Merge tag 'gvt-next-fixes-2019-09-06' of https://github.com/intel/gvt-linux into...
[linux-2.6-microblaze.git] / drivers / md / dm-writecache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18
19 #define DM_MSG_PREFIX "writecache"
20
21 #define HIGH_WATERMARK                  50
22 #define LOW_WATERMARK                   45
23 #define MAX_WRITEBACK_JOBS              0
24 #define ENDIO_LATENCY                   16
25 #define WRITEBACK_LATENCY               64
26 #define AUTOCOMMIT_BLOCKS_SSD           65536
27 #define AUTOCOMMIT_BLOCKS_PMEM          64
28 #define AUTOCOMMIT_MSEC                 1000
29
30 #define BITMAP_GRANULARITY      65536
31 #if BITMAP_GRANULARITY < PAGE_SIZE
32 #undef BITMAP_GRANULARITY
33 #define BITMAP_GRANULARITY      PAGE_SIZE
34 #endif
35
36 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
37 #define DM_WRITECACHE_HAS_PMEM
38 #endif
39
40 #ifdef DM_WRITECACHE_HAS_PMEM
41 #define pmem_assign(dest, src)                                  \
42 do {                                                            \
43         typeof(dest) uniq = (src);                              \
44         memcpy_flushcache(&(dest), &uniq, sizeof(dest));        \
45 } while (0)
46 #else
47 #define pmem_assign(dest, src)  ((dest) = (src))
48 #endif
49
50 #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
51 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
52 #endif
53
54 #define MEMORY_SUPERBLOCK_MAGIC         0x23489321
55 #define MEMORY_SUPERBLOCK_VERSION       1
56
57 struct wc_memory_entry {
58         __le64 original_sector;
59         __le64 seq_count;
60 };
61
62 struct wc_memory_superblock {
63         union {
64                 struct {
65                         __le32 magic;
66                         __le32 version;
67                         __le32 block_size;
68                         __le32 pad;
69                         __le64 n_blocks;
70                         __le64 seq_count;
71                 };
72                 __le64 padding[8];
73         };
74         struct wc_memory_entry entries[0];
75 };
76
77 struct wc_entry {
78         struct rb_node rb_node;
79         struct list_head lru;
80         unsigned short wc_list_contiguous;
81         bool write_in_progress
82 #if BITS_PER_LONG == 64
83                 :1
84 #endif
85         ;
86         unsigned long index
87 #if BITS_PER_LONG == 64
88                 :47
89 #endif
90         ;
91 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
92         uint64_t original_sector;
93         uint64_t seq_count;
94 #endif
95 };
96
97 #ifdef DM_WRITECACHE_HAS_PMEM
98 #define WC_MODE_PMEM(wc)                        ((wc)->pmem_mode)
99 #define WC_MODE_FUA(wc)                         ((wc)->writeback_fua)
100 #else
101 #define WC_MODE_PMEM(wc)                        false
102 #define WC_MODE_FUA(wc)                         false
103 #endif
104 #define WC_MODE_SORT_FREELIST(wc)               (!WC_MODE_PMEM(wc))
105
106 struct dm_writecache {
107         struct mutex lock;
108         struct list_head lru;
109         union {
110                 struct list_head freelist;
111                 struct {
112                         struct rb_root freetree;
113                         struct wc_entry *current_free;
114                 };
115         };
116         struct rb_root tree;
117
118         size_t freelist_size;
119         size_t writeback_size;
120         size_t freelist_high_watermark;
121         size_t freelist_low_watermark;
122
123         unsigned uncommitted_blocks;
124         unsigned autocommit_blocks;
125         unsigned max_writeback_jobs;
126
127         int error;
128
129         unsigned long autocommit_jiffies;
130         struct timer_list autocommit_timer;
131         struct wait_queue_head freelist_wait;
132
133         atomic_t bio_in_progress[2];
134         struct wait_queue_head bio_in_progress_wait[2];
135
136         struct dm_target *ti;
137         struct dm_dev *dev;
138         struct dm_dev *ssd_dev;
139         sector_t start_sector;
140         void *memory_map;
141         uint64_t memory_map_size;
142         size_t metadata_sectors;
143         size_t n_blocks;
144         uint64_t seq_count;
145         void *block_start;
146         struct wc_entry *entries;
147         unsigned block_size;
148         unsigned char block_size_bits;
149
150         bool pmem_mode:1;
151         bool writeback_fua:1;
152
153         bool overwrote_committed:1;
154         bool memory_vmapped:1;
155
156         bool high_wm_percent_set:1;
157         bool low_wm_percent_set:1;
158         bool max_writeback_jobs_set:1;
159         bool autocommit_blocks_set:1;
160         bool autocommit_time_set:1;
161         bool writeback_fua_set:1;
162         bool flush_on_suspend:1;
163
164         unsigned writeback_all;
165         struct workqueue_struct *writeback_wq;
166         struct work_struct writeback_work;
167         struct work_struct flush_work;
168
169         struct dm_io_client *dm_io;
170
171         raw_spinlock_t endio_list_lock;
172         struct list_head endio_list;
173         struct task_struct *endio_thread;
174
175         struct task_struct *flush_thread;
176         struct bio_list flush_list;
177
178         struct dm_kcopyd_client *dm_kcopyd;
179         unsigned long *dirty_bitmap;
180         unsigned dirty_bitmap_size;
181
182         struct bio_set bio_set;
183         mempool_t copy_pool;
184 };
185
186 #define WB_LIST_INLINE          16
187
188 struct writeback_struct {
189         struct list_head endio_entry;
190         struct dm_writecache *wc;
191         struct wc_entry **wc_list;
192         unsigned wc_list_n;
193         struct page *page;
194         struct wc_entry *wc_list_inline[WB_LIST_INLINE];
195         struct bio bio;
196 };
197
198 struct copy_struct {
199         struct list_head endio_entry;
200         struct dm_writecache *wc;
201         struct wc_entry *e;
202         unsigned n_entries;
203         int error;
204 };
205
206 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
207                                             "A percentage of time allocated for data copying");
208
209 static void wc_lock(struct dm_writecache *wc)
210 {
211         mutex_lock(&wc->lock);
212 }
213
214 static void wc_unlock(struct dm_writecache *wc)
215 {
216         mutex_unlock(&wc->lock);
217 }
218
219 #ifdef DM_WRITECACHE_HAS_PMEM
220 static int persistent_memory_claim(struct dm_writecache *wc)
221 {
222         int r;
223         loff_t s;
224         long p, da;
225         pfn_t pfn;
226         int id;
227         struct page **pages;
228
229         wc->memory_vmapped = false;
230
231         if (!wc->ssd_dev->dax_dev) {
232                 r = -EOPNOTSUPP;
233                 goto err1;
234         }
235         s = wc->memory_map_size;
236         p = s >> PAGE_SHIFT;
237         if (!p) {
238                 r = -EINVAL;
239                 goto err1;
240         }
241         if (p != s >> PAGE_SHIFT) {
242                 r = -EOVERFLOW;
243                 goto err1;
244         }
245
246         id = dax_read_lock();
247
248         da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
249         if (da < 0) {
250                 wc->memory_map = NULL;
251                 r = da;
252                 goto err2;
253         }
254         if (!pfn_t_has_page(pfn)) {
255                 wc->memory_map = NULL;
256                 r = -EOPNOTSUPP;
257                 goto err2;
258         }
259         if (da != p) {
260                 long i;
261                 wc->memory_map = NULL;
262                 pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
263                 if (!pages) {
264                         r = -ENOMEM;
265                         goto err2;
266                 }
267                 i = 0;
268                 do {
269                         long daa;
270                         daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
271                                                 NULL, &pfn);
272                         if (daa <= 0) {
273                                 r = daa ? daa : -EINVAL;
274                                 goto err3;
275                         }
276                         if (!pfn_t_has_page(pfn)) {
277                                 r = -EOPNOTSUPP;
278                                 goto err3;
279                         }
280                         while (daa-- && i < p) {
281                                 pages[i++] = pfn_t_to_page(pfn);
282                                 pfn.val++;
283                         }
284                 } while (i < p);
285                 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
286                 if (!wc->memory_map) {
287                         r = -ENOMEM;
288                         goto err3;
289                 }
290                 kvfree(pages);
291                 wc->memory_vmapped = true;
292         }
293
294         dax_read_unlock(id);
295
296         wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
297         wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
298
299         return 0;
300 err3:
301         kvfree(pages);
302 err2:
303         dax_read_unlock(id);
304 err1:
305         return r;
306 }
307 #else
308 static int persistent_memory_claim(struct dm_writecache *wc)
309 {
310         BUG();
311 }
312 #endif
313
314 static void persistent_memory_release(struct dm_writecache *wc)
315 {
316         if (wc->memory_vmapped)
317                 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
318 }
319
320 static struct page *persistent_memory_page(void *addr)
321 {
322         if (is_vmalloc_addr(addr))
323                 return vmalloc_to_page(addr);
324         else
325                 return virt_to_page(addr);
326 }
327
328 static unsigned persistent_memory_page_offset(void *addr)
329 {
330         return (unsigned long)addr & (PAGE_SIZE - 1);
331 }
332
333 static void persistent_memory_flush_cache(void *ptr, size_t size)
334 {
335         if (is_vmalloc_addr(ptr))
336                 flush_kernel_vmap_range(ptr, size);
337 }
338
339 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
340 {
341         if (is_vmalloc_addr(ptr))
342                 invalidate_kernel_vmap_range(ptr, size);
343 }
344
345 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
346 {
347         return wc->memory_map;
348 }
349
350 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
351 {
352         return &sb(wc)->entries[e->index];
353 }
354
355 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
356 {
357         return (char *)wc->block_start + (e->index << wc->block_size_bits);
358 }
359
360 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
361 {
362         return wc->start_sector + wc->metadata_sectors +
363                 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
364 }
365
366 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
367 {
368 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
369         return e->original_sector;
370 #else
371         return le64_to_cpu(memory_entry(wc, e)->original_sector);
372 #endif
373 }
374
375 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
376 {
