Merge tag 'trace-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / md / dm-verity-target.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_ENV_LENGTH            42
26 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
31
32 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
35 #define DM_VERITY_OPT_AT_MOST_ONCE      "check_at_most_once"
36
37 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44         struct work_struct work;
45         struct dm_verity *v;
46         sector_t block;
47         unsigned n_blocks;
48 };
49
50 /*
51  * Auxiliary structure appended to each dm-bufio buffer. If the value
52  * hash_verified is nonzero, hash of the block has been verified.
53  *
54  * The variable hash_verified is set to 0 when allocating the buffer, then
55  * it can be changed to 1 and it is never reset to 0 again.
56  *
57  * There is no lock around this value, a race condition can at worst cause
58  * that multiple processes verify the hash of the same buffer simultaneously
59  * and write 1 to hash_verified simultaneously.
60  * This condition is harmless, so we don't need locking.
61  */
62 struct buffer_aux {
63         int hash_verified;
64 };
65
66 /*
67  * Initialize struct buffer_aux for a freshly created buffer.
68  */
69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73         aux->hash_verified = 0;
74 }
75
76 /*
77  * Translate input sector number to the sector number on the target device.
78  */
79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81         return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85  * Return hash position of a specified block at a specified tree level
86  * (0 is the lowest level).
87  * The lowest "hash_per_block_bits"-bits of the result denote hash position
88  * inside a hash block. The remaining bits denote location of the hash block.
89  */
90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91                                          int level)
92 {
93         return block >> (level * v->hash_per_block_bits);
94 }
95
96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97                                 const u8 *data, size_t len,
98                                 struct crypto_wait *wait)
99 {
100         struct scatterlist sg;
101
102         sg_init_one(&sg, data, len);
103         ahash_request_set_crypt(req, &sg, NULL, len);
104
105         return crypto_wait_req(crypto_ahash_update(req), wait);
106 }
107
108 /*
109  * Wrapper for crypto_ahash_init, which handles verity salting.
110  */
111 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
112                                 struct crypto_wait *wait)
113 {
114         int r;
115
116         ahash_request_set_tfm(req, v->tfm);
117         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
118                                         CRYPTO_TFM_REQ_MAY_BACKLOG,
119                                         crypto_req_done, (void *)wait);
120         crypto_init_wait(wait);
121
122         r = crypto_wait_req(crypto_ahash_init(req), wait);
123
124         if (unlikely(r < 0)) {
125                 DMERR("crypto_ahash_init failed: %d", r);
126                 return r;
127         }
128
129         if (likely(v->salt_size && (v->version >= 1)))
130                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
131
132         return r;
133 }
134
135 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
136                              u8 *digest, struct crypto_wait *wait)
137 {
138         int r;
139
140         if (unlikely(v->salt_size && (!v->version))) {
141                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
142
143                 if (r < 0) {
144                         DMERR("verity_hash_final failed updating salt: %d", r);
145                         goto out;
146                 }
147         }
148
149         ahash_request_set_crypt(req, NULL, digest, 0);
150         r = crypto_wait_req(crypto_ahash_final(req), wait);
151 out:
152         return r;
153 }
154
155 int verity_hash(struct dm_verity *v, struct ahash_request *req,
156                 const u8 *data, size_t len, u8 *digest)
157 {
158         int r;
159         struct crypto_wait wait;
160
161         r = verity_hash_init(v, req, &wait);
162         if (unlikely(r < 0))
163                 goto out;
164
165         r = verity_hash_update(v, req, data, len, &wait);
166         if (unlikely(r < 0))
167                 goto out;
168
169         r = verity_hash_final(v, req, digest, &wait);
170
171 out:
172         return r;
173 }
174
175 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
176                                  sector_t *hash_block, unsigned *offset)
177 {
178         sector_t position = verity_position_at_level(v, block, level);
179         unsigned idx;
180
181         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
182
183         if (!offset)
184                 return;
185
186         idx = position & ((1 << v->hash_per_block_bits) - 1);
187         if (!v->version)
188                 *offset = idx * v->digest_size;
189         else
190                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
191 }
192
193 /*
194  * Handle verification errors.
