Merge tag 'dmaengine-fix-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-microblaze.git] / drivers / md / persistent-data / dm-btree.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17  * Array manipulation
18  *--------------------------------------------------------------*/
19 static void memcpy_disk(void *dest, const void *src, size_t len)
20         __dm_written_to_disk(src)
21 {
22         memcpy(dest, src, len);
23         __dm_unbless_for_disk(src);
24 }
25
26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27                          unsigned index, void *elt)
28         __dm_written_to_disk(elt)
29 {
30         if (index < nr_elts)
31                 memmove(base + (elt_size * (index + 1)),
32                         base + (elt_size * index),
33                         (nr_elts - index) * elt_size);
34
35         memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43         int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45         while (hi - lo > 1) {
46                 int mid = lo + ((hi - lo) / 2);
47                 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49                 if (mid_key == key)
50                         return mid;
51
52                 if (mid_key < key)
53                         lo = mid;
54                 else
55                         hi = mid;
56         }
57
58         return want_hi ? hi : lo;
59 }
60
61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63         return bsearch(n, key, 0);
64 }
65
66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68         return bsearch(n, key, 1);
69 }
70
71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72                   struct dm_btree_value_type *vt)
73 {
74         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
75
76         if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
77                 dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
78
79         else if (vt->inc)
80                 vt->inc(vt->context, value_ptr(n, 0), nr_entries);
81 }
82
83 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
84                       uint64_t key, void *value)
85                       __dm_written_to_disk(value)
86 {
87         uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
88         __le64 key_le = cpu_to_le64(key);
89
90         if (index > nr_entries ||
91             index >= le32_to_cpu(node->header.max_entries)) {
92                 DMERR("too many entries in btree node for insert");
93                 __dm_unbless_for_disk(value);
94                 return -ENOMEM;
95         }
96
97         __dm_bless_for_disk(&key_le);
98
99         array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
100         array_insert(value_base(node), value_size, nr_entries, index, value);
101         node->header.nr_entries = cpu_to_le32(nr_entries + 1);
102
103         return 0;
104 }
105
106 /*----------------------------------------------------------------*/
107
108 /*
109  * We want 3n entries (for some n).  This works more nicely for repeated
110  * insert remove loops than (2n + 1).
111  */
112 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
113 {
114         uint32_t total, n;
115         size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
116
117         block_size -= sizeof(struct node_header);
118         total = block_size / elt_size;
119         n = total / 3;          /* rounds down */
120
121         return 3 * n;
122 }
123
124 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
125 {
126         int r;
127         struct dm_block *b;
128         struct btree_node *n;
129         size_t block_size;
130         uint32_t max_entries;
131
132         r = new_block(info, &b);
133         if (r < 0)
134                 return r;
135
136         block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
137         max_entries = calc_max_entries(info->value_type.size, block_size);
138
139         n = dm_block_data(b);
140         memset(n, 0, block_size);
141         n->header.flags = cpu_to_le32(LEAF_NODE);
142         n->header.nr_entries = cpu_to_le32(0);
143         n->header.max_entries = cpu_to_le32(max_entries);
144         n->header.value_size = cpu_to_le32(info->value_type.size);
145
146         *root = dm_block_location(b);
147         unlock_block(info, b);
148
149         return 0;
150 }
151 EXPORT_SYMBOL_GPL(dm_btree_empty);
152
153 /*----------------------------------------------------------------*/
154
155 /*
156  * Deletion uses a recursive algorithm, since we have limited stack space
157  * we explicitly manage our own stack on the heap.
158  */
159 #define MAX_SPINE_DEPTH 64
160 struct frame {
161         struct dm_block *b;
162         struct btree_node *n;
163         unsigned level;
164         unsigned nr_children;
165         unsigned current_child;
166 };
167
168 struct del_stack {
169         struct dm_btree_info *info;
170         struct dm_transaction_manager *tm;
171         int top;
172         struct frame spine[MAX_SPINE_DEPTH];
173 };
174
175 static int top_frame(struct del_stack *s, struct frame **f)
176 {
177         if (s->top < 0) {
178                 DMERR("btree deletion stack empty");
179                 return -EINVAL;
180         }
181
182         *f = s->spine + s->top;
183
184         return 0;
185 }
186
187 static int unprocessed_frames(struct del_stack *s)
188 {
189         return s->top >= 0;
190 }
191
192 static void prefetch_children(struct del_stack *s, struct frame *f)
193 {
194         unsigned i;
195         struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
196
197         for (i = 0; i < f->nr_children; i++)
198                 dm_bm_prefetch(bm, value64(f->n, i));
199 }
200
201 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
202 {
203         return f->level < (info->levels - 1);
204 }
205
206 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
207 {
208         int r;
209         uint32_t ref_count;
210
211         if (s->top >= MAX_SPINE_DEPTH - 1) {
212                 DMERR("btree deletion stack out of memory");
213                 return -ENOMEM;
214         }
215
216         r = dm_tm_ref(s->tm, b, &ref_count);
217         if (r)
218                 return r;
219
220         if (ref_count > 1)
221                 /*
222                  * This is a shared node, so we can just decrement it's
223                  * reference counter and leave the children.