377 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
378         return e->seq_count;
379 #else
380         return le64_to_cpu(memory_entry(wc, e)->seq_count);
381 #endif
382 }
383
384 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
385 {
386 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
387         e->seq_count = -1;
388 #endif
389         pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
390 }
391
392 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
393                                             uint64_t original_sector, uint64_t seq_count)
394 {
395         struct wc_memory_entry me;
396 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
397         e->original_sector = original_sector;
398         e->seq_count = seq_count;
399 #endif
400         me.original_sector = cpu_to_le64(original_sector);
401         me.seq_count = cpu_to_le64(seq_count);
402         pmem_assign(*memory_entry(wc, e), me);
403 }
404
405 #define writecache_error(wc, err, msg, arg...)                          \
406 do {                                                                    \
407         if (!cmpxchg(&(wc)->error, 0, err))                             \
408                 DMERR(msg, ##arg);                                      \
409         wake_up(&(wc)->freelist_wait);                                  \
410 } while (0)
411
412 #define writecache_has_error(wc)        (unlikely(READ_ONCE((wc)->error)))
413
414 static void writecache_flush_all_metadata(struct dm_writecache *wc)
415 {
416         if (!WC_MODE_PMEM(wc))
417                 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
418 }
419
420 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
421 {
422         if (!WC_MODE_PMEM(wc))
423                 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
424                           wc->dirty_bitmap);
425 }
426
427 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
428
429 struct io_notify {
430         struct dm_writecache *wc;
431         struct completion c;
432         atomic_t count;
433 };
434
435 static void writecache_notify_io(unsigned long error, void *context)
436 {
437         struct io_notify *endio = context;
438
439         if (unlikely(error != 0))
440                 writecache_error(endio->wc, -EIO, "error writing metadata");
441         BUG_ON(atomic_read(&endio->count) <= 0);
442         if (atomic_dec_and_test(&endio->count))
443                 complete(&endio->c);
444 }
445
446 static void ssd_commit_flushed(struct dm_writecache *wc)
447 {
448         struct dm_io_region region;
449         struct dm_io_request req;
450         struct io_notify endio = {
451                 wc,
452                 COMPLETION_INITIALIZER_ONSTACK(endio.c),
453                 ATOMIC_INIT(1),
454         };
455         unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
456         unsigned i = 0;
457
458         while (1) {
459                 unsigned j;
460                 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
461                 if (unlikely(i == bitmap_bits))
462                         break;
463                 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
464
465                 region.bdev = wc->ssd_dev->bdev;
466                 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
467                 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
468
469                 if (unlikely(region.sector >= wc->metadata_sectors))
470                         break;
471                 if (unlikely(region.sector + region.count > wc->metadata_sectors))
472                         region.count = wc->metadata_sectors - region.sector;
473
474                 region.sector += wc->start_sector;
475                 atomic_inc(&endio.count);
476                 req.bi_op = REQ_OP_WRITE;
477                 req.bi_op_flags = REQ_SYNC;
478                 req.mem.type = DM_IO_VMA;
479                 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
480                 req.client = wc->dm_io;
481                 req.notify.fn = writecache_notify_io;
482                 req.notify.context = &endio;
483
484                 /* writing via async dm-io (implied by notify.fn above) won't return an error */
485                 (void) dm_io(&req, 1, &region, NULL);
486                 i = j;
487         }
488
489         writecache_notify_io(0, &endio);
490         wait_for_completion_io(&endio.c);
491
492         writecache_disk_flush(wc, wc->ssd_dev);
493
494         memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
495 }
496
497 static void writecache_commit_flushed(struct dm_writecache *wc)
498 {
499         if (WC_MODE_PMEM(wc))
500                 wmb();
501         else
502                 ssd_commit_flushed(wc);
503 }
504
505 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
506 {
507         int r;
508         struct dm_io_region region;
509         struct dm_io_request req;
510
511         region.bdev = dev->bdev;
512         region.sector = 0;
513         region.count = 0;
514         req.bi_op = REQ_OP_WRITE;
515         req.bi_op_flags = REQ_PREFLUSH;
516         req.mem.type = DM_IO_KMEM;
517         req.mem.ptr.addr = NULL;
518         req.client = wc->dm_io;
519         req.notify.fn = NULL;
520
521         r = dm_io(&req, 1, &region, NULL);
522         if (unlikely(r))
523                 writecache_error(wc, r, "error flushing metadata: %d", r);
524 }
525
526 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
527 {
528         wait_event(wc->bio_in_progress_wait[direction],
529                    !atomic_read(&wc->bio_in_progress[direction]));
530 }
531
532 #define WFE_RETURN_FOLLOWING    1
533 #define WFE_LOWEST_SEQ          2
534
535 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
536                                               uint64_t block, int flags)
537 {
538         struct wc_entry *e;
539         struct rb_node *node = wc->tree.rb_node;
540
541         if (unlikely(!node))
542                 return NULL;
543
544         while (1) {
545                 e = container_of(node, struct wc_entry, rb_node);
546                 if (read_original_sector(wc, e) == block)
547                         break;
548
549                 node = (read_original_sector(wc, e) >= block ?
550                         e->rb_node.rb_left : e->rb_node.rb_right);
551                 if (unlikely(!node)) {
552                         if (!(flags & WFE_RETURN_FOLLOWING))
553                                 return NULL;
554                         if (read_original_sector(wc, e) >= block) {
555                                 return e;
556                         } else {
557                                 node = rb_next(&e->rb_node);
558                                 if (unlikely(!node))
559                                         return NULL;
560                                 e = container_of(node, struct wc_entry, rb_node);
561                                 return e;
562                         }
563                 }
564         }
565
566         while (1) {
567                 struct wc_entry *e2;
568                 if (flags & WFE_LOWEST_SEQ)
569                         node = rb_prev(&e->rb_node);
570                 else
571                         node = rb_next(&e->rb_node);
572                 if (unlikely(!node))
573                         return e;
574                 e2 = container_of(node, struct wc_entry, rb_node);
575                 if (read_original_sector(wc, e2) != block)
576                         return e;
577                 e = e2;
578         }
579 }
580
581 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
582 {
583         struct wc_entry *e;
584         struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
585
586         while (*node) {
587                 e = container_of(*node, struct wc_entry, rb_node);
588                 parent = &e->rb_node;
589                 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
590                         node = &parent->rb_left;
591                 else
592                         node = &parent->rb_right;
593         }
594         rb_link_node(&ins->rb_node, parent, node);
595         rb_insert_color(&ins->rb_node, &wc->tree);
596         list_add(&ins->lru, &wc->lru);
597 }
598
599 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
600 {
601         list_del(&e->lru);
602         rb_erase(&e->rb_node, &wc->tree);
603 }
604
605 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
606 {
607         if (WC_MODE_SORT_FREELIST(wc)) {
608                 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
609                 if (unlikely(!*node))
610                         wc->current_free = e;
611                 while (*node) {
612                         parent = *node;
613                         if (&e->rb_node < *node)
614                                 node = &parent->rb_left;
615                         else
616                                 node = &parent->rb_right;
617                 }
618                 rb_link_node(&e->rb_node, parent, node);
619                 rb_insert_color(&e->rb_node, &wc->freetree);
620         } else {
621                 list_add_tail(&e->lru, &wc->freelist);
622         }
623         wc->freelist_size++;
624 }
625
626 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
627 {
628         struct wc_entry *e;
629
630         if (WC_MODE_SORT_FREELIST(wc)) {
631                 struct rb_node *next;
632                 if (unlikely(!wc->current_free))
633                         return NULL;
634                 e = wc->current_free;
635                 next = rb_next(&e->rb_node);
636                 rb_erase(&e->rb_node, &wc->freetree);
637                 if (unlikely(!next))
638                         next = rb_first(&wc->freetree);
639                 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
640         } else {
641                 if (unlikely(list_empty(&wc->freelist)))
642                         return NULL;
643                 e = container_of(wc->freelist.next, struct wc_entry, lru);
644                 list_del(&e->lru);
645         }
646         wc->freelist_size--;
647         if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
648                 queue_work(wc->writeback_wq, &wc->writeback_work);
649
650         return e;
651 }
652
653 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
654 {
655         writecache_unlink(wc, e);
656         writecache_add_to_freelist(wc, e);
657         clear_seq_count(wc, e);
658         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
659         if (unlikely(waitqueue_active(&wc->freelist_wait)))
660                 wake_up(&wc->freelist_wait);
661 }
662
663 static void writecache_wait_on_freelist(struct dm_writecache *wc)
664 {
665         DEFINE_WAIT(wait);
666
667         prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
668         wc_unlock(wc);
669         io_schedule();
670         finish_wait(&wc->freelist_wait, &wait);
671         wc_lock(wc);
672 }
673
674 static void writecache_poison_lists(struct dm_writecache *wc)
675 {
676         /*
677          * Catch incorrect access to these values while the device is suspended.
