Merge tag 'aspeed-5.11-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/joel...
[linux-2.6-microblaze.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         unsigned i;
75         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78                 for (i = 0; i < nr_entries; i++)
79                         dm_tm_inc(tm, value64(n, i));
80         else if (vt->inc)
81                 for (i = 0; i < nr_entries; i++)
82                         vt->inc(vt->context, value_ptr(n, i));
83 }
84
85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86                       uint64_t key, void *value)
87                       __dm_written_to_disk(value)
88 {
89         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90         __le64 key_le = cpu_to_le64(key);
91
92         if (index > nr_entries ||
93             index >= le32_to_cpu(node->header.max_entries)) {
94                 DMERR("too many entries in btree node for insert");
95                 __dm_unbless_for_disk(value);
96                 return -ENOMEM;
97         }
98
99         __dm_bless_for_disk(&key_le);
100
101         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102         array_insert(value_base(node), value_size, nr_entries, index, value);
103         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105         return 0;
106 }
107
108 /*----------------------------------------------------------------*/
109
110 /*
111  * We want 3n entries (for some n).  This works more nicely for repeated
112  * insert remove loops than (2n + 1).
113  */
114 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115 {
116         uint32_t total, n;
117         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119         block_size -= sizeof(struct node_header);
120         total = block_size / elt_size;
121         n = total / 3;          /* rounds down */
122
123         return 3 * n;
124 }
125
126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127 {
128         int r;
129         struct dm_block *b;
130         struct btree_node *n;
131         size_t block_size;
132         uint32_t max_entries;
133
134         r = new_block(info, &b);
135         if (r < 0)
136                 return r;
137
138         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139         max_entries = calc_max_entries(info->value_type.size, block_size);
140
141         n = dm_block_data(b);
142         memset(n, 0, block_size);
143         n->header.flags = cpu_to_le32(LEAF_NODE);
144         n->header.nr_entries = cpu_to_le32(0);
145         n->header.max_entries = cpu_to_le32(max_entries);
146         n->header.value_size = cpu_to_le32(info->value_type.size);
147
148         *root = dm_block_location(b);
149         unlock_block(info, b);
150
151         return 0;
152 }
153 EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155 /*----------------------------------------------------------------*/
156
157 /*
158  * Deletion uses a recursive algorithm, since we have limited stack space
159  * we explicitly manage our own stack on the heap.
160  */
161 #define MAX_SPINE_DEPTH 64
162 struct frame {
163         struct dm_block *b;
164         struct btree_node *n;
165         unsigned level;
166         unsigned nr_children;
167         unsigned current_child;
168 };
169
170 struct del_stack {
171         struct dm_btree_info *info;
172         struct dm_transaction_manager *tm;
173         int top;
174         struct frame spine[MAX_SPINE_DEPTH];
175 };
176
177 static int top_frame(struct del_stack *s, struct frame **f)
178 {
179         if (s->top < 0) {
180                 DMERR("btree deletion stack empty");
181                 return -EINVAL;
182         }
183
184         *f = s->spine + s->top;
185
186         return 0;
187 }
188
189 static int unprocessed_frames(struct del_stack *s)
190 {
191         return s->top >= 0;
192 }
193
194 static void prefetch_children(struct del_stack *s, struct frame *f)
195 {
196         unsigned i;
197         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199         for (i = 0; i < f->nr_children; i++)
200                 dm_bm_prefetch(bm, value64(f->n, i));
201 }
202
203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204 {
205         return f->level < (info->levels - 1);
206 }
207
208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209 {
210         int r;
211         uint32_t ref_count;
212
213         if (s->top >= MAX_SPINE_DEPTH - 1) {
214                 DMERR("btree deletion stack out of memory");
215                 return -ENOMEM;
216         }
217
218         r = dm_tm_ref(s->tm, b, &ref_count);
219         if (r)
220                 return r;
221
222         if (ref_count > 1)
223                 /*
224                  * This is a shared node, so we can just decrement it's
225                  * reference counter and leave the children.