224                  */
225                 dm_tm_dec(s->tm, b);
226
227         else {
228                 uint32_t flags;
229                 struct frame *f = s->spine + ++s->top;
230
231                 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
232                 if (r) {
233                         s->top--;
234                         return r;
235                 }
236
237                 f->n = dm_block_data(f->b);
238                 f->level = level;
239                 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
240                 f->current_child = 0;
241
242                 flags = le32_to_cpu(f->n->header.flags);
243                 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
244                         prefetch_children(s, f);
245         }
246
247         return 0;
248 }
249
250 static void pop_frame(struct del_stack *s)
251 {
252         struct frame *f = s->spine + s->top--;
253
254         dm_tm_dec(s->tm, dm_block_location(f->b));
255         dm_tm_unlock(s->tm, f->b);
256 }
257
258 static void unlock_all_frames(struct del_stack *s)
259 {
260         struct frame *f;
261
262         while (unprocessed_frames(s)) {
263                 f = s->spine + s->top--;
264                 dm_tm_unlock(s->tm, f->b);
265         }
266 }
267
268 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
269 {
270         int r;
271         struct del_stack *s;
272
273         /*
274          * dm_btree_del() is called via an ioctl, as such should be
275          * considered an FS op.  We can't recurse back into the FS, so we
276          * allocate GFP_NOFS.
277          */
278         s = kmalloc(sizeof(*s), GFP_NOFS);
279         if (!s)
280                 return -ENOMEM;
281         s->info = info;
282         s->tm = info->tm;
283         s->top = -1;
284
285         r = push_frame(s, root, 0);
286         if (r)
287                 goto out;
288
289         while (unprocessed_frames(s)) {
290                 uint32_t flags;
291                 struct frame *f;
292                 dm_block_t b;
293
294                 r = top_frame(s, &f);
295                 if (r)
296                         goto out;
297
298                 if (f->current_child >= f->nr_children) {
299                         pop_frame(s);
300                         continue;
301                 }
302
303                 flags = le32_to_cpu(f->n->header.flags);
304                 if (flags & INTERNAL_NODE) {
305                         b = value64(f->n, f->current_child);
306                         f->current_child++;
307                         r = push_frame(s, b, f->level);
308                         if (r)
309                                 goto out;
310
311                 } else if (is_internal_level(info, f)) {
312                         b = value64(f->n, f->current_child);
313                         f->current_child++;
314                         r = push_frame(s, b, f->level + 1);
315                         if (r)
316                                 goto out;
317
318                 } else {
319                         if (info->value_type.dec)
320                                 info->value_type.dec(info->value_type.context,
321                                                      value_ptr(f->n, 0), f->nr_children);
322                         pop_frame(s);
323                 }
324         }
325 out:
326         if (r) {
327                 /* cleanup all frames of del_stack */
328                 unlock_all_frames(s);
329         }
330         kfree(s);
331
332         return r;
333 }
334 EXPORT_SYMBOL_GPL(dm_btree_del);
335
336 /*----------------------------------------------------------------*/
337
338 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
339                             int (*search_fn)(struct btree_node *, uint64_t),
340                             uint64_t *result_key, void *v, size_t value_size)
341 {
342         int i, r;
343         uint32_t flags, nr_entries;
344
345         do {
346                 r = ro_step(s, block);
347                 if (r < 0)
348                         return r;
349
350                 i = search_fn(ro_node(s), key);
351
352                 flags = le32_to_cpu(ro_node(s)->header.flags);
353                 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
354                 if (i < 0 || i >= nr_entries)
355                         return -ENODATA;
356
357                 if (flags & INTERNAL_NODE)
358                         block = value64(ro_node(s), i);
359
360         } while (!(flags & LEAF_NODE));
361
362         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
363         if (v)
364                 memcpy(v, value_ptr(ro_node(s), i), value_size);
365
366         return 0;
367 }
368
369 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
370                     uint64_t *keys, void *value_le)
371 {
372         unsigned level, last_level = info->levels - 1;
373         int r = -ENODATA;
374         uint64_t rkey;
375         __le64 internal_value_le;
376         struct ro_spine spine;
377
378         init_ro_spine(&spine, info);
379         for (level = 0; level < info->levels; level++) {
380                 size_t size;
381                 void *value_p;
382
383                 if (level == last_level) {
384                         value_p = value_le;
385                         size = info->value_type.size;
386
387                 } else {
388                         value_p = &internal_value_le;
389                         size = sizeof(uint64_t);
390                 }
391
392                 r = btree_lookup_raw(&spine, root, keys[level],
393                                      lower_bound, &rkey,
394                                      value_p, size);
395
396                 if (!r) {
397                         if (rkey != keys[level]) {
398                                 exit_ro_spine(&spine);
399                                 return -ENODATA;
400                         }
401                 } else {
402                         exit_ro_spine(&spine);
403                         return r;
404                 }
405
406                 root = le64_to_cpu(internal_value_le);
407         }
408         exit_ro_spine(&spine);
409
410         return r;
411 }
412 EXPORT_SYMBOL_GPL(dm_btree_lookup);
413
414 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
415                                        uint64_t key, uint64_t *rkey, void *value_le)
416 {
417         int r, i;
418         uint32_t flags, nr_entries;
419         struct dm_block *node;
420         struct btree_node *n;
421
422         r = bn_read_lock(info, root, &node);
423         if (r)
424                 return r;
425
426         n = dm_block_data(node);
427         flags = le32_to_cpu(n->header.flags);
428         nr_entries = le32_to_cpu(n->header.nr_entries);
429
430         if (flags & INTERNAL_NODE) {
431                 i = lower_bound(n, key);
432                 if (i < 0) {
433                         /*
434                          * avoid early -ENODATA return when all entries are
435                          * higher than the search @key.