195  */
196 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
197                              unsigned long long block)
198 {
199         char verity_env[DM_VERITY_ENV_LENGTH];
200         char *envp[] = { verity_env, NULL };
201         const char *type_str = "";
202         struct mapped_device *md = dm_table_get_md(v->ti->table);
203
204         /* Corruption should be visible in device status in all modes */
205         v->hash_failed = 1;
206
207         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
208                 goto out;
209
210         v->corrupted_errs++;
211
212         switch (type) {
213         case DM_VERITY_BLOCK_TYPE_DATA:
214                 type_str = "data";
215                 break;
216         case DM_VERITY_BLOCK_TYPE_METADATA:
217                 type_str = "metadata";
218                 break;
219         default:
220                 BUG();
221         }
222
223         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
224                 block);
225
226         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
227                 DMERR("%s: reached maximum errors", v->data_dev->name);
228
229         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
230                 DM_VERITY_ENV_VAR_NAME, type, block);
231
232         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
233
234 out:
235         if (v->mode == DM_VERITY_MODE_LOGGING)
236                 return 0;
237
238         if (v->mode == DM_VERITY_MODE_RESTART)
239                 kernel_restart("dm-verity device corrupted");
240
241         return 1;
242 }
243
244 /*
245  * Verify hash of a metadata block pertaining to the specified data block
246  * ("block" argument) at a specified level ("level" argument).
247  *
248  * On successful return, verity_io_want_digest(v, io) contains the hash value
249  * for a lower tree level or for the data block (if we're at the lowest level).
250  *
251  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
252  * If "skip_unverified" is false, unverified buffer is hashed and verified
253  * against current value of verity_io_want_digest(v, io).
254  */
255 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
256                                sector_t block, int level, bool skip_unverified,
257                                u8 *want_digest)
258 {
259         struct dm_buffer *buf;
260         struct buffer_aux *aux;
261         u8 *data;
262         int r;
263         sector_t hash_block;
264         unsigned offset;
265
266         verity_hash_at_level(v, block, level, &hash_block, &offset);
267
268         data = dm_bufio_read(v->bufio, hash_block, &buf);
269         if (IS_ERR(data))
270                 return PTR_ERR(data);
271
272         aux = dm_bufio_get_aux_data(buf);
273
274         if (!aux->hash_verified) {
275                 if (skip_unverified) {
276                         r = 1;
277                         goto release_ret_r;
278                 }
279
280                 r = verity_hash(v, verity_io_hash_req(v, io),
281                                 data, 1 << v->hash_dev_block_bits,
282                                 verity_io_real_digest(v, io));
283                 if (unlikely(r < 0))
284                         goto release_ret_r;
285
286                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
287                                   v->digest_size) == 0))
288                         aux->hash_verified = 1;
289                 else if (verity_fec_decode(v, io,
290                                            DM_VERITY_BLOCK_TYPE_METADATA,
291                                            hash_block, data, NULL) == 0)
292                         aux->hash_verified = 1;
293                 else if (verity_handle_err(v,
294                                            DM_VERITY_BLOCK_TYPE_METADATA,
295                                            hash_block)) {
296                         r = -EIO;
297                         goto release_ret_r;
298                 }
299         }
300
301         data += offset;
302         memcpy(want_digest, data, v->digest_size);
303         r = 0;
304
305 release_ret_r:
306         dm_bufio_release(buf);
307         return r;
308 }
309
310 /*
311  * Find a hash for a given block, write it to digest and verify the integrity
312  * of the hash tree if necessary.
313  */
314 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
315                           sector_t block, u8 *digest, bool *is_zero)
316 {
317         int r = 0, i;
318
319         if (likely(v->levels)) {
320                 /*
321                  * First, we try to get the requested hash for
322                  * the current block. If the hash block itself is
323                  * verified, zero is returned. If it isn't, this
324                  * function returns 1 and we fall back to whole
325                  * chain verification.