226                  */
227                 dm_tm_dec(s->tm, b);
228
229         else {
230                 uint32_t flags;
231                 struct frame *f = s->spine + ++s->top;
232
233                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234                 if (r) {
235                         s->top--;
236                         return r;
237                 }
238
239                 f->n = dm_block_data(f->b);
240                 f->level = level;
241                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242                 f->current_child = 0;
243
244                 flags = le32_to_cpu(f->n->header.flags);
245                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246                         prefetch_children(s, f);
247         }
248
249         return 0;
250 }
251
252 static void pop_frame(struct del_stack *s)
253 {
254         struct frame *f = s->spine + s->top--;
255
256         dm_tm_dec(s->tm, dm_block_location(f->b));
257         dm_tm_unlock(s->tm, f->b);
258 }
259
260 static void unlock_all_frames(struct del_stack *s)
261 {
262         struct frame *f;
263
264         while (unprocessed_frames(s)) {
265                 f = s->spine + s->top--;
266                 dm_tm_unlock(s->tm, f->b);
267         }
268 }
269
270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271 {
272         int r;
273         struct del_stack *s;
274
275         /*
276          * dm_btree_del() is called via an ioctl, as such should be
277          * considered an FS op.  We can't recurse back into the FS, so we
278          * allocate GFP_NOFS.
279          */
280         s = kmalloc(sizeof(*s), GFP_NOFS);
281         if (!s)
282                 return -ENOMEM;
283         s->info = info;
284         s->tm = info->tm;
285         s->top = -1;
286
287         r = push_frame(s, root, 0);
288         if (r)
289                 goto out;
290
291         while (unprocessed_frames(s)) {
292                 uint32_t flags;
293                 struct frame *f;
294                 dm_block_t b;
295
296                 r = top_frame(s, &f);
297                 if (r)
298                         goto out;
299
300                 if (f->current_child >= f->nr_children) {
301                         pop_frame(s);
302                         continue;
303                 }
304
305                 flags = le32_to_cpu(f->n->header.flags);
306                 if (flags & INTERNAL_NODE) {
307                         b = value64(f->n, f->current_child);
308                         f->current_child++;
309                         r = push_frame(s, b, f->level);
310                         if (r)
311                                 goto out;
312
313                 } else if (is_internal_level(info, f)) {
314                         b = value64(f->n, f->current_child);
315                         f->current_child++;
316                         r = push_frame(s, b, f->level + 1);
317                         if (r)
318                                 goto out;
319
320                 } else {
321                         if (info->value_type.dec) {
322                                 unsigned i;
323
324                                 for (i = 0; i < f->nr_children; i++)
325                                         info->value_type.dec(info->value_type.context,
326                                                              value_ptr(f->n, i));
327                         }
328                         pop_frame(s);
329                 }
330         }
331 out:
332         if (r) {
333                 /* cleanup all frames of del_stack */
334                 unlock_all_frames(s);
335         }
336         kfree(s);
337
338         return r;
339 }
340 EXPORT_SYMBOL_GPL(dm_btree_del);
341
342 /*----------------------------------------------------------------*/
343
344 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
345                             int (*search_fn)(struct btree_node *, uint64_t),
346                             uint64_t *result_key, void *v, size_t value_size)
347 {
348         int i, r;
349         uint32_t flags, nr_entries;
350
351         do {
352                 r = ro_step(s, block);
353                 if (r < 0)
354                         return r;
355
356                 i = search_fn(ro_node(s), key);
357
358                 flags = le32_to_cpu(ro_node(s)->header.flags);
359                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
360                 if (i < 0 || i >= nr_entries)
361                         return -ENODATA;
362
363                 if (flags & INTERNAL_NODE)
364                         block = value64(ro_node(s), i);
365
366         } while (!(flags & LEAF_NODE));
367
368         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
369         if (v)
370                 memcpy(v, value_ptr(ro_node(s), i), value_size);
371
372         return 0;
373 }
374
375 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
376                     uint64_t *keys, void *value_le)
377 {
378         unsigned level, last_level = info->levels - 1;