436                          */
437                         i = 0;
438                 }
439                 if (i >= nr_entries) {
440                         r = -ENODATA;
441                         goto out;
442                 }
443
444                 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
445                 if (r == -ENODATA && i < (nr_entries - 1)) {
446                         i++;
447                         r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
448                 }
449
450         } else {
451                 i = upper_bound(n, key);
452                 if (i < 0 || i >= nr_entries) {
453                         r = -ENODATA;
454                         goto out;
455                 }
456
457                 *rkey = le64_to_cpu(n->keys[i]);
458                 memcpy(value_le, value_ptr(n, i), info->value_type.size);
459         }
460 out:
461         dm_tm_unlock(info->tm, node);
462         return r;
463 }
464
465 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
466                          uint64_t *keys, uint64_t *rkey, void *value_le)
467 {
468         unsigned level;
469         int r = -ENODATA;
470         __le64 internal_value_le;
471         struct ro_spine spine;
472
473         init_ro_spine(&spine, info);
474         for (level = 0; level < info->levels - 1u; level++) {
475                 r = btree_lookup_raw(&spine, root, keys[level],
476                                      lower_bound, rkey,
477                                      &internal_value_le, sizeof(uint64_t));
478                 if (r)
479                         goto out;
480
481                 if (*rkey != keys[level]) {
482                         r = -ENODATA;
483                         goto out;
484                 }
485
486                 root = le64_to_cpu(internal_value_le);
487         }
488
489         r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
490 out:
491         exit_ro_spine(&spine);
492         return r;
493 }
494
495 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
496
497 /*----------------------------------------------------------------*/
498
499 /*
500  * Copies entries from one region of a btree node to another.  The regions
501  * must not overlap.
502  */
503 static void copy_entries(struct btree_node *dest, unsigned dest_offset,
504                          struct btree_node *src, unsigned src_offset,
505                          unsigned count)
506 {
507         size_t value_size = le32_to_cpu(dest->header.value_size);
508         memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
509         memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
510 }
511
512 /*
513  * Moves entries from one region fo a btree node to another.  The regions
514  * may overlap.
515  */
516 static void move_entries(struct btree_node *dest, unsigned dest_offset,
517                          struct btree_node *src, unsigned src_offset,
518                          unsigned count)
519 {
520         size_t value_size = le32_to_cpu(dest->header.value_size);
521         memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
522         memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
523 }
524
525 /*
526  * Erases the first 'count' entries of a btree node, shifting following
527  * entries down into their place.
528  */
529 static void shift_down(struct btree_node *n, unsigned count)
530 {
531         move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
532 }
533
534 /*
535  * Moves entries in a btree node up 'count' places, making space for
536  * new entries at the start of the node.
537  */
538 static void shift_up(struct btree_node *n, unsigned count)
539 {
540         move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
541 }
542
543 /*
544  * Redistributes entries between two btree nodes to make them
545  * have similar numbers of entries.
546  */
547 static void redistribute2(struct btree_node *left, struct btree_node *right)
548 {
549         unsigned nr_left = le32_to_cpu(left->header.nr_entries);
550         unsigned nr_right = le32_to_cpu(right->header.nr_entries);
551         unsigned total = nr_left + nr_right;
552         unsigned target_left = total / 2;
553         unsigned target_right = total - target_left;
554
555         if (nr_left < target_left) {
556                 unsigned delta = target_left - nr_left;
557                 copy_entries(left, nr_left, right, 0, delta);
558                 shift_down(right, delta);
559         } else if (nr_left > target_left) {
560                 unsigned delta = nr_left - target_left;
561                 if (nr_right)
562                         shift_up(right, delta);
563                 copy_entries(right, 0, left, target_left, delta);
564         }
565
566         left->header.nr_entries = cpu_to_le32(target_left);
567         right->header.nr_entries = cpu_to_le32(target_right);
568 }
569
570 /*
571  * Redistribute entries between three nodes.  Assumes the central
572  * node is empty.
573  */
574 static void redistribute3(struct btree_node *left, struct btree_node *center,
575                           struct btree_node *right)
576 {
577         unsigned nr_left = le32_to_cpu(left->header.nr_entries);
578         unsigned nr_center = le32_to_cpu(center->header.nr_entries);
579         unsigned nr_right = le32_to_cpu(right->header.nr_entries);
580         unsigned total, target_left, target_center, target_right;
581
582         BUG_ON(nr_center);
583
584         total = nr_left + nr_right;
585         target_left = total / 3;
586         target_center = (total - target_left) / 2;
587         target_right = (total - target_left - target_center);
588
589         if (nr_left < target_left) {
590                 unsigned left_short = target_left - nr_left;
591                 copy_entries(left, nr_left, right, 0, left_short);
592                 copy_entries(center, 0, right, left_short, target_center);
593                 shift_down(right, nr_right - target_right);
594
595         } else if (nr_left < (target_left + target_center)) {
596                 unsigned left_to_center = nr_left - target_left;
597                 copy_entries(center, 0, left, target_left, left_to_center);
598                 copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
599                 shift_down(right, nr_right - target_right);
600
601         } else {
602                 unsigned right_short = target_right - nr_right;
603                 shift_up(right, right_short);
604                 copy_entries(right, 0, left, nr_left - right_short, right_short);
605                 copy_entries(center, 0, left, target_left, nr_left - target_left);
606         }
607
608         left->header.nr_entries = cpu_to_le32(target_left);
609         center->header.nr_entries = cpu_to_le32(target_center);
610         right->header.nr_entries = cpu_to_le32(target_right);
611 }
612
613 /*
614  * Splits a node by creating a sibling node and shifting half the nodes
615  * contents across.  Assumes there is a parent node, and it has room for
616  * another child.