326                  */
327                 r = verity_verify_level(v, io, block, 0, true, digest);
328                 if (likely(r <= 0))
329                         goto out;
330         }
331
332         memcpy(digest, v->root_digest, v->digest_size);
333
334         for (i = v->levels - 1; i >= 0; i--) {
335                 r = verity_verify_level(v, io, block, i, false, digest);
336                 if (unlikely(r))
337                         goto out;
338         }
339 out:
340         if (!r && v->zero_digest)
341                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
342         else
343                 *is_zero = false;
344
345         return r;
346 }
347
348 /*
349  * Calculates the digest for the given bio
350  */
351 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
352                                struct bvec_iter *iter, struct crypto_wait *wait)
353 {
354         unsigned int todo = 1 << v->data_dev_block_bits;
355         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
356         struct scatterlist sg;
357         struct ahash_request *req = verity_io_hash_req(v, io);
358
359         do {
360                 int r;
361                 unsigned int len;
362                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
363
364                 sg_init_table(&sg, 1);
365
366                 len = bv.bv_len;
367
368                 if (likely(len >= todo))
369                         len = todo;
370                 /*
371                  * Operating on a single page at a time looks suboptimal
372                  * until you consider the typical block size is 4,096B.
373                  * Going through this loops twice should be very rare.
374                  */
375                 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
376                 ahash_request_set_crypt(req, &sg, NULL, len);
377                 r = crypto_wait_req(crypto_ahash_update(req), wait);
378
379                 if (unlikely(r < 0)) {
380                         DMERR("verity_for_io_block crypto op failed: %d", r);
381                         return r;
382                 }
383
384                 bio_advance_iter(bio, iter, len);
385                 todo -= len;
386         } while (todo);
387
388         return 0;
389 }
390
391 /*
392  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
393  * starting from iter.
394  */
395 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
396                         struct bvec_iter *iter,
397                         int (*process)(struct dm_verity *v,
398                                        struct dm_verity_io *io, u8 *data,
399                                        size_t len))
400 {
401         unsigned todo = 1 << v->data_dev_block_bits;
402         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
403
404         do {
405                 int r;
406                 u8 *page;
407                 unsigned len;
408                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
409
410                 page = kmap_atomic(bv.bv_page);
411                 len = bv.bv_len;
412
413                 if (likely(len >= todo))
414                         len = todo;
415
416                 r = process(v, io, page + bv.bv_offset, len);
417                 kunmap_atomic(page);
418
419                 if (r < 0)
420                         return r;
421
422                 bio_advance_iter(bio, iter, len);
423                 todo -= len;
424         } while (todo);
425
426         return 0;
427 }
428
429 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
430                           u8 *data, size_t len)
431 {
432         memset(data, 0, len);
433         return 0;
434 }
435
436 /*
437  * Moves the bio iter one data block forward.
438  */
439 static inline void verity_bv_skip_block(struct dm_verity *v,
440                                         struct dm_verity_io *io,
441                                         struct bvec_iter *iter)
442 {
443         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
444
445         bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
446 }
447
448 /*
449  * Verify one "dm_verity_io" structure.
450  */
451 static int verity_verify_io(struct dm_verity_io *io)
452 {
453         bool is_zero;
454         struct dm_verity *v = io->v;
455         struct bvec_iter start;
456         unsigned b;
457         struct crypto_wait wait;
458
459         for (b = 0; b < io->n_blocks; b++) {
460                 int r;
461                 sector_t cur_block = io->block + b;
462                 struct ahash_request *req = verity_io_hash_req(v, io);
463
464                 if (v->validated_blocks &&
465                     likely(test_bit(cur_block, v->validated_blocks))) {
466                         verity_bv_skip_block(v, io, &io->iter);
467                         continue;
468                 }
469
470                 r = verity_hash_for_block(v, io, cur_block,
471                                           verity_io_want_digest(v, io),
472                                           &is_zero);
473                 if (unlikely(r < 0))
474                         return r;
475
476                 if (is_zero) {
477                         /*
478                          * If we expect a zero block, don't validate, just
479                          * return zeros.