379         int r = -ENODATA;
380         uint64_t rkey;
381         __le64 internal_value_le;
382         struct ro_spine spine;
383
384         init_ro_spine(&spine, info);
385         for (level = 0; level < info->levels; level++) {
386                 size_t size;
387                 void *value_p;
388
389                 if (level == last_level) {
390                         value_p = value_le;
391                         size = info->value_type.size;
392
393                 } else {
394                         value_p = &internal_value_le;
395                         size = sizeof(uint64_t);
396                 }
397
398                 r = btree_lookup_raw(&spine, root, keys[level],
399                                      lower_bound, &rkey,
400                                      value_p, size);
401
402                 if (!r) {
403                         if (rkey != keys[level]) {
404                                 exit_ro_spine(&spine);
405                                 return -ENODATA;
406                         }
407                 } else {
408                         exit_ro_spine(&spine);
409                         return r;
410                 }
411
412                 root = le64_to_cpu(internal_value_le);
413         }
414         exit_ro_spine(&spine);
415
416         return r;
417 }
418 EXPORT_SYMBOL_GPL(dm_btree_lookup);
419
420 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
421                                        uint64_t key, uint64_t *rkey, void *value_le)
422 {
423         int r, i;
424         uint32_t flags, nr_entries;
425         struct dm_block *node;
426         struct btree_node *n;
427
428         r = bn_read_lock(info, root, &node);
429         if (r)
430                 return r;
431
432         n = dm_block_data(node);
433         flags = le32_to_cpu(n->header.flags);
434         nr_entries = le32_to_cpu(n->header.nr_entries);
435
436         if (flags & INTERNAL_NODE) {
437                 i = lower_bound(n, key);
438                 if (i < 0) {
439                         /*
440                          * avoid early -ENODATA return when all entries are
441                          * higher than the search @key.
442                          */
443                         i = 0;
444                 }
445                 if (i >= nr_entries) {
446                         r = -ENODATA;
447                         goto out;
448                 }
449
450                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
451                 if (r == -ENODATA && i < (nr_entries - 1)) {
452                         i++;
453                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
454                 }
455
456         } else {
457                 i = upper_bound(n, key);
458                 if (i < 0 || i >= nr_entries) {
459                         r = -ENODATA;
460                         goto out;
461                 }
462
463                 *rkey = le64_to_cpu(n->keys[i]);
464                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
465         }
466 out:
467         dm_tm_unlock(info->tm, node);
468         return r;
469 }
470
471 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
472                          uint64_t *keys, uint64_t *rkey, void *value_le)
473 {
474         unsigned level;
475         int r = -ENODATA;
476         __le64 internal_value_le;
477         struct ro_spine spine;
478
479         init_ro_spine(&spine, info);
480         for (level = 0; level < info->levels - 1u; level++) {
481                 r = btree_lookup_raw(&spine, root, keys[level],
482                                      lower_bound, rkey,
483                                      &internal_value_le, sizeof(uint64_t));
484                 if (r)
485                         goto out;
486
487                 if (*rkey != keys[level]) {
488                         r = -ENODATA;
489                         goto out;
490                 }
491
492                 root = le64_to_cpu(internal_value_le);
493         }
494
495         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
496 out:
497         exit_ro_spine(&spine);
498         return r;
499 }
500
501 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
502
503 /*
504  * Splits a node by creating a sibling node and shifting half the nodes
505  * contents across.  Assumes there is a parent node, and it has room for
506  * another child.
507  *
508  * Before:
509  *        +--------+
510  *        | Parent |
511  *        +--------+
512  *           |
513  *           v
514  *      +----------+
515  *      | A ++++++ |
516  *      +----------+
517  *
518  *
519  * After:
520  *              +--------+
521  *              | Parent |
522  *              +--------+
523  *                |     |
524  *                v     +------+
525  *          +---------+        |
526  *          | A* +++  |        v
527  *          +---------+   +-------+
528  *                        | B +++ |
529  *                        +-------+
530  *
531  * Where A* is a shadow of A.