617  *
618  * Before:
619  *        +--------+
620  *        | Parent |
621  *        +--------+
622  *           |
623  *           v
624  *      +----------+
625  *      | A ++++++ |
626  *      +----------+
627  *
628  *
629  * After:
630  *              +--------+
631  *              | Parent |
632  *              +--------+
633  *                |     |
634  *                v     +------+
635  *          +---------+        |
636  *          | A* +++  |        v
637  *          +---------+   +-------+
638  *                        | B +++ |
639  *                        +-------+
640  *
641  * Where A* is a shadow of A.
642  */
643 static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
644                               struct dm_btree_value_type *vt, uint64_t key)
645 {
646         int r;
647         struct dm_block *left, *right, *parent;
648         struct btree_node *ln, *rn, *pn;
649         __le64 location;
650
651         left = shadow_current(s);
652
653         r = new_block(s->info, &right);
654         if (r < 0)
655                 return r;
656
657         ln = dm_block_data(left);
658         rn = dm_block_data(right);
659
660         rn->header.flags = ln->header.flags;
661         rn->header.nr_entries = cpu_to_le32(0);
662         rn->header.max_entries = ln->header.max_entries;
663         rn->header.value_size = ln->header.value_size;
664         redistribute2(ln, rn);
665
666         /* patch up the parent */
667         parent = shadow_parent(s);
668         pn = dm_block_data(parent);
669
670         location = cpu_to_le64(dm_block_location(right));
671         __dm_bless_for_disk(&location);
672         r = insert_at(sizeof(__le64), pn, parent_index + 1,
673                       le64_to_cpu(rn->keys[0]), &location);
674         if (r) {
675                 unlock_block(s->info, right);
676                 return r;
677         }
678
679         /* patch up the spine */
680         if (key < le64_to_cpu(rn->keys[0])) {
681                 unlock_block(s->info, right);
682                 s->nodes[1] = left;
683         } else {
684                 unlock_block(s->info, left);
685                 s->nodes[1] = right;
686         }
687
688         return 0;
689 }
690
691 /*
692  * We often need to modify a sibling node.  This function shadows a particular
693  * child of the given parent node.  Making sure to update the parent to point
694  * to the new shadow.
695  */
696 static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
697                         struct btree_node *parent, unsigned index,
698                         struct dm_block **result)
699 {
700         int r, inc;
701         dm_block_t root;
702         struct btree_node *node;
703
704         root = value64(parent, index);
705
706         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
707                                result, &inc);
708         if (r)
709                 return r;
710
711         node = dm_block_data(*result);
712
713         if (inc)
714                 inc_children(info->tm, node, vt);
715
716         *((__le64 *) value_ptr(parent, index)) =
717                 cpu_to_le64(dm_block_location(*result));
718
719         return 0;
720 }
721
722 /*
723  * Splits two nodes into three.  This is more work, but results in fuller
724  * nodes, so saves metadata space.
725  */
726 static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
727                                 struct dm_btree_value_type *vt, uint64_t key)
728 {
729         int r;
730         unsigned middle_index;
731         struct dm_block *left, *middle, *right, *parent;
732         struct btree_node *ln, *rn, *mn, *pn;
733         __le64 location;
734
735         parent = shadow_parent(s);
736         pn = dm_block_data(parent);
737
738         if (parent_index == 0) {
739                 middle_index = 1;
740                 left = shadow_current(s);
741                 r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
742                 if (r)
743                         return r;
744         } else {
745                 middle_index = parent_index;
746                 right = shadow_current(s);
747                 r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
748                 if (r)
749                         return r;
750         }
751
752         r = new_block(s->info, &middle);
753         if (r < 0)
754                 return r;
755
756         ln = dm_block_data(left);
757         mn = dm_block_data(middle);
758         rn = dm_block_data(right);
759
760         mn->header.nr_entries = cpu_to_le32(0);
761         mn->header.flags = ln->header.flags;
762         mn->header.max_entries = ln->header.max_entries;
763         mn->header.value_size = ln->header.value_size;
764
765         redistribute3(ln, mn, rn);
766
767         /* patch up the parent */
768         pn->keys[middle_index] = rn->keys[0];
769         location = cpu_to_le64(dm_block_location(middle));
770         __dm_bless_for_disk(&location);
771         r = insert_at(sizeof(__le64), pn, middle_index,
772                       le64_to_cpu(mn->keys[0]), &location);
773         if (r) {
774                 if (shadow_current(s) != left)
775                         unlock_block(s->info, left);
776
777                 unlock_block(s->info, middle);
778
779                 if (shadow_current(s) != right)
780                         unlock_block(s->info, right);
781
782                 return r;
783         }
784
785
786         /* patch up the spine */
787         if (key < le64_to_cpu(mn->keys[0])) {
788                 unlock_block(s->info, middle);
789                 unlock_block(s->info, right);
790                 s->nodes[1] = left;
791         } else if (key < le64_to_cpu(rn->keys[0])) {
792                 unlock_block(s->info, left);
793                 unlock_block(s->info, right);
794                 s->nodes[1] = middle;
795         } else {
796                 unlock_block(s->info, left);
797                 unlock_block(s->info, middle);
798                 s->nodes[1] = right;
799         }
800
801         return 0;
802 }
803
804 /*----------------------------------------------------------------*/
805
806 /*
807  * Splits a node by creating two new children beneath the given node.