480                          */
481                         r = verity_for_bv_block(v, io, &io->iter,
482                                                 verity_bv_zero);
483                         if (unlikely(r < 0))
484                                 return r;
485
486                         continue;
487                 }
488
489                 r = verity_hash_init(v, req, &wait);
490                 if (unlikely(r < 0))
491                         return r;
492
493                 start = io->iter;
494                 r = verity_for_io_block(v, io, &io->iter, &wait);
495                 if (unlikely(r < 0))
496                         return r;
497
498                 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
499                                         &wait);
500                 if (unlikely(r < 0))
501                         return r;
502
503                 if (likely(memcmp(verity_io_real_digest(v, io),
504                                   verity_io_want_digest(v, io), v->digest_size) == 0)) {
505                         if (v->validated_blocks)
506                                 set_bit(cur_block, v->validated_blocks);
507                         continue;
508                 }
509                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
510                                            cur_block, NULL, &start) == 0)
511                         continue;
512                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
513                                            cur_block))
514                         return -EIO;
515         }
516
517         return 0;
518 }
519
520 /*
521  * End one "io" structure with a given error.
522  */
523 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
524 {
525         struct dm_verity *v = io->v;
526         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
527
528         bio->bi_end_io = io->orig_bi_end_io;
529         bio->bi_status = status;
530
531         verity_fec_finish_io(io);
532
533         bio_endio(bio);
534 }
535
536 static void verity_work(struct work_struct *w)
537 {
538         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
539
540         verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
541 }
542
543 static void verity_end_io(struct bio *bio)
544 {
545         struct dm_verity_io *io = bio->bi_private;
546
547         if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
548                 verity_finish_io(io, bio->bi_status);
549                 return;
550         }
551
552         INIT_WORK(&io->work, verity_work);
553         queue_work(io->v->verify_wq, &io->work);
554 }
555
556 /*
557  * Prefetch buffers for the specified io.
558  * The root buffer is not prefetched, it is assumed that it will be cached
559  * all the time.
560  */
561 static void verity_prefetch_io(struct work_struct *work)
562 {
563         struct dm_verity_prefetch_work *pw =
564                 container_of(work, struct dm_verity_prefetch_work, work);
565         struct dm_verity *v = pw->v;
566         int i;
567
568         for (i = v->levels - 2; i >= 0; i--) {
569                 sector_t hash_block_start;
570                 sector_t hash_block_end;
571                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
572                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
573                 if (!i) {
574                         unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
575
576                         cluster >>= v->data_dev_block_bits;
577                         if (unlikely(!cluster))
578                                 goto no_prefetch_cluster;
579
580                         if (unlikely(cluster & (cluster - 1)))
581                                 cluster = 1 << __fls(cluster);
582
583                         hash_block_start &= ~(sector_t)(cluster - 1);
584                         hash_block_end |= cluster - 1;
585                         if (unlikely(hash_block_end >= v->hash_blocks))
586                                 hash_block_end = v->hash_blocks - 1;
587                 }
588 no_prefetch_cluster:
589                 dm_bufio_prefetch(v->bufio, hash_block_start,
590                                   hash_block_end - hash_block_start + 1);
591         }
592
593         kfree(pw);
594 }
595
596 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
597 {
598         struct dm_verity_prefetch_work *pw;
599
600         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
601                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
602
603         if (!pw)
604                 return;
605
606         INIT_WORK(&pw->work, verity_prefetch_io);
607         pw->v = v;
608         pw->block = io->block;
609         pw->n_blocks = io->n_blocks;
610         queue_work(v->verify_wq, &pw->work);
611 }
612
613 /*
614  * Bio map function. It allocates dm_verity_io structure and bio vector and
615  * fills them. Then it issues prefetches and the I/O.