532  */
533 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
534                                uint64_t key)
535 {
536         int r;
537         size_t size;
538         unsigned nr_left, nr_right;
539         struct dm_block *left, *right, *parent;
540         struct btree_node *ln, *rn, *pn;
541         __le64 location;
542
543         left = shadow_current(s);
544
545         r = new_block(s->info, &right);
546         if (r < 0)
547                 return r;
548
549         ln = dm_block_data(left);
550         rn = dm_block_data(right);
551
552         nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
553         nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
554
555         ln->header.nr_entries = cpu_to_le32(nr_left);
556
557         rn->header.flags = ln->header.flags;
558         rn->header.nr_entries = cpu_to_le32(nr_right);
559         rn->header.max_entries = ln->header.max_entries;
560         rn->header.value_size = ln->header.value_size;
561         memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
562
563         size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
564                 sizeof(uint64_t) : s->info->value_type.size;
565         memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
566                size * nr_right);
567
568         /*
569          * Patch up the parent
570          */
571         parent = shadow_parent(s);
572
573         pn = dm_block_data(parent);
574         location = cpu_to_le64(dm_block_location(left));
575         __dm_bless_for_disk(&location);
576         memcpy_disk(value_ptr(pn, parent_index),
577                     &location, sizeof(__le64));
578
579         location = cpu_to_le64(dm_block_location(right));
580         __dm_bless_for_disk(&location);
581
582         r = insert_at(sizeof(__le64), pn, parent_index + 1,
583                       le64_to_cpu(rn->keys[0]), &location);
584         if (r) {
585                 unlock_block(s->info, right);
586                 return r;
587         }
588
589         if (key < le64_to_cpu(rn->keys[0])) {
590                 unlock_block(s->info, right);
591                 s->nodes[1] = left;
592         } else {
593                 unlock_block(s->info, left);
594                 s->nodes[1] = right;
595         }
596
597         return 0;
598 }
599
600 /*
601  * Splits a node by creating two new children beneath the given node.
602  *
603  * Before:
604  *        +----------+
605  *        | A ++++++ |
606  *        +----------+
607  *
608  *
609  * After:
610  *      +------------+
611  *      | A (shadow) |
612  *      +------------+
613  *          |   |
614  *   +------+   +----+
615  *   |               |
616  *   v               v
617  * +-------+     +-------+
618  * | B +++ |     | C +++ |
619  * +-------+     +-------+
620  */
621 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
622 {
623         int r;
624         size_t size;
625         unsigned nr_left, nr_right;
626         struct dm_block *left, *right, *new_parent;
627         struct btree_node *pn, *ln, *rn;
628         __le64 val;
629
630         new_parent = shadow_current(s);
631
632         pn = dm_block_data(new_parent);
633         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
634                 sizeof(__le64) : s->info->value_type.size;
635
636         /* create & init the left block */
637         r = new_block(s->info, &left);
638         if (r < 0)
639                 return r;
640
641         ln = dm_block_data(left);
642         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
643
644         ln->header.flags = pn->header.flags;
645         ln->header.nr_entries = cpu_to_le32(nr_left);
646         ln->header.max_entries = pn->header.max_entries;
647         ln->header.value_size = pn->header.value_size;
648         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
649         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
650
651         /* create & init the right block */
652         r = new_block(s->info, &right);
653         if (r < 0) {
654                 unlock_block(s->info, left);
655                 return r;
656         }
657
658         rn = dm_block_data(right);
659         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
660
661         rn->header.flags = pn->header.flags;
662         rn->header.nr_entries = cpu_to_le32(nr_right);
663         rn->header.max_entries = pn->header.max_entries;
664         rn->header.value_size = pn->header.value_size;
665         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
666         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
667                nr_right * size);
668
669         /* new_parent should just point to l and r now */
670         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
671         pn->header.nr_entries = cpu_to_le32(2);
672         pn->header.max_entries = cpu_to_le32(
673                 calc_max_entries(sizeof(__le64),
674                                  dm_bm_block_size(
675                                          dm_tm_get_bm(s->info->tm))));
676         pn->header.value_size = cpu_to_le32(sizeof(__le64));
677
678         val = cpu_to_le64(dm_block_location(left));
679         __dm_bless_for_disk(&val);
680         pn->keys[0] = ln->keys[0];
681         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
682
683         val = cpu_to_le64(dm_block_location(right));
684         __dm_bless_for_disk(&val);
685         pn->keys[1] = rn->keys[0];
686         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
687
688         unlock_block(s->info, left);
689         unlock_block(s->info, right);
690         return 0;
691 }
692
693 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
694                             struct dm_btree_value_type *vt,
695                             uint64_t key, unsigned *index)
696 {
697         int r, i = *index, top = 1;
698         struct btree_node *node;
699
700         for (;;) {
701                 r = shadow_step(s, root, vt);
702                 if (r < 0)
703                         return r;
704
705                 node = dm_block_data(shadow_current(s));
706
707                 /*
708                  * We have to patch up the parent node, ugly, but I don't
709                  * see a way to do this automatically as part of the spine
710                  * op.