808  *
809  * Before:
810  *        +----------+
811  *        | A ++++++ |
812  *        +----------+
813  *
814  *
815  * After:
816  *      +------------+
817  *      | A (shadow) |
818  *      +------------+
819  *          |   |
820  *   +------+   +----+
821  *   |               |
822  *   v               v
823  * +-------+     +-------+
824  * | B +++ |     | C +++ |
825  * +-------+     +-------+
826  */
827 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
828 {
829         int r;
830         size_t size;
831         unsigned nr_left, nr_right;
832         struct dm_block *left, *right, *new_parent;
833         struct btree_node *pn, *ln, *rn;
834         __le64 val;
835
836         new_parent = shadow_current(s);
837
838         pn = dm_block_data(new_parent);
839         size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
840                 sizeof(__le64) : s->info->value_type.size;
841
842         /* create & init the left block */
843         r = new_block(s->info, &left);
844         if (r < 0)
845                 return r;
846
847         ln = dm_block_data(left);
848         nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
849
850         ln->header.flags = pn->header.flags;
851         ln->header.nr_entries = cpu_to_le32(nr_left);
852         ln->header.max_entries = pn->header.max_entries;
853         ln->header.value_size = pn->header.value_size;
854         memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
855         memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
856
857         /* create & init the right block */
858         r = new_block(s->info, &right);
859         if (r < 0) {
860                 unlock_block(s->info, left);
861                 return r;
862         }
863
864         rn = dm_block_data(right);
865         nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
866
867         rn->header.flags = pn->header.flags;
868         rn->header.nr_entries = cpu_to_le32(nr_right);
869         rn->header.max_entries = pn->header.max_entries;
870         rn->header.value_size = pn->header.value_size;
871         memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
872         memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
873                nr_right * size);
874
875         /* new_parent should just point to l and r now */
876         pn->header.flags = cpu_to_le32(INTERNAL_NODE);
877         pn->header.nr_entries = cpu_to_le32(2);
878         pn->header.max_entries = cpu_to_le32(
879                 calc_max_entries(sizeof(__le64),
880                                  dm_bm_block_size(
881                                          dm_tm_get_bm(s->info->tm))));
882         pn->header.value_size = cpu_to_le32(sizeof(__le64));
883
884         val = cpu_to_le64(dm_block_location(left));
885         __dm_bless_for_disk(&val);
886         pn->keys[0] = ln->keys[0];
887         memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
888
889         val = cpu_to_le64(dm_block_location(right));
890         __dm_bless_for_disk(&val);
891         pn->keys[1] = rn->keys[0];
892         memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
893
894         unlock_block(s->info, left);
895         unlock_block(s->info, right);
896         return 0;
897 }
898
899 /*----------------------------------------------------------------*/
900
901 /*
902  * Redistributes a node's entries with its left sibling.
903  */
904 static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
905                           unsigned parent_index, uint64_t key)
906 {
907         int r;
908         struct dm_block *sib;
909         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
910
911         r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
912         if (r)
913                 return r;
914
915         left = dm_block_data(sib);
916         right = dm_block_data(shadow_current(s));
917         redistribute2(left, right);
918         *key_ptr(parent, parent_index) = right->keys[0];
919
920         if (key < le64_to_cpu(right->keys[0])) {
921                 unlock_block(s->info, s->nodes[1]);
922                 s->nodes[1] = sib;
923         } else {
924                 unlock_block(s->info, sib);
925         }
926
927         return 0;
928 }
929
930 /*
931  * Redistributes a nodes entries with its right sibling.
932  */
933 static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
934                            unsigned parent_index, uint64_t key)
935 {
936         int r;
937         struct dm_block *sib;
938         struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
939
940         r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
941         if (r)
942                 return r;
943
944         left = dm_block_data(shadow_current(s));
945         right = dm_block_data(sib);
946         redistribute2(left, right);
947         *key_ptr(parent, parent_index + 1) = right->keys[0];
948
949         if (key < le64_to_cpu(right->keys[0])) {
950                 unlock_block(s->info, sib);
951         } else {
952                 unlock_block(s->info, s->nodes[1]);
953                 s->nodes[1] = sib;
954         }
955
956         return 0;
957 }
958
959 /*
960  * Returns the number of spare entries in a node.
961  */
962 static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
963 {
964         int r;
965         unsigned nr_entries;
966         struct dm_block *block;
967         struct btree_node *node;
968
969         r = bn_read_lock(info, b, &block);
970         if (r)
971                 return r;
972
973         node = dm_block_data(block);
974         nr_entries = le32_to_cpu(node->header.nr_entries);
975         *space = le32_to_cpu(node->header.max_entries) - nr_entries;
976
977         unlock_block(info, block);
978         return 0;
979 }
980
981 /*
982  * Make space in a node, either by moving some entries to a sibling,
983  * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
984  * number of free entries that must be in the sibling to make the move
985  * worth while.  If the siblings are shared (eg, part of a snapshot),
986  * then they are not touched, since this break sharing and so consume
987  * more space than we save.
988  */
989 #define SPACE_THRESHOLD 8
990 static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
991                               unsigned parent_index, uint64_t key)
992 {
993         int r;
994         struct btree_node *parent = dm_block_data(shadow_parent(s));
995         unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
996         unsigned free_space;
997         int left_shared = 0, right_shared = 0;
998
999         /* Should we move entries to the left sibling? */
1000         if (parent_index > 0) {
1001                 dm_block_t left_b = value64(parent, parent_index - 1);
1002                 r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1003                 if (r)
1004                         return r;
1005
1006                 if (!left_shared) {
1007                         r = get_node_free_space(s->info, left_b, &free_space);
1008                         if (r)
1009                                 return r;
1010
1011                         if (free_space >= SPACE_THRESHOLD)
1012                                 return rebalance_left(s, vt, parent_index, key);
1013                 }
1014         }
1015
1016         /* Should we move entries to the right sibling? */
1017         if (parent_index < (nr_parent - 1)) {
1018                 dm_block_t right_b = value64(parent, parent_index + 1);
1019                 r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1020                 if (r)
1021                         return r;
1022
1023                 if (!right_shared) {
1024                         r = get_node_free_space(s->info, right_b, &free_space);
1025                         if (r)
1026                                 return r;
1027
1028                         if (free_space >= SPACE_THRESHOLD)
1029                                 return rebalance_right(s, vt, parent_index, key);
1030                 }
1031         }
1032
1033         /*
1034          * We need to split the node, normally we split two nodes
1035          * into three.  But when inserting a sequence that is either
1036          * monotonically increasing or decreasing it's better to split
1037          * a single node into two.