678          */
679         memset(&wc->tree, -1, sizeof wc->tree);
680         wc->lru.next = LIST_POISON1;
681         wc->lru.prev = LIST_POISON2;
682         wc->freelist.next = LIST_POISON1;
683         wc->freelist.prev = LIST_POISON2;
684 }
685
686 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
687 {
688         writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
689         if (WC_MODE_PMEM(wc))
690                 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
691 }
692
693 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
694 {
695         return read_seq_count(wc, e) < wc->seq_count;
696 }
697
698 static void writecache_flush(struct dm_writecache *wc)
699 {
700         struct wc_entry *e, *e2;
701         bool need_flush_after_free;
702
703         wc->uncommitted_blocks = 0;
704         del_timer(&wc->autocommit_timer);
705
706         if (list_empty(&wc->lru))
707                 return;
708
709         e = container_of(wc->lru.next, struct wc_entry, lru);
710         if (writecache_entry_is_committed(wc, e)) {
711                 if (wc->overwrote_committed) {
712                         writecache_wait_for_ios(wc, WRITE);
713                         writecache_disk_flush(wc, wc->ssd_dev);
714                         wc->overwrote_committed = false;
715                 }
716                 return;
717         }
718         while (1) {
719                 writecache_flush_entry(wc, e);
720                 if (unlikely(e->lru.next == &wc->lru))
721                         break;
722                 e2 = container_of(e->lru.next, struct wc_entry, lru);
723                 if (writecache_entry_is_committed(wc, e2))
724                         break;
725                 e = e2;
726                 cond_resched();
727         }
728         writecache_commit_flushed(wc);
729
730         writecache_wait_for_ios(wc, WRITE);
731
732         wc->seq_count++;
733         pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
734         writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
735         writecache_commit_flushed(wc);
736
737         wc->overwrote_committed = false;
738
739         need_flush_after_free = false;
740         while (1) {
741                 /* Free another committed entry with lower seq-count */
742                 struct rb_node *rb_node = rb_prev(&e->rb_node);
743
744                 if (rb_node) {
745                         e2 = container_of(rb_node, struct wc_entry, rb_node);
746                         if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
747                             likely(!e2->write_in_progress)) {
748                                 writecache_free_entry(wc, e2);
749                                 need_flush_after_free = true;
750                         }
751                 }
752                 if (unlikely(e->lru.prev == &wc->lru))
753                         break;
754                 e = container_of(e->lru.prev, struct wc_entry, lru);
755                 cond_resched();
756         }
757
758         if (need_flush_after_free)
759                 writecache_commit_flushed(wc);
760 }
761
762 static void writecache_flush_work(struct work_struct *work)
763 {
764         struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
765
766         wc_lock(wc);
767         writecache_flush(wc);
768         wc_unlock(wc);
769 }
770
771 static void writecache_autocommit_timer(struct timer_list *t)
772 {
773         struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
774         if (!writecache_has_error(wc))
775                 queue_work(wc->writeback_wq, &wc->flush_work);
776 }
777
778 static void writecache_schedule_autocommit(struct dm_writecache *wc)
779 {
780         if (!timer_pending(&wc->autocommit_timer))
781                 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
782 }
783
784 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
785 {
786         struct wc_entry *e;
787         bool discarded_something = false;
788
789         e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
790         if (unlikely(!e))
791                 return;
792
793         while (read_original_sector(wc, e) < end) {
794                 struct rb_node *node = rb_next(&e->rb_node);
795
796                 if (likely(!e->write_in_progress)) {
797                         if (!discarded_something) {
798                                 writecache_wait_for_ios(wc, READ);
799                                 writecache_wait_for_ios(wc, WRITE);
800                                 discarded_something = true;
801                         }
802                         writecache_free_entry(wc, e);
803                 }
804
805                 if (unlikely(!node))
806                         break;
807
808                 e = container_of(node, struct wc_entry, rb_node);
809         }
810
811         if (discarded_something)
812                 writecache_commit_flushed(wc);
813 }
814
815 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
816 {
817         if (wc->writeback_size) {
818                 writecache_wait_on_freelist(wc);
819                 return true;
820         }
821         return false;
822 }
823
824 static void writecache_suspend(struct dm_target *ti)
825 {
826         struct dm_writecache *wc = ti->private;
827         bool flush_on_suspend;
828
829         del_timer_sync(&wc->autocommit_timer);
830
831         wc_lock(wc);
832         writecache_flush(wc);
833         flush_on_suspend = wc->flush_on_suspend;
834         if (flush_on_suspend) {
835                 wc->flush_on_suspend = false;
836                 wc->writeback_all++;
837                 queue_work(wc->writeback_wq, &wc->writeback_work);
838         }
839         wc_unlock(wc);
840
841         flush_workqueue(wc->writeback_wq);
842
843         wc_lock(wc);
844         if (flush_on_suspend)
845                 wc->writeback_all--;
846         while (writecache_wait_for_writeback(wc));
847
848         if (WC_MODE_PMEM(wc))
849                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
850
851         writecache_poison_lists(wc);
852
853         wc_unlock(wc);
854 }
855
856 static int writecache_alloc_entries(struct dm_writecache *wc)
857 {
858         size_t b;
859
860         if (wc->entries)
861                 return 0;
862         wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
863         if (!wc->entries)
864                 return -ENOMEM;
865         for (b = 0; b < wc->n_blocks; b++) {
866                 struct wc_entry *e = &wc->entries[b];
867                 e->index = b;
868                 e->write_in_progress = false;
869         }
870
871         return 0;
872 }
873
874 static void writecache_resume(struct dm_target *ti)
875 {
876         struct dm_writecache *wc = ti->private;
877         size_t b;
878         bool need_flush = false;
879         __le64 sb_seq_count;
880         int r;
881
882         wc_lock(wc);
883
884         if (WC_MODE_PMEM(wc))
885                 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
886
887         wc->tree = RB_ROOT;
888         INIT_LIST_HEAD(&wc->lru);
889         if (WC_MODE_SORT_FREELIST(wc)) {
890                 wc->freetree = RB_ROOT;
891                 wc->current_free = NULL;
892         } else {
893                 INIT_LIST_HEAD(&wc->freelist);
894         }
895         wc->freelist_size = 0;
896
897         r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
898         if (r) {
899                 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
900                 sb_seq_count = cpu_to_le64(0);
901         }
902         wc->seq_count = le64_to_cpu(sb_seq_count);
903
904 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
905         for (b = 0; b < wc->n_blocks; b++) {
906                 struct wc_entry *e = &wc->entries[b];
907                 struct wc_memory_entry wme;
908                 if (writecache_has_error(wc)) {
909                         e->original_sector = -1;
910                         e->seq_count = -1;
911                         continue;
912                 }
913                 r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
914                 if (r) {
915                         writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
916                                          (unsigned long)b, r);
917                         e->original_sector = -1;
918                         e->seq_count = -1;
919                 } else {
920                         e->original_sector = le64_to_cpu(wme.original_sector);
921                         e->seq_count = le64_to_cpu(wme.seq_count);
922                 }
923         }
924 #endif
925         for (b = 0; b < wc->n_blocks; b++) {
926                 struct wc_entry *e = &wc->entries[b];
927                 if (!writecache_entry_is_committed(wc, e)) {
928                         if (read_seq_count(wc, e) != -1) {
929 erase_this:
930                                 clear_seq_count(wc, e);
931                                 need_flush = true;
932                         }
933                         writecache_add_to_freelist(wc, e);
934                 } else {
935                         struct wc_entry *old;
936
937                         old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
938                         if (!old) {
939                                 writecache_insert_entry(wc, e);
940                         } else {
941                                 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
942                                         writecache_error(wc, -EINVAL,
943                                                  "two identical entries, position %llu, sector %llu, sequence %llu",
944                                                  (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
945                                                  (unsigned long long)read_seq_count(wc, e));
946                                 }
947                                 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
948                                         goto erase_this;
949                                 } else {
950                                         writecache_free_entry(wc, old);
951                                         writecache_insert_entry(wc, e);
952                                         need_flush = true;
953                                 }
954                         }
955                 }
956                 cond_resched();
957         }
958
959         if (need_flush) {
960                 writecache_flush_all_metadata(wc);
961                 writecache_commit_flushed(wc);
962         }
963
964         wc_unlock(wc);
965 }
966
967 static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
968 {
969         if (argc != 1)
970                 return -EINVAL;
971
972         wc_lock(wc);
973         if (dm_suspended(wc->ti)) {