616  */
617 static int verity_map(struct dm_target *ti, struct bio *bio)
618 {
619         struct dm_verity *v = ti->private;
620         struct dm_verity_io *io;
621
622         bio_set_dev(bio, v->data_dev->bdev);
623         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
624
625         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
626             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
627                 DMERR_LIMIT("unaligned io");
628                 return DM_MAPIO_KILL;
629         }
630
631         if (bio_end_sector(bio) >>
632             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
633                 DMERR_LIMIT("io out of range");
634                 return DM_MAPIO_KILL;
635         }
636
637         if (bio_data_dir(bio) == WRITE)
638                 return DM_MAPIO_KILL;
639
640         io = dm_per_bio_data(bio, ti->per_io_data_size);
641         io->v = v;
642         io->orig_bi_end_io = bio->bi_end_io;
643         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
644         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
645
646         bio->bi_end_io = verity_end_io;
647         bio->bi_private = io;
648         io->iter = bio->bi_iter;
649
650         verity_fec_init_io(io);
651
652         verity_submit_prefetch(v, io);
653
654         generic_make_request(bio);
655
656         return DM_MAPIO_SUBMITTED;
657 }
658
659 /*
660  * Status: V (valid) or C (corruption found)
661  */
662 static void verity_status(struct dm_target *ti, status_type_t type,
663                           unsigned status_flags, char *result, unsigned maxlen)
664 {
665         struct dm_verity *v = ti->private;
666         unsigned args = 0;
667         unsigned sz = 0;
668         unsigned x;
669
670         switch (type) {
671         case STATUSTYPE_INFO:
672                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
673                 break;
674         case STATUSTYPE_TABLE:
675                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
676                         v->version,
677                         v->data_dev->name,
678                         v->hash_dev->name,
679                         1 << v->data_dev_block_bits,
680                         1 << v->hash_dev_block_bits,
681                         (unsigned long long)v->data_blocks,
682                         (unsigned long long)v->hash_start,
683                         v->alg_name
684                         );
685                 for (x = 0; x < v->digest_size; x++)
686                         DMEMIT("%02x", v->root_digest[x]);
687                 DMEMIT(" ");
688                 if (!v->salt_size)
689                         DMEMIT("-");
690                 else
691                         for (x = 0; x < v->salt_size; x++)
692                                 DMEMIT("%02x", v->salt[x]);
693                 if (v->mode != DM_VERITY_MODE_EIO)
694                         args++;
695                 if (verity_fec_is_enabled(v))
696                         args += DM_VERITY_OPTS_FEC;
697                 if (v->zero_digest)
698                         args++;
699                 if (v->validated_blocks)
700                         args++;
701                 if (!args)
702                         return;
703                 DMEMIT(" %u", args);
704                 if (v->mode != DM_VERITY_MODE_EIO) {
705                         DMEMIT(" ");
706                         switch (v->mode) {
707                         case DM_VERITY_MODE_LOGGING:
708                                 DMEMIT(DM_VERITY_OPT_LOGGING);
709                                 break;
710                         case DM_VERITY_MODE_RESTART:
711                                 DMEMIT(DM_VERITY_OPT_RESTART);
712                                 break;
713                         default:
714                                 BUG();
715                         }
716                 }
717                 if (v->zero_digest)
718                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
719                 if (v->validated_blocks)
720                         DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
721                 sz = verity_fec_status_table(v, sz, result, maxlen);
722                 break;
723         }
724 }
725
726 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
727 {
728         struct dm_verity *v = ti->private;
729
730         *bdev = v->data_dev->bdev;
731
732         if (v->data_start ||
733             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
734                 return 1;
735         return 0;
736 }
737
738 static int verity_iterate_devices(struct dm_target *ti,
739                                   iterate_devices_callout_fn fn, void *data)
740 {
741         struct dm_verity *v = ti->private;
742
743         return fn(ti, v->data_dev, v->data_start, ti->len, data);
744 }
745
746 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
747 {
748         struct dm_verity *v = ti->private;
749
750         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