1038          */
1039         if (left_shared || right_shared || (nr_parent <= 2) ||
1040             (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1041                 return split_one_into_two(s, parent_index, vt, key);
1042         } else {
1043                 return split_two_into_three(s, parent_index, vt, key);
1044         }
1045 }
1046
1047 /*
1048  * Does the node contain a particular key?
1049  */
1050 static bool contains_key(struct btree_node *node, uint64_t key)
1051 {
1052         int i = lower_bound(node, key);
1053
1054         if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1055                 return true;
1056
1057         return false;
1058 }
1059
1060 /*
1061  * In general we preemptively make sure there's a free entry in every
1062  * node on the spine when doing an insert.  But we can avoid that with
1063  * leaf nodes if we know it's an overwrite.
1064  */
1065 static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1066 {
1067         if (node->header.nr_entries == node->header.max_entries) {
1068                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1069                         /* we don't need space if it's an overwrite */
1070                         return contains_key(node, key);
1071                 }
1072
1073                 return false;
1074         }
1075
1076         return true;
1077 }
1078
1079 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1080                             struct dm_btree_value_type *vt,
1081                             uint64_t key, unsigned *index)
1082 {
1083         int r, i = *index, top = 1;
1084         struct btree_node *node;
1085
1086         for (;;) {
1087                 r = shadow_step(s, root, vt);
1088                 if (r < 0)
1089                         return r;
1090
1091                 node = dm_block_data(shadow_current(s));
1092
1093                 /*
1094                  * We have to patch up the parent node, ugly, but I don't
1095                  * see a way to do this automatically as part of the spine
1096                  * op.
1097                  */
1098                 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1099                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1100
1101                         __dm_bless_for_disk(&location);
1102                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1103                                     &location, sizeof(__le64));
1104                 }
1105
1106                 node = dm_block_data(shadow_current(s));
1107
1108                 if (!has_space_for_insert(node, key)) {
1109                         if (top)
1110                                 r = btree_split_beneath(s, key);
1111                         else
1112                                 r = rebalance_or_split(s, vt, i, key);
1113
1114                         if (r < 0)
1115                                 return r;
1116
1117                         /* making space can cause the current node to change */
1118                         node = dm_block_data(shadow_current(s));
1119                 }
1120
1121                 i = lower_bound(node, key);
1122
1123                 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1124                         break;
1125
1126                 if (i < 0) {
1127                         /* change the bounds on the lowest key */
1128                         node->keys[0] = cpu_to_le64(key);
1129                         i = 0;
1130                 }
1131
1132                 root = value64(node, i);
1133                 top = 0;
1134         }
1135
1136         if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1137                 i++;
1138
1139         *index = i;
1140         return 0;
1141 }
1142
1143 static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1144                                       uint64_t key, int *index)
1145 {
1146         int r, i = -1;
1147         struct btree_node *node;
1148
1149         *index = 0;
1150         for (;;) {
1151                 r = shadow_step(s, root, &s->info->value_type);
1152                 if (r < 0)
1153                         return r;
1154
1155                 node = dm_block_data(shadow_current(s));
1156
1157                 /*
1158                  * We have to patch up the parent node, ugly, but I don't
1159                  * see a way to do this automatically as part of the spine
1160                  * op.
1161                  */
1162                 if (shadow_has_parent(s) && i >= 0) {
1163                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1164
1165                         __dm_bless_for_disk(&location);
1166                         memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1167                                     &location, sizeof(__le64));
1168                 }
1169
1170                 node = dm_block_data(shadow_current(s));
1171                 i = lower_bound(node, key);
1172
1173                 BUG_ON(i < 0);
1174                 BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1175
1176                 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1177                         if (key != le64_to_cpu(node->keys[i]))
1178                                 return -EINVAL;
1179                         break;
1180                 }
1181
1182                 root = value64(node, i);
1183         }
1184
1185         *index = i;
1186         return 0;
1187 }
1188
1189 int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1190                              uint64_t key, int *index,
1191                              dm_block_t *new_root, struct dm_block **leaf)
1192 {
1193         int r;
1194         struct shadow_spine spine;
1195
1196         BUG_ON(info->levels > 1);
1197         init_shadow_spine(&spine, info);
1198         r = __btree_get_overwrite_leaf(&spine, root, key, index);
1199         if (!r) {
1200                 *new_root = shadow_root(&spine);
1201                 *leaf = shadow_current(&spine);
1202
1203                 /*
1204                  * Decrement the count so exit_shadow_spine() doesn't
1205                  * unlock the leaf.