974                 wc_unlock(wc);
975                 return -EBUSY;
976         }
977         if (writecache_has_error(wc)) {
978                 wc_unlock(wc);
979                 return -EIO;
980         }
981
982         writecache_flush(wc);
983         wc->writeback_all++;
984         queue_work(wc->writeback_wq, &wc->writeback_work);
985         wc_unlock(wc);
986
987         flush_workqueue(wc->writeback_wq);
988
989         wc_lock(wc);
990         wc->writeback_all--;
991         if (writecache_has_error(wc)) {
992                 wc_unlock(wc);
993                 return -EIO;
994         }
995         wc_unlock(wc);
996
997         return 0;
998 }
999
1000 static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001 {
1002         if (argc != 1)
1003                 return -EINVAL;
1004
1005         wc_lock(wc);
1006         wc->flush_on_suspend = true;
1007         wc_unlock(wc);
1008
1009         return 0;
1010 }
1011
1012 static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013                               char *result, unsigned maxlen)
1014 {
1015         int r = -EINVAL;
1016         struct dm_writecache *wc = ti->private;
1017
1018         if (!strcasecmp(argv[0], "flush"))
1019                 r = process_flush_mesg(argc, argv, wc);
1020         else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021                 r = process_flush_on_suspend_mesg(argc, argv, wc);
1022         else
1023                 DMERR("unrecognised message received: %s", argv[0]);
1024
1025         return r;
1026 }
1027
1028 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029 {
1030         void *buf;
1031         unsigned long flags;
1032         unsigned size;
1033         int rw = bio_data_dir(bio);
1034         unsigned remaining_size = wc->block_size;
1035
1036         do {
1037                 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038                 buf = bvec_kmap_irq(&bv, &flags);
1039                 size = bv.bv_len;
1040                 if (unlikely(size > remaining_size))
1041                         size = remaining_size;
1042
1043                 if (rw == READ) {
1044                         int r;
1045                         r = memcpy_mcsafe(buf, data, size);
1046                         flush_dcache_page(bio_page(bio));
1047                         if (unlikely(r)) {
1048                                 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049                                 bio->bi_status = BLK_STS_IOERR;
1050                         }
1051                 } else {
1052                         flush_dcache_page(bio_page(bio));
1053                         memcpy_flushcache(data, buf, size);
1054                 }
1055
1056                 bvec_kunmap_irq(buf, &flags);
1057
1058                 data = (char *)data + size;
1059                 remaining_size -= size;
1060                 bio_advance(bio, size);
1061         } while (unlikely(remaining_size));
1062 }
1063
1064 static int writecache_flush_thread(void *data)
1065 {
1066         struct dm_writecache *wc = data;
1067
1068         while (1) {
1069                 struct bio *bio;
1070
1071                 wc_lock(wc);
1072                 bio = bio_list_pop(&wc->flush_list);
1073                 if (!bio) {
1074                         set_current_state(TASK_INTERRUPTIBLE);
1075                         wc_unlock(wc);
1076
1077                         if (unlikely(kthread_should_stop())) {
1078                                 set_current_state(TASK_RUNNING);
1079                                 break;
1080                         }
1081
1082                         schedule();
1083                         continue;
1084                 }
1085
1086                 if (bio_op(bio) == REQ_OP_DISCARD) {
1087                         writecache_discard(wc, bio->bi_iter.bi_sector,
1088                                            bio_end_sector(bio));
1089                         wc_unlock(wc);
1090                         bio_set_dev(bio, wc->dev->bdev);
1091                         generic_make_request(bio);
1092                 } else {
1093                         writecache_flush(wc);
1094                         wc_unlock(wc);
1095                         if (writecache_has_error(wc))
1096                                 bio->bi_status = BLK_STS_IOERR;
1097                         bio_endio(bio);
1098                 }
1099         }
1100
1101         return 0;
1102 }
1103
1104 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105 {
1106         if (bio_list_empty(&wc->flush_list))
1107                 wake_up_process(wc->flush_thread);
1108         bio_list_add(&wc->flush_list, bio);
1109 }
1110
1111 static int writecache_map(struct dm_target *ti, struct bio *bio)
1112 {
1113         struct wc_entry *e;
1114         struct dm_writecache *wc = ti->private;
1115
1116         bio->bi_private = NULL;
1117
1118         wc_lock(wc);
1119
1120         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121                 if (writecache_has_error(wc))
1122                         goto unlock_error;
1123                 if (WC_MODE_PMEM(wc)) {
1124                         writecache_flush(wc);
1125                         if (writecache_has_error(wc))
1126                                 goto unlock_error;
1127                         goto unlock_submit;
1128                 } else {
1129                         writecache_offload_bio(wc, bio);
1130                         goto unlock_return;
1131                 }
1132         }
1133
1134         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135
1136         if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137                                 (wc->block_size / 512 - 1)) != 0)) {
1138                 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139                       (unsigned long long)bio->bi_iter.bi_sector,
1140                       bio->bi_iter.bi_size, wc->block_size);
1141                 goto unlock_error;
1142         }
1143
1144         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145                 if (writecache_has_error(wc))
1146                         goto unlock_error;
1147                 if (WC_MODE_PMEM(wc)) {
1148                         writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149                         goto unlock_remap_origin;
1150                 } else {
1151                         writecache_offload_bio(wc, bio);
1152                         goto unlock_return;
1153                 }
1154         }
1155
1156         if (bio_data_dir(bio) == READ) {
1157 read_next_block:
1158                 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159                 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160                         if (WC_MODE_PMEM(wc)) {
1161                                 bio_copy_block(wc, bio, memory_data(wc, e));
1162                                 if (bio->bi_iter.bi_size)
1163                                         goto read_next_block;
1164                                 goto unlock_submit;
1165                         } else {
1166                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1168                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1169                                 if (!writecache_entry_is_committed(wc, e))
1170                                         writecache_wait_for_ios(wc, WRITE);
1171                                 goto unlock_remap;
1172                         }
1173                 } else {
1174                         if (e) {
1175                                 sector_t next_boundary =
1176                                         read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177                                 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178                                         dm_accept_partial_bio(bio, next_boundary);
1179                                 }
1180                         }
1181                         goto unlock_remap_origin;
1182                 }
1183         } else {
1184                 do {
1185                         if (writecache_has_error(wc))
1186                                 goto unlock_error;
1187                         e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188                         if (e) {
1189                                 if (!writecache_entry_is_committed(wc, e))
1190                                         goto bio_copy;
1191                                 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192                                         wc->overwrote_committed = true;
1193                                         goto bio_copy;
1194                                 }
1195                         }
1196                         e = writecache_pop_from_freelist(wc);
1197                         if (unlikely(!e)) {
1198                                 writecache_wait_on_freelist(wc);
1199                                 continue;
1200                         }
1201                         write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202                         writecache_insert_entry(wc, e);
1203                         wc->uncommitted_blocks++;
1204 bio_copy:
1205                         if (WC_MODE_PMEM(wc)) {
1206                                 bio_copy_block(wc, bio, memory_data(wc, e));
1207                         } else {
1208                                 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209                                 bio_set_dev(bio, wc->ssd_dev->bdev);
1210                                 bio->bi_iter.bi_sector = cache_sector(wc, e);
1211                                 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212                                         wc->uncommitted_blocks = 0;
1213                                         queue_work(wc->writeback_wq, &wc->flush_work);
1214                                 } else {
1215                                         writecache_schedule_autocommit(wc);
1216                                 }
1217                                 goto unlock_remap;
1218                         }
1219                 } while (bio->bi_iter.bi_size);
1220
1221                 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
1222                         writecache_flush(wc);
1223                 else
1224                         writecache_schedule_autocommit(wc);
1225                 goto unlock_submit;
1226         }
1227
1228 unlock_remap_origin:
1229         bio_set_dev(bio, wc->dev->bdev);
1230         wc_unlock(wc);
1231         return DM_MAPIO_REMAPPED;
1232
1233 unlock_remap:
1234         /* make sure that writecache_end_io decrements bio_in_progress: */
1235         bio->bi_private = (void *)1;
1236         atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1237         wc_unlock(wc);
1238         return DM_MAPIO_REMAPPED;