751                 limits->logical_block_size = 1 << v->data_dev_block_bits;
752
753         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
754                 limits->physical_block_size = 1 << v->data_dev_block_bits;
755
756         blk_limits_io_min(limits, limits->logical_block_size);
757 }
758
759 static void verity_dtr(struct dm_target *ti)
760 {
761         struct dm_verity *v = ti->private;
762
763         if (v->verify_wq)
764                 destroy_workqueue(v->verify_wq);
765
766         if (v->bufio)
767                 dm_bufio_client_destroy(v->bufio);
768
769         kvfree(v->validated_blocks);
770         kfree(v->salt);
771         kfree(v->root_digest);
772         kfree(v->zero_digest);
773
774         if (v->tfm)
775                 crypto_free_ahash(v->tfm);
776
777         kfree(v->alg_name);
778
779         if (v->hash_dev)
780                 dm_put_device(ti, v->hash_dev);
781
782         if (v->data_dev)
783                 dm_put_device(ti, v->data_dev);
784
785         verity_fec_dtr(v);
786
787         kfree(v);
788 }
789
790 static int verity_alloc_most_once(struct dm_verity *v)
791 {
792         struct dm_target *ti = v->ti;
793
794         /* the bitset can only handle INT_MAX blocks */
795         if (v->data_blocks > INT_MAX) {
796                 ti->error = "device too large to use check_at_most_once";
797                 return -E2BIG;
798         }
799
800         v->validated_blocks = kvzalloc(BITS_TO_LONGS(v->data_blocks) *
801                                        sizeof(unsigned long), GFP_KERNEL);
802         if (!v->validated_blocks) {
803                 ti->error = "failed to allocate bitset for check_at_most_once";
804                 return -ENOMEM;
805         }
806
807         return 0;
808 }
809
810 static int verity_alloc_zero_digest(struct dm_verity *v)
811 {
812         int r = -ENOMEM;
813         struct ahash_request *req;
814         u8 *zero_data;
815
816         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
817
818         if (!v->zero_digest)
819                 return r;
820
821         req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
822
823         if (!req)
824                 return r; /* verity_dtr will free zero_digest */
825
826         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
827
828         if (!zero_data)
829                 goto out;
830
831         r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
832                         v->zero_digest);
833
834 out:
835         kfree(req);
836         kfree(zero_data);
837
838         return r;
839 }
840
841 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
842 {
843         int r;
844         unsigned argc;
845         struct dm_target *ti = v->ti;
846         const char *arg_name;
847
848         static const struct dm_arg _args[] = {
849                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
850         };
851
852         r = dm_read_arg_group(_args, as, &argc, &ti->error);
853         if (r)
854                 return -EINVAL;
855
856         if (!argc)
857                 return 0;
858
859         do {
860                 arg_name = dm_shift_arg(as);
861                 argc--;
862
863                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
864                         v->mode = DM_VERITY_MODE_LOGGING;
865                         continue;
866
867                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
868                         v->mode = DM_VERITY_MODE_RESTART;
869                         continue;
870
871                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
872                         r = verity_alloc_zero_digest(v);
873                         if (r) {
874                                 ti->error = "Cannot allocate zero digest";
875                                 return r;
876                         }
877                         continue;
878
879                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
880                         r = verity_alloc_most_once(v);
881                         if (r)
882                                 return r;
883                         continue;
884
885                 } else if (verity_is_fec_opt_arg(arg_name)) {
886                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
887                         if (r)
888                                 return r;
889                         continue;
890                 }
891
892                 ti->error = "Unrecognized verity feature request";
893                 return -EINVAL;
894         } while (argc && !r);
895
896         return r;
897 }
898
899 /*
900  * Target parameters:
901  *      <version>       The current format is version 1.
902  *                      Vsn 0 is compatible with original Chromium OS releases.
903  *      <data device>
904  *      <hash device>
905  *      <data block size>
906  *      <hash block size>
907  *      <the number of data blocks>
908  *      <hash start block>
909  *      <algorithm>
910  *      <digest>
911  *      <salt>          Hex string or "-" if no salt.
