node, stack depth too high");
1499                 return -EINVAL;
1500         }
1501
1502         r = bn_read_lock(c->info, b, &n->b);
1503         if (r)
1504                 return r;
1505
1506         n->index = 0;
1507         c->depth++;
1508
1509         if (c->prefetch_leaves || !leaf_node(c))
1510                 prefetch_values(c);
1511
1512         return 0;
1513 }
1514
1515 static void pop_node(struct dm_btree_cursor *c)
1516 {
1517         c->depth--;
1518         unlock_block(c->info, c->nodes[c->depth].b);
1519 }
1520
1521 static int inc_or_backtrack(struct dm_btree_cursor *c)
1522 {
1523         struct cursor_node *n;
1524         struct btree_node *bn;
1525
1526         for (;;) {
1527                 if (!c->depth)
1528                         return -ENODATA;
1529
1530                 n = c->nodes + c->depth - 1;
1531                 bn = dm_block_data(n->b);
1532
1533                 n->index++;
1534                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1535                         break;
1536
1537                 pop_node(c);
1538         }
1539
1540         return 0;
1541 }
1542
1543 static int find_leaf(struct dm_btree_cursor *c)
1544 {
1545         int r = 0;
1546         struct cursor_node *n;
1547         struct btree_node *bn;
1548         __le64 value_le;
1549
1550         for (;;) {
1551                 n = c->nodes + c->depth - 1;
1552                 bn = dm_block_data(n->b);
1553
1554                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1555                         break;
1556
1557                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1558                 r = push_node(c, le64_to_cpu(value_le));
1559                 if (r) {
1560                         DMERR("push_node failed");
1561                         break;
1562                 }
1563         }
1564
1565         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1566                 return -ENODATA;
1567
1568         return r;
1569 }
1570
1571 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1572                           bool prefetch_leaves, struct dm_btree_cursor *c)
1573 {
1574         int r;
1575
1576         c->info = info;
1577         c->root = root;
1578         c->depth = 0;
1579         c->prefetch_leaves = prefetch_leaves;
1580
1581         r = push_node(c, root);
1582         if (r)
1583                 return r;
1584
1585         return find_leaf(c);
1586 }
1587 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1588
1589 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1590 {
1591         while (c->depth)
1592                 pop_node(c);
1593 }
1594 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1595
1596 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1597 {
1598         int r = inc_or_backtrack(c);
1599
1600         if (!r) {
1601                 r = find_leaf(c);
1602                 if (r)
1603                         DMERR("find_leaf failed");
1604         }
1605
1606         return r;
1607 }
1608 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1609
1610 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1611 {
1612         int r = 0;
1613
1614         while (count-- && !r)
1615                 r = dm_btree_cursor_next(c);
1616
1617         return r;
1618 }
1619 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1620
1621 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1622 {
1623         if (c->depth) {
1624                 struct cursor_node *n = c->nodes + c->depth - 1;
1625                 struct btree_node *bn = dm_block_data(n->b);
1626
1627                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1628                         return -EINVAL;
1629
1630                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1631                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1632                 return 0;
1633
1634         } else
1635                 return -ENODATA;
1636 }
1637 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);