1239
1240 unlock_submit:
1241         wc_unlock(wc);
1242         bio_endio(bio);
1243         return DM_MAPIO_SUBMITTED;
1244
1245 unlock_return:
1246         wc_unlock(wc);
1247         return DM_MAPIO_SUBMITTED;
1248
1249 unlock_error:
1250         wc_unlock(wc);
1251         bio_io_error(bio);
1252         return DM_MAPIO_SUBMITTED;
1253 }
1254
1255 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1256 {
1257         struct dm_writecache *wc = ti->private;
1258
1259         if (bio->bi_private != NULL) {
1260                 int dir = bio_data_dir(bio);
1261                 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1262                         if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1263                                 wake_up(&wc->bio_in_progress_wait[dir]);
1264         }
1265         return 0;
1266 }
1267
1268 static int writecache_iterate_devices(struct dm_target *ti,
1269                                       iterate_devices_callout_fn fn, void *data)
1270 {
1271         struct dm_writecache *wc = ti->private;
1272
1273         return fn(ti, wc->dev, 0, ti->len, data);
1274 }
1275
1276 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1277 {
1278         struct dm_writecache *wc = ti->private;
1279
1280         if (limits->logical_block_size < wc->block_size)
1281                 limits->logical_block_size = wc->block_size;
1282
1283         if (limits->physical_block_size < wc->block_size)
1284                 limits->physical_block_size = wc->block_size;
1285
1286         if (limits->io_min < wc->block_size)
1287                 limits->io_min = wc->block_size;
1288 }
1289
1290
1291 static void writecache_writeback_endio(struct bio *bio)
1292 {
1293         struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1294         struct dm_writecache *wc = wb->wc;
1295         unsigned long flags;
1296
1297         raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1298         if (unlikely(list_empty(&wc->endio_list)))
1299                 wake_up_process(wc->endio_thread);
1300         list_add_tail(&wb->endio_entry, &wc->endio_list);
1301         raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1302 }
1303
1304 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1305 {
1306         struct copy_struct *c = ptr;
1307         struct dm_writecache *wc = c->wc;
1308
1309         c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1310
1311         raw_spin_lock_irq(&wc->endio_list_lock);
1312         if (unlikely(list_empty(&wc->endio_list)))
1313                 wake_up_process(wc->endio_thread);
1314         list_add_tail(&c->endio_entry, &wc->endio_list);
1315         raw_spin_unlock_irq(&wc->endio_list_lock);
1316 }
1317
1318 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1319 {
1320         unsigned i;
1321         struct writeback_struct *wb;
1322         struct wc_entry *e;
1323         unsigned long n_walked = 0;
1324
1325         do {
1326                 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1327                 list_del(&wb->endio_entry);
1328
1329                 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1330                         writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1331                                         "write error %d", wb->bio.bi_status);
1332                 i = 0;
1333                 do {
1334                         e = wb->wc_list[i];
1335                         BUG_ON(!e->write_in_progress);
1336                         e->write_in_progress = false;
1337                         INIT_LIST_HEAD(&e->lru);
1338                         if (!writecache_has_error(wc))
1339                                 writecache_free_entry(wc, e);
1340                         BUG_ON(!wc->writeback_size);
1341                         wc->writeback_size--;
1342                         n_walked++;
1343                         if (unlikely(n_walked >= ENDIO_LATENCY)) {
1344                                 writecache_commit_flushed(wc);
1345                                 wc_unlock(wc);
1346                                 wc_lock(wc);
1347                                 n_walked = 0;
1348                         }
1349                 } while (++i < wb->wc_list_n);
1350
1351                 if (wb->wc_list != wb->wc_list_inline)
1352                         kfree(wb->wc_list);
1353                 bio_put(&wb->bio);
1354         } while (!list_empty(list));
1355 }
1356
1357 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1358 {
1359         struct copy_struct *c;
1360         struct wc_entry *e;
1361
1362         do {
1363                 c = list_entry(list->next, struct copy_struct, endio_entry);
1364                 list_del(&c->endio_entry);
1365
1366                 if (unlikely(c->error))
1367                         writecache_error(wc, c->error, "copy error");
1368
1369                 e = c->e;
1370                 do {
1371                         BUG_ON(!e->write_in_progress);
1372                         e->write_in_progress = false;
1373                         INIT_LIST_HEAD(&e->lru);
1374                         if (!writecache_has_error(wc))
1375                                 writecache_free_entry(wc, e);
1376
1377                         BUG_ON(!wc->writeback_size);
1378                         wc->writeback_size--;
1379                         e++;
1380                 } while (--c->n_entries);
1381                 mempool_free(c, &wc->copy_pool);
1382         } while (!list_empty(list));
1383 }
1384
1385 static int writecache_endio_thread(void *data)
1386 {
1387         struct dm_writecache *wc = data;
1388
1389         while (1) {
1390                 struct list_head list;
1391
1392                 raw_spin_lock_irq(&wc->endio_list_lock);
1393                 if (!list_empty(&wc->endio_list))
1394                         goto pop_from_list;
1395                 set_current_state(TASK_INTERRUPTIBLE);
1396                 raw_spin_unlock_irq(&wc->endio_list_lock);
1397
1398                 if (unlikely(kthread_should_stop())) {
1399                         set_current_state(TASK_RUNNING);
1400                         break;
1401                 }
1402
1403                 schedule();
1404
1405                 continue;
1406
1407 pop_from_list:
1408                 list = wc->endio_list;
1409                 list.next->prev = list.prev->next = &list;
1410                 INIT_LIST_HEAD(&wc->endio_list);
1411                 raw_spin_unlock_irq(&wc->endio_list_lock);
1412
1413                 if (!WC_MODE_FUA(wc))
1414                         writecache_disk_flush(wc, wc->dev);
1415
1416                 wc_lock(wc);
1417
1418                 if (WC_MODE_PMEM(wc)) {
1419                         __writecache_endio_pmem(wc, &list);
1420                 } else {
1421                         __writecache_endio_ssd(wc, &list);
1422                         writecache_wait_for_ios(wc, READ);
1423                 }
1424
1425                 writecache_commit_flushed(wc);
1426
1427                 wc_unlock(wc);
1428         }
1429
1430         return 0;
1431 }
1432
1433 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1434 {
1435         struct dm_writecache *wc = wb->wc;
1436         unsigned block_size = wc->block_size;
1437         void *address = memory_data(wc, e);
1438
1439         persistent_memory_flush_cache(address, block_size);
1440         return bio_add_page(&wb->bio, persistent_memory_page(address),
1441                             block_size, persistent_memory_page_offset(address)) != 0;
1442 }
1443
1444 struct writeback_list {
1445         struct list_head list;
1446         size_t size;
1447 };
1448
1449 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1450 {
1451         if (unlikely(wc->max_writeback_jobs)) {
1452                 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1453                         wc_lock(wc);
1454                         while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1455                                 writecache_wait_on_freelist(wc);
1456                         wc_unlock(wc);
1457                 }
1458         }
1459         cond_resched();
1460 }
1461
1462 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1463 {
1464         struct wc_entry *e, *f;
1465         struct bio *bio;
1466         struct writeback_struct *wb;
1467         unsigned max_pages;
1468
1469         while (wbl->size) {
1470                 wbl->size--;
1471                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1472                 list_del(&e->lru);
1473
1474                 max_pages = e->wc_list_contiguous;
1475
1476                 bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
1477                 wb = container_of(bio, struct writeback_struct, bio);
1478                 wb->wc = wc;
1479                 bio->bi_end_io = writecache_writeback_endio;
1480                 bio_set_dev(bio, wc->dev->bdev);
1481                 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1482                 if (max_pages <= WB_LIST_INLINE ||
1483                     unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1484                                                            GFP_NOIO | __GFP_NORETRY |
1485                                                            __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1486                         wb->wc_list = wb->wc_list_inline;
1487                         max_pages = WB_LIST_INLINE;
1488                 }
1489
1490                 BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1491
1492                 wb->wc_list[0] = e;
1493                 wb->wc_list_n = 1;
1494
1495                 while (wbl->size && wb->wc_list_n < max_pages) {
1496                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1497                         if (read_original_sector(wc, f) !=
1498                             read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1499                                 break;
1500                         if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1501                                 break;
1502                         wbl->size--;
1503                         list_del(&f->lru);
1504                         wb->wc_list[wb->wc_list_n++] = f;
1505                         e = f;
1506                 }
1507                 bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
1508                 if (writecache_has_error(wc)) {
1509                         bio->bi_status = BLK_STS_IOERR;
1510                         bio_endio(bio);
1511                 } else {
1512                         submit_bio(bio);
1513                 }
1514
1515                 __writeback_throttle(wc, wbl);
1516         }
1517 }
1518
1519 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1520 {
1521         struct wc_entry *e, *f;
1522         struct dm_io_region from, to;