711                  */
712                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
713                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
714
715                         __dm_bless_for_disk(&location);
716                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
717                                     &location, sizeof(__le64));
718                 }
719
720                 node = dm_block_data(shadow_current(s));
721
722                 if (node->header.nr_entries == node->header.max_entries) {
723                         if (top)
724                                 r = btree_split_beneath(s, key);
725                         else
726                                 r = btree_split_sibling(s, i, key);
727
728                         if (r < 0)
729                                 return r;
730                 }
731
732                 node = dm_block_data(shadow_current(s));
733
734                 i = lower_bound(node, key);
735
736                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
737                         break;
738
739                 if (i < 0) {
740                         /* change the bounds on the lowest key */
741                         node->keys[0] = cpu_to_le64(key);
742                         i = 0;
743                 }
744
745                 root = value64(node, i);
746                 top = 0;
747         }
748
749         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
750                 i++;
751
752         *index = i;
753         return 0;
754 }
755
756 static bool need_insert(struct btree_node *node, uint64_t *keys,
757                         unsigned level, unsigned index)
758 {
759         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
760                 (le64_to_cpu(node->keys[index]) != keys[level]));
761 }
762
763 static int insert(struct dm_btree_info *info, dm_block_t root,
764                   uint64_t *keys, void *value, dm_block_t *new_root,
765                   int *inserted)
766                   __dm_written_to_disk(value)
767 {
768         int r;
769         unsigned level, index = -1, last_level = info->levels - 1;
770         dm_block_t block = root;
771         struct shadow_spine spine;
772         struct btree_node *n;
773         struct dm_btree_value_type le64_type;
774
775         init_le64_type(info->tm, &le64_type);
776         init_shadow_spine(&spine, info);
777
778         for (level = 0; level < (info->levels - 1); level++) {
779                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
780                 if (r < 0)
781                         goto bad;
782
783                 n = dm_block_data(shadow_current(&spine));
784
785                 if (need_insert(n, keys, level, index)) {
786                         dm_block_t new_tree;
787                         __le64 new_le;
788
789                         r = dm_btree_empty(info, &new_tree);
790                         if (r < 0)
791                                 goto bad;
792
793                         new_le = cpu_to_le64(new_tree);
794                         __dm_bless_for_disk(&new_le);
795
796                         r = insert_at(sizeof(uint64_t), n, index,
797                                       keys[level], &new_le);
798                         if (r)
799                                 goto bad;
800                 }
801
802                 if (level < last_level)
803                         block = value64(n, index);
804         }
805
806         r = btree_insert_raw(&spine, block, &info->value_type,
807                              keys[level], &index);
808         if (r < 0)
809                 goto bad;
810
811         n = dm_block_data(shadow_current(&spine));
812
813         if (need_insert(n, keys, level, index)) {
814                 if (inserted)
815                         *inserted = 1;
816
817                 r = insert_at(info->value_type.size, n, index,
818                               keys[level], value);
819                 if (r)
820                         goto bad_unblessed;
821         } else {
822                 if (inserted)
823                         *inserted = 0;
824
825                 if (info->value_type.dec &&
826                     (!info->value_type.equal ||
827                      !info->value_type.equal(
828                              info->value_type.context,
829                              value_ptr(n, index),
830                              value))) {
831                         info->value_type.dec(info->value_type.context,
832                                              value_ptr(n, index));
833                 }
834                 memcpy_disk(value_ptr(n, index),
835                             value, info->value_type.size);
836         }
837
838         *new_root = shadow_root(&spine);
839         exit_shadow_spine(&spine);
840
841         return 0;
842
843 bad:
844         __dm_unbless_for_disk(value);
845 bad_unblessed:
846         exit_shadow_spine(&spine);
847         return r;
848 }
849
850 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