1206                  */
1207                 spine.count--;
1208         }
1209         exit_shadow_spine(&spine);
1210
1211         return r;
1212 }
1213
1214 static bool need_insert(struct btree_node *node, uint64_t *keys,
1215                         unsigned level, unsigned index)
1216 {
1217         return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1218                 (le64_to_cpu(node->keys[index]) != keys[level]));
1219 }
1220
1221 static int insert(struct dm_btree_info *info, dm_block_t root,
1222                   uint64_t *keys, void *value, dm_block_t *new_root,
1223                   int *inserted)
1224                   __dm_written_to_disk(value)
1225 {
1226         int r;
1227         unsigned level, index = -1, last_level = info->levels - 1;
1228         dm_block_t block = root;
1229         struct shadow_spine spine;
1230         struct btree_node *n;
1231         struct dm_btree_value_type le64_type;
1232
1233         init_le64_type(info->tm, &le64_type);
1234         init_shadow_spine(&spine, info);
1235
1236         for (level = 0; level < (info->levels - 1); level++) {
1237                 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1238                 if (r < 0)
1239                         goto bad;
1240
1241                 n = dm_block_data(shadow_current(&spine));
1242
1243                 if (need_insert(n, keys, level, index)) {
1244                         dm_block_t new_tree;
1245                         __le64 new_le;
1246
1247                         r = dm_btree_empty(info, &new_tree);
1248                         if (r < 0)
1249                                 goto bad;
1250
1251                         new_le = cpu_to_le64(new_tree);
1252                         __dm_bless_for_disk(&new_le);
1253
1254                         r = insert_at(sizeof(uint64_t), n, index,
1255                                       keys[level], &new_le);
1256                         if (r)
1257                                 goto bad;
1258                 }
1259
1260                 if (level < last_level)
1261                         block = value64(n, index);
1262         }
1263
1264         r = btree_insert_raw(&spine, block, &info->value_type,
1265                              keys[level], &index);
1266         if (r < 0)
1267                 goto bad;
1268
1269         n = dm_block_data(shadow_current(&spine));
1270
1271         if (need_insert(n, keys, level, index)) {
1272                 if (inserted)
1273                         *inserted = 1;
1274
1275                 r = insert_at(info->value_type.size, n, index,
1276                               keys[level], value);
1277                 if (r)
1278                         goto bad_unblessed;
1279         } else {
1280                 if (inserted)
1281                         *inserted = 0;
1282
1283                 if (info->value_type.dec &&
1284                     (!info->value_type.equal ||
1285                      !info->value_type.equal(
1286                              info->value_type.context,
1287                              value_ptr(n, index),
1288                              value))) {
1289                         info->value_type.dec(info->value_type.context,
1290                                              value_ptr(n, index), 1);
1291                 }
1292                 memcpy_disk(value_ptr(n, index),
1293                             value, info->value_type.size);
1294         }
1295
1296         *new_root = shadow_root(&spine);
1297         exit_shadow_spine(&spine);
1298
1299         return 0;
1300
1301 bad:
1302         __dm_unbless_for_disk(value);
1303 bad_unblessed:
1304         exit_shadow_spine(&spine);
1305         return r;
1306 }
1307
1308 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1309                     uint64_t *keys, void *value, dm_block_t *new_root)
1310                     __dm_written_to_disk(value)
1311 {
1312         return insert(info, root, keys, value, new_root, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(dm_btree_insert);
1315
1316 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1317                            uint64_t *keys, void *value, dm_block_t *new_root,
1318                            int *inserted)
1319                            __dm_written_to_disk(value)
1320 {
1321         return insert(info, root, keys, value, new_root, inserted);
1322 }
1323 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1324
1325 /*----------------------------------------------------------------*/
1326
1327 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1328                     uint64_t *result_key, dm_block_t *next_block)
1329 {
1330         int i, r;
1331         uint32_t flags;
1332
1333         do {
1334                 r = ro_step(s, block);
1335                 if (r < 0)
1336                         return r;
1337
1338                 flags = le32_to_cpu(ro_node(s)->header.flags);
1339                 i = le32_to_cpu(ro_node(s)->header.nr_entries);
1340                 if (!i)
1341                         return -ENODATA;
1342                 else
1343                         i--;
1344
1345                 if (find_highest)
1346                         *result_key = le64_to_cpu(ro_node(s)->keys[i]);
1347                 else
1348                         *result_key = le64_to_cpu(ro_node(s)->keys[0]);
1349
1350                 if (next_block || flags & INTERNAL_NODE) {
1351                         if (find_highest)
1352                                 block = value64(ro_node(s), i);
1353                         else
1354                                 block = value64(ro_node(s), 0);
1355                 }
1356
1357         } while (flags & INTERNAL_NODE);
1358
1359         if (next_block)
1360                 *next_block = block;
1361         return 0;
1362 }
1363
1364 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1365                              bool find_highest, uint64_t *result_keys)
1366 {
1367         int r = 0, count = 0, level;
1368         struct ro_spine spine;
1369
1370         init_ro_spine(&spine, info);
1371         for (level = 0; level < info->levels; level++) {
1372                 r = find_key(&spine, root, find_highest, result_keys + level,
1373                              level == info->levels - 1 ? NULL : &root);
1374                 if (r == -ENODATA) {
1375                         r = 0;
1376                         break;
1377
1378                 } else if (r)
1379                         break;
1380
1381                 count++;
1382         }
1383         exit_ro_spine(&spine);
1384
1385         return r ? r : count;
1386 }
1387
1388 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1389                               uint64_t *result_keys)
1390 {
1391         return dm_btree_find_key(info, root, true, result_keys);
1392 }
1393 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1394
1395 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1396                              uint64_t *result_keys)
1397 {
1398         return dm_btree_find_key(info, root, false, result_keys);
1399 }
1400 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1401
1402 /*----------------------------------------------------------------*/
1403
1404 /*
1405  * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1406  * space.  Also this only works for single level trees.