1523         struct copy_struct *c;
1524
1525         while (wbl->size) {
1526                 unsigned n_sectors;
1527
1528                 wbl->size--;
1529                 e = container_of(wbl->list.prev, struct wc_entry, lru);
1530                 list_del(&e->lru);
1531
1532                 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1533
1534                 from.bdev = wc->ssd_dev->bdev;
1535                 from.sector = cache_sector(wc, e);
1536                 from.count = n_sectors;
1537                 to.bdev = wc->dev->bdev;
1538                 to.sector = read_original_sector(wc, e);
1539                 to.count = n_sectors;
1540
1541                 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1542                 c->wc = wc;
1543                 c->e = e;
1544                 c->n_entries = e->wc_list_contiguous;
1545
1546                 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1547                         wbl->size--;
1548                         f = container_of(wbl->list.prev, struct wc_entry, lru);
1549                         BUG_ON(f != e + 1);
1550                         list_del(&f->lru);
1551                         e = f;
1552                 }
1553
1554                 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1555
1556                 __writeback_throttle(wc, wbl);
1557         }
1558 }
1559
1560 static void writecache_writeback(struct work_struct *work)
1561 {
1562         struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1563         struct blk_plug plug;
1564         struct wc_entry *e, *f, *g;
1565         struct rb_node *node, *next_node;
1566         struct list_head skipped;
1567         struct writeback_list wbl;
1568         unsigned long n_walked;
1569
1570         wc_lock(wc);
1571 restart:
1572         if (writecache_has_error(wc)) {
1573                 wc_unlock(wc);
1574                 return;
1575         }
1576
1577         if (unlikely(wc->writeback_all)) {
1578                 if (writecache_wait_for_writeback(wc))
1579                         goto restart;
1580         }
1581
1582         if (wc->overwrote_committed) {
1583                 writecache_wait_for_ios(wc, WRITE);
1584         }
1585
1586         n_walked = 0;
1587         INIT_LIST_HEAD(&skipped);
1588         INIT_LIST_HEAD(&wbl.list);
1589         wbl.size = 0;
1590         while (!list_empty(&wc->lru) &&
1591                (wc->writeback_all ||
1592                 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
1593
1594                 n_walked++;
1595                 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1596                     likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1597                         queue_work(wc->writeback_wq, &wc->writeback_work);
1598                         break;
1599                 }
1600
1601                 e = container_of(wc->lru.prev, struct wc_entry, lru);
1602                 BUG_ON(e->write_in_progress);
1603                 if (unlikely(!writecache_entry_is_committed(wc, e))) {
1604                         writecache_flush(wc);
1605                 }
1606                 node = rb_prev(&e->rb_node);
1607                 if (node) {
1608                         f = container_of(node, struct wc_entry, rb_node);
1609                         if (unlikely(read_original_sector(wc, f) ==
1610                                      read_original_sector(wc, e))) {
1611                                 BUG_ON(!f->write_in_progress);
1612                                 list_del(&e->lru);
1613                                 list_add(&e->lru, &skipped);
1614                                 cond_resched();
1615                                 continue;
1616                         }
1617                 }
1618                 wc->writeback_size++;
1619                 list_del(&e->lru);
1620                 list_add(&e->lru, &wbl.list);
1621                 wbl.size++;
1622                 e->write_in_progress = true;
1623                 e->wc_list_contiguous = 1;
1624
1625                 f = e;
1626
1627                 while (1) {
1628                         next_node = rb_next(&f->rb_node);
1629                         if (unlikely(!next_node))
1630                                 break;
1631                         g = container_of(next_node, struct wc_entry, rb_node);
1632                         if (read_original_sector(wc, g) ==
1633                             read_original_sector(wc, f)) {
1634                                 f = g;
1635                                 continue;
1636                         }
1637                         if (read_original_sector(wc, g) !=
1638                             read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1639                                 break;
1640                         if (unlikely(g->write_in_progress))
1641                                 break;
1642                         if (unlikely(!writecache_entry_is_committed(wc, g)))
1643                                 break;
1644
1645                         if (!WC_MODE_PMEM(wc)) {
1646                                 if (g != f + 1)
1647                                         break;
1648                         }
1649
1650                         n_walked++;
1651                         //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1652                         //      break;
1653
1654                         wc->writeback_size++;
1655                         list_del(&g->lru);
1656                         list_add(&g->lru, &wbl.list);
1657                         wbl.size++;
1658                         g->write_in_progress = true;
1659                         g->wc_list_contiguous = BIO_MAX_PAGES;
1660                         f = g;
1661                         e->wc_list_contiguous++;
1662                         if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
1663                                 break;
1664                 }
1665                 cond_resched();
1666         }
1667
1668         if (!list_empty(&skipped)) {
1669                 list_splice_tail(&skipped, &wc->lru);
1670                 /*
1671                  * If we didn't do any progress, we must wait until some
1672                  * writeback finishes to avoid burning CPU in a loop
1673                  */
1674                 if (unlikely(!wbl.size))
1675                         writecache_wait_for_writeback(wc);
1676         }
1677
1678         wc_unlock(wc);
1679
1680         blk_start_plug(&plug);
1681
1682         if (WC_MODE_PMEM(wc))
1683                 __writecache_writeback_pmem(wc, &wbl);
1684         else
1685                 __writecache_writeback_ssd(wc, &wbl);
1686
1687         blk_finish_plug(&plug);
1688
1689         if (unlikely(wc->writeback_all)) {
1690                 wc_lock(wc);
1691                 while (writecache_wait_for_writeback(wc));
1692                 wc_unlock(wc);
1693         }
1694 }
1695
1696 static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1697                                  size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1698 {
1699         uint64_t n_blocks, offset;
1700         struct wc_entry e;
1701
1702         n_blocks = device_size;
1703         do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1704
1705         while (1) {
1706                 if (!n_blocks)
1707                         return -ENOSPC;
1708                 /* Verify the following entries[n_blocks] won't overflow */
1709                 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1710                                  sizeof(struct wc_memory_entry)))
1711                         return -EFBIG;
1712                 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1713                 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1714                 if (offset + n_blocks * block_size <= device_size)
1715                         break;
1716                 n_blocks--;
1717         }
1718
1719         /* check if the bit field overflows */
1720         e.index = n_blocks;
1721         if (e.index != n_blocks)
1722                 return -EFBIG;
1723
1724         if (n_blocks_p)
1725                 *n_blocks_p = n_blocks;
1726         if (n_metadata_blocks_p)
1727                 *n_metadata_blocks_p = offset >> __ffs(block_size);
1728         return 0;
1729 }
1730
1731 static int init_memory(struct dm_writecache *wc)
1732 {
1733         size_t b;
1734         int r;
1735
1736         r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1737         if (r)
1738                 return r;
1739
1740         r = writecache_alloc_entries(wc);
1741         if (r)
1742                 return r;
1743
1744         for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1745                 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1746         pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1747         pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1748         pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1749         pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1750
1751         for (b = 0; b < wc->n_blocks; b++)
1752                 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
1753
1754         writecache_flush_all_metadata(wc);
1755         writecache_commit_flushed(wc);
1756         pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1757         writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1758         writecache_commit_flushed(wc);
1759
1760         return 0;
1761 }
1762
1763 static void writecache_dtr(struct dm_target *ti)
1764 {
1765         struct dm_writecache *wc = ti->private;
1766
1767         if (!wc)
1768                 return;
1769
1770         if (wc->endio_thread)
1771                 kthread_stop(wc->endio_thread);
1772
1773         if (wc->flush_thread)
1774                 kthread_stop(wc->flush_thread);
1775
1776         bioset_exit(&wc->bio_set);
1777
1778         mempool_exit(&wc->copy_pool);
1779
1780         if (wc->writeback_wq)
1781                 destroy_workqueue(wc->writeback_wq);
1782
1783         if (wc->dev)
1784                 dm_put_device(ti, wc->dev);
1785
1786         if (wc->ssd_dev)
1787                 dm_put_device(ti, wc->ssd_dev);
1788
1789         if (wc->entries)
1790                 vfree(wc->entries);
1791
1792         if (wc->memory_map) {
1793                 if (WC_MODE_PMEM(wc))
1794                         persistent_memory_release(wc);
1795                 else
1796                         vfree(wc->memory_map);
1797         }
1798
1799         if (wc->dm_kcopyd)
1800                 dm_kcopyd_client_destroy(wc->dm_kcopyd);
1801
1802         if (wc->dm_io)
1803                 dm_io_client_destroy(wc->dm_io);
1804
1805         if (wc->dirty_bitmap)
1806                 vfree(wc->dirty_bitmap);
1807
1808         kfree(wc);
1809 }