912  */
913 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
914 {
915         struct dm_verity *v;
916         struct dm_arg_set as;
917         unsigned int num;
918         unsigned long long num_ll;
919         int r;
920         int i;
921         sector_t hash_position;
922         char dummy;
923
924         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
925         if (!v) {
926                 ti->error = "Cannot allocate verity structure";
927                 return -ENOMEM;
928         }
929         ti->private = v;
930         v->ti = ti;
931
932         r = verity_fec_ctr_alloc(v);
933         if (r)
934                 goto bad;
935
936         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
937                 ti->error = "Device must be readonly";
938                 r = -EINVAL;
939                 goto bad;
940         }
941
942         if (argc < 10) {
943                 ti->error = "Not enough arguments";
944                 r = -EINVAL;
945                 goto bad;
946         }
947
948         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
949             num > 1) {
950                 ti->error = "Invalid version";
951                 r = -EINVAL;
952                 goto bad;
953         }
954         v->version = num;
955
956         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
957         if (r) {
958                 ti->error = "Data device lookup failed";
959                 goto bad;
960         }
961
962         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
963         if (r) {
964                 ti->error = "Hash device lookup failed";
965                 goto bad;
966         }
967
968         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
969             !num || (num & (num - 1)) ||
970             num < bdev_logical_block_size(v->data_dev->bdev) ||
971             num > PAGE_SIZE) {
972                 ti->error = "Invalid data device block size";
973                 r = -EINVAL;
974                 goto bad;
975         }
976         v->data_dev_block_bits = __ffs(num);
977
978         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
979             !num || (num & (num - 1)) ||
980             num < bdev_logical_block_size(v->hash_dev->bdev) ||
981             num > INT_MAX) {
982                 ti->error = "Invalid hash device block size";
983                 r = -EINVAL;
984                 goto bad;
985         }
986         v->hash_dev_block_bits = __ffs(num);
987
988         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
989             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
990             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
991                 ti->error = "Invalid data blocks";
992                 r = -EINVAL;
993                 goto bad;
994         }
995         v->data_blocks = num_ll;
996
997         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
998                 ti->error = "Data device is too small";
999                 r = -EINVAL;
1000                 goto bad;
1001         }
1002
1003         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1004             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1005             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1006                 ti->error = "Invalid hash start";
1007                 r = -EINVAL;
1008                 goto bad;
1009         }
1010         v->hash_start = num_ll;
1011
1012         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1013         if (!v->alg_name) {
1014                 ti->error = "Cannot allocate algorithm name";
1015                 r = -ENOMEM;
1016                 goto bad;
1017         }
1018
1019         v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1020         if (IS_ERR(v->tfm)) {
1021                 ti->error = "Cannot initialize hash function";
1022                 r = PTR_ERR(v->tfm);
1023                 v->tfm = NULL;
1024                 goto bad;
1025         }
1026         v->digest_size = crypto_ahash_digestsize(v->tfm);
1027         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1028                 ti->error = "Digest size too big";
1029                 r = -EINVAL;
1030                 goto bad;
1031         }
1032         v->ahash_reqsize = sizeof(struct ahash_request) +
1033                 crypto_ahash_reqsize(v->tfm);
1034
1035         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1036         if (!v->root_digest) {
1037                 ti->error = "Cannot allocate root digest";
1038                 r = -ENOMEM;
1039                 goto bad;
1040         }
1041         if (strlen(argv[8]) != v->digest_size * 2 ||
1042             hex2bin(v->root_digest, argv[8], v->digest_size)) {
1043                 ti->error = "Invalid root digest";
1044                 r = -EINVAL;
1045                 goto bad;
1046         }
1047
1048         if (strcmp(argv[9], "-")) {