851                     uint64_t *keys, void *value, dm_block_t *new_root)
852                     __dm_written_to_disk(value)
853 {
854         return insert(info, root, keys, value, new_root, NULL);
855 }
856 EXPORT_SYMBOL_GPL(dm_btree_insert);
857
858 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
859                            uint64_t *keys, void *value, dm_block_t *new_root,
860                            int *inserted)
861                            __dm_written_to_disk(value)
862 {
863         return insert(info, root, keys, value, new_root, inserted);
864 }
865 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
866
867 /*----------------------------------------------------------------*/
868
869 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
870                     uint64_t *result_key, dm_block_t *next_block)
871 {
872         int i, r;
873         uint32_t flags;
874
875         do {
876                 r = ro_step(s, block);
877                 if (r < 0)
878                         return r;
879
880                 flags = le32_to_cpu(ro_node(s)->header.flags);
881                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
882                 if (!i)
883                         return -ENODATA;
884                 else
885                         i--;
886
887                 if (find_highest)
888                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
889                 else
890                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
891
892                 if (next_block || flags & INTERNAL_NODE) {
893                         if (find_highest)
894                                 block = value64(ro_node(s), i);
895                         else
896                                 block = value64(ro_node(s), 0);
897                 }
898
899         } while (flags & INTERNAL_NODE);
900
901         if (next_block)
902                 *next_block = block;
903         return 0;
904 }
905
906 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
907                              bool find_highest, uint64_t *result_keys)
908 {
909         int r = 0, count = 0, level;
910         struct ro_spine spine;
911
912         init_ro_spine(&spine, info);
913         for (level = 0; level < info->levels; level++) {
914                 r = find_key(&spine, root, find_highest, result_keys + level,
915                              level == info->levels - 1 ? NULL : &root);
916                 if (r == -ENODATA) {
917                         r = 0;
918                         break;
919
920                 } else if (r)
921                         break;
922
923                 count++;
924         }
925         exit_ro_spine(&spine);
926
927         return r ? r : count;
928 }
929
930 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
931                               uint64_t *result_keys)
932 {
933         return dm_btree_find_key(info, root, true, result_keys);
934 }
935 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
936
937 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
938                              uint64_t *result_keys)
939 {
940         return dm_btree_find_key(info, root, false, result_keys);
941 }
942 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
943
944 /*----------------------------------------------------------------*/
945
946 /*
947  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
948  * space.  Also this only works for single level trees.
949  */
950 static int walk_node(struct dm_btree_info *info, dm_block_t block,
951                      int (*fn)(void *context, uint64_t *keys, void *leaf),
952                      void *context)
953 {
954         int r;
955         unsigned i, nr;
956         struct dm_block *node;
957         struct btree_node *n;
958         uint64_t keys;
959
960         r = bn_read_lock(info, block, &node);
961         if (r)
962                 return r;
963
964         n = dm_block_data(node);
965
966         nr = le32_to_cpu(n->header.nr_entries);
967         for (i = 0; i < nr; i++) {
968                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
969                         r = walk_node(info, value64(n, i), fn, context);
970                         if (r)
971                                 goto out;
972                 } else {
973                         keys = le64_to_cpu(*key_ptr(n, i));
974                         r = fn(context, &keys, value_ptr(n, i));
975                         if (r)
976                                 goto out;
977                 }
978         }
979
980 out:
981         dm_tm_unlock(info->tm, node);
982         return r;
983 }
984
985 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
986                   int (*fn)(void *context, uint64_t *keys, void *leaf),
987                   void *context)
988 {
989         BUG_ON(info->levels > 1);
990         return walk_node(info, root, fn, context);
991 }
992 EXPORT_SYMBOL_GPL(dm_btree_walk);
993
994 /*----------------------------------------------------------------*/
995
996 static void prefetch_values(struct dm_btree_cursor *c)
997 {