1810
1811 static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1812 {
1813         struct dm_writecache *wc;
1814         struct dm_arg_set as;
1815         const char *string;
1816         unsigned opt_params;
1817         size_t offset, data_size;
1818         int i, r;
1819         char dummy;
1820         int high_wm_percent = HIGH_WATERMARK;
1821         int low_wm_percent = LOW_WATERMARK;
1822         uint64_t x;
1823         struct wc_memory_superblock s;
1824
1825         static struct dm_arg _args[] = {
1826                 {0, 10, "Invalid number of feature args"},
1827         };
1828
1829         as.argc = argc;
1830         as.argv = argv;
1831
1832         wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1833         if (!wc) {
1834                 ti->error = "Cannot allocate writecache structure";
1835                 r = -ENOMEM;
1836                 goto bad;
1837         }
1838         ti->private = wc;
1839         wc->ti = ti;
1840
1841         mutex_init(&wc->lock);
1842         writecache_poison_lists(wc);
1843         init_waitqueue_head(&wc->freelist_wait);
1844         timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
1845
1846         for (i = 0; i < 2; i++) {
1847                 atomic_set(&wc->bio_in_progress[i], 0);
1848                 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1849         }
1850
1851         wc->dm_io = dm_io_client_create();
1852         if (IS_ERR(wc->dm_io)) {
1853                 r = PTR_ERR(wc->dm_io);
1854                 ti->error = "Unable to allocate dm-io client";
1855                 wc->dm_io = NULL;
1856                 goto bad;
1857         }
1858
1859         wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1860         if (!wc->writeback_wq) {
1861                 r = -ENOMEM;
1862                 ti->error = "Could not allocate writeback workqueue";
1863                 goto bad;
1864         }
1865         INIT_WORK(&wc->writeback_work, writecache_writeback);
1866         INIT_WORK(&wc->flush_work, writecache_flush_work);
1867
1868         raw_spin_lock_init(&wc->endio_list_lock);
1869         INIT_LIST_HEAD(&wc->endio_list);
1870         wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1871         if (IS_ERR(wc->endio_thread)) {
1872                 r = PTR_ERR(wc->endio_thread);
1873                 wc->endio_thread = NULL;
1874                 ti->error = "Couldn't spawn endio thread";
1875                 goto bad;
1876         }
1877         wake_up_process(wc->endio_thread);
1878
1879         /*
1880          * Parse the mode (pmem or ssd)
1881          */
1882         string = dm_shift_arg(&as);
1883         if (!string)
1884                 goto bad_arguments;
1885
1886         if (!strcasecmp(string, "s")) {
1887                 wc->pmem_mode = false;
1888         } else if (!strcasecmp(string, "p")) {
1889 #ifdef DM_WRITECACHE_HAS_PMEM
1890                 wc->pmem_mode = true;
1891                 wc->writeback_fua = true;
1892 #else
1893                 /*
1894                  * If the architecture doesn't support persistent memory or
1895                  * the kernel doesn't support any DAX drivers, this driver can
1896                  * only be used in SSD-only mode.
1897                  */
1898                 r = -EOPNOTSUPP;
1899                 ti->error = "Persistent memory or DAX not supported on this system";
1900                 goto bad;
1901 #endif
1902         } else {
1903                 goto bad_arguments;
1904         }
1905
1906         if (WC_MODE_PMEM(wc)) {
1907                 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1908                                 offsetof(struct writeback_struct, bio),
1909                                 BIOSET_NEED_BVECS);
1910                 if (r) {
1911                         ti->error = "Could not allocate bio set";
1912                         goto bad;
1913                 }
1914         } else {
1915                 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1916                 if (r) {
1917                         ti->error = "Could not allocate mempool";
1918                         goto bad;
1919                 }
1920         }
1921
1922         /*
1923          * Parse the origin data device
1924          */
1925         string = dm_shift_arg(&as);
1926         if (!string)
1927                 goto bad_arguments;
1928         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1929         if (r) {
1930                 ti->error = "Origin data device lookup failed";
1931                 goto bad;
1932         }
1933
1934         /*
1935          * Parse cache data device (be it pmem or ssd)
1936          */
1937         string = dm_shift_arg(&as);
1938         if (!string)
1939                 goto bad_arguments;
1940
1941         r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1942         if (r) {
1943                 ti->error = "Cache data device lookup failed";
1944                 goto bad;
1945         }
1946         wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1947
1948         /*
1949          * Parse the cache block size
1950          */
1951         string = dm_shift_arg(&as);
1952         if (!string)
1953                 goto bad_arguments;
1954         if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1955             wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1956             (wc->block_size & (wc->block_size - 1))) {
1957                 r = -EINVAL;
1958                 ti->error = "Invalid block size";
1959                 goto bad;
1960         }
1961         wc->block_size_bits = __ffs(wc->block_size);
1962
1963         wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1964         wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1965         wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1966
1967         /*
1968          * Parse optional arguments
1969          */
1970         r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1971         if (r)
1972                 goto bad;
1973
1974         while (opt_params) {
1975                 string = dm_shift_arg(&as), opt_params--;
1976                 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1977                         unsigned long long start_sector;
1978                         string = dm_shift_arg(&as), opt_params--;
1979                         if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1980                                 goto invalid_optional;
1981                         wc->start_sector = start_sector;
1982                         if (wc->start_sector != start_sector ||
1983                             wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1984                                 goto invalid_optional;
1985                 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
1986                         string = dm_shift_arg(&as), opt_params--;
1987                         if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
1988                                 goto invalid_optional;
1989                         if (high_wm_percent < 0 || high_wm_percent > 100)
1990                                 goto invalid_optional;
1991                         wc->high_wm_percent_set = true;
1992                 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
1993                         string = dm_shift_arg(&as), opt_params--;
1994                         if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
1995                                 goto invalid_optional;
1996                         if (low_wm_percent < 0 || low_wm_percent > 100)
1997                                 goto invalid_optional;
1998                         wc->low_wm_percent_set = true;
1999                 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2000                         string = dm_shift_arg(&as), opt_params--;
2001                         if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2002                                 goto invalid_optional;
2003                         wc->max_writeback_jobs_set = true;
2004                 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2005                         string = dm_shift_arg(&as), opt_params--;
2006                         if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2007                                 goto invalid_optional;
2008                         wc->autocommit_blocks_set = true;
2009                 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2010                         unsigned autocommit_msecs;
2011                         string = dm_shift_arg(&as), opt_params--;
2012                         if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2013                                 goto invalid_optional;
2014                         if (autocommit_msecs > 3600000)
2015                                 goto invalid_optional;
2016                         wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2017                         wc->autocommit_time_set = true;
2018                 } else if (!strcasecmp(string, "fua")) {
2019                         if (WC_MODE_PMEM(wc)) {
2020                                 wc->writeback_fua = true;
2021                                 wc->writeback_fua_set = true;
2022                         } else goto invalid_optional;
2023                 } else if (!strcasecmp(string, "nofua")) {
2024                         if (WC_MODE_PMEM(wc)) {
2025                                 wc->writeback_fua = false;
2026                                 wc->writeback_fua_set = true;
2027                         } else goto invalid_optional;
2028                 } else {
2029 invalid_optional:
2030                         r = -EINVAL;
2031                         ti->error = "Invalid optional argument";
2032                         goto bad;
2033                 }
2034         }
2035
2036         if (high_wm_percent < low_wm_percent) {
2037                 r = -EINVAL;
2038                 ti->error = "High watermark must be greater than or equal to low watermark";
2039                 goto bad;
2040         }
2041
2042         if (WC_MODE_PMEM(wc)) {
2043                 r = persistent_memory_claim(wc);
2044                 if (r) {
2045                         ti->error = "Unable to map persistent memory for cache";
2046                         goto bad;
2047                 }
2048         } else {
2049                 struct dm_io_region region;
2050                 struct dm_io_request req;
2051                 size_t n_blocks, n_metadata_blocks;
2052                 uint64_t n_bitmap_bits;
2053
2054                 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2055
2056                 bio_list_init(&wc->flush_list);
2057                 wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2058                 if (IS_ERR(wc->flush_thread)) {