1049                 v->salt_size = strlen(argv[9]) / 2;
1050                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1051                 if (!v->salt) {
1052                         ti->error = "Cannot allocate salt";
1053                         r = -ENOMEM;
1054                         goto bad;
1055                 }
1056                 if (strlen(argv[9]) != v->salt_size * 2 ||
1057                     hex2bin(v->salt, argv[9], v->salt_size)) {
1058                         ti->error = "Invalid salt";
1059                         r = -EINVAL;
1060                         goto bad;
1061                 }
1062         }
1063
1064         argv += 10;
1065         argc -= 10;
1066
1067         /* Optional parameters */
1068         if (argc) {
1069                 as.argc = argc;
1070                 as.argv = argv;
1071
1072                 r = verity_parse_opt_args(&as, v);
1073                 if (r < 0)
1074                         goto bad;
1075         }
1076
1077         v->hash_per_block_bits =
1078                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1079
1080         v->levels = 0;
1081         if (v->data_blocks)
1082                 while (v->hash_per_block_bits * v->levels < 64 &&
1083                        (unsigned long long)(v->data_blocks - 1) >>
1084                        (v->hash_per_block_bits * v->levels))
1085                         v->levels++;
1086
1087         if (v->levels > DM_VERITY_MAX_LEVELS) {
1088                 ti->error = "Too many tree levels";
1089                 r = -E2BIG;
1090                 goto bad;
1091         }
1092
1093         hash_position = v->hash_start;
1094         for (i = v->levels - 1; i >= 0; i--) {
1095                 sector_t s;
1096                 v->hash_level_block[i] = hash_position;
1097                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1098                                         >> ((i + 1) * v->hash_per_block_bits);
1099                 if (hash_position + s < hash_position) {
1100                         ti->error = "Hash device offset overflow";
1101                         r = -E2BIG;
1102                         goto bad;
1103                 }
1104                 hash_position += s;
1105         }
1106         v->hash_blocks = hash_position;
1107
1108         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1109                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1110                 dm_bufio_alloc_callback, NULL);
1111         if (IS_ERR(v->bufio)) {
1112                 ti->error = "Cannot initialize dm-bufio";
1113                 r = PTR_ERR(v->bufio);
1114                 v->bufio = NULL;
1115                 goto bad;
1116         }
1117
1118         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1119                 ti->error = "Hash device is too small";
1120                 r = -E2BIG;
1121                 goto bad;
1122         }
1123
1124         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1125         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1126         if (!v->verify_wq) {
1127                 ti->error = "Cannot allocate workqueue";
1128                 r = -ENOMEM;
1129                 goto bad;
1130         }
1131
1132         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1133                                 v->ahash_reqsize + v->digest_size * 2;
1134
1135         r = verity_fec_ctr(v);
1136         if (r)
1137                 goto bad;
1138
1139         ti->per_io_data_size = roundup(ti->per_io_data_size,
1140                                        __alignof__(struct dm_verity_io));
1141
1142         return 0;
1143
1144 bad:
1145         verity_dtr(ti);
1146
1147         return r;
1148 }
1149
1150 static struct target_type verity_target = {
1151         .name           = "verity",
1152         .version        = {1, 4, 0},
1153         .module         = THIS_MODULE,
1154         .ctr            = verity_ctr,
1155         .dtr            = verity_dtr,
1156         .map            = verity_map,
1157         .status         = verity_status,
1158         .prepare_ioctl  = verity_prepare_ioctl,
1159         .iterate_devices = verity_iterate_devices,
1160         .io_hints       = verity_io_hints,
1161 };
1162
1163 static int __init dm_verity_init(void)
1164 {
1165         int r;
1166
1167         r = dm_register_target(&verity_target);
1168         if (r < 0)
1169                 DMERR("register failed %d", r);
1170
1171         return r;
1172 }
1173
1174 static void __exit dm_verity_exit(void)
1175 {
1176         dm_unregister_target(&verity_target);
1177 }
1178
1179 module_init(dm_verity_init);
1180 module_exit(dm_verity_exit);
1181
1182 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1183 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1184 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1185 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1186 MODULE_LICENSE("GPL");