998         unsigned i, nr;
999         __le64 value_le;
1000         struct cursor_node *n = c->nodes + c->depth - 1;
1001         struct btree_node *bn = dm_block_data(n->b);
1002         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1003
1004         BUG_ON(c->info->value_type.size != sizeof(value_le));
1005
1006         nr = le32_to_cpu(bn->header.nr_entries);
1007         for (i = 0; i < nr; i++) {
1008                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1009                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1010         }
1011 }
1012
1013 static bool leaf_node(struct dm_btree_cursor *c)
1014 {
1015         struct cursor_node *n = c->nodes + c->depth - 1;
1016         struct btree_node *bn = dm_block_data(n->b);
1017
1018         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1019 }
1020
1021 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1022 {
1023         int r;
1024         struct cursor_node *n = c->nodes + c->depth;
1025
1026         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1027                 DMERR("couldn't push cursor node, stack depth too high");
1028                 return -EINVAL;
1029         }
1030
1031         r = bn_read_lock(c->info, b, &n->b);
1032         if (r)
1033                 return r;
1034
1035         n->index = 0;
1036         c->depth++;
1037
1038         if (c->prefetch_leaves || !leaf_node(c))
1039                 prefetch_values(c);
1040
1041         return 0;
1042 }
1043
1044 static void pop_node(struct dm_btree_cursor *c)
1045 {
1046         c->depth--;
1047         unlock_block(c->info, c->nodes[c->depth].b);
1048 }
1049
1050 static int inc_or_backtrack(struct dm_btree_cursor *c)
1051 {
1052         struct cursor_node *n;
1053         struct btree_node *bn;
1054
1055         for (;;) {
1056                 if (!c->depth)
1057                         return -ENODATA;
1058
1059                 n = c->nodes + c->depth - 1;
1060                 bn = dm_block_data(n->b);
1061
1062                 n->index++;
1063                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1064                         break;
1065
1066                 pop_node(c);
1067         }
1068
1069         return 0;
1070 }
1071
1072 static int find_leaf(struct dm_btree_cursor *c)
1073 {
1074         int r = 0;
1075         struct cursor_node *n;
1076         struct btree_node *bn;
1077         __le64 value_le;
1078
1079         for (;;) {
1080                 n = c->nodes + c->depth - 1;
1081                 bn = dm_block_data(n->b);
1082
1083                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1084                         break;
1085
1086                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1087                 r = push_node(c, le64_to_cpu(value_le));
1088                 if (r) {
1089                         DMERR("push_node failed");
1090                         break;
1091                 }
1092         }
1093
1094         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1095                 return -ENODATA;
1096
1097         return r;
1098 }
1099
1100 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1101                           bool prefetch_leaves, struct dm_btree_cursor *c)
1102 {
1103         int r;
1104
1105         c->info = info;
1106         c->root = root;
1107         c->depth = 0;
1108         c->prefetch_leaves = prefetch_leaves;
1109
1110         r = push_node(c, root);
1111         if (r)
1112                 return r;
1113
1114         return find_leaf(c);
1115 }
1116 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1117
1118 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1119 {
1120         while (c->depth)
1121                 pop_node(c);
1122 }
1123 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1124
1125 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1126 {
1127         int r = inc_or_backtrack(c);
1128         if (!r) {
1129                 r = find_leaf(c);
1130                 if (r)
1131                         DMERR("find_leaf failed");
1132         }
1133
1134         return r;
1135 }
1136 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1137
1138 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1139 {
1140         int r = 0;
1141
1142         while (count-- && !r)
1143                 r = dm_btree_cursor_next(c);
1144
1145         return r;
1146 }
1147 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1148
1149 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1150 {
1151         if (c->depth) {
1152                 struct cursor_node *n = c->nodes + c->depth - 1;
1153                 struct btree_node *bn = dm_block_data(n->b);
1154
1155                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1156                         return -EINVAL;
1157
1158                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1159                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1160                 return 0;
1161
1162         } else
1163                 return -ENODATA;
1164 }
1165 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);