2059                         r = PTR_ERR(wc->flush_thread);
2060                         wc->flush_thread = NULL;
2061                         ti->error = "Couldn't spawn flush thread";
2062                         goto bad;
2063                 }
2064                 wake_up_process(wc->flush_thread);
2065
2066                 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2067                                           &n_blocks, &n_metadata_blocks);
2068                 if (r) {
2069                         ti->error = "Invalid device size";
2070                         goto bad;
2071                 }
2072
2073                 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2074                                  BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2075                 /* this is limitation of test_bit functions */
2076                 if (n_bitmap_bits > 1U << 31) {
2077                         r = -EFBIG;
2078                         ti->error = "Invalid device size";
2079                         goto bad;
2080                 }
2081
2082                 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2083                 if (!wc->memory_map) {
2084                         r = -ENOMEM;
2085                         ti->error = "Unable to allocate memory for metadata";
2086                         goto bad;
2087                 }
2088
2089                 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2090                 if (IS_ERR(wc->dm_kcopyd)) {
2091                         r = PTR_ERR(wc->dm_kcopyd);
2092                         ti->error = "Unable to allocate dm-kcopyd client";
2093                         wc->dm_kcopyd = NULL;
2094                         goto bad;
2095                 }
2096
2097                 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2098                 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2099                         BITS_PER_LONG * sizeof(unsigned long);
2100                 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2101                 if (!wc->dirty_bitmap) {
2102                         r = -ENOMEM;
2103                         ti->error = "Unable to allocate dirty bitmap";
2104                         goto bad;
2105                 }
2106
2107                 region.bdev = wc->ssd_dev->bdev;
2108                 region.sector = wc->start_sector;
2109                 region.count = wc->metadata_sectors;
2110                 req.bi_op = REQ_OP_READ;
2111                 req.bi_op_flags = REQ_SYNC;
2112                 req.mem.type = DM_IO_VMA;
2113                 req.mem.ptr.vma = (char *)wc->memory_map;
2114                 req.client = wc->dm_io;
2115                 req.notify.fn = NULL;
2116
2117                 r = dm_io(&req, 1, &region, NULL);
2118                 if (r) {
2119                         ti->error = "Unable to read metadata";
2120                         goto bad;
2121                 }
2122         }
2123
2124         r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2125         if (r) {
2126                 ti->error = "Hardware memory error when reading superblock";
2127                 goto bad;
2128         }
2129         if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2130                 r = init_memory(wc);
2131                 if (r) {
2132                         ti->error = "Unable to initialize device";
2133                         goto bad;
2134                 }
2135                 r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2136                 if (r) {
2137                         ti->error = "Hardware memory error when reading superblock";
2138                         goto bad;
2139                 }
2140         }
2141
2142         if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2143                 ti->error = "Invalid magic in the superblock";
2144                 r = -EINVAL;
2145                 goto bad;
2146         }
2147
2148         if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2149                 ti->error = "Invalid version in the superblock";
2150                 r = -EINVAL;
2151                 goto bad;
2152         }
2153
2154         if (le32_to_cpu(s.block_size) != wc->block_size) {
2155                 ti->error = "Block size does not match superblock";
2156                 r = -EINVAL;
2157                 goto bad;
2158         }
2159
2160         wc->n_blocks = le64_to_cpu(s.n_blocks);
2161
2162         offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2163         if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2164 overflow:
2165                 ti->error = "Overflow in size calculation";
2166                 r = -EINVAL;
2167                 goto bad;
2168         }
2169         offset += sizeof(struct wc_memory_superblock);
2170         if (offset < sizeof(struct wc_memory_superblock))
2171                 goto overflow;
2172         offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2173         data_size = wc->n_blocks * (size_t)wc->block_size;
2174         if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2175             (offset + data_size < offset))
2176                 goto overflow;
2177         if (offset + data_size > wc->memory_map_size) {
2178                 ti->error = "Memory area is too small";
2179                 r = -EINVAL;
2180                 goto bad;
2181         }
2182
2183         wc->metadata_sectors = offset >> SECTOR_SHIFT;
2184         wc->block_start = (char *)sb(wc) + offset;
2185
2186         x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2187         x += 50;
2188         do_div(x, 100);
2189         wc->freelist_high_watermark = x;
2190         x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2191         x += 50;
2192         do_div(x, 100);
2193         wc->freelist_low_watermark = x;
2194
2195         r = writecache_alloc_entries(wc);
2196         if (r) {
2197                 ti->error = "Cannot allocate memory";
2198                 goto bad;
2199         }
2200
2201         ti->num_flush_bios = 1;
2202         ti->flush_supported = true;
2203         ti->num_discard_bios = 1;
2204
2205         if (WC_MODE_PMEM(wc))
2206                 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2207
2208         return 0;
2209
2210 bad_arguments:
2211         r = -EINVAL;
2212         ti->error = "Bad arguments";
2213 bad:
2214         writecache_dtr(ti);
2215         return r;
2216 }
2217
2218 static void writecache_status(struct dm_target *ti, status_type_t type,
2219                               unsigned status_flags, char *result, unsigned maxlen)
2220 {
2221         struct dm_writecache *wc = ti->private;
2222         unsigned extra_args;
2223         unsigned sz = 0;
2224         uint64_t x;
2225
2226         switch (type) {
2227         case STATUSTYPE_INFO:
2228                 DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
2229                        (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2230                        (unsigned long long)wc->writeback_size);
2231                 break;
2232         case STATUSTYPE_TABLE:
2233                 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2234                                 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2235                 extra_args = 0;
2236                 if (wc->start_sector)
2237                         extra_args += 2;
2238                 if (wc->high_wm_percent_set)
2239                         extra_args += 2;
2240                 if (wc->low_wm_percent_set)
2241                         extra_args += 2;
2242                 if (wc->max_writeback_jobs_set)
2243                         extra_args += 2;
2244                 if (wc->autocommit_blocks_set)
2245                         extra_args += 2;
2246                 if (wc->autocommit_time_set)
2247                         extra_args += 2;
2248                 if (wc->writeback_fua_set)
2249                         extra_args++;
2250
2251                 DMEMIT("%u", extra_args);
2252                 if (wc->start_sector)
2253                         DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2254                 if (wc->high_wm_percent_set) {
2255                         x = (uint64_t)wc->freelist_high_watermark * 100;
2256                         x += wc->n_blocks / 2;
2257                         do_div(x, (size_t)wc->n_blocks);
2258                         DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2259                 }
2260                 if (wc->low_wm_percent_set) {
2261                         x = (uint64_t)wc->freelist_low_watermark * 100;
2262                         x += wc->n_blocks / 2;
2263                         do_div(x, (size_t)wc->n_blocks);
2264                         DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2265                 }
2266                 if (wc->max_writeback_jobs_set)
2267                         DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2268                 if (wc->autocommit_blocks_set)
2269                         DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2270                 if (wc->autocommit_time_set)
2271                         DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
2272                 if (wc->writeback_fua_set)
2273                         DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2274                 break;
2275         }
2276 }
2277
2278 static struct target_type writecache_target = {
2279         .name                   = "writecache",
2280         .version                = {1, 1, 1},
2281         .module                 = THIS_MODULE,
2282         .ctr                    = writecache_ctr,
2283         .dtr                    = writecache_dtr,
2284         .status                 = writecache_status,
2285         .postsuspend            = writecache_suspend,
2286         .resume                 = writecache_resume,
2287         .message                = writecache_message,
2288         .map                    = writecache_map,
2289         .end_io                 = writecache_end_io,
2290         .iterate_devices        = writecache_iterate_devices,
2291         .io_hints               = writecache_io_hints,
2292 };
2293
2294 static int __init dm_writecache_init(void)
2295 {
2296         int r;
2297
2298         r = dm_register_target(&writecache_target);
2299         if (r < 0) {
2300                 DMERR("register failed %d", r);
2301                 return r;
2302         }
2303
2304         return 0;
2305 }
2306
2307 static void __exit dm_writecache_exit(void)
2308 {
2309         dm_unregister_target(&writecache_target);
2310 }
2311
2312 module_init(dm_writecache_init);
2313 module_exit(dm_writecache_exit);
2314
2315 MODULE_DESCRIPTION(DM_NAME " writecache target");
2316 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2317 MODULE_LICENSE("GPL");