1407  */
1408 static int walk_node(struct dm_btree_info *info, dm_block_t block,
1409                      int (*fn)(void *context, uint64_t *keys, void *leaf),
1410                      void *context)
1411 {
1412         int r;
1413         unsigned i, nr;
1414         struct dm_block *node;
1415         struct btree_node *n;
1416         uint64_t keys;
1417
1418         r = bn_read_lock(info, block, &node);
1419         if (r)
1420                 return r;
1421
1422         n = dm_block_data(node);
1423
1424         nr = le32_to_cpu(n->header.nr_entries);
1425         for (i = 0; i < nr; i++) {
1426                 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1427                         r = walk_node(info, value64(n, i), fn, context);
1428                         if (r)
1429                                 goto out;
1430                 } else {
1431                         keys = le64_to_cpu(*key_ptr(n, i));
1432                         r = fn(context, &keys, value_ptr(n, i));
1433                         if (r)
1434                                 goto out;
1435                 }
1436         }
1437
1438 out:
1439         dm_tm_unlock(info->tm, node);
1440         return r;
1441 }
1442
1443 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1444                   int (*fn)(void *context, uint64_t *keys, void *leaf),
1445                   void *context)
1446 {
1447         BUG_ON(info->levels > 1);
1448         return walk_node(info, root, fn, context);
1449 }
1450 EXPORT_SYMBOL_GPL(dm_btree_walk);
1451
1452 /*----------------------------------------------------------------*/
1453
1454 static void prefetch_values(struct dm_btree_cursor *c)
1455 {
1456         unsigned i, nr;
1457         __le64 value_le;
1458         struct cursor_node *n = c->nodes + c->depth - 1;
1459         struct btree_node *bn = dm_block_data(n->b);
1460         struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1461
1462         BUG_ON(c->info->value_type.size != sizeof(value_le));
1463
1464         nr = le32_to_cpu(bn->header.nr_entries);
1465         for (i = 0; i < nr; i++) {
1466                 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1467                 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1468         }
1469 }
1470
1471 static bool leaf_node(struct dm_btree_cursor *c)
1472 {
1473         struct cursor_node *n = c->nodes + c->depth - 1;
1474         struct btree_node *bn = dm_block_data(n->b);
1475
1476         return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1477 }
1478
1479 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1480 {
1481         int r;
1482         struct cursor_node *n = c->nodes + c->depth;
1483
1484         if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1485                 DMERR("couldn't push cursor node, stack depth too high");
1486                 return -EINVAL;
1487         }
1488
1489         r = bn_read_lock(c->info, b, &n->b);
1490         if (r)
1491                 return r;
1492
1493         n->index = 0;
1494         c->depth++;
1495
1496         if (c->prefetch_leaves || !leaf_node(c))
1497                 prefetch_values(c);
1498
1499         return 0;
1500 }
1501
1502 static void pop_node(struct dm_btree_cursor *c)
1503 {
1504         c->depth--;
1505         unlock_block(c->info, c->nodes[c->depth].b);
1506 }
1507
1508 static int inc_or_backtrack(struct dm_btree_cursor *c)
1509 {
1510         struct cursor_node *n;
1511         struct btree_node *bn;
1512
1513         for (;;) {
1514                 if (!c->depth)
1515                         return -ENODATA;
1516
1517                 n = c->nodes + c->depth - 1;
1518                 bn = dm_block_data(n->b);
1519
1520                 n->index++;
1521                 if (n->index < le32_to_cpu(bn->header.nr_entries))
1522                         break;
1523
1524                 pop_node(c);
1525         }
1526
1527         return 0;
1528 }
1529
1530 static int find_leaf(struct dm_btree_cursor *c)
1531 {
1532         int r = 0;
1533         struct cursor_node *n;
1534         struct btree_node *bn;
1535         __le64 value_le;
1536
1537         for (;;) {
1538                 n = c->nodes + c->depth - 1;
1539                 bn = dm_block_data(n->b);
1540
1541                 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1542                         break;
1543
1544                 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1545                 r = push_node(c, le64_to_cpu(value_le));
1546                 if (r) {
1547                         DMERR("push_node failed");
1548                         break;
1549                 }
1550         }
1551
1552         if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1553                 return -ENODATA;
1554
1555         return r;
1556 }
1557
1558 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1559                           bool prefetch_leaves, struct dm_btree_cursor *c)
1560 {
1561         int r;
1562
1563         c->info = info;
1564         c->root = root;
1565         c->depth = 0;
1566         c->prefetch_leaves = prefetch_leaves;
1567
1568         r = push_node(c, root);
1569         if (r)
1570                 return r;
1571
1572         return find_leaf(c);
1573 }
1574 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1575
1576 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1577 {
1578         while (c->depth)
1579                 pop_node(c);
1580 }
1581 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1582
1583 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1584 {
1585         int r = inc_or_backtrack(c);
1586         if (!r) {
1587                 r = find_leaf(c);
1588                 if (r)
1589                         DMERR("find_leaf failed");
1590         }
1591
1592         return r;
1593 }
1594 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1595
1596 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1597 {
1598         int r = 0;
1599
1600         while (count-- && !r)
1601                 r = dm_btree_cursor_next(c);
1602
1603         return r;
1604 }
1605 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1606
1607 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1608 {
1609         if (c->depth) {
1610                 struct cursor_node *n = c->nodes + c->depth - 1;
1611                 struct btree_node *bn = dm_block_data(n->b);
1612
1613                 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1614                         return -EINVAL;
1615
1616                 *key = le64_to_cpu(*key_ptr(bn, n->index));
1617                 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1618                 return 0;
1619
1620         } else
1621                 return -ENODATA;
1622 }
1623 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);